Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Mini Review Volume 1 Issue 2

Gauge unfixing formalism of the O(N) nonlinear sigma model

Jorge A Neto,2 Albert CR Mendes,2 Everton MC Abreu1,2

1Departamento de Fisica, Universidade Federal Rural do Rio de Janeiro, Brazil
2Departamento de Fisica, Universidade Federal de Juiz de Fora, Brazil

Correspondence: Everton MC Abreu, Grupo de Física Teórica e Física Matemática, Departamento de Física, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Received: February 16, 2018 | Published: March 22, 2018

Citation: Abreu EM, Neto JA, Mendes AC. Gauge unfixing formalism of the O(N) nonlinear sigma model. Open Acc J Math Theor Phy. 2018;1(2):38 – 41 DOI: 10.15406/oajmtp.2018.01.00007

Download PDF

Abstract

In a few years back, one of us has proposed a new scheme of embedding constrained systems based mainly on the Gauge Unfixing (GU) formalism and it is known as an extended GU formalism. The proposition was to modify directly the original phase space variables of an arbitrary system in order to turn the system a gauge invariant one. Since the new theory is gauge invariant, we can say that the new system is a first class one in Dirac terminology. In this way, the GU method is a constraint conversion technique. In this work, by using this extended GU formalism we have obtained two different versions of the first class system related on the O(N) nonlinear sigma model.

Keywords: constrained systems, embedding systems, gauge invariant hamiltonians

Introduction

In this work we will discuss a subject that is still of extreme importance in today’s theoretical physics. The issue is gauge invariance, one of the main ingredients of Standard Model. One path to explore the subject is through the constraint analysis, since it is well known that first-class constraints system, in Dirac’s constraints classification,1 is a gauge invariant one. Hence, when we have a second-class constrained system, the gauge invariance is lost and it is very convenient to recover this gauge invariance. Thus, we have to convert this second-class into a first−class one. The literature offers several ways to do that. In this work we will accomplish the task through the so−called Gauge Unfixing (GU) conversion technique.

As an example of what we have just said about constraints, let us consider the Abelian pure Chern-Simons (CS) theory, which is a mixed constrained system, where one of its four constraints must be, let us say, “converted,” in order to be a first−class one. Then, after this step, we would have well established algebras of two first-class constraints and two second−class constraints.

 

One of the “conversion” methods, the well known BFT formalism,2–11 which enlarges the phase space variables through the introduction of the so−called Wess Zumino (WZ) fields, has been used since its first design, to embed the CS theory.12 As a result, the authors demonstrate many important features.

In another paper,13 the authors have also employed the BFT formalism to analyze a non−Abelian version of the CS theory. In this paper, the authors suggest two methods that overcome the problem of embedding mixed constrained systems. In an alternative view of the BFT formalism, there is the GU method which embeds second-class constrained systems. It was introduced by Mitra & Rajaraman14,15 and developed by Vytheeswaran.16,17

The GU formalism considers part of the whole group of second−class constraints as being the gauge symmetry generators. The remaining constraints are now the gauge fixing terms. The corresponding second−class Hamiltonian must be adapted, i.e., modified, in such a convenient way in order to satisfy the first−class algebra together with the constraints that were chosen at the beginning as being the gauge symmetry generators. The GU method has a classy property which prevents us from extending the phase space with extra variables. Some time ago, one of us has provided the constraint literature with an alternative procedure concerning the GU formalism and applied it to the CS theory.18 The objective was to redefine the original phase space variables of a certain constrained system, without introducing any WZ terms, in order to be gauge invariant fields. After that, functions of these gauge invariant fields, which will be gauge invariant quantities, were constructed. This so called “extended” GU formalism begins with a kind of mixed constrained system, which was the CS theory, at that occasion, and, applying the technique, it was obtained a first−class system which was written just in terms of the original phase space variables with many new features. As many important constrained systems have only two second−class constraints, then, in principle, the formalism was introduced only for systems with two second−class constrains without any loss of generality.

In this work we will use this extended GU constraint conversion method to explore the O(N) nonlinear sigma model (NLSM). We have some experience with the NLSM19 and the motivation to work with it is based on the fact that, although the NLSM were first introduced in high energy physics in the context of chiral symmetry breaking, NLSM also plays an underlying role in condensed matter issues, where it appears naturally as effective field theories depicting the low energy long−wave−length limit of several microscopic models.

Having said that and, in order to clarify the exposition of the subject, this paper is organized as follows: in Section 2, we give a short review of the usual GU formalism. In Section 3, we present our formalism. In Section 4, we apply our procedure to the CS theory. In Section 5, we make our concluding remarks.

A brief review of the gauge unfixing formalism

Let us study a second−class constrained system described by its correspondent Hamiltonian which has, for example, two second-class constraints T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGymaaqabaaaaa@3867@  and T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@38F6@ . The main idea of GU formalism is to convert a second−class system into a first−class one by selecting one of the two second−class constraints to be the gauge symmetry generator, i.e., this constraint will be “defined” ad hoc as being first−class. The other constraint will be discarded since a new first−class Hamiltonian will be constructed. However, since we have two constraints, the next step is to build another conversion procedure with the second constraint that was discarded. Now this second constraint will be the chosen one, and the first constraint will be discarded. To sum up, we have two cases in this GU formalism, namely, two ways to obtain gauge invariance. This will be clear in a moment.

The idea is to understand the original non invariant gauge theory as being a gauge fixed version of the gauge invariant system. If we choose T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGymaaqcfayabaaaaa@38F5@  as the symmetries generator, then the second−class Hamiltonian have to be modified in order to satisfy a first−class algebra. To accomplish the task, both the new and gauge invariant Hamiltonian can be constructed through a power series of T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@38F6@  in order to not generate any new constraints, of course. Hence, with this procedure obligation well established, we can write conveniently that

H ˜ =H+ T 2 {H, T 1 }+ 1 2! T 2 2 {{H, T 1 }, T 1 }+ 1 3! T 2 3 {{{H, T 1 }, T 1 }, T 1 }+..., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGibGbaGaacqGH9aqpcaWGibGaey4kaSIaamiva8aadaWg aaqcfasaa8qacaaIYaaapaqabaqcfaOaai4Ea8qacaWGibGaaiilai aadsfapaWaaSbaaKqbGeaapeGaaGymaaWdaeqaaKqbakaac2hapeGa ey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaacgcaaaGaamiva8aada qhaaqcfasaa8qacaaIYaaapaqaa8qacaaIYaaaaKqba+aacaGG7bGa ai4Ea8qacaWGibGaaiilaiaadsfapaWaaSbaaKqbGeaapeGaaGymaa WdaeqaaKqbakaac2hapeGaaiilaiaadsfapaWaaSbaaKqbGeaapeGa aGymaaWdaeqaaKqbakaac2hapeGaey4kaSYaaSaaaeaacaaIXaaaba GaaG4maiaacgcaaaGaamiva8aadaqhaaqcfasaa8qacaaIYaaapaqa a8qacaaIZaaaaKqba+aacaGG7bGaai4EaiaacUhapeGaamisaiaacY cacaWGubWdamaaBaaajuaibaWdbiaaigdaa8aabeaajuaGcaGG9bWd biaacYcacaWGubWdamaaBaaajuaibaWdbiaaigdaaKqba+aabeaaca GG9bWdbiaacYcacaWGubWdamaaBaaajuaibaWdbiaaigdaa8aabeaa juaGcaGG9bWdbiabgUcaRiaac6cacaGGUaGaaiOlaiaacYcaaaa@7064@

 (1) where it can be shown that { H ˜ , T 1 }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGG7bGabiisayaaiaGaaiilaiaacsfadaWgaaqcfasaaiaa igdaaeqaaKqbakaac2hacqGH9aqpcaaIWaaaaa@3E5F@  (i.e., there are no secondary or any new constraints) and T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGymaaqcfayabaaaaa@38F5@  must satisfy the first-class algebra { T 1 , T 1 }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGG7bGaamivamaaBaaajuaibaGaaGymaaqcfayabaGaaiil aiaadsfadaWgaaqcfasaaiaaigdaaKqbagqaaiaac2hacqGH9aqpca aIWaaaaa@3FF6@ . In this way this final system was shown precisely to be a first−class one, and consequently, gauge invariant.

The O(N) nonlinear sigma model

The O(N) nonlinear sigma model is described by the Lagrangian density

L= 1 2 μ a μ a + 1 2 λ( a a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitai abg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeyOaIy7aaSbaaKqb GeaacqaH8oqBaKqbagqaaiabgwGigpaaCaaabeqcfasaaiaadggaaa qcfaOaeyOaIy7aaWbaaeqajuaibaGaeqiVd0gaaKqbakabgwGigpaa CaaabeqcfasaaiaadggaaaqcfaOaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaaaacqaH7oaBdaqadaqaaiabgwGigpaaCaaabeqcfasaaiaa dggaaaqcfaOaeyybIy8aaWbaaeqajuaibaGaamyyaaaajuaGcqGHsi slcaaIXaaacaGLOaGaayzkaaaaaa@5617@ (2)

where the μ=0, 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH8oqBcqGH9aqpcaaIWaGaaiilaiaabccacaaIXaaaaa@3C28@ and a is an index related to the O(N) symmetry group, and the corresponding canonical Hamiltonian density is given by

H= 1 2 π a π a 1 2 i a i a 1 2 λ( a a 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeqiWda3aaSbaaKqb GeaacaWGHbaabeaajuaGcqaHapaCdaWgaaqcfasaaiaadggaaeqaaK qbakabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaeyOaIy7aaSba aKqbGeaacaWGPbaabeaajuaGcqGHfiIXdaWgaaqcfasaaiaadggaae qaaKqbakabgkGi2oaaCaaabeqcfasaaiaadMgaaaqcfaOaeyybIy8a aSbaaKqbGeaacaWGHbaabeaajuaGcqGHsisldaWcaaqaaiaaigdaae aacaaIYaaaaiabeU7aSnaabmaabaGaeyybIy8aaSbaaKqbGeaacaWG HbaabeaajuaGcqGHfiIXdaWgaaqcfasaaiaadggaaKqbagqaaiabgk HiTiaaigdaaiaawIcacaGLPaaaaaa@5DFE@ (3)

  The second−class constraints of the system in Eq. (1), in Dirac’s constraints classification, are

T 1 ( x )=  a ( x ) a ( x ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaajuaibaWdbiaaigdaaKqba+aabeaapeWa aeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqpcaGGGcGaey ybIy8damaaBaaajuaibaWdbiaadggaaKqba+aabeaapeWaaeWaa8aa baWdbiaadIhaaiaawIcacaGLPaaacqGHfiIXpaWaaSbaaKqbGeaape Gaamyyaaqcfa4daeqaa8qadaqadaWdaeaapeGaamiEaaGaayjkaiaa wMcaaiabgkHiTiaacckacaaIXaaaaa@4D2C@  and T 2 ( x )=  a ( x ) π a ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaajuaibaWdbiaaikdaaKqba+aabeaapeWa aeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqpcaGGGcGaey ybIy8damaaBaaajuaibaWdbiaadggaa8aabeaajuaGpeWaaeWaa8aa baWdbiaadIhaaiaawIcacaGLPaaacqaHapaCpaWaaSbaaKqbGeaape GaamyyaaWdaeqaaKqba+qadaqadaWdaeaapeGaamiEaaGaayjkaiaa wMcaaaaa@4AA5@  (4)

The second−class constraint algebra is

 { T 1 ( x ),  T 2 ( y ) }= 2  a   a  δ( xy  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcWaaiWaa8aabaWdbiaadsfapaWaaSbaaKqbGeaapeGa aGymaaWdaeqaaKqba+qadaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaiaacYcacaGGGcGaamiva8aadaWgaaqcfasaa8qacaaIYaaapaqa baqcfa4dbmaabmaapaqaa8qacaWG5baacaGLOaGaayzkaaaacaGL7b GaayzFaaGaeyypa0JaaiiOaiaaikdacaGGGcGaeyybIy8damaaBaaa juaibaWdbiaadggaa8aabeaajuaGpeGaaiiOaiabgwGig=aadaWgaa qcfasaa8qacaWGHbaapaqabaWdbiaacckajuaGcqaH0oazdaqadaWd aeaapeGaamiEaiabgkHiTiaadMhacaGGGcaacaGLOaGaayzkaaaaaa@5B35@  (5)

which shows clearly that the Poisson brackets of both constraints is not zero and consequently the system is not gauge invariant. The infinitesimal gauge transformations generated by symmetry generator T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGymaaqcfayabaaaaa@38F5@  are

δ  a =  {   a ( x ),  T 1 ( y )  }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaGGGcGaeyybIy8damaaBaaajuaibaWdbiaadgga aKqba+aabeaapeGaeyypa0JaaiiOaiabgIGiolaacckadaGadaWdae aapeGaaiiOaiabgwGig=aadaWgaaqcfasaa8qacaWGHbaajuaGpaqa baWdbmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaaiilaiaacc kacaWGubWdamaaBaaajuaibaWdbiaaigdaaKqba+aabeaapeWaaeWa a8aabaWdbiaadMhaaiaawIcacaGLPaaacaGGGcaacaGL7bGaayzFaa Gaeyypa0JaaGimaaaa@5559@  (6)

                                and

δ  π a = ε { π a ( x ),  T 1 ( y )}= 2 ε  a  δ ( xy ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaGGGcGaeqiWda3damaaBaaajuaibaWdbiaadgga a8aabeaajuaGpeGaeyypa0JaaiiOaiabew7aLjaacckadaGabaWdae aapeGaeqiWda3damaaBaaajuaibaWdbiaadggaaKqba+aabeaapeWa aeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacaGGSaGaaiiOaiaads fapaWaaSbaaKqbGeaapeGaaGymaaWdaeqaaKqba+qadaqadaWdaeaa peGaamyEaaGaayjkaiaawMcaaiaac2hacqGH9aqpcaGGGcGaeyOeI0 IaaGOmaiaacckacqaH1oqzcaGGGcGaeyybIy8damaaBaaajuaibaWd biaadggaa8aabeaaaKqba+qacaGL7baacaGGGcGaeqiTdqMaaiiOam aabmaapaqaa8qacaWG4bGaeyOeI0IaamyEaaGaayjkaiaawMcaaaaa @659F@  (7)

The gauge invariant field a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaqcfa4daeqaaaaa @3A0E@ will now be constructed by using a known Taylor expansion in series of powers of T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@38F6@ , namely,

˜ a =  a +  b 1 a   T 2 +  b 2 a T 2 2 + + b 2 a T 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafyybIy SbaGaadaWgaaqcfasaaabaaaaaaaaapeGaamyyaaWdaeqaaKqba+qa cqGH9aqpcaGGGcGaeyybIy8damaaBaaajuaibaWdbiaadggaaKqba+ aabeaapeGaey4kaSIaaiiOaiaadkgapaWaa0baaKqbGeaapeGaaGym aaWdaeaapeGaamyyaaaajuaGcaGGGcGaamiva8aadaWgaaqcfasaa8 qacaaIYaaajuaGpaqabaWdbiabgUcaRiaacckacaWGIbWdamaaDaaa juaibaWdbiaaikdaa8aabaWdbiaadggaaaqcfaOaamiva8aadaqhaa qcfasaa8qacaaIYaaapaqaa8qacaaIYaaaaKqbakabgUcaRiaaccka cqWIVlctcqGHRaWkcaWGIbWdamaaDaaajuaibaWdbiaaikdaa8aaba WdbiaadggaaaqcfaOaamiva8aadaqhaaqcfasaa8qacaaIYaaapaqa a8qacaWGUbaaaaaa@5DD9@ (8)

From the invariance condition, δ ˜ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaaGPaVlqbgwGigBaaiaWaaSbaaKqbGeaacaWGHbaabeaajuaGcqGH 9aqpcaaIWaaaaa@3EBF@ , we can calculate all the set of correction terms b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGIbWdamaaBaaajuaibaWdbiaad6gaaKqba+aabeaaaaa@3989@ . For the linear correction term in order of T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@38F6@ , we have that

δ  ˜ a =0       {   ˜ a ( x ),  T 1 ( y ) }= 0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaGGGcGafyybIySbaGaadaWgaaqcfasaaiaadgga aeqaaKqbakabg2da9iaaicdacaGGGcGaaiiOaiaacckacqGHshI3ca GGGcGaaiiOaiaacckacqGHiiIZcaGGGcWaaiWaa8aabaWdbiaaccka cuGHfiIXgaaca8aadaWgaaqcfasaa8qacaWGHbaajuaGpaqabaWdbm aabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaaiilaiaacckacaWG ubWdamaaBaaajuaibaWdbiaaigdaa8aabeaajuaGpeWaaeWaa8aaba WdbiaadMhaaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcaGG GcGaaGimaiaacckacaGGGcaaaa@604C@     (9)

Substituting Eq. (8) into the last equation, and using the algebra in Eq. (5) to equate the b n a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGIbWdamaaDaaajuaibaWdbiaad6gaa8aabaWdbiaadgga aaaaaa@39F2@  terms, we can easily arrive the result that shows that

b 1 a =  b 2 a = =  b n a = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGIbWdamaaDaaajuaibaWdbiaaigdaa8aabaWdbiaadgga aaqcfaOaeyypa0JaaiiOaiaadkgapaWaa0baaKqbGeaapeGaaGOmaa WdaeaapeGaamyyaaaajuaGcqGH9aqpcaGGGcGaeS47IWKaeyypa0Ja aiiOaiaadkgapaWaa0baaKqbGeaapeGaamOBaaWdaeaapeGaamyyaa aajuaGcqGH9aqpcaGGGcGaaGimaaaa@4D19@ (10)

Namely, due to this last result, all the correction terms b n a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGIbWdamaaDaaajuaibaWdbiaad6gaa8aabaWdbiaadgga aaaaaa@39F2@  where n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyyzImRaaGymaaaa@3A18@ are zero. Therefore, the gauge invariant field ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuGHfiIXgaacamaaBaaajuaibaGaamyyaaqabaaaaa@3961@  is

˜ a = a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuGHfiIXgaacamaaBaaajuaibaGaamyyaaqcfayabaGaeyyp a0JaeyybIy8aaSbaaKqbGeaacaWGHbaajuaGbeaaaaa@3E31@ (11)                                And, by using Eq. (6), it is readily to show that δ ˜ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MaaGPaVlqbgwGigBaaiaWaaSbaaKqbGeaacaWGHbaabeaajuaGcqGH 9aqpcaaIWaaaaa@3EBF@ . The gauge invariant field π ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaHapaCgaacamaaBaaajuaibaGaamyyaaqcfayabaaaaa@3A33@  is also constructed via Taylor series in powers of T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@38F6@

π ˜ a =  π a +  c 1 a T 2 +  c 2 a T 2 2 + + c n a T 2 n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaHapaCgaacamaaBaaajuaibaGaamyyaaqcfayabaGaeyyp a0JaaiiOaiabec8aW9aadaWgaaqcfasaa8qacaWGHbaapaqabaqcfa 4dbiabgUcaRiaacckacaWGJbWdamaaDaaajuaibaWdbiaaigdaa8aa baWdbiaadggaaaqcfaOaamiva8aadaWgaaqcfasaa8qacaaIYaaapa qabaqcfa4dbiabgUcaRiaacckacaWGJbWdamaaDaaajuaibaWdbiaa ikdaa8aabaWdbiaadggaaaqcfaOaamiva8aadaqhaaqcfasaa8qaca aIYaaapaqaa8qacaaIYaaaaKqbakabgUcaRiaacckacqWIVlctcqGH RaWkcaWGJbWdamaaDaaajuaibaWdbiaad6gaa8aabaWdbiaadggaaa qcfaOaamiva8aadaqhaaqcfasaa8qacaaIYaaapaqaa8qacaWGUbaa aaaa@5D59@  (12)

From the invariance condition δ π ˜ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MafqiWdaNbaGaadaWgaaqcfasaaiaadggaaeqaaKqbakabg2da9iaa icdaaaa@3D79@ , we can work out all the correction terms c n a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaDaaajuaibaWdbiaad6gaa8aabaWdbiaadgga aaaaaa@39F4@ . For the linear correction term in order of T 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@38F7@ , we have that        

δ π a +  c 1 a   b  δ π b =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqaHapaCpaWaaSbaaKqbGeaapeGaamyyaaqcfa4d aeqaa8qacqGHRaWkcaGGGcGaam4ya8aadaqhaaqcfasaa8qacaaIXa aapaqaa8qacaWGHbaaaKqbakaacckacqGHfiIXpaWaaSbaaKqbGeaa peGaamOyaaWdaeqaaKqba+qacaGGGcGaeqiTdqMaeqiWda3damaaBa aajuaqbaWdbiaadkgaa8aabeaajuaGpeGaeyypa0JaaGimaaaa@4EB9@  (13)

and consequently,

c 1 a =   a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaDaaajuaibaWdbiaaigdaa8aabaWdbiaadgga aaqcfaOaeyypa0JaaiiOaiabgkHiTiaacckadaWcaaWdaeaapeGaey ybIy8damaaBaaajuaibaWdbiaadggaaKqba+aabeaaaeaapeGaeyyb Iy8damaaCaaajuaibeqaa8qacaaIYaaaaaaaaaa@44D1@  (14)

For the quadratic term, we can write that c 2 a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaDaaajuaibaWdbiaaikdaa8aabaWdbiaadgga aaqcfaOaeyypa0JaaGimaaaa@3C0A@ , since δ c 1 a =ε{ c 1 a , T ˜ }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGJbWdamaaDaaajuaqbaWdbiaaigdaa8aabaWd biaadggaaaqcfaOaeyypa0JaeqyTdu2aaiWaa8aabaWdbiaadogapa Waa0baaKqbGeaapeGaaGymaaWdaeaapeGaamyyaaaajuaGcaGGSaGa biivayaaiaaacaGL7bGaayzFaaGaeyypa0JaaGimaaaa@4807@ . Thereby, using this result, we can say that all the correction terms c n a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaDaaajuaibaWdbiaad6gaa8aabaWdbiaadgga aaaaaa@39F3@ with n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyyzImRaaGOmaaaa@3A19@ is zero. Hence, the gauge invariant field π ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaHapaCgaacamaaBaaajuaibaGaamyyaaqabaaaaa@39A5@  is

π ˜ a = π a a b π b 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaHapaCgaaca8aadaWgaaqcfasaa8qacaWGHbaajuaGpaqa baWdbiabg2da9iabec8aW9aadaWgaaqcfasaa8qacaWGHbaapaqaba qcfa4dbiabgkHiTiabgwGig=aadaWgaaqcfasaa8qacaWGHbaapaqa baqcfa4dbmaalaaapaqaa8qacqGHfiIXpaWaaSbaaKqbGeaapeGaam OyaaWdaeqaaKqba+qacqaHapaCpaWaaSbaaKqbGeaapeGaamOyaaWd aeqaaaqcfayaa8qacqGHfiIXpaWaaWbaaKqbGeqabaWdbiaaikdaaa aaaaaa@4DA9@  (15)

where, by using Eq. (7), It is direct to demonstrate that δ π ˜ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MafqiWdaNbaGaadaWgaaqcfasaaiaadggaaeqaaKqbakabg2da9iaa icdaaaa@3D78@  The gauge invariant Hamiltonian, written only in terms of the original phase space variables, is obtained by substituting a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaqcfa4daeqaaaaa @3A0E@  by ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuGHfiIXgaaca8aadaWgaaqcfasaa8qacaWGHbaajuaGpaqa baaaaa@3A1D@ , and π a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHapaCpaWaaSbaaKqbGeaapeGaamyyaaWdaeqaaaaa@39C4@  by π ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaHapaCgaaca8aadaWgaaqcfasaa8qacaWGHbaajuaGpaqa baaaaa@3A61@ , Eqs. (11) and (15), respectively, into the canonical Hamiltonian, Eq.(3), as follows

H ˜ = 1 2   π a π a 1 2   ( π ) 2 2    1 2   i a i a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmisay aaiaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaacaGGGcGaeqiWda3damaaBaaajuaibaWdbiaadggaa8 aabeaajuaGpeGaeqiWda3damaaBaaajuaibaWdbiaadggaa8aabeaa juaGpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaa GaaiiOamaalaaapaqaa8qadaqadaWdaeaapeGaeyybIySaeqiWdaha caGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaaIYaaaaaqcfa4dae aapeGaeyybIy8damaaCaaajuaibeqaa8qacaaIYaaaaaaajuaGcaGG GcGaeyOeI0IaaiiOamaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYa aaaiaacckacqGHciITpaWaaSbaaKqbGeaapeGaamyAaaWdaeqaaKqb a+qacqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaqcfa4daeqaa8qacq GHciITpaWaaWbaaeqajuaibaWdbiaadMgaaaqcfaOaeyybIy8damaa BaaajuaibaWdbiaadggaaKqba+aabeaaaaa@649A@

 (16) From Eqs. (2) and (3) we have that

δ H ˜ c δ π b = ˙ b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeqiTdqMabmisayaaiaWdamaaBaaajuai baWdbiaadogaaKqba+aabeaaaeaapeGaeqiTdqMaeqiWda3damaaBa aajuaibaWdbiaadkgaaKqba+aabeaaaaWdbiabg2da9iqbgwGig=aa gaGaamaaBaaajuaibaWdbiaadkgaa8aabeaaaaa@44A7@  (17)

And substituting this result into Eq. (15), we can write that

π b a π a 2 b = ˙ b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHapaCpaWaaSbaaKqbGeaapeGaamOyaaqcfa4daeqaa8qa cqGHsisldaWcaaWdaeaapeGaeyybIy8damaaBaaajuaibaWdbiaadg gaaKqba+aabeaapeGaeqiWda3damaaBaaajuaibaWdbiaadggaaKqb a+aabeaaaeaapeGaeyybIy8damaaCaaajuaibeqaa8qacaaIYaaaaa aajuaGcqGHfiIXpaWaaSbaaKqbGeaapeGaamOyaaWdaeqaaKqba+qa cqGH9aqpcuGHfiIXpaGbaiaadaWgaaqcfasaa8qacaWGIbaapaqaba aaaa@4D50@  (18)

Multiplying this last equation by b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaIaeyybIy Ccfa4aaSbaaKqbGeaacaWGIbaajuaGbeaaaaa@39EF@ , we can see that

a ˙ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaqcfa4daeqaa8qa cuGHfiIXpaGbaiaadaWgaaqcfasaa8qacaWGHbaapaqabaqcfa4dbi abg2da9iaaicdaaaa@3F61@  (19)

which is not a constraint considering the new Hamiltonian. Hence, using this constraint to construct the new Lagrangian we know that

L ˜ = π ˜ ˜ ˙ H ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGmbGbaGaacqGH9aqpcuaHapaCgaacaiqbgwGigBaaiyaa caGaeyOeI0Iabmisayaaiaaaaa@3DAF@  (20)

Using Esq. (16) and (19) we obtain that

L ˜ = 1 2 μ a μ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGmbGbaGaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaacqGHciITpaWaaSbaaKqbGeaapeGaeqiVd0gajuaGpa qabaWdbiabgwGig=aadaahaaqcfasabeaapeGaamyyaaaajuaGcqGH ciITpaWaaWbaaeqajuaibaWdbiabeY7aTbaajuaGcqGHfiIXpaWaaW baaeqajuaibaWdbiaadggaaaaaaa@48C9@  (21)

And the gauge invariant condition is

δ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaWdaeqa aKqba+qacqGH9aqpcaaIWaaaaa@3D83@  (22)

Now, let us follow the extended GU technique in order to consider the infinitesimal gauge transformations generated by symmetry generator T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaaGOmaaqcfayabaaaaa@38F6@  given by Eq. (4), i.e., T 2 = a ( x ) π a ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaajuaibaWdbiaaikdaaKqba+aabeaapeGa eyypa0JaeyybIy8damaaBaaajuaibaWdbiaadggaa8aabeaajuaGpe WaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqaHapaCpaWaaSba aKqbGeaapeGaamyyaaWdaeqaaKqba+qadaqadaWdaeaapeGaamiEaa GaayjkaiaawMcaaaaa@46DC@ . The gauge transformations are

δ a ( x )=ε{ a ( x ), T 2 ( y ) }=ε a ( y ) δ( xy ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaWdaeqa aKqba+qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9i abew7aLnaacmaapaqaa8qacqGHfiIXpaWaaSbaaKqbGeaapeGaamyy aaqcfa4daeqaa8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaai aacYcacaWGubWdamaaBaaajuaibaWdbiaaikdaa8aabeaajuaGpeWa aeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaaaiaawUhacaGL9baacq GH9aqpcqaH1oqzcqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaWdaeqa aKqba+qadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiaacckacq aH0oazdaqadaWdaeaapeGaamiEaiabgkHiTiaadMhaaiaawIcacaGL Paaaaaa@5FB0@  (23)

The gauge transformations are

δ a ( x )=ε{ a ( x ), T 2 ( y ) }=ε a ( y ) δ( xy ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaWdaeqa aKqba+qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9i abew7aLnaacmaapaqaa8qacqGHfiIXpaWaaSbaaKqbGeaapeGaamyy aaqcfa4daeqaa8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaai aacYcacaWGubWdamaaBaaajuaibaWdbiaaikdaa8aabeaajuaGpeWa aeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaaaiaawUhacaGL9baacq GH9aqpcqaH1oqzcqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaWdaeqa aKqba+qadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiaacckacq aH0oazdaqadaWdaeaapeGaamiEaiabgkHiTiaadMhaaiaawIcacaGL Paaaaaa@5FB0@

 and

δ π a ( x )=ε{ π a ( x ), T 2 ( y ) }=ε π a ( y )δ( xy ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqaHapaCpaWaaSbaaKqbGeaapeGaamyyaaqcfa4d aeqaa8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9i abew7aLnaacmaapaqaa8qacqaHapaCpaWaaSbaaKqbGeaapeGaamyy aaWdaeqaaKqba+qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaai aacYcacaWGubWdamaaBaaajuaibaWdbiaaikdaa8aabeaajuaGpeWa aeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaaaiaawUhacaGL9baacq GH9aqpcqGHsislcqaH1oqzcqaHapaCpaWaaSbaaKqbGeaapeGaamyy aaWdaeqaaKqba+qadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaai abes7aKnaabmaapaqaa8qacaWG4bGaeyOeI0IaamyEaaGaayjkaiaa wMcaaaaa@6045@  (24)

In order to construct gauge invariant fields, we can write  as

˜ a = a ( 1 1 2 2 1 2 1 8 ( 2 1 ) 2 4 + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafyybIy SbaGaadaWgaaqcfasaaabaaaaaaaaapeGaamyyaaWdaeqaaKqba+qa cqGH9aqpcqGHfiIXpaWaaSbaaKqbGeaapeGaamyyaaqcfa4daeqaa8 qadaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaaIXaaa paqaa8qacaaIYaaaamaalaaapaqaa8qacqGHfiIXpaWaaWbaaeqaju aibaWdbiaaikdaaaqcfaOaeyOeI0IaaGymaaWdaeaapeGaeyybIy8d amaaCaaajuaibeqaa8qacaaIYaaaaaaajuaGcqGHsisldaWcaaWdae aapeGaaGymaaWdaeaapeGaaGioaaaadaWcaaWdaeaapeWaaeWaa8aa baWdbiabgwGig=aadaahaaqcfasabeaapeGaaGOmaaaajuaGcqGHsi slcaaIXaaacaGLOaGaayzkaaWdamaaCaaajuaibeqaa8qacaaIYaaa aaqcfa4daeaapeGaeyybIy8damaaCaaajuaibeqaa8qacaaI0aaaaa aajuaGcqGHRaWkcqWIVlctaiaawIcacaGLPaaaaaa@5D42@  (25)

Hence, this last result in Eq. (25) suggest that we can write the last equation in the following convenient form,

˜ a =f( 2 ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafyybIy SbaGaadaWgaaqcfasaaabaaaaaaaaapeGaamyyaaqcfa4daeqaa8qa cqGH9aqpcaWGMbWaaeWaa8aabaWdbiabgwGig=aadaahaaqabKqbGe aapeGaaGOmaaaaaKqbakaawIcacaGLPaaacqGHfiIXpaWaaSbaaKqb GeaapeGaamyyaaWdaeqaaaaa@43B5@  (26)

From invariance condition δ ˜ a ( x )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazpaGafyybIySbaGaadaWgaaqcfasaa8qacaWGHbaa juaGpaqabaWdbmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaey ypa0JaaGimaaaa@4037@ we can obtain f( 2 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiabgwGig=aadaahaaqabKqbGeaa peGaaGOmaaaaaKqbakaawIcacaGLPaaacaGGGcaaaa@3D8D@ , which is

f( 2 )= 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiabgwGig=aadaahaaqabKqbGeaa peGaaGOmaaaaaKqbakaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaape GaaGymaaWdaeaapeWaaOaaa8aabaWdbiabgwGig=aadaahaaqabKqb GeaapeGaaGOmaaaaaKqbagqaaaaaaaa@41D9@ (27)

Substituting it in Eq. (26) we have that

˜ a = 1 2 a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafyybIy SbaGaadaWgaaqcfasaaabaaaaaaaaapeGaamyyaaqcfa4daeqaa8qa cqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeWaaOaaa8aabaWdbi abgwGig=aadaahaaqabKqbGeaapeGaaGOmaaaaaKqbagqaaaaacqGH fiIXpaWaaSbaaKqbGeaapeGaamyyaaWdaeqaaaaa@425A@  (28)

By making the same procedure for π ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqiWda NbaGaadaWgaaqcfasaaiaadggaaKqbagqaaaaa@3A13@  we have that

π ˜ a = π a ( 1+ 1 2 2 1 2 + 3 8 ( 2 1 ) 2 4 + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqiWda NbaGaadaWgaaqcfasaaiaadggaaKqbagqaaabaaaaaaaaapeGaeyyp a0JaeqiWda3damaaBaaajuaibaWdbiaadggaaKqba+aabeaapeWaae Waa8aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaadaWcaaWdaeaapeGaeyybIy8damaaCaaabeqcfasaa8 qacaaIYaaaaKqbakabgkHiTiaaigdaa8aabaWdbiabgwGig=aadaah aaqabKqbGeaapeGaaGOmaaaaaaqcfaOaey4kaSYaaSaaa8aabaWdbi aaiodaa8aabaWdbiaaiIdaaaWaaSaaa8aabaWdbmaabmaapaqaa8qa cqGHfiIXpaWaaWbaaeqajuaibaWdbiaaikdaaaqcfaOaeyOeI0IaaG ymaaGaayjkaiaawMcaa8aadaahaaqabKqbGeaapeGaaGOmaaaaaKqb a+aabaWdbiabgwGig=aadaahaaqabKqbGeaapeGaaGinaaaaaaqcfa Oaey4kaSIaeS47IWeacaGLOaGaayzkaaaaaa@5D97@  (29)

which, analogously, suggests that π ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqiWda NbaGaadaWgaaqcfasaaiaadggaaKqbagqaaaaa@3A13@ can be written such as

π ˜ a =g( 2 ) π a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqiWda NbaGaadaWgaaqcfasaaiaadggaaKqbagqaaabaaaaaaaaapeGaeyyp a0Jaam4zamaabmaapaqaa8qacqGHfiIXpaWaaWbaaeqajuaibaWdbi aaikdaaaaajuaGcaGLOaGaayzkaaGaeqiWda3damaaBaaajuaibaWd biaadggaa8aabeaaaaa@441F@ (30)

      from the invariance condition δ π ˜ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq MafqiWdaNbaGaadaWgaaqcfasaaiaadggaaeqaaKqbakabg2da9iaa icdaaaa@3D78@ we can obtain g( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWaaeWaa8aabaWdbiabgwGig=aadaahaaqabKqbGeaa peGaaGOmaaaaaKqbakaawIcacaGLPaaaaaa@3C6A@

g( a 2 )= 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWaaeWaa8aabaWdbiabgwGig=aadaqhaaqcfasaa8qa caWGHbaapaqaa8qacaaIYaaaaaqcfaOaayjkaiaawMcaaiabg2da9m aakaaapaqaa8qacqGHfiIXpaWaaWbaaKqbGeqabaWdbiaaikdaaaaa juaGbeaaaaa@41D6@  (31)

which, substituting into Eq. (6), we have that

π ˜ a = 2   π a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqiWda NbaGaadaWgaaqcfasaaiaadggaaKqbagqaaabaaaaaaaaapeGaeyyp a0ZaaOaaa8aabaWdbiabgwGig=aadaahaaqabKqbGeaapeGaaGOmaa aajuaGcaGGGcaabeaacqaHapaCpaWaaSbaaKqbGeaapeGaamyyaaWd aeqaaaaa@42DE@  (32)

Therefore, the gauge invariant Hamiltonian is written as

H ˜ = 1 2 π ˜ a π ˜ a 1 2 i ˜ a i ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmisay aaiaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaapaGafqiWdaNbaGaadaWgaaqcfasaaiaadggaaKqbag qaaiqbec8aWzaaiaWaaSbaaKqbGeaacaWGHbaajuaGbeaapeGaeyOe I0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaeyOaIy7dam aaBaaabaWdbiaadMgaa8aabeaacuGHfiIXgaacamaaBaaajuaibaWd biaadggaaKqba+aabeaapeGaeyOaIy7damaaCaaabeqaa8qacaWGPb aaa8aacuGHfiIXgaacamaaBaaajuaibaWdbiaadggaaKqba+aabeaa aaa@5065@  (33)

where ˜ a  and  π ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafyybIy SbaGaadaWgaaqcfasaaabaaaaaaaaapeGaamyyaaqcfa4daeqaa8qa caqGGcGaaeyyaiaab6gacaqGKbGaaeiOa8aacuaHapaCgaacamaaBa aajuaibaGaamyyaaqcfayabaaaaa@42AE@ are given by Eqs. (5) and (8) respectively.

Conclusion

In this paper, we have used the so called extended GU formalism which, by gauging the original phase space variables of a constrained system, we can carry out the transformation (conversion) of a second−class system into a first-class one and thereby, a gauge invariant theory is obtained. In other words, considering the case of a system with two second−class constraints, one of the constraints will be chosen in order to shape the scaled gauge symmetry generator while the other will be discarded. The discarded constraint can be used to construct a series for the gauge invariant fields. Consequently, any functions of the gauge invariant fields are gauge invariant quantities. We apply our formalism to the O(N) non linear sigma model where new results are obtained a gauge invariant Hamiltonian was obtained in Eq. (33). As a perspective for future research, this extended GU formalism can also be used to study the non−Abelian version of the Chern−Simons theory.13,20

Acknowledgements

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazilian scientific support federal agency, for partial financial support, Grants numbers 302155/2015−5 (E.M.C.A.) and 303140/2017−8 (J.A.N.). E.M.C.A. thanks the hospitality and kindness of Theoretical Physics Department at Federal University of Rio de Janeiro (UFRJ), where part of this work was carried out.

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. PAM Dirac. Lectures on Quantum Mechanics. Dover Publications: Mineola; 2001.
  2. Faddeev L, Shatashivilli SL. Realization of the Schwinger Term in the Gauss Law and the Possibility of Correct Quantization of a Theory with Anomalies. Phys Lett B. 1986;167:225−228.
  3. Batalin IA, Tyutin IV. Existence theorem for the effective gauge algebra in the general canonical formalism with Abelian conversion of second-class constraints. Int J Mod Phys A. 1991;6(18):3255.
  4. R Amorim, J Barcelos Neto. BFT Quantization of Chiral−Boson Theories. Phys Rev D. 1996;53:7129−7137.
  5. Oliveira W, Ananias Neto J. The non−abelian BFFT formalism for the collective coordinates quantization of the SU (2) Skyrme model. Nucl Phys B. 1998;533(1):611−626.
  6. Park MI, Park YJ. Non Abelian Proca model based on the improved BFT formalism. Int J Mod Phys A. 1998;13(13):2179−2199.
  7. Hong ST, Kim YW, Park YJ. Consistent Dirac quantization of SU(2) skyrmion equivalent to BFT scheme. Phys Rev D. 1999;59:114026.  
  8. Neves C, Wotzasek C. Geometric interpretation for the Wess−Zumino terms. Phys Rev D. 1999;59(12):125018.  
  9. Ananias Neto J, Neves C, Oliveira W. Gauging the SU(2) Skyrme model. Phys Rev D. 2001;63(8):085018.
  10. Monemzadeh M, Shirzad A. Finite Order BFFT Method. Int J Mod Phys A. 2003;18(30):5613.
  11. Monemzadeh M, Shirzad A. The BFT method with chain structure. Phys Lett B. 2004;584 (1): 220.
  12. Park MI, Park YJ. Note on the Abelian pure CS theory based on the improved BFT method. J Korean Phys Soc.1997;31:802−806.
  13. Monemzadeh M, Shirzad A. Batalin−Fradkin−Tyutin method for mixed constrained systems and Chern−Simons theory. Phys Rev D. 2005;72(4):045004.
  14. Mitra P, Rajaraman R. New Results on Systems With Second−Class Constraints. Ann Phys. 1990;203(1):137−156.
  15. Harada K, Mukaida H. Gauge Invariance and Systems With Second Class Constraints. Z Phys C. 1990;48:151−158.
  16. Vytheeswaran AS. Gauge unfixing in second class constrained systems. Ann Phys. 1994;236:297−324.
  17. Ananias Neto J. Removing the Wess Zumino Fields in the BFFT Formalism. Braz J Phys. 2006;36(1B):237.
  18. Ananias Neto J. An Improved Gauge Unfixing Formalism and the Abelian Pure Chern Simons Theory. Braz J Phys. 2007;37(3B).
  19. Abreu EMC, Neto JA, Mendes ACR, et al. Non−Abelian BFFT embedding, Schrödinger quantization and the field–antifield anomaly of the O(N) nonlinear sigma model. Int J Mod Phys A. 2016;31(1):1550225.
  20. Kim WT, Park YJ. Batalin-Tyutin quantization of the (2+1)−dimensional nonAbelian Chern-Simons field theory. Phys Lett B. 1994;336:376−380.
Creative Commons Attribution License

©2018 Abreu, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.