Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Research Article Volume 2 Issue 4

Simply supported composite hypar shells under free vibration–some observations

Sarmila Sahoo

Heritage Institute of Technology, India

Correspondence: Sarmila Sahoo, Department of Civil Engineering, Heritage Institute of Technology, Kolkata– 700 107, India

Received: November 27, 2017 | Published: August 28, 2018

Citation: Sahoo S. Simply supported composite hypar shells under free vibration–some observations. Material Sci & Eng Int J. 2018;2(4):139-142. DOI: 10.15406/mseij.2018.02.00047

Download PDF

Abstract

A general finite element procedure is presented to model the hypar shells using eight–noded curved quadratic isoparametric elements with five degrees of freedom per node including two inplane displacements and one transverse displacement and two rotations. Problems of twisted cantilever plate, which have structural resemblance with skewed hypar shell, are solved using the present approach and the results are compared with published ones. Having established the exactitude of the present formulation, numerical experiments with simply supported skewed composite hypar shells are conducted for four different types of laminations including four layered symmetric and antisymmetric cross and angle ply laminates. The first four natural frequencies are presented in tabular forms and are studied critically and a set of meaningful conclusions are derived.

Keywords: hypar shell, composite, natural frequency

Introduction

Hyperbolic paraboloid shell bounded by straight lines (commonly known as hypar shell) is a good choice as roofing unit to civil engineers due to its aesthetic beauty and capability to allow entry of north light. In this age of advanced materials composite skewed hypars define a rich area of research. Schwarte1 worked on free vibration of isotropic rhombic hypar shell and the twisted plates which have structural resemblance with hypar shells received attention from several authors like Kielb,2 Seshu & Ramamurti3 and others. Chakravorty et al.,4 in 1998 reported natural frequency and forced vibration response of corner point supported skewed hypar shell.

Thus it is evident that most of the work on hypar shells deals with fundamental frequency and frequency for higher modes received limited attention only. Moreover the effect of neglecting tangential and /or rotary inertia on the natural frequencies of hypar shell has not received any attention. The first four natural frequency of simply supported composite hypar shell and the effect of neglecting tangential and / or rotary inertia on them is presented.

Mathematical formulation

An eight–noded curved quadratic isoparametric finite element is used for hypar shell analysis. The five degrees of freedom taken into consideration at each node are u, v, w, , . The strain–displacement relations on the basis of improved first order approximation theory for thin shell are established which was provided by solution of benchmark problems reported elsewhere5 and are established as

{ ε x ε y γ xy γ xz γ yz } T = { ε x 0 ε y 0 γ xy 0 γ xz 0 γ yz 0 } T +z { k x k y k xy k xz k yz } T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aai WaaOqaaKqzGeqbaeqabeqbaaaakeaajugibiabew7aLLqbaoaaBaaa jeaibaqcLbmacaWG4baaleqaaaGcbaqcLbsacqaH1oqzjuaGdaWgaa qcbasaaKqzadGaamyEaaWcbeaaaOqaaKqzGeGaeq4SdCwcfa4aaSba aKqaGeaajugWaiaadIhacaWG5baaleqaaaGcbaqcLbsacqaHZoWzju aGdaWgaaqcbasaaKqzadGaamiEaiaadQhaaSqabaaakeaajugibiab eo7aNLqbaoaaBaaajeaibaqcLbmacaWG5bGaamOEaaWcbeaaaaaaki aawUhacaGL9baajuaGdaahaaWcbeqcbasaaKqzadGaamivaaaajugi biabg2da9KqbaoaacmaakeaajugibuaabeqabuaaaaGcbaqcLbsacq aH1oqzjuaGdaqhaaqcbasaaKqzadGaamiEaaqcbasaaKqzadGaaGim aaaaaOqaaKqzGeGaeqyTduwcfa4aa0baaKqaGeaajugWaiaadMhaaK qaGeaajugWaiaaicdaaaaakeaajugibiabeo7aNLqbaoaaDaaajeai baqcLbmacaWG4bGaamyEaaqcbasaaKqzadGaaGimaaaaaOqaaKqzGe Gaeq4SdCwcfa4aa0baaKqaGeaajugWaiaadIhacaWG6baajeaibaqc LbmacaaIWaaaaaGcbaqcLbsacqaHZoWzjuaGdaqhaaqcbasaaKqzad GaamyEaiaadQhaaKqaGeaajugWaiaaicdaaaaaaaGccaGL7bGaayzF aaqcfa4aaWbaaSqabKqaGeaajugWaiaadsfaaaaakeaajugibiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRi aadQhajuaGdaGadaGcbaqcLbsafaqabeqafaaaaOqaaKqzGeGaam4A aKqbaoaaBaaajeaibaqcLbmacaWG4baaleqaaaGcbaqcLbsacaWGRb qcfa4aaSbaaKqaGeaajugWaiaadMhaaSqabaaakeaajugibiaadUga juaGdaWgaaqcbasaaKqzadGaamiEaiaadMhaaSqabaaakeaajugibi aadUgajuaGdaWgaaqcbasaaKqzadGaamiEaiaadQhaaSqabaaakeaa jugibiaadUgajuaGdaWgaaqcbasaaKqzadGaamyEaiaadQhaaSqaba aaaaGccaGL7bGaayzFaaqcfa4aaWbaaSqabKqaGeaajugWaiaadsfa aaaaaaa@F664@    (1)

Where the first vector is the mid–surface strain for a hypar shell and the second vector is the curvature. These are given, respectively, by

{ ε x 0 ε y 0 γ xy 0 γ xz 0 γ yz 0 }={ u/x v/y u/y+v/x2w/ R xy α+w/x β+w/y } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaake aajugibuaabeqafeaaaaGcbaqcLbsacqaH1oqzjuaGdaqhaaqcbasa aKqzadGaamiEaaqcbasaaKqzadGaaGimaaaaaOqaaKqzGeGaeqyTdu wcfa4aa0baaKqaGeaajugWaiaadMhaaKqaGeaajugWaiaaicdaaaaa keaajugibiabeo7aNLqbaoaaDaaajeaibaqcLbmacaWG4bGaamyEaa qcbasaaKqzadGaaGimaaaaaOqaaKqzGeGaeq4SdCwcfa4aa0baaKqa GeaajugWaiaadIhacaWG6baajeaibaqcLbmacaaIWaaaaaGcbaqcLb sacqaHZoWzjuaGdaqhaaqcbasaaKqzadGaamyEaiaadQhaaKqaGeaa jugWaiaaicdaaaaaaaGccaGL7bGaayzFaaqcLbsacqGH9aqpjuaGda GadaGcbaqcLbsafaqabeqbbaaaaOqaaKqzGeGaeyOaIyRaamyDaiaa c+cacqGHciITcaWG4baakeaajugibiabgkGi2kaadAhacaGGVaGaey OaIyRaamyEaaGcbaqcLbsacqGHciITcaWG1bGaai4laiabgkGi2kaa dMhacqGHRaWkcqGHciITcaWG2bGaai4laiabgkGi2kaadIhacqGHsi slcaaIYaGaam4Daiaac+cacaWGsbqcfa4aaSbaaKqaGeaajugWaiaa dIhacaWG5baaleqaaaGcbaqcLbsacqaHXoqycqGHRaWkcqGHciITca WG3bGaai4laiabgkGi2kaadIhaaOqaaKqzGeGaeqOSdiMaey4kaSIa eyOaIyRaam4Daiaac+cacqGHciITcaWG5baaaaGccaGL7bGaayzFaa aaaa@9807@ , { k x k y k xy k xz k yz }={ α/x β/y α/y+β/x 0 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaake aajugibuaabeqafeaaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaa jugWaiaadIhaaSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasaaK qzadGaamyEaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqc LbmacaWG4bGaamyEaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaaje aibaqcLbmacaWG4bGaamOEaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaa BaaajeaibaqcLbmacaWG5bGaamOEaaWcbeaaaaaakiaawUhacaGL9b aajugibiabg2da9KqbaoaacmaakeaajugibuaabeqafeaaaaGcbaqc LbsacqGHciITcqaHXoqycaGGVaGaeyOaIyRaamiEaaGcbaqcLbsacq GHciITcqaHYoGycaGGVaGaeyOaIyRaamyEaaGcbaqcLbsacqGHciIT cqaHXoqycaGGVaGaeyOaIyRaamyEaiabgUcaRiabgkGi2kabek7aIj aac+cacqGHciITcaWG4baakeaajugibiaaicdaaOqaaKqzGeGaaGim aaaaaOGaay5Eaiaaw2haaaaa@7625@    (2)

A laminated composite hypar shell of uniform thickness h and twist radius of curvature Rxy is considered. Keeping the total thickness same, the thickness may consist of any number of thin laminae each of which may be arbitrarily oriented at an angle  with reference to the x–axis of the co–ordinate system. The constitutive equations for the shell are given by

{F}=[D]{ε} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaai4Eaa baaaaaaaaapeGaamOra8aacaGG9bWdbiabg2da98aacaGGBbWdbiaa dseapaGaaiyxaiaacUhapeGaeqyTdu2daiaac2haaaa@4107@    (3)

{ F }= { N x N y N xy M x M y M xy Q x Q y } T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaake aajugibiaadAeaaOGaay5Eaiaaw2haaKqzGeGaeyypa0tcfa4aaiWa aOqaaKqzGeqbaeqabeacaaaaaOqaaKqzGeGaamOtaKqbaoaaBaaaje aibaqcLbmacaWG4baaleqaaaGcbaqcLbsacaWGobqcfa4aaSbaaKqa GeaajugWaiaadMhaaSqabaaakeaajugibiaad6eajuaGdaWgaaqcba saaKqzadGaamiEaiaadMhaaSqabaaakeaajugibiaad2eajuaGdaWg aaqcbasaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaamytaKqbaoaaBa aajeaibaqcLbmacaWG5baaleqaaaGcbaqcLbsacaWGnbqcfa4aaSba aKqaGeaajugWaiaadIhacaWG5baaleqaaaGcbaqcLbsacaWGrbqcfa 4aaSbaaKqaGeaajugWaiaadIhaaSqabaaakeaajugibiaadgfajuaG daWgaaqcbasaaKqzadGaamyEaaWcbeaaaaaakiaawUhacaGL9baaju aGdaahaaWcbeqcbasaaKqzadGaamivaaaaaaa@67EE@ ,

[ D ]=[ [ A ] [ B ] [ 0 ] [ B ] [ D ] [ 0 ] [ 0 ] [ 0 ] [ S ] ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaake aajugibiaadseaaOGaay5waiaaw2faaKqzGeGaeyypa0tcfa4aamWa aOqaaKqzGeqbaeqabmWaaaGcbaqcfa4aamWaaOqaaKqzGeGaamyqaa GccaGLBbGaayzxaaaabaqcfa4aamWaaOqaaKqzGeGaamOqaaGccaGL BbGaayzxaaaabaqcfa4aamWaaOqaaKqzGeGaaGimaaGccaGLBbGaay zxaaaabaqcfa4aamWaaOqaaKqzGeGaamOqaaGccaGLBbGaayzxaaaa baqcfa4aamWaaOqaaKqzGeGaamiraaGccaGLBbGaayzxaaaabaqcfa 4aamWaaOqaaKqzGeGaaGimaaGccaGLBbGaayzxaaaabaqcfa4aamWa aOqaaKqzGeGaaGimaaGccaGLBbGaayzxaaaabaqcfa4aamWaaOqaaK qzGeGaaGimaaGccaGLBbGaayzxaaaabaqcfa4aamWaaOqaaKqzGeGa am4uaaGccaGLBbGaayzxaaaaaaGaay5waiaaw2faaaaa@61BE@ ,

 

{ ε }= { ε x 0 ε y 0 γ xy 0 k x k y k xy γ xz 0 γ yz 0 } T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaake aajugibiabew7aLbGccaGL7bGaayzFaaqcLbsacqGH9aqpjuaGdaGa daGcbaqcLbsafaqabeqaiaaaaaGcbaqcLbsacqaH1oqzjuaGdaqhaa qcbasaaKqzadGaamiEaaqcbasaaKqzadGaaGimaaaaaOqaaKqzGeGa eqyTduwcfa4aa0baaKqaGeaajugWaiaadMhaaKqaGeaajugWaiaaic daaaaakeaajugibiabeo7aNLqbaoaaDaaajeaibaqcLbmacaWG4bGa amyEaaqcbasaaKqzadGaaGimaaaaaOqaaKqzGeGaam4AaKqbaoaaBa aajeaibaqcLbmacaWG4baaleqaaaGcbaqcLbsacaWGRbqcfa4aaSba aKqaGeaajugWaiaadMhaaSqabaaakeaajugibiaadUgajuaGdaWgaa qcbasaaKqzadGaamiEaiaadMhaaSqabaaakeaajugibiabeo7aNLqb aoaaDaaajeaibaqcLbmacaWG4bGaamOEaaqcbasaaKqzadGaaGimaa aaaOqaaKqzGeGaeq4SdCwcfa4aa0baaKqaGeaajugWaiaadMhacaWG 6baajeaibaqcLbmacaaIWaaaaaaaaOGaay5Eaiaaw2haaKqbaoaaCa aaleqajeaibaqcLbmacaWGubaaaaaa@7968@ .   (4)

The stiffness coefficients are defined as

A ij = k=1 np ( Q ij ) k ( z k z k1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqaK qbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaajugibiabg2da 9KqbaoaaqahakeaajugibiaacIcacaWGrbqcfa4aaSbaaKqaGeaaju gWaiaadMgacaWGQbaaleqaaKqzGeGaaiykaKqbaoaaBaaajeaibaqc LbmacaWGRbaaleqaaaqcbasaaKqzadGaam4Aaiabg2da9iaaigdaaK qaGeaajugWaiaad6gacaWGWbaajugibiabggHiLdGaaiikaiaadQha juaGdaWgaaqcbasaaKqzadGaam4AaaWcbeaajugibiabgkHiTiaadQ hajuaGdaWgaaqcbasaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqc LbsacaGGPaaaaa@5EAA@ ;

B ij = 1 2 k=1 np ( Q ij ) k ( z k 2 z k1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOqaK qbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaajugibiabg2da 9KqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaajuaGda aeWbGcbaqcLbsacaGGOaGaamyuaKqbaoaaBaaajeaibaqcLbmacaWG PbGaamOAaaWcbeaajugibiaacMcajuaGdaWgaaqcbasaaKqzadGaam 4AaaWcbeaaaKqaGeaajugWaiaadUgacqGH9aqpcaaIXaaajeaibaqc LbmacaWGUbGaamiCaaqcLbsacqGHris5aiaacIcacaWG6bqcfa4aa0 baaKqaGeaajugWaiaadUgaaKqaGeaajugWaiaaikdaaaqcLbsacqGH sislcaWG6bqcfa4aa0baaKqaGeaajugWaiaadUgacqGHsislcaaIXa aajeaibaqcLbmacaaIYaaaaKqzGeGaaiykaaaa@6606@ ;

D ij = 1 3 k=1 np ( Q ij ) k ( z k 3 z k1 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiraK qbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaajugibiabg2da 9KqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaG4maaaajuaGda aeWbGcbaqcLbsacaGGOaGaamyuaKqbaoaaBaaajeaibaqcLbmacaWG PbGaamOAaaWcbeaajugibiaacMcajuaGdaWgaaqcbasaaKqzadGaam 4AaaWcbeaaaKqaGeaajugWaiaadUgacqGH9aqpcaaIXaaajeaibaqc LbmacaWGUbGaamiCaaqcLbsacqGHris5aiaacIcacaWG6bqcfa4aa0 baaKqaGeaajugWaiaadUgaaKqaGeaajugWaiaaiodaaaqcLbsacqGH sislcaWG6bqcfa4aa0baaKqaGeaajugWaiaadUgacqGHsislcaaIXa aajeaibaqcLbmacaaIZaaaaKqzGeGaaiykaaaa@660B@ i,j=1,2,6;

S ij = k=1 np F i F j ( G ij ) k ( z k z k1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaK qbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaajugibiabg2da 9KqbaoaaqahakeaajugibiaadAeajuaGdaWgaaqcbasaaKqzadGaam yAaaWcbeaajugibiaadAeajuaGdaWgaaqcbasaaKqzadGaamOAaaWc beaajugibiaacIcacaWGhbqcfa4aaSbaaKqaGeaajugWaiaadMgaca WGQbaaleqaaKqzGeGaaiykaKqbaoaaBaaajeaibaqcLbmacaWGRbaa leqaaaqcbasaaKqzadGaam4Aaiabg2da9iaaigdaaKqaGeaajugWai aad6gacaWGWbaajugibiabggHiLdGaaiikaiaadQhajuaGdaWgaaqc basaaKqzadGaam4AaaWcbeaajugibiabgkHiTiaadQhajuaGdaWgaa qcbasaaKqzadGaam4AaiabgkHiTiaaigdaaSqabaqcLbsacaGGPaaa aa@6767@ i,j=1,2;    (5)

Where Qij are elements of the off–axis elastic constant matrix which are derived from appropriate transformation of the on–axis matrix. Fi and Fj are shear correction factors presently taken as unity. The terms of the on–axis matrix depend on the elastic moduli and Poisson’s ratio of the material. The element stiffness matrix and the load vector are derived through the routine steps of finite element formulation employing numerical integration. The element stiffness matrix and the element load vectors are assembled to get the global matrices. The basic equation of statics is solved by Gaussian elimination algorithm. The element matrices are assembled after performing appropriate transformations due to the curved shell surface to obtain the respective global matrices [K] and [M]. The free vibration analysis involves determination of natural frequencies from the condition

| [ K ] ω 2 [ M ] |=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaake aajuaGdaWadaGcbaqcLbsacaWGlbaakiaawUfacaGLDbaajugibiab gkHiTiabeM8a3LqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqbao aadmaakeaajugibiaad2eaaOGaay5waiaaw2faaaGaay5bSlaawIa7 aKqzGeGaeyypa0JaaGimaaaa@49F4@     (6)

This is a generalized eigen value problem and is solved by the subspace iteration algorithm.

Numerical examples

Cantilever twisted plates are solved (done earlier by Qatu & Leissa6) to obtain the non–dimensional fundamental frequencies and the present results are compared with the published ones (Table 1). Additional problems of skewed hypar shells (Figure 1) are also solved considering different stacking sequences and simply supported boundary. The first four natural frequencies are obtained and presented in the form of table using the non–dimensional parameter. The values in parentheses indicates the percentage deviations of the frequencies when neglecting tangential and/or rotary inertia from those obtained by considering all d.o.f.s with the latter as the base. In all the cases only the converged results are presented in Table 2. The fundamental frequencies are taken to have converged for particular finite element grid, if further refinement of the grid does not improve that result by more than one percent. With this criterion an 8x8 mesh is found to be appropriate for all the problems taken up here.

Figure 1 Surface of a skewed hypar shell.

 

q (degree)

0

15

30

45

60

75

90

Qatu and Leissa[6]

1.0035

0.9296

0.7465

0.5286

0.3545

0.2723

0.2555

f=15

Present FEM

0.9989

0.9258

0.7443

0.5278

0.3541

0.272

0.2551

Table 1 Non-dimensional natural frequencies [ ] for three layer graphite epoxy twisted plates, [θ /-θ /θ ] laminates
a/b=1, a/h=100; E11=138 GPa, E22=8.96 GPa, G12=7.1 GPa, v12 = 0.3, h – shell thickness

Results and discussions

From Table 1 it is found that the fundamental frequencies of cantilever twisted plates obtained by Qatu & Leissa6 compare well with the present results. So the correctness of the present approach incorporating the effect of twist of curvature in the formulation is established.

It is seen from Table 2 that the frequencies increase when the tangential and or rotary inertia are neglected. The increased values of the frequencies are quite justified because the elimination of some terms from the mass matrix leads to stiffer modeling of the shells. It is also observed that in almost all the cases the percentage deviations of the frequencies when neglecting tangential inertia and rotary inertia separately can be added up to obtain the percentage deviation for the case when both tangential inertia and rotary inertia are neglected. Thus the principle of superposition seems to be applicable. However, in all the problems the above effects are negligible. If the tangential inertia terms are neglected there is an over estimation of natural frequencies no doubt but such deviations are acceptable from engineering point of view being less than 10%. This means almost correct natural frequencies may be obtained with much less computational effort. Physically, the results imply that the major part of kinetic energy associated with shell vibration is due to transverse displacement.

An in–depth study of the percentage deviation of the frequencies caused due to negligence of tangential and/ or rotary inertia further reveals that the effects of neglecting tangential inertia are much more pronounced than those of neglecting rotary inertia. Therefore, in hypar shells the contribution of the tangential movements is more conspicuous than that of the rotary movements in the total kinetic energy of vibration. Again from Table 2 it is also found that the percentage deviation of natural frequency is more in angle ply shells than that in cross ply shells. But comparing the percentage deviation of anti–symmetric and symmetric cross and angle ply shells no unified conclusion can be drawn.

Lamination

Frequencies with all d.o.f.

Frequencies without tangential inertia

Frequencies without rotary inertia

Frequencies without both tangential and rotary inertia

(degree)

(B)

 (C)

(D)

(A)

0/90/90/0

5.12303

5.56508

5.12326

5.56538

-8.545

-0.004

-8.635

5.431

5.90314

5.43127

5.90348

-8.693

-0.005

-8.67

6.77001

7.07466

6.77061

7.07534

-4.5

-0.009

-4.51

9.26257

9.71075

9.26408

9.71251

-4.51

-0.016

-4.858

0/90/0/90

5.15533

5.59977

5.15557

5.60008

-8.622

-0.005

-8.627

5.20721

5.65169

5.20746

5.652

-8.536

-0.005

-8.542

7.99776

8.3755

7.99848

8.37632

-4.723

-0.009

-4.733

8.037

8.40747

8.03767

8.40827

-4.61

-0.008

-4.62

45/-45/-45/45

5.78153

6.32587

5.78182

6.32624

-9.415

-0.005

-9.422

6.06977

6.65609

6.07006

6.65648

-9.66

-0.005

-9.666

8.03849

8.45823

8.03926

8.45912

-5.222

-0.009

-5.233

10.9619

11.5318

10.9631

11.5332

-5.199

-0.011

-5.212

45/-45/ 45/-45

6.0927

6.66584

6.09301

6.66624

-9.407

-0.005

-9.414

6.12258

6.69458

6.12289

6.69498

(9.342))

-0.005

-9.348

8.06525

8.47611

8.06601

8.477

-5.094

-0.009

-5.105

11.3798

11.9632

11.381

11.9646

 

 

-5.127

-0.011

-5.139

Table 2 First four natural frequencies (Hz) for laminated composite hypar shells (a/b=1) with different stacking sequences
a/b=1, a/h=100,c/a=0.2; E11 =25E22 ,G12 =G13 =0.5E22, G23 =0.2E22, v12 = v21 =0.25 (Values in the parentheses are the percentage deviations of values in columns (B), (C) and (D) with respect to those in column (A).).

Conclusion

The present finite element approach is capable of modelling free vibration problem of shells with twist of curvature. The effect of neglecting tangential and rotary inertia to obtain the natural frequencies is negligible. This means almost correct natural frequencies may be obtained with much less computational effort. Physically, the results imply that the major part of kinetic energy associated with shell vibration is due to transverse displacement.

In hypar shells the contribution of the tangential movements is more conspicuous than that of the rotary movements in the total kinetic energy of vibration. The percentage deviation of natural frequency is more in angle ply shells than that in cross ply shells. But comparing the percentage deviations of anti–symmetric and symmetric cross and angle ply shells no unified conclusion comes out.

Acknowledgements

None.

Conflict of interest

Authors declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Sahoo. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.