Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Review Article Volume 6 Issue 1

Optimal siting of a nuclear power station in Nigeria using fuzzy grey relational analysis

Eyere Emagbetere, Ikuobase Emovon, Olusegun David Samuel, Peter A Oghenekowho, Larry Orobome Agberegha, Alexander Akene, Aghogho Bright Edward

Department of Mechanical Engineering, Federal University of Petroleum Resources, Nigeria

Correspondence: Eyere Emagbetere, Department of Mechanical Engineering, Federal University of Petroleum Resources, Effurun, Nigeria

Received: May 17, 2022 | Published: May 26, 2022

Citation: Eyere E, Ikuobase E, Samuel OD, et al. Optimal siting of a nuclear power station in Nigeria using fuzzy grey relational analysis. Material Sci & Eng. 2022;6(1):25-29 DOI: 10.15406/mseij.2022.06.00176

Download PDF

Abstract

One of the primary causes of Nigeria's underdevelopment is a lack of electricity to power the country's industries. Rather than relying solely on fossil fuels to generate electricity in Nigeria, a variety of other sources, such as nuclear energy, must be considered. A Nuclear Power Plant's (NPP) location is a critical step in its development. This paper thus presents a methodology for resolving the issue of NPP site selection. For this project, the fuzzy Grey Relational Analysis (GRA) method was chosen. To assess the feasibility of the approach, one of Nigeria's six south-south states was chosen as the location of a hypothetical nuclear power plant. According to the findings, the NPP would be best located in Delta State, which had the highest gray relational grade of 0.7897.

Keywords: Fuzzy GRA, Nuclear Power Plant, Decision criteria, Sites, Location

Introduction

Most industries in Nigeria are forced to rely on expensive, stand-alone power generators since the national grid's supply is so uneven and unreliable. Renewable and non-renewable energy sources, such as nuclear, are needed to meet Nigeria's energy demands instead of just relying on fossil fuels.1 17 % of the world's nuclear power plants, situated in more than 30 countries, supply the world's electrical energy demands.2 NPP placement is an important phase in the development of nuclear power plants because it minimizes costs and protects individuals and the environment from the unwanted consequences of construction or operation.3 

The problem of NPP site selection has been addressed successfully using MCDM tools in a few countries around the world. Fuzzy SWOT, Ekmekçioglu et al.4 investigated  Fuzzy AHP, and Fuzzy TOPSIS to see if they could be used to select the best location for a nuclear power plant in Turkey. Erol et al.5 combined Fuzzy Entropy with Fuzzy Compromise Programming to solve another NPP site selection problem in Turkey.  Kurt3 utilized Fuzzy TOPSIS to investigate the site selection problem for Turkey’s nuclear power plant.

Kassim et al.6 adopted the AHP to determine the best location for a nuclear power plant in Yemen.

Wang et al.7 advocated for the use of the Fuzzy ANP and TOPSIS approaches in determining the best location for a nuclear power plant in Vietnam. Wu et al.8 used Type 2 fuzzy AHP and Type 2 fuzzy PROMETHEE II to solve China's nuclear plant site selection problem. Peng et al.9 investigated the application of Z-number linguistic variables, the Best Worst Method (BWM), DEMATEL, and TOPSIS. The results of their analysis showed that more MCDM technologies, such as fuzzy GRA, can be employed to augment the effort and close the gap. To my knowledge, there is no research on the MCDM method for Nigeria’s NPP site selection, hence this method should be investigated further. This study proposed a fuzzy GRA approach for selecting the optimal state in Nigeria’s south-south region for the NPP’s location. Due to the complexity of traditional MCDM tools used to handle NPP site selection challenges, fuzzy GRA approaches were chosen as a solution. It has also been used in literature to investigate multi-criteria decision issues, such as machining parameter optimization.10,11 Conceptual design appraisal,12 and supplier selection.13 Because it has not previously been documented in the literature, the MCDM method needs to be studied further. In this paper, a fuzzy GRA technique is proposed to select the best state in Nigeria's south-south region to house the NPP.

Because of their computational simplicity in comparison to other MCDM tools, fuzzy GRA techniques were chosen to support in the solution of the NPP site selection problem. It has already been shown in the literature to be a valuable tool for solving a variety of complex multicriteria decision problems, such as machining parameter optimization,10,11 conceptual design evaluation,12 and supplier selection.13 

A Number of multicriteria decision tasks have been studied using the fuzzy GRA technique, including machining parameter optimization, conceptual design evaluation, and supplier selection.10-13 The MCDM approach should be investigated further because it has not been previously documented in the literature. To find the ideal location for the NPP in Nigeria’s south-south zone, a fuzzy GRA technique is proposed in this research. Fuzzy GRA techniques were chosen to help solve the problem of NPP site selection because they are computationally simpler than other MCDM tools. In the literature, it has already proven to be a valuable tool for solving a variety of complex multi criteria decision problems, such as machining parameter optimization,10,11  conceptual design evaluation,12 and supplier selection.13

Methodology

Figure 1 depicts the proposed method for determining which of Nigeria's six south-south states is the best location for a nuclear plant (NPP). As shown, the next step is to establish criteria for evaluating each state's performance after determining the goal of locating the NPP in the best possible state. Here, in Table 1 are the criteria that we used to make our final decision. The states are ranked using the Fuzzy GRA technique, and the state with the highest fuzzy GRA performance values is chosen.

Figure 1 NPP site selection decision chart.

Decision criteria

Description

Nearness to water resources (E1)

For effective cooling of NPP large volume of water is required,
thus NPP should be sited near sea or big river

Distance from populated areas (E2)

The appropriate site for locations of NPP should not be near
populated areas in order not to expose people to radioactivity

Risk of attack (E3)

NPP should be located in the place that is safe from any form
of attack be it internal from (Boko haram, militant, and any
other pressure group) or external

Distance to industrial energy consumers (E4)    

To reduce energy loss on transmission line the site for location
of NPP should be close to large industrial energy consumers

Table 1 Description of decision criteria

Fuzzy GRA method

The Fuzzy Set Theory (FST) and the GRA method are combined in the fuzzy GRA method. Julong14 developed the GRA technique for analyzing multi criteria decision problems. The degree of similarity between the reference alternative value and each comparison alternative value determines the ranking principle.15 One disadvantage of the GRA method is the use of only exact data in decision analysis, which is ineffective in practice. FST and GRA can be used to model ambiguity in the decision-making process, though. Multi-criteria decision-making has been made easier with the fuzzy GRA. Hydrogen energy storage technique selection was dealt with by Gumus et al.16 using the method. To identify the most advanced manufacturing system, Goyal and Grover17 used the fuzzy GRA. When using the fuzzy GRA approach; linguistic variables are employed by decision-makers to award scores to potential NPP sites based on decision criteria. Fuzzy triangular numbers (TFNs) are created from the linguistic variables and consist of three real numbers, l, m, and p. Tables 2 and 3 provide the linguistic scale for assigning fuzzy scores to alternate NPP locations and criteria, respectively.

Linguistic variables

TFN

Very poor (VP)

0,0,1

Poor (P)

0,1,3

Medium poor (MP)

1,3,5

Fair (F)

3,5,7

Medium good (MG)

5,7,9

Good (G)

7,9,10

Very good (VG)

9,10,10

Table 2 Linguistic variables for rating alternatives3

Linguistic variables

TFN

Very Low (VL)

0,0,0.1

Low (L)

0,0.1,0.3

Medium Low (ML)

0.1,0.3,0.5

Medium (M)

0.3,0.5,0.7

Medium High (MH)

0.5,0.7.0.9

High (H)

0.7,0.9,1

Table 3 Linguistic variables for rating criteria3

Protocol for implementing the Fuzzy GRA algorithm

The Fuzzy GRA algorithm implementation is divided into five stages.18

(1) Determine the fuzzy decision matrix

The first step in applying the fuzzy GRA methodology is for decision-makers (DMs) to assign fuzzy ratings to alternative NPP sites against decision criteria using the fuzzy scale in Table 2.

If k DMs assign ratings to alternative NPP sites I based on decision criterion j, the DMs' combined rating can be calculated as follows:19

μ ˜ ij = 1 k [ μ ˜ ij 1 +  μ ˜ ij 2  +, μ ˜ ij k ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqiVd0MbaGaapaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWd biabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGRbaaamaadm aapaqaa8qacuaH8oqBgaaca8aadaqhaaWcbaWdbiaadMgacaWGQbaa paqaa8qacaaIXaaaaOGaey4kaSIaaiiOaiqbeY7aTzaaiaWdamaaDa aaleaapeGaamyAaiaadQgaa8aabaWdbiaaikdaaaGccaGGGcGaey4k aSIaaiilaiabgAci8kqbeY7aTzaaiaWdamaaDaaaleaapeGaamyAai aadQgaa8aabaWdbiaadUgaaaaakiaawUfacaGLDbaaaaa@554B@   (1)

Where   is the fuzzy rating of the ith alternative site by the kth decision maker (DM) against the jth criterion? If more than one DM is involved in the decision-making process, k number of DMs is asked to assign fuzzy weights to decision criteria. The obtained integrated fuzzy criteria weights are expressed as follows:20

w ˜ j = 1 k [ w ˜ j 1 +  w ˜ j 2  +, w ˜ j k ]    MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4DayaaiaWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabg2da 9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGRbaaamaadmaapaqaai qadEhagaacamaaDaaaleaapeGaamOAaaWdaeaapeGaaGymaaaakiab gUcaRiaacckaceWG3bGbaGaapaWaa0baaSqaa8qacaWGQbaapaqaa8 qacaaIYaaaaOGaaiiOaiabgUcaRiaacYcacqGHMacVpaGabm4Dayaa iaWaa0baaSqaa8qacaWGQbaapaqaa8qacaWGRbaaaaGccaGLBbGaay zxaaGaaiiOaiaacckacaGGGcaaaa@51F8@   (2)

Where is the fuzzy weight of criterion j assigned by kth DM.

Fog matrixes are formed by adding together the various choice criteria's integrated fuzzy weights with the integrated fuzzy ratings of probable NPP locations.19

U ˜ ij =[ u ˜ 11 u ˜ 12 u ˜ 1n u ˜ 21 u ˜ 22 u ˜ 2n u ˜ m1 u ˜ m2 u ˜ mn ] ;  w ˜ j =[ w ˜ 1 +  w ˜ 2  +,.., w ˜ n ],  j=1, 2, 3,,n     MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwfagaacam aaBaaaleaaqaaaaaaaaaWdbiaadMgacaWGQbaapaqabaGcpeGaeyyp a0ZaamWaa8aabaqbaeqabqabaaaaaeaaceWG1bGbaGaadaWgaaWcba WdbiaaigdacaaIXaaapaqabaaakeaaceWG1bGbaGaadaWgaaWcbaWd biaaigdacaaIYaaapaqabaaakeaapeGaeyOjGWlapaqaa8qaceWG1b GbaGaapaWaaSbaaSqaa8qacaaIXaGaamOBaaWdaeqaaaGcbaWdbiqa dwhagaaca8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaaakeaace WG1bGbaGaadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaaakeaapeGa eyOjGWlapaqaa8qaceWG1bGbaGaapaWaaSbaaSqaa8qacaaIYaGaam OBaaWdaeqaaaGcbaWdbiabl6UinbWdaeaapeGaeSO7I0eapaqaa8qa cqWIXlYta8aabaWdbiabl6UinbWdaeaaceWG1bGbaGaadaWgaaWcba Wdbiaad2gacaaIXaaapaqabaaakeaaceWG1bGbaGaadaWgaaWcbaWd biaad2gacaaIYaaapaqabaaakeaapeGaeyOjGWlapaqaa8qaceWG1b GbaGaapaWaaSbaaSqaa8qacaWGTbGaamOBaaWdaeqaaaaaaOWdbiaa wUfacaGLDbaacaGGGcGaai4oaiaacckapaGabm4DayaaiaWaaSbaaS qaa8qacaWGQbaapaqabaGcpeGaeyypa0ZaamWaa8aabaGabm4Dayaa iaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaiiOa8aace WG3bGbaGaadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGGcGaey4k aSIaaiilaiaac6cacaGGUaGaaiilaiqadEhagaaca8aadaWgaaWcba Wdbiaad6gaa8aabeaaaOWdbiaawUfacaGLDbaacaGGSaGaaiiOaiaa cckacaWGQbGaeyypa0JaaGymaiaacYcacaGGGcGaaGOmaiaacYcaca GGGcGaaG4maiaacYcacqGHMacVcaGGSaGaamOBaiaacckacaGGGcGa aiiOaiaacckaaaa@8F62@   (3)

Where u ˜ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwhagaacam aaBaaaleaaqaaaaaaaaaWdbiaadMgacaWGQbaapaqabaaaaa@3A50@  is the alternative NPP sites, i, rating with respect to criterion j and w ˜ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4DayaaiaadcaWGQbaaaa@3934@ indicate fuzzy weight of criterion j and u ˜ ij =( l ij ,  m ij  , q ij ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadwhagaacam aaBaaaleaaqaaaaaaaaaWdbiaadMgacaWGQbaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiaadYgapaWaaSbaaSqaa8qacaWGPbGaamOAaa WdaeqaaOWdbiaacYcacaGGGcGaamyBa8aadaWgaaWcbaWdbiaadMga caWGQbGaaiiOaaWdaeqaaOWdbiaacYcacaWGXbWdamaaBaaaleaape GaamyAaiaadQgaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@4A8C@

(2) Normalise the fuzzy decision matrix

Equation (4) is used to transform the fuzzy decision matrix into a normalised fuzzy decision matrix, R.

γ ˜ ij =( l ij q j + , m ij q j + ,  q ij q j + )i=1, 2,,m;j=1, 2,,n   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo7aNzaaia WaaSbaaSqaaabaaaaaaaaapeGaamyAaiaadQgaa8aabeaak8qacqGH 9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaadYgapaWaaSbaaSqaa8 qacaWGPbGaamOAaaWdaeqaaaGcbaWdbiaadghapaWaa0baaSqaa8qa caWGQbaapaqaa8qacqGHRaWkaaaaaOGaaiilamaalaaapaqaa8qaca WGTbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaOqaa8qacaWG XbWdamaaDaaaleaapeGaamOAaaWdaeaapeGaey4kaScaaaaakiaacY cacaGGGcWaaSaaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaWGPbGa amOAaaWdaeqaaaGcbaWdbiaadghapaWaa0baaSqaa8qacaWGQbaapa qaa8qacqGHRaWkaaaaaaGccaGLOaGaayzkaaGaamyAaiabg2da9iaa igdacaGGSaGaaiiOaiaaikdacaGGSaGaeyOjGWRaaiilaiaad2gaca GG7aGaamOAaiabg2da9iaaigdacaGGSaGaaiiOaiaaikdacaGGSaGa eyOjGWRaaiilaiaad6gacaGGGcGaaiiOaaaa@699C@   (4)

Where q j + = max i ( q ij )  i=1, 2,,m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaqhaaWcbaWdbiaadQgaa8aabaWdbiabgUcaRaaakiab g2da98aadaWfqaqaa8qaciGGTbGaaiyyaiaacIhaaSWdaeaapeGaam yAaaWdaeqaaOWdbmaabmaapaqaa8qacaWGXbWdamaaBaaaleaapeGa amyAaiaadQgaa8aabeaaaOWdbiaawIcacaGLPaaacaGGGcGaaiiOai aadMgacqGH9aqpcaaIXaGaaiilaiaacckacaaIYaGaaiilaiabgAci 8kaacYcacaWGTbaaaa@5028@

(3) Evaluate the reference series

The individual criterion reference number is obtained as follows

R ˜ o =[ r ˜ o1 , r ˜ o2 , ,  r ˜ on ]  where  r ˜ oj =max(   r ˜ ij )  j=1,,n    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaacam aaBaaaleaaqaaaaaaaaaWdbiaad+gaa8aabeaak8qacqGH9aqpdaWa daWdaeaaceWGYbGbaGaadaWgaaWcbaWdbiaad+gacaaIXaaapaqaba GcpeGaaiila8aaceWGYbGbaGaadaWgaaWcbaWdbiaad+gacaaIYaaa paqabaGcpeGaaiilaiaacckacqGHMacVcaGGSaGaaiiOaiqadkhaga aca8aadaWgaaWcbaWdbiaad+gacaWGUbaapaqabaaak8qacaGLBbGa ayzxaaGaaiiOaiaacckacaWG3bGaamiAaiaadwgacaWGYbGaamyzai aacckapaGabmOCayaaiaWaaSbaaSqaa8qacaWGVbGaamOAaaWdaeqa aOWdbiabg2da9iGac2gacaGGHbGaaiiEamaabmaapaqaa8qacaGGGc WdaiqadkhagaacamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaOWd biaawIcacaGLPaaacaGGGcGaaiiOaiaadQgacqGH9aqpcaaIXaGaai ilaiabgAci8kaacYcacaWGUbGaaiiOaiaacckacaGGGcaaaa@6DAE@   (5)

(4) Determine the distance matrix

The distance ˜ ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacuGHciITpaGbaGaadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaaa aa@39C3@  between the reference value and the individual comparison value is expressed as:

ij ( r ˜ oj , r ˜ ij )=  1 3 [ ( r o l   r ij l ) 2 +  ( r o m   r ij m ) 2 +  ( r o q   r ij q ) 2 ]            MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIy7damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qadaqa daWdaeaaceWGYbGbaGaadaWgaaWcbaWdbiaad+gacaWGQbaapaqaba GcpeGaaiilaiqadkhagaaca8aadaWgaaWcbaWdbiaadMgacaWGQbaa paqabaaak8qacaGLOaGaayzkaaGaeyypa0JaaeiOamaakaaapaqaa8 qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaG4maaaadaWadaWdaeaa peGaaiikaiaadkhapaWaa0baaSqaa8qacaWGVbaapaqaa8qacaWGSb aaaOGaeyOeI0IaaiiOaiaadkhapaWaa0baaSqaa8qacaWGPbGaamOA aaWdaeaapeGaamiBaaaakiaacMcapaWaaWbaaSqabeaapeGaaGOmaa aakiabgUcaRiaacckacaGGOaGaamOCa8aadaqhaaWcbaWdbiaad+ga a8aabaWdbiaad2gaaaGccqGHsislcaGGGcGaamOCa8aadaqhaaWcba WdbiaadMgacaWGQbaapaqaa8qacaWGTbaaaOGaaiyka8aadaahaaWc beqaa8qacaaIYaaaaOGaey4kaSIaaiiOaiaacIcacaWGYbWdamaaDa aaleaapeGaam4BaaWdaeaapeGaamyCaaaakiabgkHiTiaacckacaWG YbWdamaaDaaaleaapeGaamyAaiaadQgaa8aabaWdbiaadghaaaGcca GGPaWdamaaCaaaleqabaWdbiaaikdaaaaakiaawUfacaGLDbaaaSqa baGccaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcaaaa@7DAC@   (6)

(5) Evaluate grey relational coefficient (GRC)

The GRC, is evaluated as:

σ ij = ˜ min +π ˜ max ij +π ˜ max                       MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaacuGHciITgaacamaaBaaaleaapeGaamyBaiaadM gacaWGUbaapaqabaGcpeGaey4kaSIaeqiWda3daiqbgkGi2AaaiaWa aSbaaSqaa8qacaWGTbGaamyyaiaadIhaa8aabeaaaOqaa8qacqGHci ITpaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbiabgUcaRiab ec8aW9aacuGHciITgaacamaaBaaaleaapeGaamyBaiaadggacaWG4b aapaqabaaaaOWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaaaa@6B7A@   (7)

Where, ˜ min =min( ˜ ij ),  ˜ max =max( ˜ ij ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbgkGi2Aaaia WaaSbaaSqaaabaaaaaaaaapeGaamyBaiaadMgacaWGUbaapaqabaGc peGaeyypa0JaamyBaiaadMgacaWGUbWaaeWaa8aabaWdbiqbgkGi2A aaiaWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaOWdbiaawIca caGLPaaacaGGSaGaaiiOa8aacuGHciITgaacamaaBaaaleaapeGaam yBaiaadggacaWG4baapaqabaGcpeGaeyypa0JaamyBaiaadggacaWG 4bWaaeWaa8aabaGafyOaIyRbaGaadaWgaaWcbaWdbiaadMgacaWGQb aapaqabaaak8qacaGLOaGaayzkaaaaaa@54CF@ and π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHapaCaaa@37D4@  is the revolving coefficient which has a value of 0 to 1.

(6) Defuzzification of fuzzy criteria weight 

The fuzzy criteria weights, w ˜ j  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEhagaacam aaBaaaleaaqaaaaaaaaaWdbiaadQgacaGGGcaapaqabaaaaa@3A88@   { w ˜ j  =( l j ,  m j  , q j ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiqadEhagaaca8aadaWgaaWcbaWdbiaadQgacaGG GcaapaqabaGcpeGaeyypa0ZaaeWaa8aabaWdbiaadYgapaWaaSbaaS qaa8qacaWGQbaapaqabaGcpeGaaiilaiaacckacaWGTbWdamaaBaaa leaapeGaamOAaiaacckaa8aabeaak8qacaGGSaGaamyCa8aadaWgaa WcbaWdbiaadQgaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUhacaGL 9baaaaa@4A69@ is generally transformed into crisp values through defuzzification as follows:

Crisp( w ˜ j  )= w j =  l+2m+q 4       MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadkhacaWGPbGaam4CaiaadchadaqadaWdaeaaceWG3bGb aGaadaWgaaWcbaWdbiaadQgacaGGGcaapaqabaaak8qacaGLOaGaay zkaaGaeyypa0Jaam4Da8aadaWgaaWcbaWdbiaadQgaa8aabeaak8qa cqGH9aqpcaGGGcWaaSaaa8aabaWdbiaadYgacqGHRaWkcaaIYaGaam yBaiabgUcaRiaadghaa8aabaWdbiaaisdaaaGaaiiOaiaacckacaGG GcGaaiiOaiaacckaaaa@528C@   (8)

(7) Evaluate grey relational grade (GRG)

The GRG, ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy1dy2damaaBaaaleaapeGaamyAaaWdaeqaaaaa@3A3F@ of the alternative NPP sites are evaluated as follows:

i = j n w j σ ij   , i=1, 2,,m        MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyybIy8damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maa wahabeWcpaqaa8qacaWGQbaapaqaa8qacaWGUbaan8aabaWdbiabgg HiLdaakiaadEhapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaeq4W dm3damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacaGGGcGaai iOaiaacYcacaGGGcGaamyAaiabg2da9iaaigdacaGGSaGaaiiOaiaa ikdacaGGSaGaeyOjGWRaaiilaiaad2gacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcaaaa@5B4D@   (9)

Where w j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bWdamaaBaaaleaapeGaamOAaaWdaeqaaaaa@385C@ is the crisp weight of the jth criterion

Based on the GRG, φ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdO2damaaBaaaleaapeGaamyAaaWdaeqaaaaa@3A34@  the different NPP sites are ranked, and the site with the maximum value is optimal.

Case study

A real-world example of selecting the best state in Nigeria's south-south region to locate a nuclear power plant was used to test the efficacy of the proposed fuzzy GRA technique. There are six states in Nigeria's south-south region: Edo, Delta, Rivers, Bayelsa, Akwa Ibom, and Cross River (all in the south-south). Each state was rated based on four criteria: proximity to water resources (E1), distance from densely populated areas (E2), and low attack risk (E3), and distance from significant industrial energy consumers (E4) (E4). For proximity to water resources, each state received an E1 rating (E4). Table 2 shows the fuzzy scale ratings for the DM, while Table 4 shows the ratings for each alternate site. In the fuzzy GRA approach, weights analysis is also required for decision-making. The DM assigned weight to each decision criterion using the fuzzy weighting scale shown in Table 3, and the criteria weights are also shown in Table 4. Table 5 highlights how the DM linguistic ratings are converted into TFN.

Alternative NPP sites   

Proximity to water resources   

Distance from densely inhabited areas   

Low attack risk   

Distance from significant industrial energy

Edo

MG

G

VG

F

Delta

VG

G

P

G

Rivers

VG

VP

P

VG

Bayelsa

G

F

P

P

Akwa Ibom

MG

VP

G

F

Cross River

G

VG

G

F

Criteria fuzzy rating

H

H

ML

M

Table 4 DM linguistic rating of alternative NPP sites

The fuzzy decision matrix in Table 5 must be normalized as a first step in performing a fuzzy GRA analysis by solving Equation (4) for values in Table 6. The distance between each alternate site and the reference series is calculated using Equation (6). As can be seen in Figure 2, the results are as follows.  Equation (7) is used to analyze the GRC, as illustrated in Figure 3, and the results may be seen. Decided criteria weights are essential to GRG calculation.

Alternative NPP sites

E1

E2

E3

E4

Edo

(5,7,9)

(7,9,10)

(9,10,10)

(3,5,7)

Delta

(9,10,10)

(7,9,10)

(0,1,3)

(7,9,10)

Rivers

(9,10,10)

(0,0,1)

(0,1,3)

(9,10,10)

Bayelsa

(-7,910)

(3,5,7)

(0,1,3)

(0,1,3)

Akwa Ibom

(5,7,9)

(0,0,1)

(7,9,10)

(3,5,7)

Cross River

(7,9,10)

(9,10,10)

(7,9,10)

(3,5,7)

Criteria fuzzy rating

(0.7,0.9,1)

(0.7,0.9,1)

(0.1,0.3,0.5)

(0.3,0.5,0.7)

Table 5 DM TFN rating of alternative NPP sites

NPP alternatives

E1

 

 

E2

 

 

E3

 

 

E4

 

 

Edo

(0.5,

0.7,

0.9)

(0.7,

0.9,

1)

(0.9,

1,

1)

(0.3,

0.5,

0.7)

Delta

(0.9,

1,

1)

(0.7,

0.9,

1)

(0,

0.1,

0.3)

(0.7,

0.9,

1)

Rivers

(0.9,

1,

1)

(0,

0,

0.1)

(0,

0.1,

0.3)

(0.9,

1,

1)

Bayelsa

(0.7,

0.9,

1)

(0.3,

0.5,

0.7)

(0,

0.1,

0.3)

(0,

0.1,

0.3)

Akwa Ibom

(0.5,

0.7,

0.9)

(0,

0,

0.1)

(0.7,

0.9,

1)

(0.3,

0.5,

0.7)

Cross River

(0.7,

0.9,

1)

(0.9,

1,

1)

(0.7,

0.9,

1)

(0.3,

0.5,

0.7)

Table 6 Normalised fuzzy decision matrix

Figure 2 Distance of each alternatives from the reference site.

Figure 3 GRC of alternative NPP sites.

The DM's fuzzy criteria weight score is defuzzified using Equation (8). Using defuzzification, we get decision weights of 0.3095, 0.3095, 0.1429, and 0.2381 for each of E1 through E4, respectively.

Figure 4 shows how GRG can be determined using Equation (9). Delta, Cross River, Rivers, Edo, Bayelsa and Akwa Ibom are the alternate NPP locations shown in Figure 3. Because Delta state having the highest GRG score is the best site for NPP location.

Figure 4 GRG of alternative NPP sites and corresponding rank.

Conclusion

The objective of this paper was to use the fuzzy GRA technique to select the optimal NPP site from the possibilities of Edo, Delta, Rivers, Bayelsa, Akwa Ibom, and Cross River. Each state's performance (NPP sites) was evaluated using four-choice criteria. According to the study's findings, the state of Delta is the optimal location for the NPP among the six states. In analysing the NPP site selection problem in Nigeria, other choice criteria such as public acceptability and the convenience of nuclear fuel supply can be included in future work.

Acknowledgments

None.

Conflicts of interest

The authors state that there is no conflict of interest.

Funding

None.

References

  1. Emovon I, Samuel OD, Mgbemena CO, et al. Electric power generation crisis in nigeria: a review of causes and solutions. International Journal of Integrated Engineering. 2018;10(1):47–56.
  2. Erdoğan M, Kaya I. A combined fuzzy approach to determine the best region for a nuclear power plant in Turkey. Applied Soft Computing. 2016;39:84–93.
  3. Kurt Ü. The fuzzy TOPSIS and generalised Choquet fuzzy integral algorithm for nuclear power plant site selection–a case study from Turkey. Journal of Nuclear Science and Technology. 2014;51(10):1241–1255.
  4. Ekmekçioglu M, Can Kutlu A, Kahraman C. A fuzzy multicriteria swot analysis: an application to nuclear power plant site selection. International Journal of Computational Intelligence Systems. 2011;4(4):583–595.
  5. Erol İ, Sencer S, Özmen A, et al. Fuzzy MCDM framework for locating a nuclear power plant in Turkey. Energy Policy. 2014;67:186–197.
  6. Kassim M, Heo G, Kessel DS. A systematic methodology approach for selecting preferable and alternative sites for the first NPP project in Yemen. Progress in Nuclear Energy. 2016;91:325–338.
  7. Wang CN, Su CC, Nguyen VT. Nuclear power plant location selection in Vietnam under fuzzy environment conditions. Symmetry. 2018;10(11):548.
  8. Wu Y, Liu F, Huang Y, et al. A two‐stage decision framework for inland nuclear power plant site selection based on GIS and type‐2 fuzzy PROMETHEE II: Case study in China. Energy Science & Engineering. 2020;8(6):1941–1961.
  9. Peng HM, Wang XK, Wang TL, et al. A multicriteria decision support framework for inland nuclear power plant site selection under Z-information: A case study in Hunan province of China. Mathematics. 2020;8(2):252.
  10. Moganapriya C, Rajasekar R, Kumar PS, et al. Achieving machining effectiveness for AISI 1015 structural steel through coated inserts and grey-fuzzy coupled Taguchi optimisation approach. Structural and Multidisciplinary Optimisation. 2021;63(3):1169–1186.
  11. Surekha B, Sree Lakshmi T, Jena H, et al. Response surface modelling and application of fuzzy grey relational analysis to optimise the multi response characteristics of EN-19 machined using powder mixed EDM. Australian Journal of Mechanical Engineering. 2021;19(1):19–29.
  12. Olabanji OM, Mpofu K. Appraisal of conceptual designs: Coalescing fuzzy analytic hierarchy process (F-AHP) and fuzzy grey relational analysis (F-GRA). Results in Engineering. 2021;9.
  13. Chang JF, Lai CJ, Wang CN, et al. Fuzzy optimization model for decision-making in supply chain management. Mathematics. 2021;9(4):312.
  14. Julong D. Introduction to grey system theory. The Journal of grey system. 1989;1(1):1–24.
  15. Kuo MS, Liang GS. Combining VIKOR with GRA techniques to evaluate service quality of airports under fuzzy environment. Expert Systems with Applications. 2011;38(3):1304–1312.
  16. Gumus AT, Yayla AY, Çelik E, et al. A combined fuzzy-AHP and fuzzy-GRA methodology for hydrogen energy storage method selection in Turkey. Energies. 2013;6(6):3017–3032.
  17. Goyal S, Grover S. Applying fuzzy grey relational analysis for ranking the advanced manufacturing systems. Grey Systems Theory and Application. 2012;2(2):284–298.
  18. Banaeian N, Mobli H, Fahimnia B, et al. Green supplier selection using fuzzy group decision making methods: a case study from the agri-food industry. Computers & Operations Research. 2018;89:337–347.
  19. Kaya T, Kahraman C. Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy. 2010;35(6):2517–2527.
  20. Wang L, Chu J, Wu J. Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. International journal of production economics. 2007;107(1):151–163.
Creative Commons Attribution License

©2022 Eyere, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.