Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Conceptual Paper Volume 6 Issue 2

On the shape and size of liquid droplets on flat solid surfaces

Mestechkin M

Leningrad State University, USA

Correspondence: Mestechkin M, Leningrad State University, 12773 Seabreeze Farms Dr. # 33, San Diego, CA 92130, USA

Received: June 15, 2022 | Published: June 23, 2023

Citation: Mestechkin M. On the shape and size of liquid droplets on flat solid surfaces. Material Sci & Eng. 2022;6(2):57-62 DOI: 10.15406/mseij.2022.06.00180

Download PDF

Abstract

This article introduces two dimensionless positive geometric parameters that characterize the shape of a liquid droplet on a flat solid surface, which formed by the surface tension. The first parameter, “shape coefficient” K, is defined by the ratio of volume to surface and is always >3 (3 is the space dimension). The second parameter, “holding limit” κ0, is defined by the fraction of osculating surface and K and is <1. The ratio of the surface tension energy of a droplet attached to a substrate in zero gravity to    the energy of the same droplet floating in zero gravity is presented through these parameters as 1-(K-3)(κ0-κ)/3(1-κ0), where the material parameter κ (which appears in the Young equation κ=cosθ) indicates the decrease in liquid surface tension by the solid  The relative energy of the surface tension, K and κ0, are explicitly expressed for a droplet of an elliptical rounded segment (ERS) shape through its eccentricity e, relative height χ, and relative rounding radius η. It is shown that the Young equation is a self-consistent (i.e., leading to η=0) minimum condition of the energy only in the spherical (e=0) case. The rounding, either inner or outer, is specified by the legs of a triangle with zero angles and the median as a slope line. The main result obtained is the proof      that the outer rounded ERS weighty droplets with inflection points, due to weight and hydrostatic forces, cannot exist if their radii    larger than 2-4 capillary length. This proscription is absent in zero gravity.

Key words: Droplet, Elliptic rounded segment, Zero gravity, Weight droplet maximal size

Introduction

Determining the shape of a liquid droplet on a solid surface is a part of capillarity theory—one of the most remote backstreets of general physics. The capillarity belongs to the theory of liquids, which is not as advanced as the molecular theory of gases or solids. Therefore, turning to droplets, we are unable to start with a microscopic picture and should use the same phenomenological approach as the one created more than two to three centuries ago.1,2 A similar technique prevails in modern theoretical investigations of liquid droplets and has attracted much attention in recent years due to the growing number of experimental works and technical applications [see, e.g., papers,3-6 monographs,7,8 textbooks]9,10 The number of cross-references in this field is in the order of tens. This paper does not overstep the limits of the aforementioned ideas, but attempts to avoid using models where droplets have cusp points similar to the border points of spherical or elliptical segments.3-5 Let us consider a model droplet shape to be an elliptical rounded segment (ERS) that touches the substrate smoothly with a zero-contact angle  (see Figure 1). This model permits finding the limit size of a weighty droplet and presenting the droplet energy in zero gravity solely through the universal geometric parameters of its shape. Among other things, we will try to demonstrate (as in, e.g., Ref.)9 that basic college-level analytical geometry course is sufficient to solve problems of real physical interest if one is willing to perform cumbersome but simple calculations.

Figure 1 The droplet is formed by rotation of the plane figure DTBCD around vertical axes ОD for inner touching and by rotation of figure DTVCD for outer touching. The rounding parts are created by rotation of the round legs ТВ and TV, respectively, of the triangle BTV with the zero angles. Its median TU is simultaneously a slope line.

Shape coefficient

The droplet shape is determined by its weight, surface tension, viscosity, etc. The ratio of the surface area of a sphere to its volume is S/V= 4πR2/(4πR3/3)=3/R. The “shape coefficient 3” is extracted as

K= ( 3/4π ) 1/3  S V 2/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9maabmaapaqaa8qacaaIZaGaai4laiaaisdacqaH apaCaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGymaiaac+caca aIZaGaaiiOaaaakmaalaaapaqaa8qacaWGtbaapaqaa8qacaWGwbWd amaaCaaaleqabaWdbiaaikdacaGGVaGaaG4maaaaaaaaaa@46B6@   (1)

This formula can be applied to any geometrical body. The coefficient for sphere K=3 coincides with the dimensionality of our space. A similar formula for a sphere in n-dimensional Euclidian space K=(n/ω)1/nS/V(n-1)/n confirms interpretation “3” as a space dimension (here ω is the solid angle similar to 4π). The shape coefficient for all other space figures is higher. For example, in a cube K=6(3/4π)1/3=3.7221. The minimal value of K for a cylinder with V=πχR3 and S=2π(1+χ)R2, χ=h/R is K=61/3(1+ χ)/χ2/3=3(3/2)1/3 =3.4341 since the fraction (1+ χ)/χ2/3 is minimal for χ=2. The result is lower than that for a cube. The shape coefficient of semi-sphere is, obviously, K=3∙3/161/3=3.5717.

It is now clear why the floating droplets have a spherical shape in zero gravity: their surface tension energy (and surface itself) should be minimal for a fixed volume. For the same reason, when two drops touch, they stick together: their common surface diminishes by the size of the joint parts.

Elliptical rounded segment

After considering the aforementioned examples, we can attend to the main object of our calculations: the ERS (Figure 1).

This body is formed by revolving the two arcs DT of an ellipse and TB of a circle around the vertical axes CD, smoothly joining in point T. The circle arc adheres to the straight-line BC in B, which rotates as well. Cusps, which are unnatural for a liquid, are not present. The droplet consists of the elliptical cap DTA and the round “bowel” TBC with a flat bottom BC.

The equations of the cap are: x=acosu, y=csinu MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadggacaqGJbGaae4BaiaabohacaWG1bGaaiil aiaacckacaWG5bGaeyypa0Jaam4yaiaabohacaqGPbGaaeOBaiaadw haaaa@466D@ , x is the horizontal coordinate axes CV, y is the vertical coordinate axes CD, C is the coordinate origin, and u=t corresponds to point T.  Furter, а=OU is the length of big ellipse semiaxes, с=OD is the length of the small one, AT=x, AD=h=cy, sint= y c =1 h c ξ,tgα= x y = actgt c , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyqaiaadsfacqGH9aqpcaWG4bGaaiilaiaacckacaWGbbGaamir aiabg2da9iaadIgacqGH9aqpcaWGJbGaeyOeI0IaamyEaiaacYcaca GGGcGaae4CaiaabMgacaqGUbGaamiDaiabg2da9maalaaapaqaa8qa caWG5baapaqaa8qacaWGJbaaaiabg2da9iaaigdacqGHsisldaWcaa WdaeaapeGaamiAaaWdaeaapeGaam4yaaaacqGHHjIUcqaH+oaEcaGG SaGaaeiDaiaabEgacqaHXoqycqGH9aqpdaWcaaWdaeaapeGaamiEaa WdaeaapeGaamyEaaaacqGH9aqpdaWcaaWdaeaapeGaamyyaiaaboga caqG0bGaae4zaiaadshaa8aabaWdbiaabogaaaGaaiilaaaa@6446@  and the eccentricity is e a 2 c 2 /a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaOaaa8aabaWdbiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiab gkHiTiaabogapaWaaWbaaSqabeaapeGaaGOmaaaaaeqaaOGaai4lai aadggaaaa@3DD4@ . The angle ∟TOD=α  for the spherical droplet (а=с) is equal to the slope angle ∟TUВ=θ, but this is not true of the elliptical cap.

tgθ=  dy dx = cctgt a =  ( 1 e 2 )( 1 ξ 2 ) ξ , cosθ= ξ g( 1 e 2 )  ,  sinθ= ( 1 ξ 2 ) g ,  g=1+ ( eξ ) 2 1 e 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiDaiaabEgacqaH4oqCcqGH9aqpcaGGGcGaeyOeI0YaaSaaa8aa baWdbiaadsgacaWG5baapaqaa8qacaWGKbGaamiEaaaacqGH9aqpda WcaaWdaeaapeGaam4yaiaabogacaqG0bGaae4zaiaadshaa8aabaWd biaadggaaaGaeyypa0JaaiiOamaalaaapaqaa8qadaGcaaWdaeaape WaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWd biaaikdaaaaakiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiabgk HiTiabe67a49aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzk aaaaleqaaaGcpaqaa8qacaqG+oaaaiaacYcacaGGGcGaae4yaiaab+ gacaqGZbGaeqiUdeNaeyypa0ZaaSaaa8aabaWdbiabe67a4bWdaeaa peWaaOaaa8aabaWdbiaadEgadaqadaWdaeaapeGaaGymaiabgkHiTi aadwgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaWc beaaaaGccaGGGcGaaiilaiaacckacaGGGcGaae4CaiaabMgacaqGUb GaeqiUdeNaeyypa0ZaaSaaa8aabaWdbmaakaaapaqaa8qadaqadaWd aeaapeGaaGymaiabgkHiTiabe67a49aadaahaaWcbeqaa8qacaaIYa aaaaGccaGLOaGaayzkaaaaleqaaaGcpaqaa8qadaGcaaWdaeaapeGa am4zaaWcbeaaaaGccaGGSaGaaiiOaiaacckacaWGNbGaeyypa0JaaG ymaiabgUcaRmaalaaapaqaa8qadaqadaWdaeaapeGaamyzaiabe67a 4bGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8 qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaaaa kiaacckaaaa@8ACC@   (3)

The volume of the ellipsoid cap is

V=π y c x 2 dy =πc a 2 t π/2 ducosu(1 sin 2 u)=πc a 2 ( 1ξ+ ξ 3 )= π c 3 ( 1ξ ) 2 ( 2+ξ ) 3( 1 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabg2da9iabec8aWnaawahabeWcpaqaa8qacaWG5baapaqa a8qacaWGJbaan8aabaWdbiabgUIiYdaakiaadIhapaWaaWbaaSqabe aapeGaaGOmaaaakiaadsgacaWG5bGaaiiOaiabg2da9iabec8aWjaa dogacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaGfWbqabSWdae aapeGaamiDaaWdaeaapeGaeqiWdaNaai4laiaaikdaa0WdaeaapeGa ey4kIipaaOGaamizaiaadwhacaqGJbGaae4BaiaabohacaWG1bGaai ikaiaaigdacqGHsislcaqGZbGaaeyAaiaab6gapaWaaWbaaSqabeaa peGaaGOmaaaakiaadwhacaGGPaGaeyypa0JaeqiWdaNaam4yaiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGa eyOeI0IaeqOVdGNaeyOeI0YexLMBbXgBd9gzLbvyNv2CaeHbcfgDH5 2zaGqbciaa=nvicqGHRaWkcaWFtfIaeqOVdG3damaaCaaaleqabaWd biaaiodaaaaakiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaeq iWdaNaam4ya8aadaahaaWcbeqaa8qacaaIZaaaaOWaaeWaa8aabaWd biaaigdacqGHsislcqaH+oaEaiaawIcacaGLPaaapaWaaWbaaSqabe aapeGaaGOmaaaakmaabmaapaqaa8qacaaIYaGaey4kaSIaeqOVdGha caGLOaGaayzkaaaapaqaa8qacaaIZaWaaeWaa8aabaWdbiaaigdacq GHsislcaWGLbWdamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGL Paaaaaaaaa@8E90@   (4)

Finding the lateral surface area is slightly longer: S=2π y c xdl=πa t π/2 ducosu a 2 sin 2 u+ c 2 cos 2 u = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiabg2da9iaaikdacqaHapaCdaGfWbqabSWdaeaapeGaamyE aaWdaeaapeGaam4yaaqdpaqaa8qacqGHRiI8aaGccaWG4bGaamizai aadYgacqGH9aqpcqaHapaCcaWGHbWaaybCaeqal8aabaWdbiaadsha a8aabaWdbiabec8aWjaac+cacaaIYaaan8aabaWdbiabgUIiYdaaki aadsgacaWG1bGaae4yaiaab+gacaqGZbGaamyDamaakaaapaqaa8qa caWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaqGZbGaaeyAaiaab6 gapaWaaWbaaSqabeaapeGaaGOmaaaakiaadwhacqGHRaWkcaWGJbWd amaaCaaaleqabaWdbiaaikdaaaGccaqGJbGaae4BaiaabohapaWaaW baaSqabeaapeGaaGOmaaaakiaadwhaaSqabaGccqGH9aqpaaa@6343@  
πa t π/2 d( sinu ) ( a 2 c 2 ) sin 2 u+ c 2   = 2πac f   fsint f dv 1+ v 2 = πac f (v 1+ v 2 +ln( v+ 1+ v 2 ) fξ f = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiWdaNaamyyamaawahabeWcpaqaa8qacaWG0baapaqaa8qacqaH apaCcaGGVaGaaGOmaaqdpaqaa8qacqGHRiI8aaGccaWGKbWaaeWaa8 aabaWdbiaabohacaqGPbGaaeOBaiaadwhaaiaawIcacaGLPaaadaGc aaWdaeaapeWaaeWaa8aabaWdbiaadggapaWaaWbaaSqabeaapeGaaG OmaaaakiabgkHiTiaadogapaWaaWbaaSqabeaapeGaaGOmaaaaaOGa ayjkaiaawMcaaiaabohacaqGPbGaaeOBa8aadaahaaWcbeqaa8qaca aIYaaaaOGaamyDaiabgUcaRiaadogapaWaaWbaaSqabeaapeGaaGOm aaaaaeqaaOGaaiiOaiaacckacqGH9aqpdaWcaaWdaeaapeGaaGOmai abec8aWjaadggacaWGJbaapaqaa8qacaWGMbaaaiaacckadaGfWbqa bSWdaeaapeGaamOzaiaabohacaqGPbGaaeOBaiaadshaa8aabaWdbi aadAgaa0WdaeaapeGaey4kIipaaOGaamizaiaadAhadaGcaaWdaeaa peGaaGymaiabgUcaRiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaaae qaaOGaeyypa0ZaaSaaa8aabaWdbiabec8aWjaadggacaWGJbaapaqa a8qacaWGMbaaaiaacIcacaWG2bWaaOaaa8aabaWdbiaaigdacqGHRa WkcaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaabeaakiabgUcaRiGa cYgacaGGUbWaaeWaa8aabaWdbiaadAhacqGHRaWkdaGcaaWdaeaape GaaGymaiabgUcaRiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaaaeqa aaGccaGLOaGaayzkaaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaG qbaiaa=nIipaWaa0baaSqaa8qacaWGMbGaeqOVdGhapaqaa8qacaWG MbaaaOGaeyypa0daaa@9145@
πac( 1+ f 2 ξ 1+ f 2 ξ 2 + 1 f ln f+ 1+ f 2 ξf+ 1+ f 2 ξ 2   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiWdaNaamyyaiaadogadaqadaWdaeaapeWaaOaaa8aabaWdbiaa igdacqGHRaWkcaWGMbWdamaaCaaaleqabaWdbiaaikdaaaaabeaaki abgkHiTiabe67a4naakaaapaqaa8qacaaIXaGaey4kaSIaamOza8aa daahaaWcbeqaa8qacaaIYaaaaOGaeqOVdG3damaaCaaaleqabaWdbi aaikdaaaaabeaakiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qa caWGMbaaaiaabYgacaqGUbWaaSaaa8aabaWdbiaadAgacqGHRaWkda GcaaWdaeaapeGaaGymaiabgUcaRiaadAgapaWaaWbaaSqabeaapeGa aGOmaaaaaeqaaaGcpaqaa8qacqaH+oaEcaWGMbGaey4kaSYaaOaaa8 aabaWdbiaaigdacqGHRaWkcaWGMbWdamaaCaaaleqabaWdbiaaikda aaGccqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaaaeqaaaaakiaacc kaaiaawIcacaGLPaaaaaa@5F65@ where  f= a 2 c 2 c = e 1 e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9maalaaapaqaa8qadaGcaaWdaeaapeGaamyya8aa daahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0Iaae4ya8aadaahaaWcbe qaa8qacaaIYaaaaaqabaaak8aabaWdbiaadogaaaGaeyypa0ZaaSaa a8aabaWdbiaadwgaa8aabaWdbmaakaaapaqaa8qacaaIXaGaeyOeI0 Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaaqabaaaaaaa@4569@   (The same coefficient appeared in Eq. (6) from Ref.3 under the improper name: “eccentricity”). Now the volume, lateral and bottom surface area, and shape coefficient are expressed through dimensionless parameters: V=πc3τ/3, S=πc2ρ, πа2cos2t=πc2(1–ξ2)/(1-е2).

τ= ( 1ξ ) 2 ( 2+ξ ) 1 e 2 ,  ρ= 1ξ g( 1 e 2 ) 1 e 2 + 1 e ln 1+e ξe+ g( 1 e 2 ) , K=3( ρ+ 1 ξ 2 1 e 2 )/ ( 2τ ) 2/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0ZaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGa eyOeI0IaeqOVdGhacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaik daaaGcdaqadaWdaeaapeGaaGOmaiabgUcaRiabe67a4bGaayjkaiaa wMcaaaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaape GaaGOmaaaaaaGccaGGSaGaaiiOaiaacckacqaHbpGCcqGH9aqpdaWc aaWdaeaapeGaaGymaiabgkHiTiabe67a4naakaaapaqaa8qacaWGNb WaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWd biaaikdaaaaakiaawIcacaGLPaaaaSqabaaak8aabaWdbiaaigdacq GHsislcaWGLbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSYa aSaaa8aabaWdbiaaigdaa8aabaWdbiaadwgaaaGaaeiBaiaab6gada WcaaWdaeaapeGaaGymaiabgUcaRiaadwgaa8aabaWdbiabe67a4jaa dwgacqGHRaWkdaGcaaWdaeaapeGaam4zamaabmaapaqaa8qacaaIXa GaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGa ayzkaaaaleqaaaaakiaacYcacaGGGcGaam4saiabg2da9iaaiodada qadaWdaeaapeGaeqyWdiNaey4kaSYaaSaaa8aabaWdbiaaigdacqGH sislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaG ymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaaaaaakiaa wIcacaGLPaaacaGGVaWaaeWaa8aabaWdbiaaikdacqaHepaDaiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaiaac+cacaaIZaaaaaaa @86BA@   (5)

If а=с parameter τ= ( 1ξ ) 2 ( 2+ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHsislcqaH+oaE aiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapa qaa8qacaaIYaGaey4kaSIaeqOVdGhacaGLOaGaayzkaaaaaa@4528@ gives the volume of spherical segment, and the second (logarithmic) term of ρ as well as the first one turns into 1-ξ since 1/e∙ln(1+e-eξ)→1-ξ. Both terms of ρ are even functions of e; K of spheroid, which follows from Eq. (5) if ξ=-1,  K sph =3( 1 2 ( 1 e 2 ) 5/3 + ln( 1+e )ln( 1e ) 4e ( 1 e 2 ) 2/3 ) 3 2 ( 1 e 2 ) 5 3 ( 1 1e + 1 1 e 2 )>3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaabohacaqGWbGaaeiAaaWdaeqaaOWd biabg2da9iaaiodadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8 aabaWdbiaaikdadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWa aWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aadaahaaWcbe qaa8qacaaI1aGaai4laiaaiodaaaaaaOGaey4kaSYaaSaaa8aabaWd biGacYgacaGGUbWaaeWaa8aabaWdbiaaigdacqGHRaWkcaWGLbaaca GLOaGaayzkaaGaeyOeI0IaciiBaiaac6gadaqadaWdaeaapeGaaGym aiabgkHiTiaadwgaaiaawIcacaGLPaaaa8aabaWdbiaaisdacaWGLb WaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWd biaaikdaaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmai aac+cacaaIZaaaaaaaaOGaayjkaiaawMcaaiabgIKi7oaalaaapaqa a8qacaaIZaaapaqaa8qacaaIYaWaaeWaa8aabaWdbiaaigdacqGHsi slcaWGLbWdamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaa paWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiwdaa8aabaWdbiaaio daaaaaaaaakmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGymaiabgkHiTiaadwgaaaGaey4kaSYaaSaaa8aabaWdbiaaig daa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiaa ikdaaaaaaaGccaGLOaGaayzkaaGaeyOpa4JaaG4maaaa@7787@

The volume V’ and the lateral surface area S’ of the bowel TBC require integration over the circle arc ВТ. Its center O’ is the intersection of perpendicular O’O” to the tangent in point T with the bisectrix TU of the angle θ=∟TUВ between the tangent and the horizontal bottom line CU. The angle between O’O” and height BO’ in point B is θ. Then V =πr 0 πθ x 2 sinφdφ, S =2π 0 πθ ( r +rsinφ )rdφ  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOva8aagaqba8qacqGH9aqpcqaHapaCcaWGYbWaaybCaeqal8aa baWdbiaaicdaa8aabaWdbiabec8aWjabgkHiTiabeI7aXbqdpaqaa8 qacqGHRiI8aaGccaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccaqG ZbGaaeyAaiaab6gacqaHgpGAcaWGKbGaeqOXdOMaaiilaiqadofapa GbauaapeGaeyypa0JaaGOmaiabec8aWnaawahabeWcpaqaa8qacaaI Waaapaqaa8qacqaHapaCcqGHsislcqaH4oqCa0WdaeaapeGaey4kIi paaOWaaeWaa8aabaWdbiqadkhapaGbauaapeGaey4kaSIaamOCaiaa bohacaqGPbGaaeOBaiabeA8aQbGaayjkaiaawMcaaiaadkhacaWGKb GaeqOXdOMaaiiOaaaa@683E@ where x= r +rsinφ, y=rrcosφ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iqadkhapaGbauaapeGaey4kaSIaamOCaiaaboha caqGPbGaaeOBaiabeA8aQjaacYcacaGGGcGaamyEaiabg2da9iaadk hacqGHsislcaWGYbGaae4yaiaab+gacaqGZbGaeqOXdOgaaa@4BFB@ , ϕ is a variable angle between the height and radius of arc BТ, r’=CB=AT-rsinθ=acost-rsinθ=c[(1-ξ2)-ηsinθ]/√(1-е2), r=aη.

V =πr 0 πθ ( r +rsinφ ) 2 sinφdφ=πr[ r 2 ( 1+cosθ )+r r ( πα+½sin2θ )+ r 2 ( +cosθ cos 3 θ ) ]  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOva8aagaqba8qacqGH9aqpcqaHapaCcaWGYbWaaybCaeqal8aa baWdbiaaicdaa8aabaWdbiabec8aWjabgkHiTiabeI7aXbqdpaqaa8 qacqGHRiI8aaGcdaqadaWdaeaapeGabmOCa8aagaqba8qacqGHRaWk caWGYbGaae4CaiaabMgacaqGUbGaeqOXdOgacaGLOaGaayzkaaWdam aaCaaaleqabaWdbiaaikdaaaGccaqGZbGaaeyAaiaab6gacqaHgpGA caWGKbGaeqOXdOMaeyypa0JaeqiWdaNaamOCamaadmaapaqaa8qace WGYbWdayaafaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qa caaIXaGaey4kaSIaae4yaiaab+gacaqGZbGaeqiUdehacaGLOaGaay zkaaGaey4kaSIaamOCaiqadkhapaGbauaapeWaaeWaa8aabaWdbiab ec8aWjabgkHiTiabeg7aHjabgUcaRiaac2lacaqGZbGaaeyAaiaab6 gacaaIYaGaeqiUdehacaGLOaGaayzkaaGaey4kaSIaamOCa8aadaah aaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWexLMBbXgBd9gzLbvyNv 2CaeHbcfgDH52zaGqbc8qacaWFufIaey4kaSIaae4yaiaab+gacaqG ZbGaeqiUdeNaeyOeI0Iaa83uHiaabogacaqGVbGaae4Ca8aadaahaa Wcbeqaa8qacaaIZaaaaOGaeqiUdehacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaaiiOaaaa@911D@ ,

S =2π 0 πθ ( r +rsinφ )rdφ=2πr r ( πθ ) +2π r 2 ( cosθ+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4ua8aagaqba8qacqGH9aqpcaaIYaGaeqiWda3aaybCaeqal8aa baWdbiaaicdaa8aabaWdbiabec8aWjabgkHiTiabeI7aXbqdpaqaa8 qacqGHRiI8aaGcdaqadaWdaeaapeGabmOCa8aagaqba8qacqGHRaWk caWGYbGaae4CaiaabMgacaqGUbGaeqOXdOgacaGLOaGaayzkaaGaam OCaiaadsgacqaHgpGAcqGH9aqpcaaIYaGaeqiWdaNaamOCaiqadkha paGbauaapeWaaeWaa8aabaWdbiabec8aWjabgkHiTiabeI7aXbGaay jkaiaawMcaaiaacckacqGHRaWkcaaIYaGaeqiWdaNaamOCa8aadaah aaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaabogacaqGVbGaae 4CaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaaaaa@6A64@

(6) should be added to the cap data (5), which gives πc3(τ+ω)/3 for the total volume, πc2(ρ+ψ) for the lateral surface, πr2= πc2 1 ξ 2 1 e 2 ( 1 η) g ) 2 =π c 2 1 ξ 2 1 e 2 ζ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdacqGHsislcqaH+oaEpaWaaWbaaSqabeaa peGaaGOmaaaaaOWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGOmaaaaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTmaa laaapaqaa8qacqaH3oaAcaGGPaaapaqaa8qadaGcaaWdaeaapeGaam 4zaaWcbeaaaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOm aaaakiabg2da9iabec8aWjaadogapaWaaWbaaSqabeaapeGaaGOmaa aakmaalaaapaqaa8qacaaIXaGaeyOeI0IaeqOVdG3damaaCaaaleqa baWdbiaaikdaaaaak8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCa aaleqabaWdbiaaikdaaaaaaOGaeqOTdO3damaaCaaaleqabaWdbiaa ikdaaaaaaa@57C8@  for the bottom area, shape coefficient K, and for holding limit κ0 (see below) of ERS:

ω c 3 =3 r 2 r ( πθ+sinθcosθ )+3r r 2 ( 1+cosθ )+ r 3 ( 2+3cosθ cos 3 θ ),ψ c 2 =2r( r ( πθ ) +r( 1+cosθ ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaam4ya8aadaahaaWcbeqaa8qacaaIZaaaaOGaeyypa0Ja aG4maiaadkhapaWaaWbaaSqabeaapeGaaGOmaaaakiqadkhapaGbau aapeWaaeWaa8aabaWdbiabec8aWjabgkHiTiabeI7aXjabgUcaRiaa bohacaqGPbGaaeOBaiabeI7aXjaabogacaqGVbGaae4CaiabeI7aXb GaayjkaiaawMcaaiabgUcaRiaaiodacaWGYbGabmOCa8aagaqbamaa CaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgUcaRi aabogacaqGVbGaae4CaiabeI7aXbGaayjkaiaawMcaaiabgUcaRiaa dkhapaWaaWbaaSqabeaapeGaaG4maaaakmaabmaapaqaa8qacaaIYa Gaey4kaSIaaG4maiaabogacaqGVbGaae4CaiabeI7aXjabgkHiTiaa bogacaqGVbGaae4Ca8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqiUde hacaGLOaGaayzkaaGaaiilaiabeI8a5jaadogapaWaaWbaaSqabeaa peGaaGOmaaaakiabg2da9iaaikdacaWGYbWaaeWaa8aabaWdbiqadk hapaGbauaapeWaaeWaa8aabaWdbiabec8aWjabgkHiTiabeI7aXbGa ayjkaiaawMcaaiaacckacqGHRaWkcaWGYbWaaeWaa8aabaWdbiaaig dacqGHRaWkcaqGJbGaae4BaiaabohacqaH4oqCaiaawIcacaGLPaaa aiaawIcacaGLPaaacaGGSaaaaa@89C0@

ω c 3 =3 r 2 r ( πθ+sinθcosθ )+3r r 2 ( 1+cosθ )+ r 3 ( 2+3cosθ cos 3 θ ),ψ c 2 =2r( r ( πθ ) +r( 1+cosθ ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaam4ya8aadaahaaWcbeqaa8qacaaIZaaaaOGaeyypa0Ja aG4maiaadkhapaWaaWbaaSqabeaapeGaaGOmaaaakiqadkhapaGbau aapeWaaeWaa8aabaWdbiabec8aWjabgkHiTiabeI7aXjabgUcaRiaa bohacaqGPbGaaeOBaiabeI7aXjaabogacaqGVbGaae4CaiabeI7aXb GaayjkaiaawMcaaiabgUcaRiaaiodacaWGYbGabmOCa8aagaqbamaa CaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgUcaRi aabogacaqGVbGaae4CaiabeI7aXbGaayjkaiaawMcaaiabgUcaRiaa dkhapaWaaWbaaSqabeaapeGaaG4maaaakmaabmaapaqaa8qacaaIYa Gaey4kaSIaaG4maiaabogacaqGVbGaae4CaiabeI7aXjabgkHiTiaa bogacaqGVbGaae4Ca8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqiUde hacaGLOaGaayzkaaGaaiilaiabeI8a5jaadogapaWaaWbaaSqabeaa peGaaGOmaaaakiabg2da9iaaikdacaWGYbWaaeWaa8aabaWdbiqadk hapaGbauaapeWaaeWaa8aabaWdbiabec8aWjabgkHiTiabeI7aXbGa ayjkaiaawMcaaiaacckacqGHRaWkcaWGYbWaaeWaa8aabaWdbiaaig dacqGHRaWkcaqGJbGaae4BaiaabohacqaH4oqCaiaawIcacaGLPaaa aiaawIcacaGLPaaacaGGSaaaaa@89C0@

r=ηc,   r = c 1 ξ 2   1 e 2 ( 1 η g )= cζ 1 ξ 2   1 e 2 ,K=3( ρ+ψ+ 1 ξ 2 1 e 2 ζ 2 )/ ( 2( ω+τ ) ) 2/3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9iabeE7aOjaadogacaGGSaGaaiiOaiaacckaceWG YbWdayaafaWdbiabg2da9maalaaapaqaa8qacaWGJbWaaOaaa8aaba WdbiaaigdacqGHsislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaa aeqaaOGaaiiOaaWdaeaapeWaaOaaa8aabaWdbiaaigdacqGHsislca WGLbWdamaaCaaaleqabaWdbiaaikdaaaaabeaaaaGcdaqadaWdaeaa peGaaGymaiabgkHiTmaalaaapaqaa8qacqaH3oaAa8aabaWdbmaaka aapaqaa8qacaWGNbaaleqaaaaaaOGaayjkaiaawMcaaiabg2da9maa laaapaqaa8qacaWGJbGaeqOTdO3aaOaaa8aabaWdbiaaigdacqGHsi slcqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaaaeqaaOGaaiiOaaWd aeaapeWaaOaaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaale qabaWdbiaaikdaaaaabeaaaaGccaGGSaGaam4saiabg2da9iaaioda daqadaWdaeaapeGaeqyWdiNaey4kaSIaeqiYdKNaey4kaSYaaSaaa8 aabaWdbiaaigdacqGHsislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOm aaaaaOWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaape GaaGOmaaaaaaGccqaH2oGEpaWaaWbaaSqabeaapeGaaGOmaaaaaOGa ayjkaiaawMcaaiaac+cadaqadaWdaeaapeGaaGOmamaabmaapaqaa8 qacqaHjpWDcqGHRaWkcqaHepaDaiaawIcacaGLPaaaaiaawIcacaGL PaaapaWaaWbaaSqabeaapeGaaGOmaiaac+cacaaIZaaaaOGaaiilaa aa@81AF@
κ 0 = ((2( ω+τ) ) 2/3 ρψ )( 1 e 2 ) ζ 2 ( 1 ξ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaGGOaGaaiikaiaaikdadaqadaWdaeaapeGaeqyYdC Naey4kaSIaeqiXdqNaaiykaiaacMcapaWaaWbaaSqabeaapeGaaGOm aiaac+cacaaIZaaaaOGaeyOeI0IaeqyWdiNaeyOeI0IaeqiYdKhaca GLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaa CaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaaa8aabaWdbiabeA 7a69aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigda cqGHsislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkai aawMcaaaaacaGGUaaaaa@5BC9@   (7)

The center of outer rounding circle O” is the intersection of perpendicular O’T continuation with perpendicular UO” to the bisectrix UO’ of ∟TUB=θ. The triangles O’TU and O”TU are similar. The radius O’T=r in the smaller one is adjacent to angle θ/2 while the radius O”T=ř in the bigger one confronts the same angle. Therefore, ř=rctg2θ/2=ctg2θ. The corresponding values for outer rounding are distinguished by a caret. In particular, the radius of the bottom appears as ř’=acost+řsinθ, with x and y in integrals as ř’- řsinϕ, ř-řcosϕ, respectively, where ϕ corresponds now to the arc of bigger circle, etc. The final result differs from Eq. (7) mainly by covering of r, r’ and supplying η by the factor f=ctg2θ/2.

ř=aηf,   ř = 1ξ2   1e2 ζ + ,  K=3( ρ+ψ+ ř 2 / c 2 )/ ( 2( τ+ω' ) ) 2/3 ,  κ 0 = (2(ω'+τ)) 2/3 ρψ  ř ' 2 / c 2 , ζ + =1+ ηf g . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywbiabg2da9iaadggacqaH3oaAcaWGMbGaaiilaiaacckacaGG GcGabmywb8aagaqba8qacqGH9aqpdaWcaaWdaeaapeWaaOaaaeaaca aIXaGaeyOeI0IaeqOVdGNaaGOmaaWcbeaakiaacckaa8aabaWaaOaa aeaacaaIXaGaeyOeI0IaamyzaiaaikdaaSqabaaaaOWdbiabeA7a69 aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacYcacaGGGcGaaiiO aiaadUeacqGH9aqpcaaIZaWaaeWaa8aabaWdbiabeg8aYjabgUcaRi abeI8a5jabgUcaRiqadMvapaGbauaadaahaaWcbeqaa8qacaaIYaaa aOGaai4laiaadogapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkai aawMcaaiaac+cadaqadaWdaeaapeGaaGOmamaabmaapaqaa8qacqaH epaDcqGHRaWkcqaHjpWDcaGGNaaacaGLOaGaayzkaaaacaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdacaGGVaGaaG4maaaakiaacYca caGGGcGaeqOUdS2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2 da9maalaaapaqaa8qacaGGOaGaaGOmaiaacIcacqaHjpWDcaGGNaGa ey4kaSIaeqiXdqNaaiykaiaacMcapaWaaWbaaSqabeaapeGaaGOmai aac+cacaaIZaaaaOGaeyOeI0IaeqyWdiNaeyOeI0IaeqiYdKhapaqa a8qacaGGGcGaamywbiaacEcapaWaaWbaaSqabeaapeGaaGOmaaaaki aac+cacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaaiilaiab eA7a69aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiabg2da9iaaig dacqGHRaWkdaWcaaWdaeaapeGaeq4TdGMaamOzaaWdaeaadaGcaaqa aiaadEgaaSqabaaaaOWdbiaac6caaaa@9365@   (8)

Thus, the parameters of ERS, ξ, η, е, determine the droplet shape: K characterizes how close it is to a sphere, i.e., how perfect the shape is, the relative height χ=1-ξ sets the size of the flood area, the eccentricity e measures how flattened the droplet is, and the relative rounding radius η defines the smoothness of droplet-to-substrate bond.

Droplet in zero gravity

According to Young,2 it is usually accepted that three forces are applied to each point of the border line between the liquid droplet and solid substrate along the tangents to intersection lines of normal plane and the surfaces separating solid and gas (sg), solid and liquid (sl), and liquid and gas (lg). The equilibrium of these forces leads to the equation (γsgsl)/γ≡κ=cosθ, where γ-s are coefficients of the surface tension, and θ is the contact angle between solid and liquid. The material parameter κ is specific for these gas-liquid-solid. In fact, it indicates how much the coefficient of the surface tension of a particular liquid is diminished following contact with the solid surface. If│κ│>1, it cannot be equal to cosine. Such situation is usually interpreted either as absolute wetting by this liquid (if κ<0) i.e., the homogenous covering of the solid surface without concentrating in droplets or (if κ>0) as total separation of droplets from the solid surface. 

A more detailed picture can be obtained by considering droplet energy. The energy of a spherical droplet floating in zero gravity is E0=4γπR2. In fact, it depends on the droplet volume: E 0 =γ π ( 6V ) 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcqaH ZoWzdaGcbaWdaeaapeGaeqiWda3aaeWaa8aabaWdbiaaiAdacaWGwb aacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaapaqaa8qa caaIZaaaaaaa@42E6@ . Let us compare the energy of the attached deformed droplet EASκSc with that of the floating droplet. For ERS, S is the lateral surface area πc2(ρ+ψ) and Sc is the area where the substrate and droplet touch each other, i.e., the bottom area Scr2 =π c 2 1 ξ 2 1 e 2 ζ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaeqiWdaNaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOWa aSaaa8aabaWdbiaaigdacqGHsislcqaH+oaEpaWaaWbaaSqabeaape GaaGOmaaaaaOWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqa beaapeGaaGOmaaaaaaGccqaH2oGEpaWaaWbaaSqabeaapeGaaGOmaa aaaaa@471F@ . Considering the volume of the droplet πc3(τ+ω)/3 and Eq. (7) allows to present EA/E0 as κ𝜁2(12)/(1-e2)[2(τ+ω)]2/3+ (ρ+ψ)/[2(τ+ω)]2/3κu+Q, while ratios, u, Q, determine geometric parameters K=3(u+Q) and κ0=(1-u)/Q. The last equations can be solved: Q=(K-3)/3(1-κ0), u=1-κ0(K-3)/3(1-κ0). Thus, we finally arrive at                                

E= E A / E 0 =1 ( K3 )( κ 0 κ ) 3( 1 κ 0 ) =1 Q( κ 0 κ ),      E 0 =γ ( π ( 6V ) 2 ) 1/3 ,    Q K3 3( 1 κ 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadgeaa8aabeaak8qacaGGVaGaamyr a8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaIXaGaey OeI0YaaSaaa8aabaWdbmaabmaapaqaa8qacaWGlbGaeyOeI0IaaG4m aaGaayjkaiaawMcaamaabmaapaqaa8qacqaH6oWApaWaaSbaaSqaa8 qacaaIWaaapaqabaGcpeGaeyOeI0IaeqOUdSgacaGLOaGaayzkaaaa paqaa8qacaaIZaWaaeWaa8aabaWdbiaaigdacqGHsislcqaH6oWApa WaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaaaaiab g2da9iaaigdacqGHsislcaGGGcGaamyuamaabmaapaqaa8qacqaH6o WApaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyOeI0IaeqOUdSga caGLOaGaayzkaaGaaiilaiaacckacaGGGcGaaiiOaiaacckacaGGGc Gaamyra8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcqaH ZoWzdaqadaWdaeaapeGaeqiWda3aaeWaa8aabaWdbiaaiAdacaWGwb aacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaakiaawIca caGLPaaapaWaaWbaaSqabeaapeGaaGymaiaac+cacaaIZaaaaOGaai ilaiaacckacaGGGcGaaiiOaiaacckacaWGrbGaeyyyIO7aaSaaa8aa baWdbiaadUeacqGHsislcaaIZaaapaqaa8qacaaIZaWaaeWaa8aaba WdbiaaigdacqGHsislcqaH6oWApaWaaSbaaSqaa8qacaaIWaaapaqa baaak8qacaGLOaGaayzkaaaaaiaac6caaaa@8468@   (9)

This equation is valid independently of the model of droplet used. Only the values of K and κ0 depend on the shape of the droplet. The condition of concretion of the drop EA<E0 is reduced to

κ κ 0 ,   κ 0 1 S S с ( 1 3 K ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyizImQaeqOUdS2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaa cYcacaGGGcGaaiiOaiabeQ7aR9aadaWgaaWcbaWdbiaaicdaa8aabe aak8qacqGHHjIUcaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadofaa8aa baWdbiaadofapaWaaSbaaSqaa8qacaWGbraapaqabaaaaOWdbmaabm aapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaaiodaa8aabaWd biaadUeaaaaacaGLOaGaayzkaaGaaiilaaaa@4E23@   (10)

Now the term “holding limit” for κ0 is justified. If the substrate reduces the surface tension insufficiently to make it lower than κ0 concretion is impossible. Therefore, κ0<1 is a universal geometrical characteristic of a liquid body as K is. The holding limit achieves 1 only for spherical droplet: K=3. When a spherical droplet touches a substrate, it is still spherical since the limit of Q for K→3, κ0→1 is zero in ERS. The experimental data on the Young parameter κ are rather scanty.3,5 The wetting degree can be characterized by the difference κ0-κ, and w0=1-κ0 can be treated as the whole “stock” of wetting of the given shape droplet, and Eq. (9) may be interpreted as (EA-E0)/E0=(K-3)/3·(w0-w)/ w0, w=1-κ. The relative height χ=1-ξ determines the “flooding power” of the droplet. This picture is illustrated by calculations shown in Table 1.

Parameters

e/x

κ=0.3, η=0

κ=0.3, η=0.2, inner rounding

κ=0.3, η=0.2, outer rounding

   

0,0

0,4

0,6

0,0

0,4

0,6

0,0

0,4

0,6

E

0.4

11,214

1.1614

1.2329

0.9898

0.997

1.0088

1.5461

1.611

1.7266

K

4.8835

5.0946

5.4617

3.4956

3.5308

3.5863

6.8484

7.173

7.7387

κ0

0.1322

0.0895

0.0226

0.3401

0.3114

0.2669

-0.219

-0.249

-0.2962

cosθ

0.6

0.6333

0.6839

0.6

0.6333

0.6839

0.6

0.633

0.6839

E

0.6

1.0083

1.0339

1.0813

0.9675

0.9749

0.9876

1.262

1.297

1.36

K

4.25

4.4

4.6655

3.4342

3.4728

3.5358

5.4176

5.609

5.9389

κ0

0.2857

0.2452

0.1799

0.4283

0.3962

0.3456

-0.0373

-0.064

-0.1067

cosθ

0.4

0.4299

0.4789

0.4

0.4299

0.4789

0.4

0.43

0.4789

E

1

0,9128

0.921

0.9391

0.9363

0.9406

0.95

1.0208

1.028

1.0427

K

3.5717

3.6462

3.7845

3.2624

3.2961

3.3596

4.0562

4.122

4.2364

κ0

0.5198

0.4879

0.4322

0.5951

0.5631

0.5046

0.2561

0.243

0.219

E

1.4

0.8974

0.8971

0.901

0.932

0.932

0.9363

0.9434

0.941

0.9405

K

3.2108

3.2409

3.305

3.1102

3.1307

3.1793

3.4048

3.422

3.4631

κ0

0.7155

0.6933

0.6453

0.7545

0.7267

0.6613

0.5068

0.507

0.4947

cosθ

-0.4

-0.4299

-0.479

-0.4

-0.4299

-0.4789

-0.4

-0.43

-0.4789

E

1,6

0.9124

0.9105

0.9123

0.9426

0.9412

0.9435

0.9391

0.935

0.9342

K

3.0988

3.1148

3.1565

3.0535

3.0666

3.1041

3.2049

3.212

3.2391

κ0

0.8088

0.7903

0.7389

0.8342

0.8083

0.7336

0.6301

0.634

0.6167

cosθ

-0.6

-0.6333

-0.684

-0.6

-0.6333

-0.6839

-0.6

(

-0.6839

Table 1 Relative energy, shape coefficient, and holding limit of ERS

The first third of Table 1 describes the elliptic segment without rounding. The low droplets (χ<1) have an unfavorable shape coefficient, weak holding limit, and are not attachable to a substrate as E >1. Only the droplets of the second kind (with the height χ>1) attach (strongly for χ=1.4). The next two thirds of the Table 1 contain data for ERS with η=0.2. Rounding makes the droplet attachable in most cases (with a single exception). The second kind droplets do not need rounding at all (already the sphere “overhangs” itself if χ>1). Outer rounding clearly demonstrates that the first kind droplets with inflection of their surface do not congregate, but those with χ>1 become energetically competitive with inner rounded and spherical droplets (especially with χ=1.6). This has far-reaching consequences for heavy droplets, which we consider below.

The first column, which describes spherical segments, reveals a connection between Eq. (9) and the Young equation κ=cosθ. It is understood from Figure 1 and Eq. (3), the angle θ is independent of η: there are only three values of cosθ in each row (and only one, 0, for χ=1). Neither of these coincides with κ=0.3. At the same time, the first column shows that cosθ=ξ(=1-χ). The equality κ=ξ leads to the satisfaction of the Young equation, and, therefore, is the minimum condition for E in Eq. (9). Indeed, if we complement the first column by the additional row with χ=1.3 we obtain the deeper than 0.8971 minimum E=0.8956 and cosθ=-0.3. This minimum is independent of η. In the other words, the spherical segment does not require rounding. However, if by some reason, e.g., the weight, the droplet shape should be flattened: e>0, rounding deepens the minimum.  

Influence of weight

Droplet weight is applied perpendicular to the plane of substrate; it presses down the droplet body and affects its spherical shape. The droplet energy now includes the potential energy of the Archimedean force, acting on the droplet in atmosphere. 

E P =g( d к d с )π[ y( B ) y( T ) y x 2 dy+ y( T ) y( D ) y x 2 dy ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qacqGH9aqpcaWG NbWaaeWaa8aabaWdbiaadsgapaWaaSbaaSqaa8qacaWG6qaapaqaba GcpeGaeyOeI0Iaamiza8aadaWgaaWcbaWdbiaadgeba8aabeaaaOWd biaawIcacaGLPaaacqaHapaCdaWadaqaamaawahabeWcpaqaa8qaca WG5bWaaeWaa8aabaWdbiaadkeaaiaawIcacaGLPaaaa8aabaWdbiaa dMhadaqadaWdaeaapeGaamivaaGaayjkaiaawMcaaaqdpaqaa8qacq GHRiI8aaGccaWG5bGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGa amizaiaadMhacqGHRaWkdaGfWbqabSWdaeaapeGaamyEamaabmaapa qaa8qacaWGubaacaGLOaGaayzkaaaapaqaa8qacaWG5bWaaeWaa8aa baWdbiaadseaaiaawIcacaGLPaaaa0WdaeaapeGaey4kIipaaOGaam yEaiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaakiaadsgacaWG5baa caGLBbGaayzxaaaaaa@6413@   (11)

The volume integral includes two contributions: of the bowel from point B to point T and of the elliptic cap from T to D (Figure 1). The angle ϕ varies along the arc of rounding circle ВТ, the variable u runs along the elliptic arc DT. Here g(dк-dс)=γ/l2, l=√[γ/g(dк-dс)] is the capillary length of the droplet liquid in air. The capillary length enters the Jurin-Borelli formula [1] h=l2cosθ/r for the height of lifted liquid in a capillary tube of radius r, proposed centuries ago.

The integral of elliptic cap is

y( T ) y( D ) y x 2 dy= t π/2 csinu a 2 cos 2 uccosudu= a 2 c 2 1 ξ 2 0 ( dv ) v 3 = c 4 ( 1 ξ 2 ) 2 4( 1 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMhadaqadaWdaeaapeGaamivaaGaayjk aiaawMcaaaWdaeaapeGaamyEamaabmaapaqaa8qacaWGebaacaGLOa Gaayzkaaaan8aabaWdbiabgUIiYdaakiaadMhacaWG4bWdamaaCaaa leqabaWdbiaaikdaaaGccaWGKbGaamyEaiabg2da9maawahabeWcpa qaa8qacaWG0baapaqaa8qacqaHapaCcaGGVaGaaGOmaaqdpaqaa8qa cqGHRiI8aaGccaWGJbGaae4CaiaabMgacaqGUbGaamyDaiaadggapa WaaWbaaSqabeaapeGaaGOmaaaakiaabogacaqGVbGaae4Ca8aadaah aaWcbeqaa8qacaaIYaaaaOGaamyDaiaadogacaqGJbGaae4Baiaabo hacaWG1bGaamizaiaadwhacqGH9aqpcaWGHbWdamaaCaaaleqabaWd biaaikdaaaGccaWGJbWdamaaCaaaleqabaWdbiaaikdaaaGcdaGfWb qabSWdaeaapeWaaOaaa8aabaWdbiaaigdacqGHsislcqaH+oaEpaWa aWbaaWqabeaapeGaaGOmaaaaaeqaaaWcpaqaa8qacaaIWaaan8aaba WdbiabgUIiYdaakmaabmaapaqaa8qacqGHsislcaWGKbGaamODaaGa ayjkaiaawMcaaiaadAhapaWaaWbaaSqabeaapeGaaG4maaaakiabg2 da9maalaaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbiaaisdaaaGc daqadaWdaeaapeGaaGymaiabgkHiTiabe67a49aadaahaaWcbeqaa8 qacaaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikda aaaak8aabaWdbiaaisdadaqadaWdaeaapeGaaGymaiabgkHiTiaadw gapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaaaaaa@8456@   ,(12)

and of the bowel in the used notation (7) –

0 y( T ) y x 2 dy= 0 πθ r( 1cosφ ) ( r +rsinφ ) 2 rsinφdφ= c 4 ηω 3 1 e 2 + c 4 ( 1 ξ 2 ) 2 ( 4ζ ζ 4 3 ) 12 ( 1 e 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaadMhadaqadaWdaeaa peGaamivaaGaayjkaiaawMcaaaqdpaqaa8qacqGHRiI8aaGccaWG5b GaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaamizaiaadMhacqGH 9aqpdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaeqiWdaNaeyOeI0 IaeqiUdehan8aabaWdbiabgUIiYdaakiaadkhadaqadaWdaeaapeGa aGymaiabgkHiTiaabogacaqGVbGaae4CaiabeA8aQbGaayjkaiaawM caamaabmaapaqaa8qaceWGYbWdayaafaWdbiabgUcaRiaadkhacaqG ZbGaaeyAaiaab6gacqaHgpGAaiaawIcacaGLPaaapaWaaWbaaSqabe aapeGaaGOmaaaakiaadkhacaqGZbGaaeyAaiaab6gacqaHgpGAcaWG KbGaeqOXdOMaeyypa0ZaaSaaa8aabaWdbiaadogapaWaaWbaaSqabe aapeGaaGinaaaakiabeE7aOjabeM8a3bWdaeaapeGaaG4mamaakaaa paqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYa aaaaqabaaaaOGaey4kaSYaaSaaa8aabaWdbiaadogapaWaaWbaaSqa beaapeGaaGinaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaeqOVdG 3damaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaWba aSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaI0aGaeqOTdONaey OeI0IaeqOTdO3damaaCaaaleqabaWdbiaaisdaaaGccqGHsislcaaI ZaaacaGLOaGaayzkaaaapaqaa8qacaaIXaGaaGOmamaabmaapaqaa8 qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaaGc caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaaaa@8E82@   (13)

It can be simplified to sum of с4ηω/3(1-е2)1/2 and 0 πθ rcosφ ( r +rsinφ ) 2 rsinφdφ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiabec8aWjab gkHiTiabeI7aXbqdpaqaa8qacqGHRiI8aaGccaWGYbGaae4yaiaab+ gacaqGZbGaeqOXdO2aaeWaa8aabaWdbiqadkhapaGbauaapeGaey4k aSIaamOCaiaabohacaqGPbGaaeOBaiabeA8aQbGaayjkaiaawMcaa8 aadaahaaWcbeqaa8qacaaIYaaaaOGaamOCaiaabohacaqGPbGaaeOB aiabeA8aQjaadsgacqaHgpGAaaa@5802@  appeared in Eq. (6). The first part was simplified by variable change ϕ→z=sinϕ and notation r 1 e 2 c =ζ 1 ξ 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiqadkhapaGbauaapeWaaOaaa8aabaWdbiaaigda cqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaikdaaaaabeaaaOWdae aapeGaam4yaaaacqGH9aqpcqaH2oGEdaGcaaWdaeaapeGaaGymaiab gkHiTiabe67a49aadaahaaWcbeqaa8qacaaIYaaaaaqabaGccaqGGc aaaa@45EC@  by

𝜆: 0 sinθ ( λ+ηz ) 2 zdz= c 4 η 2 ( 1 e 2 ) 2 [ ( λsinθ ) 2 2 + 2 ληsin 3 θ 3 + η 2 sin 4 θ 4 ]= c 4 η 2 ( 1 ξ 2 ) 2 12g ( 1 e 2 ) 2 ( 6 ζ 2 + 8ζη g +3 η 2 g )= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaabohacaqG PbGaaeOBaiabeI7aXbqdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaape Gaeq4UdWMaey4kaSIaeq4TdGMaamOEaaGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaaIYaaaaOGaamOEaiaadsgacaWG6bGaeyypa0Jaey OeI0YaaSaaa8aabaWdbiaadogapaWaaWbaaSqabeaapeGaaGinaaaa kiabeE7aO9aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qadaqada WdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaaGOm aaaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaaki aacUfadaWcaaWdaeaapeWaaeWaa8aabaWdbiabeU7aSjaabohacaqG PbGaaeOBaiabeI7aXbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qaca aIYaaaaaGcpaqaa8qacaaIYaaaaiabgUcaRmaalaaapaqaa8qacaaI YaGaae4UdiaabE7acaqGZbGaaeyAaiaab6gapaWaaWbaaSqabeaape GaaG4maaaakiabeI7aXbWdaeaapeGaaG4maaaacqGHRaWkdaWcaaWd aeaapeGaeq4TdG2damaaCaaaleqabaWdbiaaikdaaaGccaqGZbGaae yAaiaab6gapaWaaWbaaSqabeaapeGaaGinaaaakiabeI7aXbWdaeaa peGaaGinaaaacaGGDbGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaado gapaWaaWbaaSqabeaapeGaaGinaaaakiabeE7aO9aadaahaaWcbeqa a8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaH+oaEpa WaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaiaadEgadaqada WdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaaGOm aaaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakm aabmaapaqaa8qacaaI2aGaeqOTdO3damaaCaaaleqabaWdbiaaikda aaGccqGHRaWkdaWcaaWdaeaapeGaaGioaiabeA7a6jabeE7aObWdae aapeWaaOaaa8aabaWdbiaadEgaaSqabaaaaOGaey4kaSIaaG4mamaa laaapaqaa8qacqaH3oaApaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaam4zaaaaaiaawIcacaGLPaaacqGH9aqpaaa@A291@
c 4 η 2 ( 1 ξ 2 ) 2 12g ( 1 e 2 ) 2 ( 6 ζ 2 +8ζ( 1ζ )+3 ( 1ζ ) 2 )= c 4 ( 1 ξ 2 ) 2 ( 4ζ3 ζ 4 ) 12 ( 1 e 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadogapaWaaWbaaSqabeaapeGaaGin aaaakiabeE7aO9aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aaba WdbiaaigdacqGHsislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaa aOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8 qacaaIXaGaaGOmaiaadEgadaqadaWdaeaapeGaaGymaiabgkHiTiaa dwgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaIYaaaaaaakmaabmaapaqaa8qacaaI2aGaeqOT dO3damaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaI4aGaeqOTdO 3aaeWaa8aabaWdbiaaigdacqGHsislcqaH2oGEaiaawIcacaGLPaaa cqGHRaWkcaaIZaWaaeWaa8aabaWdbiaaigdacqGHsislcqaH2oGEai aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaa wMcaaiabg2da9maalaaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbi aaisdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabe67a49aadaah aaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaaleqaba WdbiaaikdaaaGcdaqadaWdaeaapeGaaGinaiabeA7a6jabgkHiTiaa iodacqGHsislcqaH2oGEpaWaaWbaaSqabeaapeGaaGinaaaaaOGaay jkaiaawMcaaaWdaeaapeGaaGymaiaaikdadaqadaWdaeaapeGaaGym aiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkai aawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@7E5C@ ; this result is shown in Eq. (13). Adding Eq. (12) to Eq. (13), and inserting τ from Eq. (5) we find the potential energy

E P = πγ c 4 l 2 [ η( ω+τ ) 3 1 e 2 + ( 1 ξ 2 ) 2 ( 4ζ ζ 4 3 ) 12 ( 1 e 2 ) 2 + ( 1 ξ 2 ) 2 4( 1 e 2 ) η ( 1ξ ) 2 ( 2+ξ ) 3 ( 1 e 2 ) 3/2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaeqiWdaNaeq4SdCMaam4ya8aadaahaaWcbeqaa8qaca aI0aaaaaGcpaqaa8qacaWGSbWdamaaCaaaleqabaWdbiaaikdaaaaa aOWaamWaa8aabaWdbmaalaaapaqaa8qacqaH3oaAdaqadaWdaeaape GaeqyYdCNaey4kaSIaeqiXdqhacaGLOaGaayzkaaaapaqaa8qacaaI ZaWaaOaaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqaba WdbiaaikdaaaaabeaaaaGccqGHRaWkdaWcaaWdaeaapeWaaeWaa8aa baWdbiaaigdacqGHsislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaa aaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWa a8aabaWdbiaaisdacqaH2oGEcqGHsislcqaH2oGEpaWaaWbaaSqabe aapeGaaGinaaaakiabgkHiTiaaiodaaiaawIcacaGLPaaaa8aabaWd biaaigdacaaIYaWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdam aaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaWbaaSqa beaapeGaaGOmaaaaaaGccqGHRaWkdaWcaaWdaeaapeWaaeWaa8aaba WdbiaaigdacqGHsislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaa aOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8 qacaaI0aWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaa leqabaWdbiaaikdaaaaakiaawIcacaGLPaaaaaGaeyOeI0YaaSaaa8 aabaWdbiabeE7aOnaabmaapaqaa8qacaaIXaGaeyOeI0IaeqOVdGha caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdae aapeGaaGOmaiabgUcaRiabe67a4bGaayjkaiaawMcaaaWdaeaapeGa aG4mamaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbe qaa8qacaaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa iodacaGGVaGaaGOmaaaaaaaakiaawUfacaGLDbaaaaa@8F88@   (14)

It is convenient to use the same energy scale factor Е0 =γ ( π ( 6V ) 2 ) 1/3  in Eq. ( 14 )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Jaeq4SdC2aaeWaa8aabaWdbiabec8aWnaabmaapaqaa8qa caaI2aGaamOvaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYa aaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaigdacaGGVaGa aG4maaaakiaacckacaqGPbGaaeOBaiaabckacaqGfbGaaeyCaiaac6 cacaqGGcWaaeWaa8aabaWdbiaaigdacaaI0aaacaGLOaGaayzkaaGa aeiOaaaa@5010@  as in Eq. (9). It looks for ERS as E0πc2(2(ω+τ))2/3πc2𝜁2(1-ξ2)/Q(1-e2). Therefore, γπc2=E0Q(1-e2)/𝜁2(1-ξ2). On the other hand, Е0/πγl2=D2, D is the diameter of a spherical droplet floating in zero gravity in units of l, of equal volume with ERS. Then (с/l)2= D2Q(1-e2)/𝜁2(1-ξ2), πγ c 2 c 2 l 2 = E 0   D 2 Q 2 ( 1 e 2 ) 2 ζ 4 ( 1 ξ 2 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiWdaNaeq4SdCMaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOWa aSaaa8aabaWdbiaadogapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaamiBa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabg2da9iaa dweapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaaSaaa8aabaWdbi aacckacaWGebWdamaaCaaaleqabaWdbiaaikdaaaGccaWGrbWdamaa CaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTi aadwgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aa daahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqaH2oGEpaWaaWbaaS qabeaapeGaaGinaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaeqOV dG3damaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaW baaSqabeaapeGaaGOmaaaaaaGccaGGSaaaaa@5A21@ and

E P / E 0 =   D 2 Q 2 ( 1 e 2 ) 2 ζ 4 ( 1 ξ 2 ) 2 [ η ζ 3 ( 1 ξ 2 ) 3/2 6 Q 3/2 ( 1 e 2 ) 2 +πγ c 2 c 2 l 2 = E 0   D 2 Q 2 ( 1 e 2 ) 2 ζ 4 ( 1 ξ 2 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qacaGGVaGaamyr a8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpdaWcaaWdae aapeGaaiiOaiaadseapaWaaWbaaSqabeaapeGaaGOmaaaakiaadgfa paWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaey OeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzk aaWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabeA7a69aada ahaaWcbeqaa8qacaaI0aaaaOWaaeWaa8aabaWdbiaaigdacqGHsisl cqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8 aadaahaaWcbeqaa8qacaaIYaaaaaaakiaacUfadaWcaaWdaeaapeGa eq4TdGMaeqOTdO3damaaCaaaleqabaWdbiaaiodaaaGcdaqadaWdae aapeGaaGymaiabgkHiTiabe67a49aadaahaaWcbeqaa8qacaaIYaaa aaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiodacaGGVaGaaG OmaaaaaOWdaeaapeGaaGOnaiaadgfapaWaaWbaaSqabeaapeGaaG4m aiaac+cacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLb WdamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaapaWaaWba aSqabeaapeGaaGOmaaaaaaGccqGHRaWkcqaHapaCcqaHZoWzcaWGJb WdamaaCaaaleqabaWdbiaaikdaaaGcdaWcaaWdaeaapeGaam4ya8aa daahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGSbWdamaaCaaale qabaWdbiaaikdaaaaaaOGaeyypa0Jaamyra8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qadaWcaaWdaeaapeGaaiiOaiaadseapaWaaWbaaS qabeaapeGaaGOmaaaakiaadgfapaWaaWbaaSqabeaapeGaaGOmaaaa kmaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8 qacaaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikda aaaak8aabaWdbiabeA7a69aadaahaaWcbeqaa8qacaaI0aaaaOWaae Waa8aabaWdbiaaigdacqGHsislcqaH+oaEpaWaaWbaaSqabeaapeGa aGOmaaaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaa aakiaacYcaaaa@8F28@   .(15)

It has been taken into account simultaneously that 2(ω+τ) =𝜁3(1-ξ2)3/2/Q3/2(1-e2)3/2. Similar further transformations allow to cast the total energy of a droplet (including EA (9)) in the form

E= E ERS E 0 =  D 2 [ 1ζ 6ζ Qg 1 ξ 2 + Q 2 ( 1 3 ζ 3 1 12 e 2 4 ζ 4 ( 1ζ )( 2+ξ ) g( 1 e 2 ) 3 ζ 4 ( 1+ξ ) 2 ) ]+1Q( κ 0 κ ),  ζ=1 η g .  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadweapaWaaSbaaSqaa8qacaWGfbGaamOuaiaa dofaa8aabeaaaOqaa8qacaWGfbWdamaaBaaaleaapeGaaGimaaWdae qaaaaak8qacqGH9aqpcaGGGcGaamira8aadaahaaWcbeqaa8qacaaI YaaaaOWaamWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0Iaeq OTdOhapaqaa8qacaaI2aGaeqOTdOhaamaakaaapaqaa8qadaWcaaWd aeaapeGaamyuaiaadEgaa8aabaWdbiaaigdacqGHsislcqaH+oaEpa WaaWbaaSqabeaapeGaaGOmaaaaaaaabeaakiabgUcaRiaadgfapaWa aWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qadaWcaaWdaeaape GaaGymaaWdaeaapeGaaG4maiabeA7a69aadaahaaWcbeqaa8qacaaI ZaaaaaaakiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXa GaaGOmaaaacqGHsisldaWcaaWdaeaapeGaamyza8aadaahaaWcbeqa a8qacaaIYaaaaaGcpaqaa8qacaaI0aGaeqOTdO3damaaCaaaleqaba WdbiaaisdaaaaaaOGaeyOeI0YaaSaaa8aabaWdbmaabmaapaqaa8qa caaIXaGaeyOeI0IaeqOTdOhacaGLOaGaayzkaaWaaeWaa8aabaWdbi aaikdacqGHRaWkcqaH+oaEaiaawIcacaGLPaaadaGcaaWdaeaapeGa am4zamaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbe qaa8qacaaIYaaaaaGccaGLOaGaayzkaaaaleqaaaGcpaqaa8qacaaI ZaGaeqOTdO3damaaCaaaleqabaWdbiaaisdaaaGcdaqadaWdaeaape GaaGymaiabgUcaRiabe67a4bGaayjkaiaawMcaa8aadaahaaWcbeqa a8qacaaIYaaaaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiabgU caRiaaigdacqGHsislcaWGrbWaaeWaa8aabaWdbiabeQ7aR9aadaWg aaWcbaWdbiaaicdaa8aabeaak8qacqGHsislcqaH6oWAaiaawIcaca GLPaaacaGGSaGaaiiOaiaacckacqaH2oGEcqGH9aqpcaaIXaGaeyOe I0YaaSaaa8aabaWdbiabeE7aObWdaeaapeWaaOaaa8aabaWdbiaadE gaaSqabaaaaOGaaiOlaiaacckaaaa@95A9@   (16)

Rounding presents itself in Eq. (16) only through parameter 𝜁, which equals 1 if rounding is absent. The result (16) can be transferred onto outer rounding in the same way as Eq. (8) was obtained from Eq. (7). The main changes in Eq. (13) stems from the requirement ηfη and some opposite signs:

y( V ) y( D ) y x 2 dy= c 4 ηfω’ 3 1 e 2 + c 4 ( ζ + 1 ) 2 ( 1 ξ 2 ) 2 ( 4 ζ + 2 2 ζ + 3 ) 12 ( 1 e 2 ) 2 + c 4 ( 1 ξ 2 ) 2 4( 1 e 2 ) ,   ζ + =1+ fη g . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMhadaqadaWdaeaapeGaamOvaaGaayjk aiaawMcaaaWdaeaapeGaamyEamaabmaapaqaa8qacaWGebaacaGLOa Gaayzkaaaan8aabaWdbiabgUIiYdaakiaadMhacaWG4bWdamaaCaaa leqabaWdbiaaikdaaaGccaWGKbGaamyEaiabg2da9maalaaapaqaa8 qacaWGJbWdamaaCaaaleqabaWdbiaaisdaaaGccqaH3oaAcaWGMbGa aeyYdiaabMbia8aabaWdbiaaiodadaGcaaWdaeaapeGaaGymaiabgk HiTiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaaaeqaaaaakiabgUca Rmaalaaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbiaaisdaaaGcda qadaWdaeaapeGaeqOTdO3damaaBaaaleaapeGaey4kaScapaqabaGc peGaeyOeI0IaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qaca aIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaH+oaEpaWaaWba aSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacaaIYaaaaOWaaeWaa8aabaWdbiaaisdacqaH2oGEpaWaa0baaSqa a8qacqGHRaWka8aabaWdbiaaikdaaaGccqGHsislcaaIYaGaeqOTdO 3damaaBaaaleaapeGaey4kaScapaqabaGcpeGaeyOeI0IaaG4maaGa ayjkaiaawMcaaaWdaeaapeGaaGymaiaaikdadaqadaWdaeaapeGaaG ymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjk aiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRiaado gapaWaaWbaaSqabeaapeGaaGinaaaakmaalaaapaqaa8qadaqadaWd aeaapeGaaGymaiabgkHiTiabe67a49aadaahaaWcbeqaa8qacaaIYa aaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaaisdadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaW baaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaaacaGGSaGaaiiO aiaacckacqaH2oGEpaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacq GH9aqpcaaIXaGaey4kaSYaaSaaa8aabaWdbiaadAgacqaH3oaAa8aa baWdbmaakaaapaqaa8qacaWGNbaaleqaaaaakiaac6caaaa@9698@   (17)

After insertion Eq. (17) into the formula for energy, we conclude

E+ = E ERS E 0 =  D 2 [ ( 1 ζ + ) 6 ζ + Q + g 1 ξ 2 + Q + 2 ( ( ζ + 1 ) 2 ( 4 ζ + 2 2 ζ + 3 ) 12 ζ + 4 + 1 e 2 4 ζ + 4 ( 1 ζ + ) g( 1 e 2 ) ( 2+ξ ) 3 ζ + 4 ( 1+ξ ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadweapaWaaSbaaSqaa8qacaWGfbGaamOuaiaa dofaa8aabeaaaOqaa8qacaWGfbWdamaaBaaaleaapeGaaGimaaWdae qaaaaak8qacqGH9aqpcaGGGcGaamira8aadaahaaWcbeqaa8qacaaI YaaaaOGaai4wamaalaaapaqaa8qadaqadaWdaeaapeGaaGymaiabgk HiTiabeA7a69aadaWgaaWcbaWdbiabgUcaRaWdaeqaaaGcpeGaayjk aiaawMcaaaWdaeaapeGaaGOnaiabeA7a69aadaWgaaWcbaWdbiabgU caRaWdaeqaaaaak8qadaGcaaWdaeaapeWaaSaaa8aabaWdbiaadgfa paWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacaWGNbaapaqaa8qaca aIXaGaeyOeI0IaeqOVdG3damaaCaaaleqabaWdbiaaikdaaaaaaaqa baGccqGHRaWkcaWGrbWdamaaDaaaleaapeGaey4kaScapaqaa8qaca aIYaaaaOWaaeWaa8aabaWdbmaalaaapaqaa8qadaqadaWdaeaapeGa eqOTdO3damaaBaaaleaapeGaey4kaScapaqabaGcpeGaeyOeI0IaaG ymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWa a8aabaWdbiaaisdacqaH2oGEpaWaa0baaSqaa8qacqGHRaWka8aaba WdbiaaikdaaaGccqGHsislcaaIYaGaeqOTdO3damaaBaaaleaapeGa ey4kaScapaqabaGcpeGaeyOeI0IaaG4maaGaayjkaiaawMcaaaWdae aapeGaaGymaiaaikdacqaH2oGEpaWaa0baaSqaa8qacqGHRaWka8aa baWdbiaaisdaaaaaaOGaey4kaSYaaSaaa8aabaWdbiaaigdacqGHsi slcaWGLbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaaisda cqaH2oGEpaWaa0baaSqaa8qacqGHRaWka8aabaWdbiaaisdaaaaaaO GaeyOeI0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Ia eqOTdO3damaaBaaaleaapeGaey4kaScapaqabaaak8qacaGLOaGaay zkaaWaaOaaa8aabaWdbiaadEgadaqadaWdaeaapeGaaGymaiabgkHi TiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaa Wcbeaakmaabmaapaqaa8qacaaIYaGaey4kaSIaeqOVdGhacaGLOaGa ayzkaaaapaqaa8qacaaIZaGaeqOTdO3damaaDaaaleaapeGaey4kaS capaqaa8qacaaI0aaaaOWaaeWaa8aabaWdbiaaigdacqGHRaWkcqaH +oaEaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaki aawIcacaGLPaaaaaa@9AD2@   (18)

The subscript “+” reminds about outer rounding, which enters also through ζ+, Q+, and κ+

Q + = ζ + 2 ( 1 ξ 2 ) ( 1 e 2 ) ( 2( τ+ω' ) ) 2/3  ,   κ + = ((2( ω'+τ) ) 2/3 ρψ )( 1 e 2 ) ζ + 2 ( 1 ξ 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacqaH2oGEpaWaa0baaSqaa8qacqGHRaWka8aabaWdbi aaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabe67a49aadaah aaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaaapaqaa8qadaqada WdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaaGOm aaaaaOGaayjkaiaawMcaamaabmaapaqaa8qacaaIYaWaaeWaa8aaba Wdbiabes8a0jabgUcaRiabeM8a3jaacEcaaiaawIcacaGLPaaaaiaa wIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaiaac+cacaaIZaaaaa aakiaacckacaGGSaGaaiiOaiaacckacqaH6oWApaWaaSbaaSqaa8qa cqGHRaWka8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaaiikaiaacI cacaaIYaWaaeWaa8aabaWdbiabeM8a3jaacEcacqGHRaWkcqaHepaD caGGPaGaaiyka8aadaahaaWcbeqaa8qacaaIYaGaai4laiaaiodaaa GccqGHsislcqaHbpGCcqGHsislcqaHipqEaiaawIcacaGLPaaadaqa daWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaaG OmaaaaaOGaayjkaiaawMcaaaWdaeaapeGaeqOTdO3damaaDaaaleaa peGaey4kaScapaqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacq GHsislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaa wMcaaaaacaGGUaaaaa@8027@   (19)

Both Eq. (16) and (18) are simplified significantly when rounding is absent and lead to the identical result   

E0 = E ERS E 0 | η=0 = D 2 Q 0 2 1 e 2 4 +1+ Q 0 ( κ κ 0 ),    Q 0 = 1 ξ 2 ( 1 e 2 ) ( 2τ ) 2/3 ,  κ 0 = ( 2τ ) 2/3 ρ )( 1 e 2 ) 1 ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZaaSaaa8aabaWdbiaadweapaWaaSbaaSqaa8qacaWGfbGa amOuaiaadofaa8aabeaaaOqaa8qacaWGfbWdamaaBaaaleaapeGaaG imaaWdaeqaaaaak8qacaGG8bWdamaaBaaaleaapeGaeq4TdGMaeyyp a0JaaGimaaWdaeqaaOWdbiabg2da9iaadseapaWaaWbaaSqabeaape GaaGOmaaaakiaadgfapaWaa0baaSqaa8qacaaIWaaapaqaa8qacaaI YaaaaOWaaSaaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaale qabaWdbiaaikdaaaaak8aabaWdbiaaisdaaaGaey4kaSIaaGymaiab gUcaRiaadgfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaaeWaa8 aabaWdbiabeQ7aRjabgkHiTiabeQ7aR9aadaWgaaWcbaWdbiaaicda a8aabeaaaOWdbiaawIcacaGLPaaacaGGSaGaaiiOaiaacckacaGGGc Gaamyua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaiabgkHiTiabe67a49aadaahaaWcbeqaa8qaca aIYaaaaaGcpaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadwga paWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaamaabmaapa qaa8qacaaIYaGaeqiXdqhacaGLOaGaayzkaaWdamaaCaaaleqabaWd biaaikdacaGGVaGaaG4maaaaaaGccaGGSaGaaiiOaiabeQ7aR9aada WgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeWa aeWaa8aabaWdbiaaikdacqaHepaDcaGGPaWdamaaCaaaleqabaWdbi aaikdacaGGVaGaaG4maaaakiabgkHiTiabeg8aYbGaayjkaiaawMca amaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8 qacaaIYaaaaaGccaGLOaGaayzkaaaapaqaa8qacaaIXaGaeyOeI0Ia eqOVdG3damaaCaaaleqabaWdbiaaikdaaaaaaaaa@8AA3@ .  (20)

Unlike the case of zero gravity the relative energy becomes size-dependent being linear function of the square of “effective diameter” D (which is the same as “bond number” B)3 of the droplet, while in zero gravity attachment depends only on the nature of liquid and substrate. The weight also allows the droplet to stay on the substrate in an unstable state (which does not correspond to the energy minimum over е, ξ, η).

Example calculations of weighty droplet parameters (16, 18) are shown in Table 2. The peculiarities noted in Table 1 are present in Table 2 as well: inner rounding diminishes the energy of the first kind droplets for any e, but does not lead to attachment of droplets lower than half of ellipse. The energy minimum over the eccentricity appears for the further increase of height (χ>1). For example, the minimum E =0.9245 becomes absolute for е=0.6, В=2, η=0, χ=1.6. The minimum for droplets with smaller weights (В=0.25) returns to the lower heights (χ=1.4) as in zero gravity. As a result of the flattering caused by the droplet weight, the energy is reduced, and the minimum moves from spherical (e=0) to elliptic (e=0.4) shape as in Refs.3,4

Para- meters

е/x

B=2, κ=0.3, η=0.

B=2, κ=0.3, η=0.2, inner rounding

B=2, κ=0.3, η=0.2, outer rounding

   

0,0

0,4

0,6

0,0

0,4

0,6

0,0

0,4

0,6

E

0.4

1.3831

1.4084

1.4584

1.0925

1.0905

1.0904

1.5376

1.5927

1.6992

K

4.8835

5.0946

5.4617

3.4956

3.5308

3.5863

6.8484

7.173

7.7387

κ0

0.1322

0.0895

0.0226

0.3409

0.3114

0.2669

-0.219

-0.2489

-0.2962

E

0.6

1.1785

1.1944

1.228

1.0605

1.0599

1.062

1.2876

1.3096

1.3529

K

4.25

4.4

4.6548

3.4342

3.4728

3.5358

5.4176

5.6087

5.9389

κ0

0.2857

0.2452

0.1799

0.4283

0.3962

0.3456

-0.0373

-0.0637

-0.1067

E

1

0.9915

0.9953

1.007

0.9976

0.9977

1.0017

1.0656

1.0676

1.0743

K

3.5717

3.6462

3.7845

3.2624

3.2961

3.3596

4.0562

4.1222

4.2364

κ0

0.5198

0.4879

0.4322

0.5951

0.5631

0.5046

0.2561

0.2431

0.219

E

1.4

0.9279

0.9258

0.9273

0.9621

0.9586

0.9605

0.969

0.9648

0.9622

K

3.2108

3.2409

3.305

3.1102

3.1307

3.1793

3.4048

3.4221

3.4613

κ0

0.7155

0.6933

0.6453

0.7545

0.7267

0.6613

0.5068

0.5073

0.4947

E

1.6

0.9272

0.9245

0.9251

0.957

0.9547

0.9559

0.9527

0.9483

0.946

K

3.0988

3.1148

3.1565

3.0535

3.0666

3.1041

3.2049

3.2119

3.2391

κ0

0.8088

0.7903

0.7389

0.8342

0.8083

0.7336

0.6301

0.6344

0.6167

Table 2 Relative energy, shape coefficient, and holding limit of an ERS weighty droplet

Outer rounding lowers the energy of the second type droplets even more effectively than inner rounding does of the first type droplets. The shape coefficient for outer rounding becomes close to 3, and even the order of minima can change (see the third row from the bottom in Table 2 – 0.9547 vs. 0.9460). Significantly larger droplets amplify this effect. This effect could be the reason for the nonexistence of big weighty droplets while large masses of liquid can attach to substrate in zero gravity. A nonrounded droplet with an effective diameter of five capillary length (B=25) and χ=1.4 is strongly flattened: E =1.2568 (е=0.4) as compared to the spherical segment (E =1.2787) while outer rounded ERS (η=0.2) energy is noticeably lower (E =1.2403) than both and inner rounded with the same η (E =1.2641). At the same time, as demonstrated in Table 1, a droplet of the same shape and geometrical parameters is attachable in zero gravity independently of its size (E =0.942).

The point T of coalescence of the ellipse and circle in Figure 1, if touching is outer, is an inflection point of the rotating profile DTV forming the second type droplet. The outer circle has a smaller radius than the inner one for the second type droplet that gives the shape shown in Figure 2. This shape for large enough height χ (when point A is close to the end of small ellipse axes) is reminiscent of a mushroom with a thin stipe and big pileus. It is difficult to imagine someone standing under the round dirigible (“flying bowel”) and having atop its liquid floor (but not in zero gravity!). However, from the viewpoint of capillarity theory, this is quite possible as demonstrated by the above-mentioned example. Indeed, almost a perfect sphere is above and a widening pedestal weakens the surface tension that guarantees the smallest surface tension energy. Common sense prevails if we remember the Pascal law. The hydrostatic pressure of all droplet weight through a narrow stipe is transferred onto wide pedestal, and the construction will burst as a barrel in Pascal times and cover the substrate with a uniform liquid layer without any droplets. All this means is that the following proposition is entitled to existence.

Figure 2 The outer rounded second type droplet.

If the minimum of the second type droplet energy belongs to the outer-rounded ERS, the droplet channel off the substrate and does not exist as a droplet. To be self-consistent, this proposition, being valid for a droplet of some size, should be simultaneously valid for all bigger droplets. Then it remains to find the size of the first droplet. Table 3 answers this question and demonstrates the self-consistency of the hypothesis. 

The sequence of droplet energy levels for parameter typical values, given in the second column, are presented in Table 3 in the following order: first E0 (without rounding), then E (with internal rounding), and then E+ (with external rounding). The radius R of an equal ERS volume sphere determines the weight contribution into the total droplet energy. The third column describes a situation in zero gravity with the initial level sequence E0-E-E+, which means that rounding is unnecessary. The same situation continues to hold for small droplets with R of order one capillary length (R=√2/2 and 1) in the weight presence. The next three columns demonstrate that sequence of levels changes with growing R from E0-E-E+ to E0-E+-E, then to E+-E0-E. The unrounded droplet becomes the highest at the final step: E+-E-E0. The last column shows that the final order does not change with further increase of the droplet size. Thus, the bold numbers in the seventh column can be treated as the limit size of weighty droplets, which our calculation predicts.   Figure 2. The outer rounded second type droplet. The values of 2-4 capillary length do not contradict common sense. However, nothing prevents the existence of much bigger droplets in zero gravity.

R

η, κ; e, χ

0

0.7071

1

1.3038

2.1331

2.8107

6

E0

0.2, 0.3;

0.8971

0.9258

0.9546

0.9949

1.1589

1.3518

2.9692

E

0.4, 1.4

0.932

0.9586

0.9851

1.0223

1.1737

1.3517

2.8447

E+

 

0.9408

0.9648

0.9887

1.0223

1.1589

1.3194

2.666

R

 

0

0.7071

1

1.1292

1.9774

3.9147

6

E0

0.4, 0.3;

0.8971

0.9258

0.9546

0.9704

1.1221

1.7791

2.9692

E

0.4, 1.4

0.9606

0.9873

1.014

1.0287

1.1694

1.7791

2.8833

E+

 

0.9835

1.0012

1.0189

1.0287

1.1221

1.5269

2.2599

R

 

0

0.7071

1

1.4318

2.1529

2.7568

6

E0

0.2, 0.3;

0.8971

0.9272

0.9573

1.0205

1.176

1.3545

3.0635

E

0.2, 1.4

0.9318

0.9596

0.9874

1.0458

1.1896

1.3545

2.934

E+

 

0.9427

0.9678

0.993

1.0459

1.176

1.3253

2.7555

R

 

0

0.7071

1

2.7386

3.3875

5.9582

6

E0

0.2, 0.3;

0.9154

0.9245

0.9385

1.1203

1.2314

1.9032

1.9172

E

0.4, 1.6

0.9412

0.9547

0.9685

1.1444

1.2522

1.9033

1.9168

E+

 

0.9354

0.9483

0.9612

1.1289

1.2314

1.8511

1.864

Table 3 Influence of rounding on energy levels sequence and size of droplets

Conclusion

It is demonstrated in Sec. 3 that in zero gravity the attachment energy is determined by universal geometrical parameters of the droplet and does not depend on its size—only on the material parameters of the droplet liquid and substrate. The minimum of energy belongs to droplets higher than the semi-sphere. The energy of weighty droplets strongly depends on their size, and gravity destroys them if their size exceeds 2-4 capillary length as calculations of elliptic outer-rounded segment shape droplets prove.

Acknowledgments

None.

Conflicts of interest

The authors state that there is no conflict of interest.

Funding

None.

References

  1. Jurin J. Philosophical Transactions. R Soc. 1718;30:739–747.
  2. Young T, Philosophical Transactions R. Soc. 1805;95:65–87.
  3. Lubarda V, Talke K, Langmuir. 2011;27:10705–10713.
  4. Whyman G, Bormashenko E. Chem. Phys. Lett. 2008;450:174.
  5. Blokhuis EM. Surfactant Science Series. 2005;147–193.
  6. Tadmor R. Surf Sci. 2008;602(14):L108–L111.
  7. deGennes PG, Brochard-Wyart F, Quere D. Capillarity & wetting phenomena. Springer.2004;291.
  8. Rowlinson JS, Widom B. Molecular theory of capillarity. Oxford:Clarendon. 1982.
  9. Mestechkin MM. JCMSE. 2010;10:49–66.
  10. Savelyev IV. Course of General Physics. 1973;1.
Creative Commons Attribution License

©2023 Mestechkin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.