Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Research Article Volume 3 Issue 1

Nanowires in magnetic drug targeting

Behzad Heidarshenas,1 Hongyu Wei,1 Zfar Ali Moghimi Moghimi,2 Ghulam Hussain,3 Fazel Baniasadi,4 Gholamreza Naghieh5

1Nanjing University of Aeronautics and Astronautics, China
2Department of Materials Science and Engineering, Amirkabir University, Iran
3GIK Institute of Engineering Sciences & Technology, Pakistan
4Department of materials science and engineering, Virginia Tech, USA
5Department of Mechanical Engineering, Payam Noor University of Ray, Iran

Correspondence: Behzad Heidarshenas, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, PR China

Received: November 05, 2018 | Published: January 17, 2019

Citation: Heidarshenas B, Wei H, Moghimi ZA, et al. Nanowires in magnetic drug targeting. Material Sci & Eng. 2019;3(1):3-9. DOI: 10.15406/mseij.2019.03.00080

Download PDF

Abstract

Magnetic drug targeting can be used for locoregional cancer therapy, although the limitation is minuteness of the induced force. A new and simple procedure to enhance the magnetic force is changing the shape of carrier particles. It has been mathematically proved that exerting much stronger magnetic dipoles to nanowires are more possible than to spheres with the same volume. The magnetic dipole of wires having aspect quotient (ratio of length to diameter) of 3 is higher than the spheres of the same volume. Nanowires with α=5 have magnetic dipoles 1.95 times greater than the spheres with the same volume. At a fixed radius, the magnetic dipole increases with the volume of the drug carrier. Magnetic targeting depth is an important parameter depending on the aspect quotient α of particles. Calculations show that the depth of targeting can exceed 8.5cm if a nanowire with 15nm radius and length larger than 150 nm is used as the drug carrier. This depth is 1.7 times more than that reported by previous authors for spherical particles with the same-volume.

Keywords: drug delivery, magnetic targeting, magnetic force, magnetic nanowire, magnetic targeting depth

Introduction

These days, an important desire of researchers is to deliver medicine to the exact disease tissues. For instance, chemotherapy is a contemporary therapy in which less than 0.1% of the medicine is absorbed by the tumor cells; while the remaining (99.9%) affects healthy cells.1,2 Magnetic drug targeting (MDT) is of the newest innovated methods to help treatment of a localized disease such as cancerous tumors. Ideal MDT treatment is based on binding the drug to the magnetic particle or such a similar method for linking drug to the magnetic nanoparticles, and then magnetic particles are injected into the bloodstream at an appropriate location. Careers go towards the disease tissues. Externally-applied magnetic forces push the careers to extract from streams and enter to the tumor tissues. These careers are activated by pH, temperature, enzyme or a magnetic trigger3 which requires to control the motion of magnetic particles in the body by magnetic actuators (Figure 1).2,4,5 After injection of therapeutic magnetic particles into the patient’s bloodstream, external magnets will conduct the particles towards the tumor locations,6–12 blood clot,13 or infection.14,15 Magnetic-fields are much more convenient than light, electric-field and ultrasound16–18 to control the motion of the therapeutics inside the body on the grounds of their depth of penetration for deep tumors therapy. Also, magnetic fields can be applied with the strength of 8T for adults and 4T for children in DC type without any problem.19–22 Todays, MDT in cancer therapy is limited to superficial tumors.7,23 If the depth of targeting increases, this method could be applied to a wide range of diseases. Delivering a magnetic drug to in-vivo locations being far from the magnets or magnetic-field source9,11,24–31 depends on the applied magnetic field strength and its gradient which decreases quickly with getting away from magnets32,33 The strength of the magnetic field in MDT is between 70 Mt34 and 2.2 T35 with gradients of 3 T/m36 to 100 T/m.37 A targeting depth of 5cm has been examined in the human body using magnetic particles of 100nm size as the carriers and magnetic field of 0.2–0.8 T.32,38 Moreover, targeting depth has increased to 12cm in animal experiments with larger carriers (500nm–5 mm) and 0.5 T magnetic field.33 One of the important parameter in targeting depth is particle size. When MDT is used, it should be considered that the particles must be smaller than 600nm to have the ability to be extracted from blood vessels towards tumor tissues22,39–46 and even be smaller than the mentioned size to become hidden from phagocyte system because large particles are removed by this system very fast. Researches show that particles with 100 nm size would be in blood stream for about 30 min and hence it should be extracted from blood vessels before this time.47,48 Another thing that should be considered is the magnetic force that should be small on small particles since it increases with particles volume increase in a direct relation.49 According to this statement, if particle size decreases ten times, the magnetic force will decrease one thousand times. Hence, with a high magnetic field (e.g. 41T) and high magnetic fields gradient (e.g. 0.5 T/cm) the force would be in the range of piconewtons.49–51 Therefore, it is needed to know which location is able to reached by MDT.9 Maximum depth of targeting being attained in the human body is 5cm32,48 and hence, increasing depth of magnetic targeting is still a challenging desire for tumor therapies.52–54 This is why we chose our goal of this study basically upon the increasing of applicable magnetic forces plus the magnetic drug catching depths. To achieve this goal, we established a computational model for magnetic dipoles of nanowires and nano spheres and compared the obtained forces of magnetic particles for drug delivery. We showed that magnetic nanowires can induce magnetic forces as well as magnetic targeting depths much higher than that of spherical particles. The former, thus, can provide much better controllability for localized cancer therapy.

Figure 1 Schematic view of magnets for directing MNPs in the human body.6

Mathematic model

To compute the magnetic dipole of a spherical nanoparticle we use the following equation:55,56

  m p = 4π a 3 3 χ 1+ χ 3 B 0 μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8Haae aajugibabaaaaaaaaapeGaamyBaKqba+aadaWgaaqcgayaaKqzadWd biaadchaaKqba+aabeaaaiaawEniaKqzGeWdbiabg2da9Kqbaoaala aapaqaaKqzGeWdbiaaisdacqaHapaCcaWGHbqcfa4damaaCaaabeqa aKqzadWdbiaaiodaaaaajuaGpaqaaKqzGeWdbiaaiodaaaqcfa4aaS aaa8aabaqcLbsapeGaeq4XdmgajuaGpaqaaKqzGeWdbiaaigdacqGH RaWkjuaGdaWccaWdaeaajugib8qacqaHhpWyaKqba+aabaqcLbsape GaaG4maaaaaaqcfa4aaSaaa8aabaWaa8Haaeaajugib8qacaWGcbqc fa4damaaBaaabaqcLbmapeGaaGimaaqcfa4daeqaaaGaay51Gaaaba qcLbsapeGaeqiVd0wcfa4damaaBaaabaqcLbmapeGaaGimaaqcfa4d aeqaaaaaaaa@6097@    (1A)

Where, , χ and  are magnetic dipole nanoparticle, the radius of them, magnetic susceptibility, and the amplitude of the external magnetic-field, respectively. The magnetic force of the spherical particle of Eq.1-a is:56

  F m =( m p . ). B 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8HcaO qaaKqzGeaeaaaaaaaaa8qacaWGgbqcfa4damaaBaaaleaajugWa8qa caWGTbaal8aabeaaaOGaayz0GaqcLbsapeGaeyypa0tcfa4aaeWaaO WdaeaajuaGdaWhkaGcbaqcLbsapeGaamyBaKqba+aadaWgaaWcbaqc LbmapeGaamiCaaWcpaqabaaakiaawgniaKqzGeWdbiaac6cacuGHhi s0paGba4aaaOWdbiaawIcacaGLPaaajugibiaac6cajuaGpaWaa8Hc aOqaaKqzGeWdbiaadkeajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaS WdaeqaaaGccaGLrdcaaaa@52AE@    (1b)

In Eq.1-b,  is the magnetic force on the particle with magnetic dipole of from external magnetic-field. In order to calculate the magnetic dipole of a nanowire numerically, we firstly defined a cylinder and generated a mesh on it to describe the model parameters. For this purpose, we divided the cylinder into discs and then divided every disc to a number of rings. Figure 2 shows the schematic picture of the mesh for a nanowire in cylindrical coordinates. In this model, we consider a single super paramagnetic nanowire in a constant external magnetic-field and then calculate the magnetization and the magnetic dipole of the wire. The correlation between magnetization and magnetic current is as follows:

Figure 2 Meshes schematically generated on wire.

× M   =( J_m  )            MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgEGirlabgEna0kaad2eajuaGdaahaaqabeaajugibiaa cckajugWaiablgni2baajugibiabg2da9Kqbaoaabmaak8aabaqcLb sapeGaamOsaiaac+facaWGTbGaaiiOaaGccaGLOaGaayzkaaqcLbma caGGGcWcdaahaaqcfayabeaajugWaiablgni2baajugibiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcaaaa@58B5@    (2)

Where is the vector of magnetization, and  is the magnetic current density. The boundary condition for Eq.2 is expressed as follows:

( J_ms  )   = M  × ( a_n  )               MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaajugib8qacaWGkbGaai4xaiaad2gacaWGZbGa aiiOaaqcfaOaayjkaiaawMcaaKqzGeGaaiiOaKqbaoaaCaaabeqaaK qzGeGaeSy0Gyhaaiabg2da9iaad2eajuaGdaahaaqabeaajugibiab lgni2baacaGGGcGaey41aqBcfa4aaeWaa8aabaqcLbsapeGaamyyai aac+facaWGUbGaaiiOaaqcfaOaayjkaiaawMcaamaaCaaabeqaaKqz GeGaeSy0GyhaaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaaaa@640D@    (3)

In which,  is the surface magnetic current density and  is the vertical vector at wire surface.

For magnetic field intensity  without free current, we have:

× H =0         MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgEGirlabgEna0kqadIeapaGba4aapeGaeyypa0JaaGim aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc aaaa@4624@    (4)

The relationship between magnetization and magnetic-field and linear magnetization with respect to is defined as:

1 μ 0 B = M + H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaajugib8qacaaIXaaajuaGpaqaaKqzGeWdbiab eY7aTTWdamaaBaaajuaGbaqcLbmapeGaaGimaaqcfa4daeqaaaaaju gib8qaceWGcbWdayaaoaWdbiabg2da9iqad2eapaGba4aapeGaey4k aSIabmisa8aagaGdaaaa@43E7@    (5)

M =χ. H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqad2eapaGba4aapeGaeyypa0Jaeq4XdmMaaiOlaiqadIea paGba4aaaaa@3C0C@

The combination of (5) and (6) yields to:

  1 μ 0 B = M + 1 χ M=M( 1+ 1 χ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaajugib8qacaaIXaaajuaGpaqaaKqzGeWdbiab eY7aTLqba+aadaWgaaqaaKqzadWdbiaaicdaaKqba+aabeaaaaqcLb sapeGabmOqa8aagaGda8qacqGH9aqpceWGnbWdayaaoaWdbiabgUca RKqbaoaalaaapaqaaKqzGeWdbiaaigdaaKqba+aabaqcLbsapeGaeq 4Xdmgaaiaad2eacqGH9aqpcaWGnbqcfa4aaeWaa8aabaqcLbsapeGa aGymaiabgUcaRKqbaoaalaaapaqaaKqzGeWdbiaaigdaaKqba+aaba qcLbsapeGaeq4XdmgaaaqcfaOaayjkaiaawMcaaaaa@5479@    (7)

Eq.4 and 6 yield to:

× M =0       MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgEGirlabgEna0kqad2eapaGba4aapeGaeyypa0JaaGim aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaaaa@43E1@    (8)

Now, we should calculate magnetic-field in every point of the wire. For this purpose, we have used superposition principal of vectors, like:

B= B 0 + B other elements MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGcbGaeyypa0JaamOqa8aadaWgaaqaaKqzadWdbiaaicda aKqba+aabeaapeGaey4kaSIaamOqaSWdamaaBaaajuaGbaqcLbmape Gaam4BaiaadshacaWGObGaamyzaiaadkhacaGGGcGaamyzaiaadYga caWGLbGaamyBaiaadwgacaWGUbGaamiDaiaadohaaKqba+aabeaaaa a@4DBF@    (9)

Bother elements is the sum of all magnetic-fields that are generated with magnetized nanowire elements. Eq.10 shows Bother elements components in the wire with considering Eq.2, 3 and 8:

  B ( r,z )= B 0 + i=1 p B i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadkeapaGba4aajuaGpeWaaeWaa8aabaqcLbsapeGaamOC aiaacYcacaWG6baajuaGcaGLOaGaayzkaaqcLbsacqGH9aqpceWGcb Wdayaaoaqcfa4aaSbaaeaajugWa8qacaaIWaaajuaGpaqabaqcLbsa peGaey4kaSscfa4aaybCaeqapaqaaKqzadWdbiaadMgacqGH9aqpca aIXaaajuaGpaqaaKqzadWdbiaadchaaKqba+aabaqcLbsapeGaeyye IuoaaiqadkeapaGba4aalmaaBaaakeaajugWa8qacaWGPbaak8aabe aaaaa@530D@    (10)

Bi is the magnetic field of superficial current for jth ring on the surface and p is the number of superficial rings. In order to compute the magnetic field originated from the surface current on the external surface of wires, the rings shown in Figure 3 are considered. In this figure, ri and zi are radius and height of the ring on the external surface of the wire with superficial current density and r and z are the coordination of the point of interest to compute its magnetic field. In wire, we have three kinds of external surfaces: down, top and side. The surface current for all three surfaces are calculated as follows:

Figure 3 Schematic representation of the wires and their respective coordinates.

     I idown = M r ( r i ,0 ).Δr. φ ̂ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaaiiOaiaadMeal8aadaWgaaqcfayaaKqzadWdbiaa dMgacqGHsislcaWGKbGaam4BaiaadEhacaWGUbaajuaGpaqabaWdbi abg2da9iaad2eal8aadaWgaaqcfayaaKqzadWdbiaadkhaaKqba+aa beaapeWaaeWaa8aabaWdbiaadkhal8aadaWgaaqcfayaaKqzadWdbi aadMgaaKqba+aabeaapeGaaiilaiaaicdaaiaawIcacaGLPaaacaGG UaGaeuiLdqKaamOCaiaac6capaWaaCbiaeaapeGaeqOXdOgapaqabe aapeGaeSOadqcaaaaa@55F7@    (11)

    I itop = M r ( r i ,L ).Δr. φ ̂ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacaWGjbWcpaWaaSbaaKqbagaajugWa8qacaWGPbGa eyOeI0IaamiDaiaad+gacaWGWbaajuaGpaqabaqcLbsapeGaeyypa0 JaeyOeI0IaamytaSWdamaaBaaajuaGbaqcLbmapeGaamOCaaqcfa4d aeqaa8qadaqadaWdaeaajugib8qacaWGYbqcfa4damaaBaaabaqcLb mapeGaamyAaaqcfa4daeqaaKqzGeWdbiaacYcacaWGmbaajuaGcaGL OaGaayzkaaqcLbsacaGGUaGaeuiLdqKaamOCaiaac6cajuaGpaWaaC biaeaajugib8qacqaHgpGAaKqba+aabeqaaKqzGeWdbiablkWaKaaa aaa@59E7@    (12)

    I isidelong = M z ( R, z i ).Δz. φ ̂ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacaWGjbqcfa4damaaBaaabaqcLbmapeGaamyAaiab gkHiTiaadohacaWGPbGaamizaiaadwgacaWGSbGaam4Baiaad6gaca WGNbaajuaGpaqabaqcLbsapeGaeyypa0JaamytaKqba+aadaWgaaqa aKqzadWdbiaadQhaaKqba+aabeaapeWaaeWaa8aabaqcLbsapeGaam OuaiaacYcacaWG6bqcfa4damaaBaaabaqcLbmapeGaamyAaaqcfa4d aeqaaaWdbiaawIcacaGLPaaajugibiaac6cacqqHuoarcaWG6bGaai OlaKqba+aadaWfGaqaaKqzGeWdbiabeA8aQbqcfa4daeqabaqcLbsa peGaeSOadqcaaaaa@5C80@    (13)

According to Biot– Savart law, the magnetic field of ith surface ring (Bi) in point (r, z) is expressed as follows:

  B i ( r,z )= μ 0 4π I i . dl × ξ | ξ | 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkeal8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aa beaapeWaaeWaa8aabaqcLbsapeGaamOCaiaacYcacaWG6baajuaGca GLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWcaaWdaeaajugib8qacqaH 8oqBjuaGpaWaaSbaaeaajugWa8qacaaIWaaajuaGpaqabaaabaqcLb sapeGaaGinaiabec8aWbaacaWGjbWcpaWaaSbaaKqbagaajugWa8qa caWGPbaajuaGpaqabaqcLbsapeGaaiOlaKqba+aadaqfGaqabeqaba qcLbsacaaMb8oajuaGbaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52z aGqbaKqzGeWdbiaa=5Iiaaqcfa4aaSaaa8aabaWaa8Hcaeaajugib8 qacaWGKbGaamiBaaqcfa4daiaawgniaKqzGeWdbiabgEna0kqbe67a 49aagaGdaaqcfayaa8qadaabdaWdaeaajugib8qacuaH+oaEpaGba4 aaaKqba+qacaGLhWUaayjcSdWdamaaCaaabeqaaKqzadWdbiaaioda aaaaaaaa@718C@    (14)

In which, is the distance vector from every point on the ring to point(r, z) and the integral is on the environment of the ring with center (0, zi). For simplification, we write the following equation:

  f ( r i , z i ,r,z )= 1 4π dl × ξ | ξ | 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadAgapaGba4aajuaGpeWaaeWaa8aabaqcLbsapeGaamOC aSWdamaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4daeqaaKqzGeWdbi aacYcacaWG6bWcpaWaaSbaaKqbagaajugWa8qacaWGPbaajuaGpaqa baqcLbsapeGaaiilaiaadkhacaGGSaGaamOEaaqcfaOaayjkaiaawM caaKqzGeGaeyypa0tcfa4aaSaaa8aabaqcLbsapeGaaGymaaqcfa4d aeaajugib8qacaaI0aGaeqiWdahaaKqba+aadaqfGaqabeqabaqcLb sacaaMb8oajuaGbaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGqb aKqzGeWdbiaa=5Iiaaqcfa4aaSaaa8aabaWaa8Hcaeaajugib8qaca WGKbGaamiBaaqcfa4daiaawgniaKqzGeWdbiabgEna0kqbe67a49aa gaGdaaqcfayaa8qadaabdaWdaeaajugib8qacuaH+oaEpaGba4aaaK qba+qacaGLhWUaayjcSdWdamaaCaaabeqaaKqzadWdbiaaiodaaaaa aaaa@7125@    (15)

Then we can rewrite the Eq.14 according to the Eq.15:

  B i ( r,z )= μ 0 I i . f ( r i , z i ,r,z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGcbWcpaWaaSbaaKqbagaajugWa8qacaWGPbaajuaGpaqa baWdbmaabmaapaqaa8qacaWGYbGaaiilaiaadQhaaiaawIcacaGLPa aacqGH9aqpcqaH8oqBpaWaaSbaaeaajugWa8qacaaIWaaajuaGpaqa baWdbiaadMeal8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aabe aapeGaaiOlaiqadAgapaGba4aapeWaaeWaa8aabaWdbiaadkhal8aa daWgaaqcfayaaKqzadWdbiaadMgaaKqba+aabeaapeGaaiilaiaadQ hal8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aabeaapeGaaiil aiaadkhacaGGSaGaamOEaaGaayjkaiaawMcaaaaa@5A16@    (16)

From Eqs.10, 11, 12, 13 and 16, we have:

B k ( r k , z k )= B 0 + μ 0 ( i=1 q M z ( R, z i ).Δz. f z ( R, z i , r k , z k )+ i=1 p M r ( r i ,0 ).Δr. f ( r j , z j , r k , z k )+ i=1 p M r ( r i ,L ).Δr. f ( r j , z j , r k , z k ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadkeapaGba4aalmaaBaaajuaGbaqcLbmapeGaam4Aaaqc fa4daeqaa8qadaqadaWdaeaajugib8qacaWGYbWcpaWaaSbaaKqbag aajugWa8qacaWGRbaajuaGpaqabaqcLbsapeGaaiilaiaadQhal8aa daWgaaqcfayaaKqzadWdbiaadUgaaKqba+aabeaaa8qacaGLOaGaay zkaaqcLbsacqGH9aqpjuaGpaWaa8Hcaeaajugib8qacaWGcbqcfa4d amaaBaaabaqcLbmapeGaaGimaaqcfa4daeqaaaGaayz0GaqcLbsape Gaey4kaSIaeqiVd02cpaWaaSbaaKqbagaajugWa8qacaaIWaaajuaG paqabaWaaeWaaeaapeWaaybCaeqapaqaaKqzadWdbiaadMgacqGH9a qpcaaIXaaajuaGpaqaaKqzadWdbiaadghaaKqba+aabaqcLbsapeGa eyyeIuoaaiaad2eal8aadaWgaaqcfayaaKqzadWdbiaadQhaaKqba+ aabeaapeWaaeWaa8aabaqcLbsapeGaamOuaiaacYcacaWG6bWcpaWa aSbaaKqbagaajugWa8qacaWGPbaajuaGpaqabaaapeGaayjkaiaawM caaKqzGeGaaiOlaiabfs5aejaadQhacaGGUaqcfa4damaaFOaabaqc LbsapeGaamOzaKqba+aadaWgaaqaaKqzadWdbiaadQhaaKqba+aabe aaaiaawgnia8qadaqadaWdaeaajugib8qacaWGsbGaaiilaiaadQha l8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aabeaajugib8qaca GGSaGaamOCaKqba+aadaWgaaqaaKqzadWdbiaadUgaaKqba+aabeaa jugib8qacaGGSaGaamOEaKqba+aadaWgaaqaaKqzadWdbiaadUgaaK qba+aabeaaa8qacaGLOaGaayzkaaqcLbsacqGHRaWkjuaGdaGfWbqa b8aabaqcLbmapeGaamyAaiabg2da9iaaigdaaKqba+aabaqcLbmape GaamiCaaqcfa4daeaajugib8qacqGHris5aaGaamytaKqba+aadaWg aaqaaKqzadWdbiaadkhaaKqba+aabeaapeWaaeWaa8aabaqcLbsape GaamOCaSWdamaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4daeqaaKqz GeWdbiaacYcacaaIWaaajuaGcaGLOaGaayzkaaqcLbsacaGGUaGaeu iLdqKaamOCaiaac6cajuaGpaWaa8Hcaeaajugib8qacaWGMbWcpaWa aSbaaKqbagaaaeqaaaGaayz0GaWdbmaabmaapaqaaKqzGeWdbiaadk hal8aadaWgaaqcfayaaKqzadWdbiaadQgaaKqba+aabeaajugib8qa caGGSaGaamOEaKqba+aadaWgaaqaaKqzadWdbiaadQgaaKqba+aabe aajugib8qacaGGSaGaamOCaKqba+aadaWgaaqaaKqzadWdbiaadUga aKqba+aabeaajugib8qacaGGSaGaamOEaSWdamaaBaaajuaGbaqcLb mapeGaam4Aaaqcfa4daeqaaaWdbiaawIcacaGLPaaajugibiabgUca RKqbaoaawahabeWdaeaajugWa8qacaWGPbGaeyypa0JaaGymaaqcfa 4daeaajugWa8qacaWGWbaajuaGpaqaaKqzGeWdbiabggHiLdaacqGH sislcaWGnbWcpaWaaSbaaKqbagaajugWa8qacaWGYbaajuaGpaqaba WdbmaabmaapaqaaKqzGeWdbiaadkhal8aadaWgaaqcfayaaKqzadWd biaadMgaaKqba+aabeaajugib8qacaGGSaGaamitaaqcfaOaayjkai aawMcaaKqzGeGaaiOlaiabfs5aejaadkhacaGGUaqcfa4damaaFOaa baqcLbsapeGaamOzaaqcfa4daiaawgnia8qadaqadaWdaeaajugib8 qacaWGYbWcpaWaaSbaaKqbagaajugWa8qacaWGQbaajuaGpaqabaqc LbsapeGaaiilaiaadQhajuaGpaWaaSbaaeaajugWa8qacaWGQbaaju aGpaqabaqcLbsapeGaaiilaiaadkhajuaGpaWaaSbaaeaajugWa8qa caWGRbaajuaGpaqabaqcLbsapeGaaiilaiaadQhajuaGpaWaaSbaae aajugWa8qacaWGRbaajuaGpaqabaaapeGaayjkaiaawMcaaaWdaiaa wIcacaGLPaaaaaa@0751@    (17)

Where k is the number of the rings and  is the magnetic field in kth ring.

If we write the Eq.17 on radial and vertical directions, we will have:

B kz ( r k , z k )= B 0 + μ 0 ( i=1 q M z ( R, z i ).Δz. f z ( R, z i , r k , z k )+ i=1 p M r ( r i ,0 ).Δr. f z ( r j , z j , r k , z k )+ i=1 p M r ( r i ,L ).Δr. f z ( r j , z j , r k , z k ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadkeapaGba4aalmaaBaaajuaGbaqcLbmapeGaam4Aaiaa dQhaaKqba+aabeaapeWaaeWaa8aabaqcLbsapeGaamOCaSWdamaaBa aajuaGbaqcLbmapeGaam4Aaaqcfa4daeqaaKqzGeWdbiaacYcacaWG 6bWcpaWaaSbaaKqbagaajugWa8qacaWGRbaajuaGpaqabaaapeGaay jkaiaawMcaaKqzGeGaeyypa0tcfa4damaaFOaabaqcLbsapeGaamOq aKqba+aadaWgaaqaaKqzadWdbiaaicdaaKqba+aabeaaaiaawgniaK qzGeWdbiabgUcaRiabeY7aTTWdamaaBaaajuaGbaqcLbmapeGaaGim aaqcfa4daeqaamaabmaabaWdbmaawahabeWdaeaajugWa8qacaWGPb Gaeyypa0JaaGymaaqcfa4daeaajugWa8qacaWGXbaajuaGpaqaaKqz GeWdbiabggHiLdaacaWGnbWcpaWaaSbaaKqbagaajugWa8qacaWG6b aajuaGpaqabaWdbmaabmaapaqaaKqzGeWdbiaadkfacaGGSaGaamOE aSWdamaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4daeqaaaWdbiaawI cacaGLPaaajugibiaac6cacqqHuoarcaWG6bGaaiOlaKqba+aadaWh kaqaaKqzGeWdbiaadAgajuaGpaWaaSbaaeaajugWa8qacaWG6baaju aGpaqabaaacaGLrdcapeWaaeWaa8aabaqcLbsapeGaamOuaiaacYca caWG6bWcpaWaaSbaaKqbagaajugWa8qacaWGPbaajuaGpaqabaqcLb sapeGaaiilaiaadkhajuaGpaWaaSbaaeaajugWa8qacaWGRbaajuaG paqabaqcLbsapeGaaiilaiaadQhajuaGpaWaaSbaaeaajugWa8qaca WGRbaajuaGpaqabaaapeGaayjkaiaawMcaaKqzGeGaey4kaSscfa4a aybCaeqapaqaaKqzadWdbiaadMgacqGH9aqpcaaIXaaajuaGpaqaaK qzadWdbiaadchaaKqba+aabaqcLbsapeGaeyyeIuoaaiaad2eajuaG paWaaSbaaeaajugWa8qacaWGYbaajuaGpaqabaWdbmaabmaapaqaaK qzGeWdbiaadkhal8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aa beaajugib8qacaGGSaGaaGimaaqcfaOaayjkaiaawMcaaKqzGeGaai Olaiabfs5aejaadkhacaGGUaqcfa4damaaFOaabaqcLbsapeGaamOz aSWdamaaBaaajuaGbaqcLbmapeGaamOEaaqcfa4daeqaaaGaayz0Ga WdbmaabmaapaqaaKqzGeWdbiaadkhal8aadaWgaaqcfayaaKqzadWd biaadQgaaKqba+aabeaajugib8qacaGGSaGaamOEaKqba+aadaWgaa qaaKqzadWdbiaadQgaaKqba+aabeaajugib8qacaGGSaGaamOCaKqb a+aadaWgaaqaaKqzadWdbiaadUgaaKqba+aabeaajugib8qacaGGSa GaamOEaSWdamaaBaaajuaGbaqcLbmapeGaam4Aaaqcfa4daeqaaaWd biaawIcacaGLPaaajugibiabgUcaRKqbaoaawahabeWdaeaajugWa8 qacaWGPbGaeyypa0JaaGymaaqcfa4daeaajugWa8qacaWGWbaajuaG paqaaKqzGeWdbiabggHiLdaacqGHsislcaWGnbWcpaWaaSbaaKqbag aajugWa8qacaWGYbaajuaGpaqabaWdbmaabmaapaqaaKqzGeWdbiaa dkhal8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aabeaajugib8 qacaGGSaGaamitaaqcfaOaayjkaiaawMcaaKqzGeGaaiOlaiabfs5a ejaadkhacaGGUaqcfa4damaaFOaabaqcLbsapeGaamOzaSWdamaaBa aajuaGbaqcLbmapeGaamOEaaqcfa4daeqaaaGaayz0GaWdbmaabmaa paqaaKqzGeWdbiaadkhal8aadaWgaaqcfayaaKqzadWdbiaadQgaaK qba+aabeaajugib8qacaGGSaGaamOEaKqba+aadaWgaaqaaKqzadWd biaadQgaaKqba+aabeaajugib8qacaGGSaGaamOCaKqba+aadaWgaa qaaKqzadWdbiaadUgaaKqba+aabeaajugib8qacaGGSaGaamOEaKqb a+aadaWgaaqaaKqzadWdbiaadUgaaKqba+aabeaaa8qacaGLOaGaay zkaaaapaGaayjkaiaawMcaaaaa@0E30@    (18)

B kr ( r k , z k )= μ 0 ( i=1 q M z ( R, z i ).Δz. f r ( R, z i , r k , z k )+ i=1 p M r ( r i ,0 ).Δr. f r ( r j , z j , r k , z k )+ i=1 p M r ( r i ,L ).Δr. f r ( r j , z j , r k , z k ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadkeapaGba4aalmaaBaaajuaGbaqcLbmapeGaam4Aaiaa dkhaaKqba+aabeaapeWaaeWaa8aabaqcLbsapeGaamOCaSWdamaaBa aajuaGbaqcLbmapeGaam4Aaaqcfa4daeqaaKqzGeWdbiaacYcacaWG 6bWcpaWaaSbaaKqbagaajugWa8qacaWGRbaajuaGpaqabaaapeGaay jkaiaawMcaaKqzGeGaeyypa0JaeqiVd02cpaWaaSbaaKqbagaajugW a8qacaaIWaaajuaGpaqabaWaaeWaaeaapeWaaybCaeqapaqaaKqzad WdbiaadMgacqGH9aqpcaaIXaaajuaGpaqaaKqzadWdbiaadghaaKqb a+aabaqcLbsapeGaeyyeIuoaaiaad2eal8aadaWgaaqcfayaaKqzad WdbiaadQhaaKqba+aabeaapeWaaeWaa8aabaqcLbsapeGaamOuaiaa cYcacaWG6bWcpaWaaSbaaKqbagaajugWa8qacaWGPbaajuaGpaqaba aapeGaayjkaiaawMcaaKqzGeGaaiOlaiabfs5aejaadQhacaGGUaqc fa4damaaFOaabaqcLbsapeGaamOzaKqba+aadaWgaaqaaKqzadWdbi aadkhaaKqba+aabeaaaiaawgnia8qadaqadaWdaeaajugib8qacaWG sbGaaiilaiaadQhal8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+ aabeaajugib8qacaGGSaGaamOCaKqba+aadaWgaaqaaKqzadWdbiaa dUgaaKqba+aabeaajugib8qacaGGSaGaamOEaKqba+aadaWgaaqaaK qzadWdbiaadUgaaKqba+aabeaaa8qacaGLOaGaayzkaaqcLbsacqGH RaWkjuaGdaGfWbqab8aabaqcLbmapeGaamyAaiabg2da9iaaigdaaK qba+aabaqcLbmapeGaamiCaaqcfa4daeaajugib8qacqGHris5aaGa amytaKqba+aadaWgaaqaaKqzadWdbiaadkhaaKqba+aabeaapeWaae Waa8aabaqcLbsapeGaamOCaSWdamaaBaaajuaGbaqcLbmapeGaamyA aaqcfa4daeqaaKqzGeWdbiaacYcacaaIWaaajuaGcaGLOaGaayzkaa qcLbsacaGGUaGaeuiLdqKaamOCaiaac6cajuaGpaWaa8HcaeaacaWG MbWcdaWgaaqcfayaaKqzadGaamOCaaqcfayabaaacaGLrdcapeWaae Waa8aabaqcLbsapeGaamOCaSWdamaaBaaajuaGbaqcLbmapeGaamOA aaqcfa4daeqaaKqzGeWdbiaacYcacaWG6bqcfa4damaaBaaabaqcLb mapeGaamOAaaqcfa4daeqaaKqzGeWdbiaacYcacaWGYbqcfa4damaa BaaabaqcLbmapeGaam4Aaaqcfa4daeqaaKqzGeWdbiaacYcacaWG6b WcpaWaaSbaaKqbagaajugWa8qacaWGRbaajuaGpaqabaaapeGaayjk aiaawMcaaKqzGeGaey4kaSscfa4aaybCaeqapaqaaKqzadWdbiaadM gacqGH9aqpcaaIXaaajuaGpaqaaKqzadWdbiaadchaaKqba+aabaqc LbsapeGaeyyeIuoaaiabgkHiTiaad2eal8aadaWgaaqcfayaaKqzad WdbiaadkhaaKqba+aabeaapeWaaeWaa8aabaqcLbsapeGaamOCaSWd amaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4daeqaaKqzGeWdbiaacY cacaWGmbaajuaGcaGLOaGaayzkaaqcLbsacaGGUaGaeuiLdqKaamOC aiaac6cajuaGpaWaa8Hcaeaajugib8qacaWGMbWcpaWaaSbaaKqbag aajugWaiaadkhaaKqbagqaaaGaayz0GaWdbmaabmaapaqaaKqzGeWd biaadkhal8aadaWgaaqcfayaaKqzadWdbiaadQgaaKqba+aabeaaju gib8qacaGGSaGaamOEaKqba+aadaWgaaqaaKqzadWdbiaadQgaaKqb a+aabeaajugib8qacaGGSaGaamOCaKqba+aadaWgaaqaaKqzadWdbi aadUgaaKqba+aabeaajugib8qacaGGSaGaamOEaKqba+aadaWgaaqa aKqzadWdbiaadUgaaKqba+aabeaaa8qacaGLOaGaayzkaaaapaGaay jkaiaawMcaaaaa@0496@    (19)

Where andare vertical and radial components of the magnetic field in each ring, and and  are vertical and radial components of Eq.15. If we apply Eq.7 into Eqs.18 and 19, the final equations can be obtained:

i=1 q M z ( R, z i ).Δz. f z ( R, z i , r k , z k )+ i=1 p M r ( r i ,0 ).Δr. f z ( r j , z j , r k , z k )+ i=1 p M r ( r i ,L ).Δr. f z ( r j , z j , r k , z k ) M z k ( 1+ 1 χ )= 1 μ 0 B 0     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGfWbqab8aabaqcLbmapeGaamyAaiabg2da9iaaigdaaKqb a+aabaqcLbmapeGaamyCaaqcfa4daeaajugib8qacqGHris5aaGaam ytaKqba+aadaWgaaqaaKqzadWdbiaadQhaaKqba+aabeaapeWaaeWa a8aabaqcLbsapeGaamOuaiaacYcacaWG6bqcfa4damaaBaaabaqcLb mapeGaamyAaaqcfa4daeqaaaWdbiaawIcacaGLPaaajugibiaac6ca cqqHuoarcaWG6bGaaiOlaiaadAgajuaGpaWaaSbaaeaajugWa8qaca WG6baajuaGpaqabaWdbmaabmaapaqaaKqzGeWdbiaadkfacaGGSaGa amOEaSWdamaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4daeqaaKqzGe WdbiaacYcacaWGYbqcfa4damaaBaaabaqcLbmapeGaam4Aaaqcfa4d aeqaaKqzGeWdbiaacYcacaWG6bqcfa4damaaBaaabaqcLbmapeGaam 4Aaaqcfa4daeqaaaWdbiaawIcacaGLPaaajugibiabgUcaRKqbaoaa wahabeWdaeaajugWa8qacaWGPbGaeyypa0JaaGymaaqcfa4daeaaju gWa8qacaWGWbaajuaGpaqaaKqzGeWdbiabggHiLdaacaWGnbqcfa4d amaaBaaabaqcLbmapeGaamOCaaqcfa4daeqaa8qadaqadaWdaeaaju gib8qacaWGYbWcpaWaaSbaaKqbagaajugWa8qacaWGPbaajuaGpaqa baqcLbsapeGaaiilaiaaicdaaKqbakaawIcacaGLPaaajugibiaac6 cacqqHuoarcaWGYbGaaiOlaiaadAgal8aadaWgaaqcfayaaKqzadWd biaadQhaaKqba+aabeaapeWaaeWaa8aabaqcLbsapeGaamOCaSWdam aaBaaajuaGbaqcLbmapeGaamOAaaqcfa4daeqaaKqzGeWdbiaacYca caWG6bWcpaWaaSbaaKqbagaajugWa8qacaWGQbaajuaGpaqabaqcLb sapeGaaiilaiaadkhajuaGpaWaaSbaaeaajugWa8qacaWGRbaajuaG paqabaqcLbsapeGaaiilaiaadQhajuaGpaWaaSbaaeaajugWa8qaca WGRbaajuaGpaqabaaapeGaayjkaiaawMcaaKqzGeGaey4kaSscfa4a aybCaeqapaqaaKqzadWdbiaadMgacqGH9aqpcaaIXaaajuaGpaqaaK qzadWdbiaadchaaKqba+aabaqcLbsapeGaeyyeIuoaaiabgkHiTiaa d2eal8aadaWgaaqcfayaaKqzadWdbiaadkhaaKqba+aabeaapeWaae Waa8aabaqcLbsapeGaamOCaSWdamaaBaaajuaGbaqcLbmapeGaamyA aaqcfa4daeqaaKqzGeWdbiaacYcacaWGmbaajuaGcaGLOaGaayzkaa qcLbsacaGGUaGaeuiLdqKaamOCaiaac6cacaWGMbqcfa4damaaBaaa baqcLbmapeGaamOEaaqcfa4daeqaa8qadaqadaWdaeaajugib8qaca WGYbqcfa4damaaBaaabaqcLbmapeGaamOAaaqcfa4daeqaaKqzGeWd biaacYcacaWG6bqcfa4damaaBaaabaqcLbmapeGaamOAaaqcfa4dae qaaKqzGeWdbiaacYcacaWGYbqcfa4damaaBaaabaqcLbmapeGaam4A aaqcfa4daeqaaKqzGeWdbiaacYcacaWG6bqcfa4damaaBaaabaqcLb mapeGaam4Aaaqcfa4daeqaaaWdbiaawIcacaGLPaaajugibiabgkHi Tiaad2eal8aadaWgaaqcfayaaKqzadWdbiaadQhaaKqba+aabeaalm aaBaaajuaGbaqcLbmapeGaam4Aaaqcfa4daeqaa8qadaqadaWdaeaa jugib8qacaaIXaGaey4kaSscfa4aaSaaa8aabaqcLbsapeGaaGymaa qcfa4daeaajugib8qacqaHhpWyaaaajuaGcaGLOaGaayzkaaqcLbsa cqGH9aqpjuaGdaWcaaWdaeaajugib8qacqGHsislcaaIXaaajuaGpa qaaKqzGeWdbiabeY7aTLqba+aadaWgaaqcfawaaKqzadWdbiaaicda aKqba+aabeaaaaqcLbsapeGaamOqaKqba+aadaWgaaqaaKqzadWdbi aaicdaaKqba+aabeaajugib8qacaGGGcGaaiiOaiaacckaaaa@08FD@    (20)

i=1 q M z ( R, z i ).Δz. f r ( R, z i , r k , z k )+ i=1 p M r ( r i ,0 ).Δr. f r ( r j , z j , r k , z k )+ i=1 p M r ( r i ,L ).Δr. f r ( r j , z j , r k , z k ) M r k ( 1+ 1 χ )=0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGfWbqab8aabaqcLbmapeGaamyAaiabg2da9iaaigdaaKqb a+aabaqcLbmapeGaamyCaaqcfa4daeaajugib8qacqGHris5aaGaam ytaKqba+aadaWgaaqaaKqzadWdbiaadQhaaKqba+aabeaapeWaaeWa a8aabaqcLbsapeGaamOuaiaacYcacaWG6bqcfa4damaaBaaabaqcLb mapeGaamyAaaqcfa4daeqaaaWdbiaawIcacaGLPaaajugibiaac6ca cqqHuoarcaWG6bGaaiOlaiaadAgajuaGpaWaaSbaaeaajugWa8qaca WGYbaajuaGpaqabaWdbmaabmaapaqaaKqzGeWdbiaadkfacaGGSaGa amOEaSWdamaaBaaajuaGbaqcLbmapeGaamyAaaqcfa4daeqaaKqzGe WdbiaacYcacaWGYbqcfa4damaaBaaabaqcLbmapeGaam4Aaaqcfa4d aeqaaKqzGeWdbiaacYcacaWG6bqcfa4damaaBaaabaqcLbmapeGaam 4Aaaqcfa4daeqaaaWdbiaawIcacaGLPaaajugibiabgUcaRKqbaoaa wahabeWdaeaajugWa8qacaWGPbGaeyypa0JaaGymaaqcfa4daeaaju gWa8qacaWGWbaajuaGpaqaaKqzGeWdbiabggHiLdaacaWGnbqcfa4d amaaBaaabaqcLbmapeGaamOCaaqcfa4daeqaa8qadaqadaWdaeaaju gib8qacaWGYbWcpaWaaSbaaKqbagaajugWa8qacaWGPbaajuaGpaqa baqcLbsapeGaaiilaiaaicdaaKqbakaawIcacaGLPaaajugibiaac6 cacqqHuoarcaWGYbGaaiOlaiaadAgal8aadaWgaaqcfayaaKqzadWd biaadkhaaKqba+aabeaapeWaaeWaa8aabaqcLbsapeGaamOCaSWdam aaBaaajuaGbaqcLbmapeGaamOAaaqcfa4daeqaaKqzGeWdbiaacYca caWG6bWcpaWaaSbaaKqbagaajugWa8qacaWGQbaajuaGpaqabaqcLb sapeGaaiilaiaadkhajuaGpaWaaSbaaeaajugWa8qacaWGRbaajuaG paqabaqcLbsapeGaaiilaiaadQhajuaGpaWaaSbaaeaajugWa8qaca WGRbaajuaGpaqabaaapeGaayjkaiaawMcaaKqzGeGaey4kaSscfa4a aybCaeqapaqaaKqzadWdbiaadMgacqGH9aqpcaaIXaaajuaGpaqaaK qzadWdbiaadchaaKqba+aabaqcLbsapeGaeyyeIuoaaiabgkHiTiaa d2eal8aadaWgaaqcfayaaKqzadWdbiaadkhaaKqba+aabeaapeWaae Waa8aabaqcLbsapeGaamOCaSWdamaaBaaajuaGbaqcLbmapeGaamyA aaqcfa4daeqaaKqzGeWdbiaacYcacaWGmbaajuaGcaGLOaGaayzkaa qcLbsacaGGUaGaeuiLdqKaamOCaiaac6cacaWGMbqcfa4damaaBaaa baqcLbmapeGaamOCaaqcfa4daeqaa8qadaqadaWdaeaajugib8qaca WGYbqcfa4damaaBaaabaqcLbmapeGaamOAaaqcfa4daeqaaKqzGeWd biaacYcacaWG6bqcfa4damaaBaaabaqcLbmapeGaamOAaaqcfa4dae qaaKqzGeWdbiaacYcacaWGYbqcfa4damaaBaaabaqcLbmapeGaam4A aaqcfa4daeqaaKqzGeWdbiaacYcacaWG6bqcfa4damaaBaaabaqcLb mapeGaam4Aaaqcfa4daeqaaaWdbiaawIcacaGLPaaajugibiabgkHi Tiaad2eal8aadaWgaaqcfayaaKqzadWdbiaadkhaaKqba+aabeaalm aaBaaajuaGbaqcLbmapeGaam4Aaaqcfa4daeqaa8qadaqadaWdaeaa jugib8qacaaIXaGaey4kaSscfa4aaSaaa8aabaqcLbsapeGaaGymaa qcfa4daeaajugib8qacqaHhpWyaaaajuaGcaGLOaGaayzkaaqcLbsa cqGH9aqpcaaIWaGaaiiOaiaacckaaaa@F974@    (21)

Now, we have two series of variables:  and. If we write Equations 20 and 21 in every n rings of the wire, we will get 2n equations as n rings become magnetic on both vertical and radial directions and a specification matrix with size 2n×2n for magnetization of the wire. Equation 22 shows the relationship between the variables:

  W M 2n×2n × ( M z M r ) 2n×1 = 1 μ 0 ( B 0  0 ) 2n×1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEfajuaGpaWaaSbaaSqaaKqzadWdbiaad2eacaGGGcGa aGOmaiaad6gacqGHxdaTcaaIYaGaamOBaaWcpaqabaqcLbsapeGaey 41aqBcfa4aaeWaaOWdaeaajugibuaabeqaceaaaOqaaKqzGeWdbiaa d2eajuaGpaWaaSbaaSqaaKqzadWdbiaadQhaaSWdaeqaaaGcbaqcLb sapeGaamytaKqba+aadaWgaaWcbaqcLbmapeGaamOCaaWcpaqabaaa aaGcpeGaayjkaiaawMcaaSWdamaaBaaabaqcLbmapeGaaGOmaiaad6 gacqGHxdaTcaaIXaaal8aabeaajugib8qacqGH9aqpjuaGdaWcaaGc paqaaKqzGeWdbiabgkHiTiaaigdaaOWdaeaajugib8qacqaH8oqBl8 aadaWgaaqaaKqzadWdbiaaicdaaSWdaeqaaaaajuaGpeWaaeWaaOWd aeaajugibuaabeqaceaaaOqaaKqzGeWdbiaadkeajuaGpaWaaSbaaS qaaKqzGeWdbiaaicdacaGGGcaal8aabeaaaOqaaKqzGeWdbiaaicda aaaakiaawIcacaGLPaaal8aadaWgaaqaaKqzadWdbiaaikdacaWGUb Gaey41aqRaaGymaaWcpaqabaaaaa@6E77@    (22)

If we suppose B01 and solve the equations, we can obtain magnetization matrix for every B0 such as follow:

  M B 0 = M B0=1 ×| B 0 | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eajuaGpaWaaSbaaeaajugWa8qacaWGcbqcfa4damaa BaaabaqcLbmapeGaaGimaaqcfa4daeqaaaqabaqcLbsacqGH9aqppe GaamytaSWdamaaBaaajuaGbaqcLbmapeGaamOqaiaaicdacqGH9aqp caaIXaaajuaGpaqabaqcLbsapeGaey41aqBcfa4aaqWaa8aabaWaa8 Hcaeaajugib8qacaWGcbqcfa4damaaBaaabaqcLbmapeGaaGimaaqc fa4daeqaaaGaayz0GaaapeGaay5bSlaawIa7aaaa@52DF@    (23)

Where is magnetization matrix for external magnetic field and  is magnetization matrix for B0=1. The magnetic field of the cylindrical magnet is expressed as follows:56

  B magnet 1 d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkeal8aadaWgaaqaaKqzadWdbiaad2gacaWGHbGaam4z aiaad6gacaWGLbGaamiDaaWcpaqabaqcLbsapeGaeyyhIuBcfa4aaS aaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaamizaKqba+aa daahaaWcbeqaaKqzadWdbiaaikdaaaaaaaaa@472F@    (24)

Where and d are magnetic field and diameter of the cylindrical magnet, respectively.

The magnetic field gradient of a cylindrical magnet is expressed as:

  B magnet d 1 d 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiabgkGi2kaadkeajuaGpaWaaSba aSqaaKqzadWdbiaad2gacaWGHbGaam4zaiaad6gacaWGLbGaamiDaa Wcpaqabaaakeaajugib8qacqGHciITcaWGKbaaaiabg2Hi1Mqbaoaa laaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaadsgajuaGpa WaaWbaaSqabeaajugWa8qacaaIZaaaaaaaaaa@4C44@    (25)

With attention to the Eq.1-b, 24 and 25, the magnetic force is related to d as follow:

  F m 1 d 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGpaWaaSbaaSqaaKqzadWdbiaad2gaaSWdaeqa aKqzGeWdbiabg2Hi1Mqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpa qaaKqzGeWdbiaadsgal8aadaahaaqabeaajugWa8qacaaI1aaaaaaa aaa@428E@    (26)

Considering the Eq.26, we can compare the depth of magnetic targeting according to:

  d w d s = m w m s 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaadsgajuaGpaWaaSbaaSqaaKqz adWdbiaadEhaaSWdaeqaaaGcbaqcLbsapeGaamizaSWdamaaBaaaba qcLbmapeGaam4CaaWcpaqabaaaaKqzGeWdbiabg2da9Kqbaoaakeaa k8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaamyBaKqba+aadaWgaa WcbaqcLbmapeGaam4DaaWcpaqabaaakeaajugib8qacaWGTbWcpaWa aSbaaeaajugWa8qacaWGZbaal8aabeaaaaaabaqcLbmapeGaaGynaa aaaaa@4D84@    (27)

Where dw and ds are the depth of magnetic targeting for wires and spherical particles, respectively. The parameters mw and ms are magnetic dipoles of nanowires and spherical particles.

Results and discussion

To compare the magnetization and the magnetic dipole of the spherical and the cylindrical nanoparticles, we use the corresponding parameters in a uniform unit magnetic field. Table 1 shows different specifications used for simulation in this research. With the parameters shown in this table, 175 combinations exist. We chose these combinations to show the effect of geometry on magnetic force and the depth of magnetic targeting. Changing the aspect ratio (α) at a constant volume results in the variation of radius and the height of the wire. For every sphere with radius of r, the volume is calculated and then for every α, the radius and height of the corresponding wire are calculated and then the magnetization and the magnetic dipole of the wire is simulated at different susceptibilities. (Figure 4) (Figure 5) show the magnetization in vertical and radial directions with radius r30 nm and α5. Figure 5 shows the magnetic dipoles of wires in the vertical direction for different sizes with various aspect ratios and different susceptibilities. Radius and height of the wire are calculated from the following equations as a function of α:

Figure 4 Magnetization of a wire with r=30 nm, α=5 and susceptibility=500: (A) magnetization in the vertical direction and (B) magnetization in the radial direction.

Figure 5 Vertical magnetic dipole of the nanowire versus the ratio α at different susceptibilities for rs equal to: (A 15nm, (B) 30nm and (C) 50nm.

Parameter

Quantity

Radius, m

15×10-9

30×10-9

50×10-9

80×10-9

100×10-9

 

 

Aspect ratio (α)

1

2

3

4

5

6

7

Susceptibility

20

500

1000

1500

2000

 

 

Table 1 Specification of the nanowires used for simulation.

V= 4 3 π r s 3        MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaisda aOWdaeaajugib8qacaaIZaaaaiabec8aWjaadkhal8aadaWgaaqaaK qzadWdbiaadohaaSWdaeqaamaaCaaabeqaaKqzadWdbiaaiodaaaGa aiiOaiaacckajugibiaacckacaGGGcGaaiiOaiaacckaaaa@4AD3@    (28)

R= 1 2 4V πα 3            MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkfacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaigda aOWdaeaajugib8qacaaIYaaaaKqbaoaakeaak8aabaqcfa4dbmaala aak8aabaqcLbsapeGaaGinaiaadAfaaOWdaeaajugib8qacqaHapaC cqaHXoqyaaaal8aabaqcLbmapeGaaG4maaaajugibiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka aaa@51DE@    (29)

V= 4 3 π r s 3        MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaisda aOWdaeaajugib8qacaaIZaaaaiabec8aWjaadkhal8aadaWgaaqaaK qzadWdbiaadohaaSWdaeqaamaaCaaabeqaaKqzadWdbiaaiodaaaGa aiiOaiaacckajugibiaacckacaGGGcGaaiiOaiaacckaaaa@4AD3@    (30)

V is the volume of the spherical particle with radius rs. R and L are the radius and length of the corresponding nanowire. In Eqs.28, 29 and 30, it is assumed that the volume of the wire and the spherical particle are the same. Then, for all aspect ratios, radius and height of the wires were calculated. As shown in Figure 5, it is clear that increasing the susceptibility from 500 to 2000 has no influence on the vertical magnetization, being also the same for spherical magnetization. Instead of materials with high susceptibility, we, therefore, chose materials with high saturation limit. This will result in more magnetization without saturation. Figure 6 shows that vertical magnetic dipole of the nanowires with respect to their volume is linear. Likewise, the magnetic dipole of spherical particles is linear. The slope of graphs increases as the aspect ratio increases. At α=3, the behavior of wires and spheres is the same. More increase in the aspect ratio up to 5 retains the double magnetic dipole at a constant volume. It is clear that magnetic dipole increases with α, directly; however, if α is more than 5 or 6, the mechanical solidity of wires will decrease. In this research, we can increase the magnetic dipole of the particles merely by changing their geometry. Comparing the magnetic dipole of a wire having α=5 and radius =15 nm with a spherical particle of radius =15nm, we found out that the magnetic dipole of the former is 15 times larger than that of the latter. This means that if we use a wire with specifications above, the magnetic force will be 15 times greater than the corresponding spherical particle. When using nanowires, we can increase the volume without increasing their radius and simultaneously increase the magnetic dipole merely with α enhancement. These two specifications can be used to increase the depth of target and diffusion rate of the drug carrier particles toward the tumors without increasing the radius of particles. Figure 7 shows the magnetic dipole of nanowires and spherical particles as a function of susceptibility at different α ratios for radii 15, 30 and 50nm. As was shown in the mentioned figures, the relationships for wires of α=3 are similar to the spherical particles while increasing the susceptibility of the magnetic materials above 500 has no independent influence on the magnetic dipole.

Figure 6 Magnetic dipole versus volume of nanowires and spherical particles for different aspect ratios at susceptibility equal to: (A) 20, (B) 500 and (V) 2000.

Figure 7 The magnetic dipole of wire and spherical particles versus susceptibility at various aspect ratios and rs equal to: (A) 15nm, (B) 30nm and (C) 50nm.

Conclusion

For in-depth magnetic drug targeting, the most important parameter is the force which can be increased by magnetic dipole of the particles. For increasing the magnetic dipole of the particles, there two ways including (i) increasing volume of the particles and (ii) increasing the ratio of length to diameter of the particles. With spherical particles, the former way reduces the mobility of the particles. The volume of the particles has thus to increase without enhancement of their radius. This way is obviously not feasible. By employment of cylindrical particles having high aspect ratios, this action is, however, possible. The magnetic dipole of the wires having an aspect ratio of 3 is equal to the spherical particles of the same volume. With aspect ratios larger than 3, the magnetic dipoles of wires are larger than the spherical particles of the same volume. Choosing an intersection radius of 15 nm and an aspect ratio of 5, we can attain magnetic dipole of 14.6 times larger than that of the spherical particle of the same radius. If we apply these parameters to the Eq.27, we will attain 70% deeper magnetic targeting than the spherical particles. This means that the geometry change has an increasing effect on the applied force as particle volume expansion does occur.

Acknowledgements

Deputy of research of the Sharif University of Technology is thanked for continued support of Seed of Design and Accomplishment of New Processes for Production and Application of Advanced Materials.

Conflict of interest

Author declares that there is no conflicts of interest.

References

  1. Reszka R, Beck P, Fichtner I, et al. Body distribution of free, liposomal and nanoparticle-associated mitoxantrone in B16-melanoma-bearing mice. Journal of Pharmacology and Experimental Therapeutics. 1997;280(1):232–237.
  2. Mirab F, Eslamian M, Bagheri R. Fabrication and characterization of a starch-based nanocomposite scaffold with highly porous and gradient structure for bone tissue engineering. Biomedical Physics & Engineering Express. 2018;4(5):055021.
  3. Cherry E, Eaton J. Simulation of magnetic particles in the bloodstream for magnetic drug targeting applications. 2012.
  4. Nacev A, Komaee A, Sarwar A, et al. Towards control of magnetic fluids in patients: directing therapeutic nanoparticles to disease locations. IEEE Control Systems. 2012;32(3):32–74.
  5. Ebrahimian Pirbazari A, Fakhari Kisom B, Ghamangiz Khararoodi M. Anionic surfactant-modified rice straw for removal of methylene blue from aqueous solution. Desalination and Water Treatment. 2016;57(39):18202–18216.
  6. Shapiro B. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. Journal of magnetism and magnetic materials. 2009;321(10):1594–1599.
  7. Lübbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer research. 1996;56(20):4686–4693.
  8. Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. European urology. 2007;52(6):1653–1662.
  9. Dobson J. Magnetic nanoparticles for drug delivery. Drug development research. 2006;67(1):55–60.
  10. Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. Journal of neuro-oncology. 2007;81(1):53–60.
  11. Najdahmadi A, Lakey JR, Botvinick E. Structural Characteristics and Diffusion Coefficient of Alginate Hydrogels Used for Cell Based Drug Delivery. MRS Advances. 2018:1–10.
  12. Goudarzi HM, Yarahmadi M, Shafii MB. Design and construction of a two-phase fluid piston engine based on the structure of fluidyne. Energy. 2017;127:660–670.
  13. Orekhova N, Akchurin R, Belyaev A, et al. Local prevention of trombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells. Thrombosis research. 1990;57(4):611–616.
  14. Stoimenov PK, Klinger RL, Marchin GL, et al. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18(17):6679–6686.
  15. Gong P, Li H, He X, et al. Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology. 2007;18(28):285604.
  16. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. JNCI: Journal of the National Cancer Institute. 1998;90(12):889–905.
  17. Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. Journal of Controlled Release. 2005;102(1):203–222.
  18. Loghmannia P, Kamyab M, Nikkhah MR, et al. Miniaturized low-cost phased-array antenna using SIW slot elements. IEEE Antennas and Wireless Propagation Letters. 2012;11:1434–1437.
  19. Allen E, Burdette J. Questions and Answers in MRI. St. Louis, MO: Mosby. 2nd ed. by University of Maryland-College Park on. 2001;7(14):14.
  20. Schenck JF. Safety of strong, static magnetic fields. Journal of magnetic resonance imaging. 2000;12(1):2–19.
  21. Andersen E. Magnetic resonance imaging—safety and health issues. Aaohn Journal. 2007;55(4):137–139.
  22. Pirbazari PM, Kisomi BF. Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue. Desalin, Water Treat. 2017;63:283–292.
  23. Goodwin S, Peterson C, Hoh C, et al. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. Journal of Magnetism and Magnetic Materials. 1999;194(1):132–139.
  24. Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29(4):487–496.
  25. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews. 2008;60(11):1252–1265.
  26. Nacev A, Beni C, Bruno O, et al. The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. Journal of magnetism and magnetic materials. 2011;323(6):651–668.
  27. Nacev A, Beni C, Bruno O, et al. Magnetic nanoparticle transport within flowing blood and into surrounding tissue. Nanomedicine. 2010;5(9):1459–1466.
  28. Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert opinion on drug delivery. 2015;12(7):1089–1105.
  29. Malekzad H, Mirshekari H, Sahandi Zangabad P, et al. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Critical Reviews in Biotechnology. 2017:1–21.
  30. Najdahmadi A, Lakey JR, Botvinick E. Diffusion coefficient of alginate microcapsules used in pancreatic islet transplantation, a method to cure type 1 diabetes. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications. 2018.
  31. Yarahmadi M, Goudarzi HM, Shafii M. Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes. Experimental Thermal and Fluid Science. 2015;68:601–611.
  32. Takeda Si, Mishima F, Fujimoto S, et al. Development of magnetically targeted drug delivery system using superconducting magnet. Journal of Magnetism and Magnetic Materials. 2007;311(1):367–371.
  33. Rotariu O, Strachan NJ. Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment. Journal of Magnetism and Magnetic Materials. 2005;293(1):639–646.
  34. Holligan D, Gillies G, Dailey J. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. Nanotechnology. 2003;14(6):661.
  35. Alexiou C, Diehl D, Henninger P, et al. A high field gradient magnet for magnetic drug targeting. IEEE Transactions on applied superconductivity. 2006;16(2):1527–1530.
  36. Ally J, Martin B, Khamesee MB, et al. Magnetic targeting of aerosol particles for cancer therapy. Journal of Magnetism and Magnetic Materials. 2005;293(1):442–449.
  37. Dames P, Gleich B, Flemmer A, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nature nanotechnology. 2007;2(8):495–499.
  38. Lübbe AS, Bergemann C, Huhnt W, et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer research. 1996;56(20):4694–4701.
  39. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano today. 2007;2(3):22–32.
  40. Okuhata Y. Delivery of diagnostic agents for magnetic resonance imaging. Advanced drug delivery reviews. 1999;37(1):121–137.
  41. Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: does geometry really matter? Pharmaceutical research. 2009;26(1):235.
  42. Fournier RL. Basic transport phenomena in biomedical engineering. CRC press; 2017.
  43. Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedings of the National Academy of Sciences. 1998;95(8):4607–4612.
  44. Saltzman WM. Drug delivery: engineering principles for drug therapy. Oxford University Press; 2001.
  45. Faraji S, Yardim MF, Can DS, et al. Characterization of polyacrylonitrile, poly (acrylonitrile‐co‐vinyl acetate), and poly (acrylonitrile‐co‐itaconic acid) based activated carbon nanofibers. Journal of Applied Polymer Science. 2017;134(2).
  46. Faraji S. Polimerlerden Aktif Karbon Nano-fiber Oluşturma, Fen Bilimleri Enstitüsü.
  47. Lübbe AS, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. Journal of Surgical Research. 2001;95(2):200–206.
  48. Lübbe AS, Bergemann C, Brock J, McClure DG. Physiological aspects in magnetic drug-targeting. Journal of Magnetism and Magnetic Materials. 1999;194(1):149–155.
  49. Rosensweig R. Directions in ferrohydrodynamics. Journal of Applied Physics. 1985;57(8):4259–4264.
  50. Diver DA, Lubbe AS. Control to concentrate drug-coated magnetic particles to deep-tissue tumors for targeted cancer chemotherapy. Decision and Control, 2007 46th IEEE Conference on 2007. 2007.
  51. Mikkelsen CI. Magnetic separation and hydrodynamic interactions in microfluidics. 2005.
  52. Forbes ZG, Yellen BB, Barbee KA, Friedman G. An approach to targeted drug delivery based on uniform magnetic fields. IEEE Transactions on Magnetics. 2003;39(5):3372–3377.
  53. Polyak B, Fishbein I, Chorny M, et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proceedings of the National Academy of Sciences. 2008;105(2):698–703.
  54. Yellen B, Forbes Z, Barbee K, Friedman G. Model of an approach to targeted drug delivery based on uniform magnetic fields. . INTERMAG 2003. 2003.
  55. Zheng J, Wang J, Tang T, et al. Experimental study on magnetic drug targeting in treating cholangiocarcinoma based on internal magnetic fields. The Chinese-German Journal of Clinical Oncology. 2006;5(5):336–338.
  56. Furlani E, Ng K. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Physical review E. 2006;73(6):061919.
Creative Commons Attribution License

©2019 Heidarshenas, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.