Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Research Article Volume 7 Issue 1

Modeling and simulation of heterogeneous moisture content influence on foundation settlement in silt clay

Nwaokezi EE, Eluozo SN, Ukpaka C

Department of Civil Engineering, College of Engineering, Gregory University, Nigeria

Correspondence: Eluozo SN, Department of Civil Engineering, Faculty of Engineering, University of Nigeria, Nigeria

Received: February 10, 2023 | Published: March 30, 2023

Citation: Nwaokezi EE, Eluozo SN, Ukpaka C. Modeling and simulation of heterogeneous moisture content influence on foundation settlement in silt clay. Material Sci & Eng. 2023;7(1):32-36. DOI: 10.15406/mseij.2023.07.00200

Download PDF

Abstract

In this paper, modeling and simulation techniques with experimental setup values were used to investigate the effects of foundation settlement on the heterogeneity of moisture content, formation characteristics, and ground water. The study was conducted at Obirikom in Rivers State's Ogba Egbema Local Government Area; the samples were subjected to the following laboratory tests: particle size analysis, Atterberg limit tests, compaction test, natural moisture content test, specific gravity, and consolidation test, which revealed that the soil was predominantly clay deposited. Modeling and simulation were used to predict how different soil conditions affected the settlement of a foundation. The study observed heterogeneous soil deposition as it reflected on soil properties, and the study on foundation settlement influence explained the heterogeneous impacts on moisture. Permeability, plastic and liquid limits, as well as other soil properties such as moisture content, water content, and dry density, was investigated. Significant parameters were observed in the study, such as dry density, which is directly proportional to plasticity as settlement increases in moisture until optimum moisture content is observed at the level where settlement decreases to a minimum. The moisture content of the settlement increased while exceeding the optimum moisture content.

Keywords: predicting, moisture content, foundation settlement, silt clay

Introduction

It is obvious that man-made or natural activities have an impact on the environment, as it affects soil and water. These conditions have been observed in several studies, and this could also be related precisely to different foundations of engineering structures. Such soil conditions reflect the variation in moisture content as significant in soil mechanics, as well as other important aspects in soil engineering. This stated condition in soil mechanics represents a significant change that has an impact on the mechanical behavior of partially saturated soils. The degrees of saturation are determined by the rates of differentiation between saturated and partially saturated soils; this condition will always cause significant changes in volume, shear strength, and hydraulic properties, resulting in bearing capacity. Furthermore, satisfactory foundations are known to develop two main characteristics: shear failure in the soil that supports the foundation and settlement within acceptable limits. It implies that, in this direction, the stability of shallow footings will be heavily reliant on keeping settlement values within a tolerable range. In terms of both analytical treatment and practical experimentation, the degree of soil saturation that it experiences orchestrates a decrease in the bearing capacity of shallow foundations. According to theory, only a few numbers of researchers have addressed this issue (Krishnamurthy and1–5 Experimental research studies and similar examinations had some restrictions.2–8 Using kinematic approaches of limit analysis8–11 research study developed Influence on groundwater from the carrying capacity of shallow foundations. A method was put out by4 that estimate the loss in bearing capacity caused by a static water table at any depth in any type of soil. According to5,6 the air permeability was effectively zero for saturation levels beyond 85%. Buildings, bridges, highways, and other sorts of structures are all recognized to rest directly on the ground beneath them. The safety of these structures is dependent on the strength/bearing capacity of the soil on which they are built. That is why it is important to conduct a proper analysis of the soil properties, as well as the design of their foundations, to ensure that these structures remain stable and safe from collapse or unequal settlements. According to studies conducted in the upper region of Himalayan Rivers, large size pebbles exist in the soil. This means that when the river flows downstream, the particle size of the soil is always reduced.

Groundwater in the crust is an important natural resource and a component of the three-phase rock and soil. Groundwater seepage into pores or fissures of rock and soil has a significant impact on their engineering mechanical properties.9,11 For example, seepage of groundwater will result in seepage deformation of rock and soil, which will have a negative impact on the stability and security of structures and their foundations; a change in groundwater level will result in a change in the effective stress field in the foundation soil, which will result in rebound or settlement of the foundation soil; a change in groundwater level will also result in a change in soil moisture content, which will change the mechanical performance of the foundation soil.10

Improving research into soil chemistry and mechanics during reservoir impoundment will be critical.11–13 Researchers have investigated the negative effects of reservoir immersion on the foundation, as well as the factors that contribute to immersion and the impact of immersion.10,13,14

In order to analysis embankment settlement in soft clays in 1-D, 2-D, and 3-D, a number of constitutive models for soft soils have been created. This means that, unlike with manual calculations, it is not essential to oversimplify the soil layers beneath an embankment or other structure when calculating settlement. The numerical modeling also enables combined settlement and stability analysis, which provides a broad understanding of the behaviour of soft soil under embankments. In order to simulate the behaviour of soft clay soils, these constitutive models needed between 5 and 13 parameters. Several stress-strain-time relationships have been used to model the behaviour of soft soils in a few documented cases. Some of the models that have been applied: (1) modified cam clay model with 5 soil parameters14; (2) soft-soil model with 8 parameters (no time effect)14 (3) soft-soil creep model with 9 parameters; (4) hardening soil model (isotropic hardening) with 13 soil parameters9,14 and (6) kinematic hardening models.14,15 These models have been used in a variety of applications.10

Theoretical background  

K t e t K e z H cr e z =β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGccaaMc8+aaSaaaeaacqGHciITcaWGLbaabaGa eyOaIyRaamiDaaaacaaMc8UaaGPaVlabgkHiTiaaykW7caWGlbWaaS aaaeaacqGHciITcaWGLbaabaGaeyOaIyRaamOEaaaacaaMc8UaeyOe I0IaaGPaVlaadIeadaWgaaWcbaGaam4yaiaadkhaaeqaaOWaaSaaae aacqGHciITcaWGLbaabaGaeyOaIyRaamOEaaaacaaMc8Uaeyypa0Ja aGPaVlabek7aIbaa@5BE1@   (2.1)

K t e t K e z H cr e z +β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGccaaMc8+aaSaaaeaacqGHciITcaWGLbaabaGa eyOaIyRaamiDaaaacaaMc8UaaGPaVlabgkHiTiaaykW7caWGlbWaaS aaaeaacqGHciITcaWGLbaabaGaeyOaIyRaamOEaaaacaaMc8UaeyOe I0IaaGPaVlaadIeadaWgaaWcbaGaam4yaiaadkhaaeqaaOWaaSaaae aacqGHciITcaWGLbaabaGaeyOaIyRaamOEaaaacaaMc8Uaey4kaSIa aGPaVlabek7aIbaa@5BBD@   (2.2)

K t e t =( K+ H cr ) e z +β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGccaaMc8+aaSaaaeaacqGHciITcaWGLbaabaGa eyOaIyRaamiDaaaacaaMc8UaaGPaVlabg2da9iaaykW7daqadaqaai aadUeacqGHRaWkcaWGibWaaSbaaSqaaiaadogacaWGYbaabeaaaOGa ayjkaiaawMcaamaalaaabaGaeyOaIyRaamyzaaqaaiabgkGi2kaadQ haaaGaaGPaVlabgUcaRiaaykW7cqaHYoGyaaa@5579@   (2.3)

K t e 1 t =β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGcdaWcaaqaaiabgkGi2kaadwgadaWgaaWcbaGa aGymaaqabaaakeaacqGHciITcaWG0baaaiabg2da9iabek7aIbaa@4164@   (2.4)

e 1 t =β K t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamyzamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kaadsha aaGaeyypa0JaeqOSdiMaam4samaaBaaaleaacaWG0baabeaaaaa@415A@   (2.5)

e 1 =β K t +γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcqaHYoGycaWGlbWaaSbaaSqaaiaa dshaaeqaaOGaey4kaSIaeq4SdCgaaa@4018@   (2.6)

K t e 1 t =( K+ H cr ) e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGcdaWcaaqaaiabgkGi2kaadwgadaWgaaWcbaGa aGymaaqabaaakeaacqGHciITcaWG0baaaiabg2da9maabmaabaGaam 4saiabgUcaRiaadIeadaWgaaWcbaGaam4yaiaadkhaaeqaaaGccaGL OaGaayzkaaWaaSaaaeaacqGHciITcaWGLbaabaGaeyOaIyRaamOEaa aaaaa@4AA5@   (2.7)

e 2 =ZT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaWGAbGaamivaaaa@3BA8@   (2.8)

e 2 t =Z T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamyzamaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadsha aaGaeyypa0JaamOwaiaadsfadaahaaWcbeqaaiaaigdaaaaaaa@4065@   (2.9)

e 2 t = Z 1 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamyzamaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi2kaadsha aaGaeyypa0JaamOwamaaCaaaleqabaGaaGymaaaakiaadsfaaaa@406F@   (2.10)

Substitute (9) and (10) into (7)

K t Z T 1 =( K+ H cr ) Z 1 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGccaWGAbGaamivamaaCaaaleqabaGaaGymaaaa kiabg2da9maabmaabaGaam4saiabgUcaRiaadIeadaWgaaWcbaGaam 4yaiaadkhaaeqaaaGccaGLOaGaayzkaaGaamOwamaaCaaaleqabaGa aGymaaaakiaadsfaaaa@4584@   (2.11)

K t T 1 T =( K+ H cr ) Z 1 Z =γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGcdaWcaaqaaiaadsfadaahaaWcbeqaaiaaigda aaaakeaacaWGubaaaiabg2da9maabmaabaGaam4saiabgUcaRiaadI eadaWgaaWcbaGaam4yaiaadkhaaeqaaaGccaGLOaGaayzkaaWaaSaa aeaacaWGAbWaaWbaaSqabeaacaaIXaaaaaGcbaGaamOwaaaacqGH9a qpcqaHZoWzaaa@4851@   (2.12)

K t T 1 T =γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGcdaWcaaqaaiaadsfadaahaaWcbeqaaiaaigda aaaakeaacaWGubaaaiabg2da9iabeo7aNbaa@3E6E@   (2.13)

( K+ H cr ) Z Z =γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam 4saiabgUcaRiaadIeadaWgaaWcbaGaam4yaiaadkhaaeqaaaGccaGL OaGaayzkaaWaaSaaaeaacaWGAbaabaGaamOwaaaacqGH9aqpcqaHZo Wzaaa@41A6@   (2.14)

From (13),  T 1 T = γ K t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ivamaaCaaaleqabaGaaGymaaaaaOqaaiaadsfaaaGaeyypa0ZaaSaa aeaacqaHZoWzaeaacaWGlbWaaSbaaSqaaiaadshaaeqaaaaaaaa@3E74@

LnT= γ K t t+ e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaWGUb Gaamivaiabg2da9maalaaabaGaeq4SdCgabaGaam4samaaBaaaleaa caWG0baabeaaaaGccaWG0bGaey4kaSIaamyzamaaBaaaleaacaaIZa aabeaaaaa@4215@   (2.15)

T=A e γ K t t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpcaWGbbGaamyzamaaCaaaleqabaWaaSaaaeaacqaHZoWzaeaacaWG lbWaaSbaaWqaaiaadshaaeqaaaaaliaadshacaaMc8oaaaaa@4106@   (2.16)

From (14)  ( K+ H cr ) Z Z =γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam 4saiabgUcaRiaadIeadaWgaaWcbaGaam4yaiaadkhaaeqaaaGccaGL OaGaayzkaaWaaSaaaeaacaWGAbaabaGaamOwaaaacqGH9aqpcqaHZo Wzaaa@41A6@

Z Z = γ K+ H cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OwaaqaaiaadQfaaaGaeyypa0ZaaSaaaeaacqaHZoWzaeaacaWGlbGa ey4kaSIaamisamaaBaaaleaacaWGJbGaamOCaaqabaaaaaaa@4023@   (2.17)

LnZ= γ K+ H cr Z+ e 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaWGUb GaamOwaiabg2da9maalaaabaGaeq4SdCgabaGaam4saiabgUcaRiaa dIeadaWgaaWcbaGaam4yaiaadkhaaeqaaaaakiaadQfacqGHRaWkca WGLbWaaSbaaSqaaiaaisdaaeqaaaaa@4497@   (2.18)

i.e. Z=B e γ K+ H cr Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfacqGH9a qpcaWGcbGaamyzamaaCaaaleqabaWaaSaaaeaacqaHZoWzaeaacaWG lbGaey4kaSIaamisamaaBaaameaacaWGJbGaamOCaaqabaaaaSGaam Owaaaaaaa@41FD@   (2.19)

Put (16) and (19) into (8), yields

e 2 =A e γ K t t B e γ K+ H cr Z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaWGbbGaamyzamaaCaaaleqabaWa aSaaaeaacqaHZoWzaeaacaWGlbWaaSbaaWqaaiaadshaaeqaaaaali aadshacaaMc8oaaOGaeyOiGCRaamOqaiaadwgadaahaaWcbeqaamaa laaabaGaeq4SdCgabaGaam4saiabgUcaRiaadIeadaWgaaadbaGaam 4yaiaadkhaaeqaaaaaliaadQfaaaaaaa@4CA2@   (2.20)

Derived model e 2 =AB e ( γ K t t + γ K+ H cr Z) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaWGbbGaamOqaiaadwgadaahaaWc beqaamaaCaaameqabaGaaiikamaalaaabaGaeq4SdCgabaGaam4sam aaBaaabaGaamiDaaqabaaaaiaadshacaaMc8oaaSGaey4kaSYaaWba aWqabeaadaWcaaqaaiabeo7aNbqaaiaadUeacqGHRaWkcaWGibWaaS baaeaacaWGJbGaamOCaaqabaaaaiaadQfacaGGPaaaaaaakiabeo7a Nbaa@4E21@   (2.21)

Hence, general solution becomes

e(z,t)= e 1 + e 2 e(z,t)=β K t t+γ+ABe ( γ K t t + γ K+ H cr Z) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyzai aacIcacaWG6bGaaiilaiaadshacaGGPaGaeyypa0JaamyzamaaBaaa leaacaaIXaaabeaakiabgUcaRiaadwgadaWgaaWcbaGaaGOmaaqaba aakeaacaWGLbGaaiikaiaadQhacaGGSaGaamiDaiaacMcacqGH9aqp cqaHYoGycaWGlbWaaSbaaSqaaiaadshaaeqaaOGaamiDaiabgUcaRi abeo7aNjabgUcaRiaadgeacaWGcbGaamyzaiaaykW7daahaaWcbeqa amaaCaaameqabaGaaiikamaalaaabaGaeq4SdCgabaGaam4samaaBa aabaGaamiDaaqabaaaaiaadshacaaMc8oaaSGaey4kaSYaaWbaaWqa beaadaWcaaqaaiabeo7aNbqaaiaadUeacqGHRaWkcaWGibWaaSbaae aacaWGJbGaamOCaaqabaaaaiaadQfacaGGPaaaaaaakiabeo7aNbaa aa@6550@   (2.22)

Material and methods

Experimental setup

The samples for this study were taken from three trial pits that are located in Obrikom's residential and commercial buildings in the Ogba/Egbema/Ndoni Local Government Area of Rivers State, and they range in depth from 1.0 to 1.6 meters. The three pits each had an A, B, and C label.

Laboratory tests conducted

The laboratory experiments conducted in this research work were done in accordance with the British standards (BS1377, 1990). The tests conducted include: particle size analysis, Atterberg limit tests, compaction test, natural moisture content test, specific gravity and consolidation settlement

Methodology

Laboratory investigation

This research's laboratory experiments were carried out in compliance with British standards (BS1377, 1990). Particle size analysis, Atterberg limit tests, a compaction test, a test for natural moisture content, a test for specific gravity, and a test for consolidation settlement are among the examinations done.

Result and discussion

The effect of soil characteristics such as plastic and liquid limit heterogeneity on soil settlement was explained in Figures 1–8 and Tables 1–8 respectively. The parameter ranged from 17.36 to 17.22, respectively, and the dry density of the soil expressed their reflection as there is gradual increase to the optimum level, but suddenly experienced decrease to the minimum rate recorded within. as it approached the point where the settlement fell to a minimum, experience increased with increased moisture content was observed, whereas beyond the optimal moisture level, the settlement increased with increased moisture content. The outcome demonstrated how the trend's rate of exponential growth changed as soil plasticity varied; the higher the plasticity, the lower the maximum density reached; this suggests that it may have something to do with the development of more microspores in combination with the seasonal environmental conditions in a deltaic region. The soil particle tends to drift apart since this may have an impact on the soil as a whole. More so in settlement settings, the volume of the soil changes as a result of seasonal conditional deformation brought on by imposed loads, including mass movement brought on entirely by ground water. The failure of the soil's bearing capacity, which results in compression of the soil as a result of external forces, is the cause of the settlement state.

Figure 1 Predictive and experimental values of dry density at different moisture content.

Figure 2 Predictive and experimental values of dry density at different moisture content.

Figure 3 Predictive and experimental values of dry density at different moisture content.

Figure 4 Predictive and experimental values of dry density at different moisture content.

Figure 5 Predictive and experimental values of dry density at different pressure load.

Figure 6 Predictive and experimental values of dry density at different moisture content.

Figure 7 Predictive and experimental values of dry density at different moisture content.

Figure 8 Predictive and experimental values of dry density at different moisture content.

Average moisture content

Predictive values of dry density on variation of plastic and liquid limit

Experimental values of dry density on variation of plastic and liquid limit

10

1.688067931

1.68

13

1.770649961

1.76

17

1.745077214

1.74

19

1.646458258

1.63

Table 1 Predictive and experimental values of settlement at different pressure load

Average moisture content

Predictive values of dry density on variation of plastic and liquid limit

Experimental values of dry density on variation of plastic and liquid limit

10

1.618059596

1.66

13

1.716354156

1.74

17

1.719767257

1.72

19

1.601891148

1.61

Table 2 Predictive and experimental values of dry density at different moisture content

Average moisture content

Predictive values of dry density on variation of plastic and liquid limit

Experimental values of dry density on variation of plastic and liquid limit

10

1.632725596

1.63

13

1.715335604

1.72

17

1.749171019

1.73

19

1.613019165

1.62

Table 3 Predictive and experimental values of dry density at different moisture content

Average moisture content

Predictive values of dry density on variation of plastic and liquid limit

Experimental values of dry density on variation of plastic and liquid limit

10

1.603393596

1.62

13

1.70254804

1.71

17

1.710770962

1.72

19

1.600855656

1.6

Table 4 Predictive and experimental values of dry density at different moisture content

Average moisture content

Predictive values of dry density on variation of plastic and Liquid Limit (17.36-17.34)

Experimental values of dry density on variation of plastic and Liquid Limit (17.36-17.34)

10

1.601366038

1.62

13

1.70166672

1.71

17

1.710466685

1.72

19

1.600766481

1.6

Table 5 Predictive and experimental values of dry density at different moisture content

Average Moisture Content

Predictive values of Dry Density on Variation of Plastic and Liquid Limit 17.30-17.31

Experimental values of Dry Density on Variation of Plastic and Liquid Limit (17.30-17.31)

10

1.643184414

1.66

13

1.725928816

1.74

17

1.702925362

1.72

19

1.601665229

1.61

Table 6 Predictive and experimental values of dry density at different moisture content

Average Moisture Content

Predictive values of Dry Density on Variation of Plastic and Liquid Limit (17.22-17.20

Experimental values of Dry Density on Variation of Plastic and Liquid Limit (17.22-17.20

10

1.623027112

1.63

13

1.702949668

1.72

17

1.745063064

1.73

19

1.612286646

1.62

Table 7 Predictive and experimental values of dry density at different moisture content

Average Moisture Content

Predictive values of Dry Density on Variation of Plastic and Liquid Limit (17.24-17.22)

Experimental Values of Dry Density on Variation of Plastic and Liquid Limit (17.24-17.23

10

1.595283366

1.62

13

1.691972199

1.71

17

1.706815367

1.72

19

1.600276019

1.6

Table 8 Predictive and experimental values of dry density at different moisture content

Conclusion

Because water that is present in soil is through the permeability in the Litho-structure of the soil formation, these are through it flows in pores. The study was able to observe it rates of settlements influences on stability that reflect the bearing capacity of the soil. It also experienced certain levels of heterogeneity in phreatic surface, which are known to be major factors that affect settlements. The study considered quantifications of permeability as it created substantial, useful tools for rectifying the technicalities of safe foundation design in geotechnical projects. Unexpected settling has been caused by large variations in moisture content beneath foundation soil. These are based on the generated values from the study area due to the high rate of saturation in the foundation soil. The study also shows the level of reduction in the soil's bearing capacity on foundation settlement because the amount of water that settles in the soil is proportional to the amount of solid in the soil. Based on these circumstances, the rate of soil heterogeneity affects the moisture through the soil's macrospores. This also represents the variation in moisture content across different soil profiles; above the ideal moisture level, the settlement rises as moisture content increases. The study found that water content increases to a higher percentage than necessary, which will undoubtedly result in a noticeable change in the amount and its distribution pattern for shear force, of which it is also includes bending moments. The result generated explained the exponential growth from the trend, as the plasticity experience increase with variation in plastic, the higher the plasticity the lower the maximum density attained.

Acknowledgments

None.

Conflicts of interest

There are no conflicts of interest.

Funding

None.

References

  1. Krishnamurthy S, Kameswar Rao NSV. Effect of submergence on bearing capacity soils and foundations. Japanese Society of Soil Mechanics and Foundation Engineering. 1975;15(3):62–66.
  2. Murtza G, Mohd Athar, Khan SM. Influence of submergence on settlement of footing on sand Institution of Engineers. India Journal CV. 1995;75(6).
  3. Earnesto Ausillo, Enrico Conte. Influence of groundwater on the bearing capacity of shallow foundation. Canadian Geotechnical Journal. 2005;42(2):2–7.
  4. Shenbaga R, Kaniraj. Design aids in soil mechanics and foundation engineering tata mcgraw hill education private limited.
  5. Fang Hsai-Yang. Foundation Engineering Hand Book, New Delhi: CBS Publishers & Distributers Pvt Ltd; p.152–157.
  6. De Simone P, Zurlo R. The effect of groundwater table on the bearing capacity of shallow foundation. In proceedings of the 9th European Conference on SMFE: Dudlin; 1987.
  7. Pande PB, Bajad SP, Khandeshwar SR. The effect of degree of saturation on the bearing capacity of shallow foundation. International Journal of Innovative Research in Science Engineering and Technology. 2014;3(7):1–6.
  8. Xie L. Experimental study on the influence of water level rise and fall on bearing capacity and settlement of coarse sand foundation. J Journal of engineering geology.2013;21(6):871–877.
  9. Xu DS, Chen W, Fan X. Experimental investigation of particle size effect on the self-healing performance of microcapsule for cemented coral sand. Constr Build Mater. 2020;256:119343.
  10. Xu DS, Liu Q, Qin Y, et al. 2020 Analytical approach for crack identification of glass fiber reinforced polymer–sea sand concrete composite structures based on strain dissipations. Struct Health Monit. 2020;20(5):25–27.
  11. Ying C, Hu, X, Zhou C, et al. Analysis of chemo-mechanical behavior of silty soil under long-term immersion in saline reservoir water. Bull Eng Geol Environ. 2020;80:627–640.
  12. Chen J, Huang Y, Yang Y, et al. Evaluation of the influence of Jiangxiang reservoir immersion on corp and residential areas. Geofluids. 2020;2018:9720970.
  13. Plomteux C, Porbaha A. CMC Foundation System for Embankment Support - A case history. Geo-Support. 2004.
  14. Rouainia M, Muir Wood. A kinematic hardening constitutive model for natural clays with loss of structure. Géotechnique. 2000;50(2):153–164.
  15. Yanhouidé JAG. Consolidation parameters for embankment settlement on soft clay soils in houston area master of science in civil engineering, faculty of the department of civil and environmental engineering cullen college of engineering university of Houston.
Creative Commons Attribution License

©2023 Nwaokezi, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.