Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Review Article Volume 6 Issue 3

Heterogeneous velocity and dispersions coefficient influence on ionic transport model in creeks

Eluozo SN,1 Ikebude CF2

1Department of Civil Engineering, Gregory University Uturu, Nigeria
2Department of Civil and Environmental Engineering, University of Port Harcourt, Nigeria

Correspondence: Eluozo SN, Department of Civil Engineering, College of Engineering, Gregory University Uturu Abia, Nigeria

Received: July 28, 2022 | Published: September 2, 2022

Citation: Eluozo SN, Ikebude CF. Heterogeneous velocity and dispersions coefficient influence on ionic transport model in creeks. Material Sci & Eng. 2022;6(3):101-109. DOI: 10.15406/mseij.2022.06.00186

Download PDF

Abstract

This paper shows the rate of ionic concentration in the creek, different station point were used to monitor their variation rates of concentration in the creek, the transport system were developed based on the investigation carried out to observed the source of contamination in the study environment, the process were applied in other to determine the significant parameters that influence the transport process of the contaminant, these generates variations of the creek velocity and dispersion coefficient, the flow rates experienced heterogeneity in its depositions through its velocity rates at different station points, such parameters were integrated in the system to generated derived simulation values, the graphical representation experience decrease with respect to increase in distance, these condition observed were due to variations of the creek flow rates through velocity of flows in different figures, such conditions were observed to pressured the system that determine the concentration rates at different figures, these figures reflects different station points that validated the predictive values through experimental data for model validation, the generated results were above the permissible limited as an acceptable standard of 0.3Mg/L, the study is imperative because the rate of ionic content in different locations has been determined, their influential parameters has be observed in the study environment, there rates of concentrations which reflects the significant parameters that pressured it transport process in the creek has been observed, these were all determined in the study environment, proofing the validation of the model for ionic concentration in the study area.

Keywords: heterogeneous, velocity, dispersions ionic transport and creek

Introduction

Surface water such as Rivers, streams and lakes, are one of the major water sources for drinking including that of agricultural uses. Drinking-water supplies relying on its proportion on surface water, it normally experiences variations regionally, but globally, predictable, surface water is cover about 50% of drinking water needs. The influences from population affect the increase in many parts of the world; these are observed through the protection of surface water sources thus preventing deterioration of its quality becomes a basic requirement. More so surface water interacts hydro chemically on its surrounding area that the flow scan be seen. The amount of should have an connections that considerably which will definitely depends on hydro-meteorological, fluvial, and anthropogenic, this should also include geological processes,1 these conditions may influences the composition from hydro chemical of water bodies including the local and regional scales.2-5 These has a result such as surface water quality that is subjected to hydro chemical alteration the variations definitely indicates climate and environment changes thus increased precipitation, evaporation, domestic and industrial activities, it also includes agriculture and breeding, human and animal consumption.6

There are conditions that shows the rate of hydro chemical characteristics, it also represents other significant factors that determining the required multi-purpose applied on water7,8 this was carried out other to better the identify and basic processes affecting the chemical composition of the surface water. Meanwhile an understanding of some major factors in controlling ion and metal composition should be required.8,9 The evacuations on water qualities in most developing countries should become a major issue in recent years, it also very relevant basically this area that concerns freshwater, it will be a scarce resource in future.10,11 These conditions allowed for Permissible limits for various ions in drinking water are given by WHO12

Theoretical Background

dΦ dy +β(z)λ=A(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabfA6agbqaaiaadsgacaWG5baaaiabgUcaRiabek7aIjaacIca caWG6bGaaiykaiabeU7aSjabg2da9iaadgeacaGGOaGaamyEaiaacM caaaa@461A@   (1)

Multiplying the equation through by Φ[y] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjaacU facaWG5bGaaiyxaaaa@3B46@ , we have:

Φ(y) dΦ dy +Φ(y)β(x)λ=Φ(x)A(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjaacI cacaWG5bGaaiykamaalaaabaGaamizaiabfA6agbqaaiaadsgacaWG 5baaaiabgUcaRiabfA6agjaacIcacaWG5bGaaiykaiabek7aIjaacI cacaWG4bGaaiykaiabeU7aSjabg2da9iabfA6agjaacIcacaWG4bGa aiykaiaadgeacaGGOaGaamyEaiaacMcaaaa@518A@   (2)

Let P(y)=Φ(x)β(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamyEaiaacMcacqGH9aqpcqqHMoGrcaGGOaGaamiEaiaacMcacqaH YoGycaGGOaGaamyEaiaacMcaaaa@4308@   (3)

Then Equation (2), we have:

Φ(x) dΦ dy +Φ(y)β(y)λ=Φ(x)A(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjaacI cacaWG4bGaaiykamaalaaabaGaamizaiabfA6agbqaaiaadsgacaWG 5baaaiabgUcaRiabfA6agjaacIcacaWG5bGaaiykaiabek7aIjaacI cacaWG5bGaaiykaiabeU7aSjabg2da9iabfA6agjaacIcacaWG4bGa aiykaiaadgeacaGGOaGaamyEaiaacMcaaaa@518A@   (4)

Φ(y) dΦ dy +P(y)=Φ(y)A(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjaacI cacaWG5bGaaiykamaalaaabaGaamizaiabfA6agbqaaiaadsgacaWG 5baaaiabgUcaRiaadcfacaGGOaGaamyEaiaacMcacqGH9aqpcqqHMo GrcaGGOaGaamyEaiaacMcacaWGbbGaaiikaiaadMhacaGGPaaaaa@4B3B@   (5)

Φ(x) P 1 +P(y)λ=Φ(y)A( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjaacI cacaWG4bGaaiykaiaadcfadaahaaWcbeqaaiaaigdaaaGccqGHRaWk caWGqbGaaiikaiaadMhacaGGPaGaeq4UdWMaeyypa0JaeuOPdyKaai ikaiaadMhacaGGPaGaamyqamaabmaabaGaamyEaaGaayjkaiaawMca aaaa@4A8B@   (6)

Φ(x) P 1 =Φ(y)AP(y)λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjaacI cacaWG4bGaaiykaiaadcfadaahaaWcbeqaaiaaigdaaaGccqGH9aqp cqqHMoGrcaGGOaGaamyEaiaacMcacaWGbbGaeyOeI0IaamiuaiaacI cacaWG5bGaaiykaiabeU7aSbaa@480F@   (7)

Differentiate 2nd term on the left hand side of (6) with respect to y, we have

λ dΦ dy =Φ( y )A( y )Φ( x ) P 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaala aabaGaamizaiabfA6agbqaaiaadsgacaWG5baaaiabg2da9iabfA6a gnaabmaabaGaamyEaaGaayjkaiaawMcaaiaadgeadaqadaqaaiaadM haaiaawIcacaGLPaaacqGHsislcqqHMoGrdaqadaqaaiaadIhaaiaa wIcacaGLPaaacaWGqbWaaWbaaSqabeaacaaIXaaaaaaa@4C1A@   (8)

dΦ dy = 1 λ [ Φ( y )A( y )Φ( y ) P 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabfA6agbqaaiaadsgacaWG5baaaiabg2da9maalaaabaGaaGym aaqaaiabeU7aSbaadaWadaqaaiabfA6agnaabmaabaGaamyEaaGaay jkaiaawMcaaiaadgeadaqadaqaaiaadMhaaiaawIcacaGLPaaacqGH sislcqqHMoGrdaqadaqaaiaadMhaaiaawIcacaGLPaaacaWGqbWaaW baaSqabeaacaaIXaaaaaGccaGLBbGaayzxaaaaaa@4EE2@   (9)

dΦ dy = Φ( x ) λ [ A( y ) P 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabfA6agbqaaiaadsgacaWG5baaaiabg2da9maalaaabaGaeuOP dy0aaeWaaeaacaWG4baacaGLOaGaayzkaaaabaGaeq4UdWgaamaadm aabaGaamyqamaabmaabaGaamyEaaGaayjkaiaawMcaaiabgkHiTiaa dcfadaahaaWcbeqaaiaaigdaaaaakiaawUfacaGLDbaaaaa@4A25@   (10)

Applying separation of variables, by dividing through by C(y) and cross multiply by dy, gives:

dΦ CΦ = 1 λ [ A( y ) P 1 ]dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabfA6agbqaaiaadoeacqqHMoGraaGaeyypa0ZaaSaaaeaacaaI XaaabaGaeq4UdWgaamaadmaabaGaamyqamaabmaabaGaamyEaaGaay jkaiaawMcaaiabgkHiTiaadcfadaahaaWcbeqaaiaaigdaaaaakiaa wUfacaGLDbaacaWGKbGaamyEaaaa@4922@   (11)

1 Φ( y ) dΦ= 1 λ [ A( y ) P 1 ]dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabfA6agnaabmaabaGaamyEaaGaayjkaiaawMcaaaaacaWG KbGaeuOPdyKaeyypa0ZaaSaaaeaacaaIXaaabaGaeq4UdWgaamaadm aabaGaamyqamaabmaabaGaamyEaaGaayjkaiaawMcaaiabgkHiTiaa dcfadaahaaWcbeqaaiaaigdaaaaakiaawUfacaGLDbaacaWGKbGaam yEaaaa@4B9C@   (12)

1 Φ( y ) dΦ=( A( y ) λ P 1 K )dy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabfA6agnaabmaabaGaamyEaaGaayjkaiaawMcaaaaacaWG KbGaeuOPdyKaeyypa0ZaaeWaaeaadaWcaaqaaiaadgeadaqadaqaai aadMhaaiaawIcacaGLPaaaaeaacqaH7oaBaaGaeyOeI0YaaSaaaeaa caWGqbWaaWbaaSqabeaacaaIXaaaaaGcbaGaam4saaaaaiaawIcaca GLPaaacaWGKbGaamyEaaaa@4B58@   (13)

1 Φ( y ) dΦ= ( A( y ) λ P 1 λ ) dy+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaWaaS aaaeaacaaIXaaabaGaeuOPdy0aaeWaaeaacaWG5baacaGLOaGaayzk aaaaaaWcbeqab0Gaey4kIipakiaadsgacqqHMoGrcqGH9aqpdaWdba qaamaabmaabaWaaSaaaeaacaWGbbWaaeWaaeaacaWG5baacaGLOaGa ayzkaaaabaGaeq4UdWgaaiabgkHiTmaalaaabaGaamiuamaaCaaale qabaGaaGymaaaaaOqaaiabeU7aSbaaaiaawIcacaGLPaaaaSqabeqa niabgUIiYdGccaWGKbGaamyEaiabgUcaRiabeE7aObaa@52D4@   (14)

lnΦ( y )= A( y ) dy P 1 λ dy+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb GaeuOPdy0aaeWaaeaacaWG5baacaGLOaGaayzkaaGaeyypa0Zaa8qa aeaacaWGbbWaaeWaaeaacaWG5baacaGLOaGaayzkaaaaleqabeqdcq GHRiI8aOGaamizaiaadMhacqGHsisldaWdbaqaamaalaaabaGaamiu amaaCaaaleqabaGaaGymaaaaaOqaaiabeU7aSbaaaSqabeqaniabgU IiYdGccaWGKbGaamyEaiabgUcaRiabeE7aObaa@5024@   (15)

lnΦ( y )= 1 λ [ Ay P 1 ]y+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb GaeuOPdy0aaeWaaeaacaWG5baacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaaIXaaabaGaeq4UdWgaamaadmaabaGaamyqaiaadMhacqGHsi slcaWGqbWaaWbaaSqabeaacaaIXaaaaaGccaGLBbGaayzxaaGaamyE aiabgUcaRiabeE7aObaa@4A6E@   (16)

lnΦ( y )=( A(y) λ P 1 λ )y+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb GaeuOPdy0aaeWaaeaacaWG5baacaGLOaGaayzkaaGaeyypa0ZaaeWa aeaadaWcaaqaaiaadgeacaGGOaGaamyEaiaacMcaaeaacqaH7oaBaa GaeyOeI0YaaSaaaeaacaWGqbWaaWbaaSqabeaacaaIXaaaaaGcbaGa eq4UdWgaaaGaayjkaiaawMcaaiaadMhacqGHRaWkcqaH3oaAaaa@4C67@   (17)

Taking exponent of the both side of the equation

Φ( y )= ( A( y ) λ P 1 λ +η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaabm aabaGaamyEaaGaayjkaiaawMcaaiabg2da9iabloriSnaaCaaaleqa baWaaeWaaeaadaWcaaqaaiaadgeadaqadaqaaiaadMhaaiaawIcaca GLPaaaaeaacqaH7oaBaaGaeyOeI0YaaSaaaeaacaWGqbWaaWbaaWqa beaacaaIXaaaaaWcbaGaeq4UdWgaaiabgUcaRiabeE7aObGaayjkai aawMcaaaaaaaa@4B15@   (18)

Φ( y )=D 1 λ ( Ay P 1 y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaabm aabaGaamyEaaGaayjkaiaawMcaaiabg2da9iaadseacqWItecBdaah aaWcbeqaamaalaaabaGaaGymaaqaaiabeU7aSbaaaaGcdaahaaWcbe qaamaabmaabaGaamyqaiaadMhacqGHsislcaWGqbWaaWbaaWqabeaa caaIXaaaaSGaamyEaaGaayjkaiaawMcaaaaaaaa@47F3@   (19)

Material and Method

Experimental procedure was set up to monitor Ionic content applying the standard techniques in carrying out experiment at various station, sample collection was carried out in sequences based on stipulated standard from those locations, this samples collected at those location generating variations at different distance producing different Ionic concentration from physiochemical analysis carried out, the experimental values was compared with theoretical values from the experiment for model validation.

Result and discussion

Figure one to ten explained the graphical representation of the study on ionic transport in creek, these surface water were observed to exhibits several content based on the investigation and other required analysis in the environment, several environmental factors were observed in the creek during a comprehensive survey that was carry out, the content of ion deposition were basically from the industrial activity that generate pollution in the environment, the deposition ionic content are from this industrial activities from human, the study were able to monitor the activities of man in the environment, such conditions from investigations were comprehensively considered in development of model applied to generate the graphical presentation results, the presentation expressed various behaviour of the contaminant in terms of their rates of concentration at different locations that were applied for model validation, the study has expressed various rates of concentration based on the observed factors that influence the deposition of ionic content in the creek, the contaminant has also displayed the effect of velocity of flows at different station points that generated different concentration, these are based on velocity influence in the creek, the velocity of flows were monitor in the creek, the reflection of their impact in transport of ionic concentration shows the fluctuation of the flow rates that affect their rate of concentration at different locations. the dispersion of the contaminant were also observed as a significant factor that increase the concentration at various area of the creek, the human activity were observed not to have one source of discharge, the rate of ionic content were affected from this factor thus their point source in the creek were out of control, the system from the graphical representation observed decrease in concentration with respect to increase in distance, these are based on their rates of waste discharge at different point sources, the velocity where investigation was carried out during these process were to monitor the transport process of the ionic content in the discharge point sources, these were integrated in the simulation, whereby the generated predictive values were compared with experimental values, both parameters developed beast fits correlation (Figures 1-10), (Tables 1-10).

Figure 1 Experimental and predictive values of ionic concentration at different distance.

Figure 2 Experimental and predictive values of ionic concentration at different distance.

Figure 3 Experimental and predictive values of ionic concentration at different distance.

Figure 4 Experimental and predictive values of ionic concentration at different distance.

Figure 5 Experimental and predictive values of ionic concentration at different distance.

Figure 6 Experimental and predictive values of ionic concentration at different distance.

Figure 7 Experimental and predictive values of ionic concentration at different distance.

Figure 8 Experimental and predictive values of ionic concentration at different distance.

Figure 9 Experimental and predictive values of ionic concentration at different distance.

Figure 10 Experimental and predictive values of ionic concentration at different distance.

Distance  [x]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.5/0.021]

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.5/0,021]

2

8.746358687

8.729

4

8.740226177

8.723

6

8.734097966

8.717

8

8.727974053

8.711

10

8.721854433

8.705

12

8.715739104

8.699

14

8.709628063

8.693

16

8.703521306

8.687

18

8.697418831

8.681

20

8.691320635

8.675

22

8.685226715

8.669

24

8.679137068

8.663

26

8.67305169

8.657

28

8.666970579

8.651

30

8.660893732

8.645

32

8.654821145

8.639

34

8.648752816

8.633

38

8.636628921

8.621

40

8.630573347

8.615

42

8.62452202

8.609

44

8.618474936

8.603

46

8.612432091

8.597

48

8.606393484

8.591

50

8.60035911

8.585

54

8.588303053

8.573

56

8.582281364

8.567

58

8.576263896

8.561

60

8.570250648

8.555

62

8.564241616

8.549

64

8.558236797

8.543

66

8.552236189

8.537

68

8.546239787

8.531

70

8.540247591

8.525

72

8.534259595

8.519

74

8.528275798

8.513

76

8.522296197

8.507

78

8.516320788

8.501

80

8.510349569

8.495

82

8.504382537

8.489

84

8.498419688

8.483

86

8.49246102

8.477

88

8.48650653

8.471

90

8.480556216

8.465

Table 1 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance  [x]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.45/0.022

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.45/0,022]

2

8.857423559

8.842

4

8.851213176

8.836

6

8.845007147

8.83

8

8.838805469

8.824

10

8.83260814

8.818

12

8.826415156

8.812

14

8.820226514

8.806

16

8.814042212

8.8

18

8.807862245

8.794

20

8.801686612

8.788

22

8.795515308

8.782

24

8.789348332

8.776

26

8.78318568

8.77

28

8.777027348

8.764

30

8.770873335

8.758

32

8.764723636

8.752

34

8.758578249

8.746

38

8.746300399

8.734

40

8.74016793

8.728

42

8.73403976

8.722

44

8.727915887

8.716

46

8.721796308

8.71

48

8.71568102

8.704

50

8.709570019

8.698

54

8.69736087

8.686

56

8.691262714

8.68

58

8.685168835

8.674

60

8.679079228

8.668

62

8.67299389

8.662

64

8.66691282

8.656

66

8.660836013

8.65

68

8.654763467

8.644

70

8.648695179

8.638

72

8.642631146

8.632

74

8.636571364

8.626

76

8.630515831

8.62

78

8.624464544

8.614

80

8.6184175

8.608

82

8.612374696

8.602

84

8.606336129

8.596

86

8.600301795

8.59

88

8.594271693

8.584

90

8.588245818

8.578

Table 2 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance  [x]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.47/0.023

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.47/0,023]

2

9.387758324

9.382

4

9.381176096

9.376

6

9.374598484

9.37

8

9.368025483

9.364

10

9.361457091

9.358

12

9.354893305

9.352

14

9.348334121

9.346

16

9.341779535

9.34

18

9.335229546

9.334

20

9.328684149

9.328

22

9.322143341

9.322

24

9.315607119

9.316

26

9.30907548

9.31

28

9.302548421

9.304

30

9.296025939

9.298

32

9.289508029

9.292

34

9.28299469

9.286

38

9.269981708

9.274

40

9.26348206

9.268

42

9.256986968

9.262

44

9.250496431

9.256

46

9.244010445

9.25

48

9.237529006

9.244

50

9.231052112

9.238

54

9.218111944

9.226

56

9.211648664

9.22

58

9.205189915

9.214

60

9.198735695

9.208

62

9.192286001

9.202

64

9.185840829

9.196

66

9.179400176

9.19

68

9.172964038

9.184

70

9.166532414

9.178

72

9.160105299

9.172

74

9.15368269

9.166

76

9.147264585

9.16

78

9.140850979

9.154

80

9.134441871

9.148

82

9.128037256

9.142

84

9.121637132

9.136

86

9.115241495

9.13

88

9.108850343

9.124

90

9.102463671

9.118

Table 3 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance  [x]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.38/0.018

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.38/0,018]

2

6.897128565

6.884

4

6.892292642

6.88

6

6.887460111

6.876

8

6.882630967

6.872

10

6.87780521

6.868

12

6.872982836

6.864

14

6.868163844

6.86

16

6.86334823

6.856

18

6.858535993

6.852

20

6.85372713

6.848

22

6.848921638

6.844

24

6.844119516

6.84

26

6.839320761

6.836

28

6.834525371

6.832

30

6.829733343

6.828

32

6.824944674

6.824

34

6.820159364

6.82

38

6.810598806

6.812

40

6.805823554

6.808

42

6.80105165

6.804

44

6.796283092

6.8

46

6.791517878

6.796

48

6.786756004

6.792

50

6.78199747

6.788

54

6.772490408

6.78

56

6.767741875

6.776

58

6.762996672

6.772

60

6.758254797

6.768

62

6.753516246

6.764

64

6.748781017

6.76

66

6.744049109

6.756

68

6.739320518

6.752

70

6.734595243

6.748

72

6.729873281

6.744

74

6.725154629

6.74

76

6.720439287

6.736

78

6.71572725

6.732

80

6.711018517

6.728

82

6.706313086

6.724

84

6.701610954

6.72

86

6.696912119

6.716

88

6.692216578

6.712

90

6.68752433

6.708

Table 4 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance  [x]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.35/0.19

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.35/0,019]

2

7.122034931

7.122

4

7.117041315

7.118

6

7.112051201

7.114

8

7.107064586

7.11

10

7.102081467

7.106

12

7.097101842

7.102

14

7.092125708

7.098

16

7.087153064

7.094

18

7.082183906

7.09

20

7.077218232

7.086

22

7.072256039

7.082

24

7.067297326

7.078

26

7.06234209

7.074

28

7.057390328

7.07

30

7.052442039

7.066

32

7.047497218

7.062

34

7.042555865

7.058

38

7.03268355

7.05

40

7.027752583

7.046

42

7.022825074

7.042

44

7.017901019

7.038

46

7.012980417

7.034

48

7.008063265

7.03

50

7.003149561

7.026

54

6.993332486

7.018

56

6.98842911

7.014

58

6.983529173

7.01

60

6.97863267

7.006

62

6.973739602

7.002

64

6.968849963

6.998

66

6.963963754

6.994

68

6.95908097

6.99

70

6.954201609

6.986

72

6.94932567

6.982

74

6.94445315

6.978

76

6.939584046

6.974

78

6.934718356

6.97

80

6.929856078

6.966

82

6.924997208

6.962

84

6.920141746

6.958

86

6.915289688

6.954

88

6.910441032

6.95

90

6.905595776

6.946

Table 5 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance [x]

Predictive Values of Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.36/0.16

Experimental Values of Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.36/0,016]

2

6.041929049

6.028

4

6.037692749

6.024

6

6.033459421

6.02

8

6.02922906

6.016

10

6.025001665

6.012

12

6.020777235

6.008

14

6.016555766

6.004

16

6.012337258

6

18

6.008121707

5.996

20

6.003909112

5.992

22

5.99969947

5.988

24

5.995492781

5.984

26

5.99128904

5.98

28

5.987088247

5.976

30

5.9828904

5.972

32

5.978695496

5.968

34

5.974503533

5.964

38

5.966128423

5.956

40

5.961945271

5.952

42

5.957765053

5.948

44

5.953587765

5.944

46

5.949413407

5.94

48

5.945241975

5.936

50

5.941073468

5.932

54

5.93274522

5.924

56

5.928585475

5.92

58

5.924428647

5.916

60

5.920274733

5.912

62

5.916123732

5.908

64

5.911975641

5.904

66

5.907830459

5.9

68

5.903688183

5.896

70

5.899548812

5.892

72

5.895412343

5.888

74

5.891278774

5.884

76

5.887148103

5.88

78

5.883020329

5.876

80

5.878895448

5.872

82

5.87477346

5.868

84

5.870654362

5.864

86

5.866538152

5.86

88

5.862424829

5.856

90

5.858314389

5.852

Table 6 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance  [m]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.5/0.021

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.5/0.021]

0.2

8.751881625

8.7514

0.22

8.75182024

8.75134

0.24

8.751758855

8.75128

0.26

8.751697471

8.75122

0.28

8.751636087

8.75116

3

8.743291894

8.743

0.32

8.751513321

8.75104

0.34

8.751451938

8.75098

0.36

8.751390556

8.75092

0.38

8.751329174

8.75086

0.4

8.751267793

8.7508

0.42

8.751206412

8.75074

0.44

8.751145032

8.75068

0.46

8.751083652

8.75062

0.48

8.751022272

8.75056

0.5

8.750960893

8.7505

0.52

8.750899515

8.75044

0.54

8.750838136

8.75038

0.56

8.750776758

8.75032

0.58

8.750715381

8.75026

0.6

8.750654004

8.7502

0.62

8.750592628

8.75014

0.64

8.750531251

8.75008

0.66

8.750469876

8.75002

0.68

8.750408501

8.74996

0.7

8.750347126

8.7499

0.72

8.750285751

8.74984

0.74

8.750224377

8.74978

0.76

8.750163004

8.74972

0.78

8.750101631

8.74966

0.82

8.749978886

8.74954

0.84

8.749917514

8.74948

0.86

8.749856143

8.74942

0.88

8.749794772

8.74936

0.9

8.749733401

8.7493

0.92

8.749672031

8.74924

0.94

8.749610662

8.74918

0.96

8.749549293

8.74912

0.98

8.749487924

8.74906

1

8.749426555

8.749

1.12

8.749058354

8.74864

1.14

8.748996989

8.74858

1.16

8.748935624

8.74852

1.18

8.74887426

8.74846

1.2

8.748812896

8.7484

1.22

8.748751532

8.74834

1.24

8.748690169

8.74828

1.26

8.748628806

8.74822

1.28

8.748567444

8.74816

2

8.746358687

8.746

2.22

8.7456839

8.74534

2.24

8.745622559

8.74528

2.26

8.745561217

8.74522

2.28

8.745499877

8.74516

3

8.743291894

8.743

Table 7 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance  [m]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.45/0.22

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.45/0.22]

0.2

8.86301663

8.8624

0.22

8.862954465

8.86234

0.24

8.862892301

8.86228

0.26

8.862830137

8.86222

0.28

8.862767974

8.86216

3

8.854317823

8.854

0.32

8.862643649

8.86204

0.34

8.862581487

8.86198

0.36

8.862519325

8.86192

0.38

8.862457164

8.86186

0.4

8.862395003

8.8618

0.42

8.862332843

8.86174

0.44

8.862270683

8.86168

0.46

8.862208524

8.86162

0.48

8.862146365

8.86156

0.5

8.862084206

8.8615

0.52

8.862022048

8.86144

0.54

8.86195989

8.86138

0.56

8.861897733

8.86132

0.58

8.861835576

8.86126

0.6

8.86177342

8.8612

0.62

8.861711264

8.86114

0.64

8.861649109

8.86108

0.66

8.861586954

8.86102

0.68

8.861524799

8.86096

0.7

8.861462645

8.8609

0.72

8.861400491

8.86084

0.74

8.861338338

8.86078

0.76

8.861276185

8.86072

0.78

8.861214033

8.86066

0.82

8.861089729

8.86054

0.84

8.861027578

8.86048

0.86

8.860965427

8.86042

0.88

8.860903277

8.86036

0.9

8.860841127

8.8603

0.92

8.860778978

8.86024

0.94

8.860716829

8.86018

0.96

8.86065468

8.86012

0.98

8.860592532

8.86006

1

8.860530385

8.86

1.12

8.860157508

8.85964

1.14

8.860095364

8.85958

1.16

8.860033219

8.85952

1.18

8.859971076

8.85946

1.2

8.859908932

8.8594

1.22

8.85984679

8.85934

1.24

8.859784647

8.85928

1.26

8.859722505

8.85922

1.28

8.859660364

8.85916

2

8.857423559

8.857

2.22

8.856740204

8.85634

2.24

8.856678083

8.85628

2.26

8.856615963

8.85622

2.28

8.856553843

8.85616

3

8.854317823

8.854

Table 8 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance  [m]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.45/0.22

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.45/0.22]

0.2

8.871073918

8.8704

0.22

8.871011696

8.87034

0.24

8.870949476

8.87028

0.26

8.870887255

8.87022

0.28

8.870825036

8.87016

3

8.862367203

8.862

0.32

8.870700597

8.87004

0.34

8.870638379

8.86998

0.36

8.870576161

8.86992

0.38

8.870513943

8.86986

0.4

8.870451726

8.8698

0.42

8.870389509

8.86974

0.44

8.870327293

8.86968

0.46

8.870265077

8.86962

0.48

8.870202861

8.86956

0.5

8.870140646

8.8695

0.52

8.870078432

8.86944

0.54

8.870016218

8.86938

0.56

8.869954004

8.86932

0.58

8.869891791

8.86926

0.6

8.869829578

8.8692

0.62

8.869767365

8.86914

0.64

8.869705153

8.86908

0.66

8.869642942

8.86902

0.68

8.869580731

8.86896

0.7

8.86951852

8.8689

0.72

8.86945631

8.86884

0.74

8.8693941

8.86878

0.76

8.869331891

8.86872

0.78

8.869269682

8.86866

0.82

8.869145265

8.86854

0.84

8.869083058

8.86848

0.86

8.86902085

8.86842

0.88

8.868958644

8.86836

0.9

8.868896437

8.8683

0.92

8.868834231

8.86824

0.94

8.868772026

8.86818

0.96

8.868709821

8.86812

0.98

8.868647616

8.86806

1

8.868585412

8.868

1.12

8.868212197

8.86764

1.14

8.868149996

8.86758

1.16

8.868087795

8.86752

1.18

8.868025595

8.86746

1.2

8.867963395

8.8674

1.22

8.867901196

8.86734

1.24

8.867838997

8.86728

1.26

8.867776798

8.86722

1.28

8.8677146

8.86716

2

8.865475762

8.865

2.22

8.864791786

8.86434

2.24

8.864729609

8.86428

2.26

8.864667432

8.86422

2.28

8.864605256

8.86416

3

8.862367203

8.862

Table 9 Experimental and Predictive Values of Ionic Concentration at Different Distance

Distance  [m]

Predictive Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.47/0.23

Experimental  Values of  Ionic Conc.[Mg/L] Heterogeneous Velocity and   Dispersion Coefficient [1.47/0.23]

0.2

9.39496433

9.39436433

0.22

9.394898434

9.39430433

0.24

9.394832539

9.39424433

0.26

9.394766644

9.39418433

0.28

9.39470075

9.39412433

3

9.385743431

9.38596433

0.32

9.394568963

9.39400433

0.34

9.39450307

9.39394433

0.36

9.394437178

9.39388433

0.38

9.394371286

9.39382433

0.4

9.394305394

9.39376433

0.42

9.394239503

9.39370433

0.44

9.394173612

9.39364433

0.46

9.394107722

9.39358433

0.48

9.394041833

9.39352433

0.5

9.393975943

9.39346433

0.52

9.393910055

9.39340433

0.54

9.393844166

9.39334433

0.56

9.393778279

9.39328433

0.58

9.393712391

9.39322433

0.6

9.393646504

9.39316433

0.62

9.393580618

9.39310433

0.64

9.393514732

9.39304433

0.66

9.393448846

9.39298433

0.68

9.393382961

9.39292433

0.7

9.393317077

9.39286433

0.72

9.393251193

9.39280433

0.74

9.393185309

9.39274433

0.76

9.393119426

9.39268433

0.78

9.393053543

9.39262433

0.82

9.392921779

9.39250433

0.84

9.392855898

9.39244433

0.86

9.392790017

9.39238433

0.88

9.392724136

9.39232433

0.9

9.392658256

9.39226433

0.92

9.392592377

9.39220433

0.94

9.392526498

9.39214433

0.96

9.392460619

9.39208433

0.98

9.392394741

9.39202433

1

9.392328864

9.39196433

1.12

9.391933607

9.39160433

1.14

9.391867733

9.39154433

1.16

9.391801859

9.39148433

1.18

9.391735985

9.39142433

1.2

9.391670112

9.39136433

1.22

9.39160424

9.39130433

1.24

9.391538368

9.39124433

1.26

9.391472496

9.39118433

1.28

9.391406625

9.39112433

2

9.38903557

9.38896433

2.22

9.3883112

9.38830433

2.24

9.388245351

9.38824433

2.26

9.388179503

9.38818433

2.28

9.388113655

9.38812433

3

9.385743431

9.38596433

Table 10 Experimental and Predictive Values of Ionic Concentration at Different Distance

Conclusion

The transport of ionic concentration in creek were investigated to generate several influential parameters that influenced the system, the creek were monitored through application of physiochemical investigation at different point sources of waste discharge in the creek, this type of surface water experiences variation rates of concentration at different location, these were also mentored and some parameters were noted, these variable were observed to pressure the rates of ionic content at different station point. The distance of the creek were measure and there was variation of distance in different stations point was determined, these concept were applied to determine the variation of concentration at different locations, the simulation carried out generated lots of significant parameters that reflected the transport process of the contaminants in the creek, the dispersion of the contaminant due to non point discharge affect the creek as the contaminant trace were at most locations of the creek, the study expressed their rates under the influences of heterogeneous velocities of the creek, while that of the dispersion reflected the concentration at other area, the generated waste were discharged outside the stipulated regulations causing serious hazards, the investigation were to generate the experimental values and its analysis in all the station points, the derive model for ionic transport integrated all the observed parameters to generate the predictive values for the study, the predictive simulation values were compared with experimental Data, both parameters generated best fits correlation. Basically, on general acceptable standard that Point of reference: Water with an iron level above 0.3 milligrams per liter (mg/L) is usually considered objectionable. Iron levels are usually below 10 mg/L in water.

Acknowledgments

None.

Conflicts of interest

The author hereby declares of having not conflict of interest in this article.

Funding

None.

References

  1. Winter TC, Harvey JW, Franke OL, et al. Ground water and surface water: a single resource.  USGS. 1998.
  2. Ako AA, Shimada J, Hosono T, et al. Spring water quality and usability in the mount cameroon area revealed by hydrogeochemistry. Environmental Geochemistry and Health. 2012;34:615–639.
  3. Ako AA, Eyong GET, Shimada J, et al. Nitrate contamination of groundwater in two areas of the cameroon volcanic line (banana plain and mount cameroon area). Applied Water Science. 2014;4:99–113.
  4. Sanga AB, Melisa B, Fanton WY, et al. Major Ions, δD, δ 18 O and microbial characterization of drinking water sources along the west coast of cameroon. Environ Earth Sci. 2020;79.
  5. Nkoue dondo GR, Ngo Boum S, Song F, et al. Hydrogeochemical characteristics and quality assessment of surface water in an agricultural area in equatorial africa: the mungo river basin, south west cameroon, central Africa. Journal of Geoscience and Environment Protection. 2021;9(3)164–181.
  6. Zhang WY, Ma L, Abuduwaili J, et al. Hy-drochemical characteristics and irrigation suitability of surface water in the syrdarya river, Kazakhstan. Environmental Monitoring and Assessment. 2019.
  7. Khatri N, Tyagi S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science. 2014;8:23–39.
  8. Huang GX, Chen ZY, Sun JC. Water quality assessment and hadrochemical characteristics of groundwater on the aspect of metals in an old town, Foshan, South China.Journal of Earth System Science. 2014;123:91–100.
  9. Güler C, Thyne GD. Hydrologic and geologic factors controlling surface and groundwater chemistry in indian wells-owens valley area, Southeastern California, USA. Journal of Hydrology. 2004;225:177–198.
  10. Aminiyan MM, Aminiyan FM, Heydariyan A. Study on hydro chemical characterization and annual changes of surface water quality for agricultural anddrinking purposes in semi-arid area. Sustainable Water Resources Management. 2016;2:473–487.
  11. Ghaderpoori M, kamarehie B, Jafari A, et al. Heavymetals analysis and quality assessment in drinking water—khorramabad city, Iran.Data in Brief. 2018;16:685–692.
  12. Guidelines for Drinking-Water Quality (2nd ed.). World Health Organization. 1993.
Creative Commons Attribution License

©2022 Eluozo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.