Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Review Article Volume 6 Issue 3

Group theoretical methods in solid state Physics of SnO2

Eunsung Jekal, Sungjin Park

Jekal’s LAB, Munsu-ro 471, Ulsan, South Korea

Correspondence: Eunsung Jekal, Jekal’s LAB, Munsu-ro 471, Ulsan, South Korea Jekal’s LAB, Munsu-ro 471, Ulsan, South Korea

Received: August 10, 2022 | Published: September 6, 2022

Citation: Jekal E, Park S. Group theoretical methods in solid state Physics of SnO2 . Material Sci & Eng. 2022;6(3):111-116 DOI: 10.15406/mseij.2022.06.00187

Download PDF

Abstract

Oxide semiconductor SnO2 shows excellent photoelectronic properties and sensitivities of gases. It is known that their special properties are originated by a stable large band-gap. In nano-SnO2, the above properties have been extensively explored, and nano-SnO2 will find wide applications in microelectronics, photoelectronics, sensor and compound function ceramics. According to our study using group theory, a single SnO2 crystal with rutile-type structure shows four Raman active modes, A 1g, B 1g, B 2g and E g. The additional A  and E μ modes correspond to transverse-optical (TO) and longitudinal-optical (LO) vibrations. Moreover, we applied application of perturbation theory, consequently, the spectrum of commercial SnO2 sample showed the Raman bands in accordance with the theory.

Keywords: group theory, SnO2

Introduction

The unique structure and unique physical and chemical properties of nanomaterials have recently attracted a lot of attention. In general, nanostructured materials are composed of crystal grain components including nanocrystalline, nanocluster assemblies, and nano amorphous particles, and interface components formed by large interfaces and surfaces.1-4 Interface and surface structure have been widely studied until recently. Various types of interfacial structural models have been proposed for gas-like models, order and extended order models, and nanostructured materials. Distribution of structural characteristics Various intrinsic characteristics of nanomaterials are described in terms of interface and surface structure, while the effect of the internal microstructure of the particles is generally neglected. In fact, in other manufacturing methods, the microstructure of the nanomaterial may be nanocrystals, nanocrystalline particles, or a nanocluster assembly with some crystal characteristics. Since particles are basic components of nanomaterials, changes in internal microstructure inevitably change physical and chemical properties. Therefore, research on the microstructure inside the particles can help clarify the general structure of nanomaterials and explain the corresponding experimental results.5,6

X-ray diffraction is a powerful tool commonly used to study the structure of materials. For nanomaterials, XRD is used to determine the crystal structure, and it is common to approximately estimate the average particle size including a change in particle size according to the annealing temperature. Looking at trends over the past few years, there have been several papers reporting the use of XRD for a more detailed study of lattice distortion of nanomaterials and changes in microstructure according to annealing temperature. Raman spectroscopy, on the other hand, is a powerful tool used to illuminate the spatial symmetry of matter. XRD and Raman’s use spectroscopy can enhance our understanding of the microstructure changes in nanomaterials and signals from various defect states.7-9

SnO2 is a stable large bandgap oxide semiconductor with excellent photoelectronic properties and sensitivity such as gas. The aforementioned properties in NanoSnO2 have been extensively studied, and NanoSnO2 will find a variety of applications in microelectronics, optoelectronics, sensors, and composite functional ceramics. Attempts to improve the properties rely primarily on an understanding of the microstructure of nano SnO2. In this study, we studied the relationship between microstructure changes. Changes in particle and spatial symmetry and causes of lattice distortion according to the annealing temperature of nano SnO2 were discussed.10,11

Methods

Various physical systems such as crystals and individual atoms can be modeled by symmetric groups. Thus, expression theory, which is closely related to group theory, has many important applications in physics, chemistry, and material science. Group theory is also the core of public key encryption.12,13 In physics, a group is important because it describes the symmetry with which the laws of physics seem to follow. According to Noeter’s theorem[?], every successive symmetry of a physical system corresponds to the conservation law of a system. Group theory can be used to address the incompleteness of the statistical interpretation of dynamics developed by Willard Gibbs, which relates to the sum of infinite probabilities to yield meaningful solutions.

In chemistry and material science, point groups classify the symmetry of tetrahedrons and molecules, while space groups are used to classify crystal structures. Assigned groups can be used to determine physical properties, spectroscopic properties (especially Raman spectroscopy, infrared spectroscopy, circular spectroscopy, magnetic circular spectroscopy, UV/Vis spectroscopy, fluorescence spectroscopy) and construct molecular orbitals.

Molecular symmetry is responsible for many physical and spectroscopic properties of compounds and provides relevant information on how chemical reactions take place. To assign a group of points to a given molecule, we need to find the set of symmetric operations that exist on it. Symmetric operations are movements such as rotation around an axis or reflection through a mirror plane. In other words, it is the operation of moving molecules so that they cannot be distinguished from the original configuration. In group theory, the axis of rotation and the plane of the mirror are called "symmetric elements." These elements may be points, lines, or planes at which symmetric operations are performed. The symmetry of a molecule determines a particular group of points for this molecule.

There are five important symmetric operations. They are identity operations (E), rotation operations (Cn), reflection operations (σ), inversion (i), rotation reflection operations, or improper rotation (Sn). The identity operation (E) consists of leaving the molecule intact. This value is equal to the total number of rotations around the axis. This is the symmetry of all molecules, while the symmetry group of chiral molecules consists of only the equivalent action. The identity operation is a feature of all molecules, even without symmetry. Rotation around an axis consists of rotating a molecule at a specific angle around a specific axis. It rotates through an angle of 360 °/ n, where n is an integer with respect to the axis of rotation.

In reflection, many molecules have mirror planes. The reflection operation is exchanged left and right as if each point is moving in a vertical direction through a plane. When the plane is perpendicular to the main axis of rotation, it is called: σh (numerical). The other plane containing the main axis of rotation is labeled vertical (σv) or dihedral ( σd).

The reversal is a more complex task. Each point passes through the center of the molecule and moves to a position opposite to its original position, moving from the center point to the point from which it started. For example, methane and other tetrahedral molecules lack inversion symmetry. To see this, take a methane model with two hydrogen atoms on the right vertical plane and two hydrogen atoms on the left horizontal plane. Inversion produces two hydrogen atoms in the horizontal plane on the right and two hydrogen atoms in the vertical plane on the left. Therefore, since the direction of the molecule according to the inversion action is different from the original direction, the inversion action is not a symmetrical action of methane. And either the last operation is improper rotation or the rotation reflection operation requires a rotation of 360 °/ n, where n and then a reflection through a plane perpendicular to the rotation axis. A COMSOL Multiphysics simulator is used to investigate their characteristics.

Results and discussions

Group theoretical method

Tin oxide (SnO2) has space group number 136. First of all, atomic structure and its topview of SnO2 are presented in Figure 1(a) and (b), respectively.

Figure 1 (a) atomic structure and (b) topview of SnO2. Blue and red spheres are represent Sn and O atoms, respectively. (These figures are drawn by visualization program, VESTA).

If we choose one Sn atom which is placed at the corner as the original position, (0,0,0), the symmetry operations with τ =(0.5,0.5,0.5) are given as:

ϵ| 0, C 2 |0, C 4 | τ , C 4 3 | τ, C 2' |τ, C 2 '' | τ, σ d |0, σ d' | 0,i |0,i C 2 | 0,i C 4 |τ, C 4 3 | 0,i C 2' | τ ,i C 2 '' | τ,i σ d |0,i σ d' |0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaeeaaaa qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiaeaaaa aaaaa8qacqWF1pG8daabdaWdaeaapeGaaGimaiaacYcacaWGdbWdam aaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaay5bSlaawIa7aiaaicda caGGSaGaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacaGG8b GafqiXdq3dayaalaWdbiaacYcacaWGdbWdamaaDaaaleaapeGaaGin aaWdaeaapeGaaG4maaaakmaaemaapaqaa8qacqaHepaDcaGGSaGaam 4qa8aadaWgaaWcbaWdbiaaikdacaGGNaaapaqabaaak8qacaGLhWUa ayjcSdGaeqiXdqNaaiilaaWdaeaapeGaam4qa8aadaqhaaWcbaWdbi aaikdaa8aabaWdbiaabEcacaqGNaaaaOWaaqWaa8aabaWdbiabes8a 0jaacYcacqaHdpWCpaWaaSbaaSqaa8qacaWGKbaapaqabaaak8qaca GLhWUaayjcSdGaaGimaiaacYcacqaHdpWCpaWaaSbaaSqaa8qacaWG KbGaai4jaaWdaeqaaOWdbmaaemaapaqaa8qacaaIWaGaaiilaiaadM gaaiaawEa7caGLiWoacaaIWaGaaiilaiaadMgacaWGdbWdamaaBaaa leaapeGaaGOmaaWdaeqaaOWdbmaaemaapaqaa8qacaaIWaGaaiilai aadMgacaWGdbWdamaaBaaaleaapeGaaGinaaWdaeqaaaGcpeGaay5b SlaawIa7aiabes8a0jaacYcaa8aabaWdbiaadoeapaWaa0baaSqaa8 qacaaI0aaapaqaa8qacaaIZaaaaOWaaqWaa8aabaWdbiaaicdacaGG SaGaamyAaiaadoeapaWaaSbaaSqaa8qacaaIYaGaai4jaaWdaeqaaa GcpeGaay5bSlaawIa7aiqbes8a09aagaWca8qacaGGSaGaamyAaiaa doeapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaqGNaGaae4jaaaakm aaemaapaqaa8qacqaHepaDcaGGSaGaamyAaiabeo8aZ9aadaWgaaWc baWdbiaadsgaa8aabeaaaOWdbiaawEa7caGLiWoacaaIWaGaaiilai aadMgacqaHdpWCpaWaaSbaaSqaa8qacaWGKbGaai4jaaWdaeqaaOWd biaacYhacaaIWaaapaqaaaaaaaa@A779@   (1)

In the international tables for X-ray crystallography, the sites of Sn and O location are 2a and 4 f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaaaa@381A@ , respectively.

We find the equivalence transformation for SnO2 at the center of the Brillouin zone (Table 1).

 

  {ϵ|0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGa e8x9diVaaiiFaiaaicdacaGG9baaaa@46E4@  

  { C 2 |0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadoeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiiF aiaaicdacaGG9baaaa@3CE1@  

  { C 4 | τ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadoeapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaaiiF aiqbes8a09aagaWca8qacaGG9baaaa@3E1F@ ,

  { C 2' | τ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadoeapaWaaSbaaSqaa8qacaaIYaGaai4jaaWdaeqaaOWd biaacYhacuaHepaDpaGbaSaapeGaaiyFaaaa@3EC8@ ,

  { σ d |0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Eaiabeo8aZ9aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacaGG 8bGaaGimaiaac2haaaa@3E09@ ,

  {i|0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadMgacaGG8bGaaGimaiaac2haaaa@3BD7@  

  {i C 2 |0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadMgacaWGdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWd biaacYhacaaIWaGaaiyFaaaa@3DCF@  

  {i C 4 | τ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadMgacaWGdbWdamaaBaaaleaapeGaaGinaaWdaeqaaOWd biaacYhacuaHepaDpaGbaSaapeGaaiyFaaaa@3F0D@ ,

 

 

 

  { C 4 3 | τ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadoeapaWaa0baaSqaa8qacaaI0aaapaqaa8qacaaIZaaa aOGaaiiFaiqbes8a09aagaWca8qacaGG9baaaa@3EDD@  

  { C 2 '' | τ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadoeapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaqGNaGa ae4jaaaakiaacYhacuaHepaDpaGbaSaapeGaaiyFaaaa@3F72@  

  { σ d' |0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Eaiabeo8aZ9aadaWgaaWcbaWdbiaadsgacaGGNaaapaqabaGc peGaaiiFaiaaicdacaGG9baaaa@3EB4@  

 

 

  { C 4 3 |0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadoeapaWaa0baaSqaa8qacaaI0aaapaqaa8qacaaIZaaa aOGaaiiFaiaaicdacaGG9baaaa@3DA1@  

χ (Sn)

 2

 2

 0

 0

 2

 2

 2

 0

χ (O)

 4

 0

 0

 0

 2

 0

 4

 0

χ (total)

 6

 2

 0

 0

 4

 2

 6

 0

Table 1 χ atomsites MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2damaaBaaaleaapeGaamyyaiaadshacaWGVbGaamyBaiaa dohacaWGPbGaamiDaiaadwgacaWGZbaapaqabaaaaa@41C6@  for SnO2

Also we find the lattice modes at the zone center k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ , including their symmetries, degeneracies and the normal mode patterns.

At k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ , the wave vector group contains the full symmetry operations of the space group. The character table of the group of the wave vector would be the same as that of D 4h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaisdacaWGObaapaqabaaaaa@39FD@  because of the phase factor e iKτ =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaahaaWcbeqaa8qacaWGPbGaam4saiabes8a0baakiab g2da9iaaigdaaaa@3DB3@ . By using the charater table of D 4h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaaisdacaWGObaapaqabaaaaa@39FD@ , we have χ(Sn)= A1g+B 2g, χ(O)= A 1g + B 2g + E u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaigdacaWGNbaapaqabaGcpeGaey4k aSIaamOqa8aadaWgaaWcbaWdbiaaikdacaWGNbaapaqabaGcpeGaey 4kaSIaamyra8aadaWgaaWcbaWdbiaadwhaa8aabeaaaaa@40D5@ , and = χ vector = A 1g + E u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2damaaBaaaleaapeGaamODaiaadwgacaWGJbGaamiDaiaa d+gacaWGYbaapaqabaGccqGH9aqppeGaamyqa8aadaWgaaWcbaWdbi aaigdacaWGNbaapaqabaGcpeGaey4kaSIaamyra8aadaWgaaWcbaWd biaadwhaa8aabeaaaaa@45F2@ .

Therefore, the lattice vibration normal modes are given as equation (2).

[ χ( Sn )+χ( O ) ] χ vector =( 2 A 1g +2 B 2g + E u )( A 2u + E u ) = A 1g + A 2g +2 A 2u + B 1g +2 B 1u + B 2g + E g +4 E u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqadeaaae aaqaaaaaaaaaWdbmaadmaapaqaa8qacqaHhpWydaqadaWdaeaapeGa am4uaiaad6gaaiaawIcacaGLPaaacqGHRaWkcqaHhpWydaqadaWdae aapeGaam4taaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgEPielab eE8aJ9aadaWgaaWcbaWdbiaadAhacaWGLbGaam4yaiaadshacaWGVb GaamOCaaWdaeqaaaGcbaWdbiabg2da9maabmaapaqaa8qacaaIYaGa amyqa8aadaWgaaWcbaWdbiaaigdacaWGNbaapaqabaGcpeGaey4kaS IaaGOmaiaadkeapaWaaSbaaSqaa8qacaaIYaGaam4zaaWdaeqaaOWd biabgUcaRiaadweapaWaaSbaaSqaa8qacaWG1baapaqabaaak8qaca GLOaGaayzkaaGaey4LIq8aaeWaa8aabaWdbiaadgeapaWaaSbaaSqa a8qacaaIYaGaamyDaaWdaeqaaOWdbiabgUcaRiaadweapaWaaSbaaS qaa8qacaWG1baapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacqGH 9aqpcaWGbbWdamaaBaaaleaapeGaaGymaiaadEgaa8aabeaak8qacq GHRaWkcaWGbbWdamaaBaaaleaapeGaaGOmaiaadEgaa8aabeaak8qa cqGHRaWkcaaIYaGaamyqa8aadaWgaaWcbaWdbiaaikdacaWG1baapa qabaGcpeGaey4kaSIaamOqa8aadaWgaaWcbaWdbiaaigdacaWGNbaa paqabaGcpeGaey4kaSIaaGOmaiaadkeapaWaaSbaaSqaa8qacaaIXa GaamyDaaWdaeqaaOWdbiabgUcaRiaadkeapaWaaSbaaSqaa8qacaaI YaGaam4zaaWdaeqaaOWdbiabgUcaRiaadweapaWaaSbaaSqaa8qaca WGNbaapaqabaGcpeGaey4kaSIaaGinaiaadweapaWaaSbaaSqaa8qa caWG1baapaqabaaaaaaa@844C@   (2)

Since all the representations of D 4h are one dimensional except for E μ and E g, they have single modes without degeneracy while E μ and E g modes are doubly degenerated. A  moves along z direction. Both Sn and O atoms are out-of-phase.

B  also moves along z direction. Two Sn atoms which is placed different sites point opposite directions. Similar with Sn, two SnO atoms which is placed different sites point opposite directions. There are two kinds of E g. And both move along z-direction. Movements of Eμ is similar with Eg . But they translate into x and y directions.

For a next step we indicate the IR-activity and Raman activity of these modes. IR-active modes includes A  and 3Eμ  while Raman acitvity modes represent A 1g, B1g , B 2g and Eg .

#1 The A  mode is active to z-polarized light while 3Eμ  modes are active to x or y polarized light.

#2 A1g  and B1g  have diagonal matrix elements but B2g  and Eg  are off-diagonal.

When we move away from k = 0 the mode splitting along the (100) and (001) directions, the group of the wave vector contains {ϵ|0},{i C 2z |0},{ C 2x | τ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGa e8x9diVaaiiFaiaaicdacaGG9bGaaiilaiaacUhacaWGPbGaam4qa8 aadaWgaaWcbaWdbiaaikdacaWG6baapaqabaGcpeGaaiiFaiaaicda caGG9bGaaiilaiaacUhacaWGdbWdamaaBaaaleaapeGaaGOmaiaadI haa8aabeaak8qacaGG8bGafqiXdq3dayaalaWdbiaac2haaaa@57CE@ , and {i C 2y | τ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaiaadMgacaWGdbWdamaaBaaaleaapeGaaGOmaiaadMhaa8aa beaak8qacaGG8bGafqiXdq3dayaalaWdbiaac2haaaa@4009@ . Two dimensional k-space is presented in (Figure 2).

Figure 2 2-dimensional K-space. Direction of the mode splitting is denoted as an red arrow. (I remake this figure which is in dresselhaus lecture note).

The individual characters are given in Table 2, where the phase factor e   i K τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbGaaeiOa8aadaahaaWcbeqaa8qacaWGPbGabm4sa8aagaWc a8qacuaHepaDpaGbaSaaaaaaaa@3C44@ is taken out.

 

  ϵ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfiaeaaaaaaaaa8qacqWF1pG8 aaa@432A@  

  i C 2z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadoeapaWaaSbaaSqaa8qacaaIYaGaamOEaaWdaeqaaaaa @3AFA@  

  i C 2x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadoeapaWaaSbaaSqaa8qacaaIYaGaamiEaaWdaeqaaaaa @3AF8@  

  i C 2y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadoeapaWaaSbaaSqaa8qacaaIYaGaamyEaaWdaeqaaaaa @3AF9@  

Δ1

 1

 1

 1

 1

Δ2

 1

 1

 -1

 -1

Δ3

 1

 -1

 1

 -1

Δ4

 1

 -1

 -1

 1

Table 2 Individual character for SnO2

Now, we use the decomposition rule to see how the representations at Γ split in to Δ1, Δ2, Δ3, and Δ4 (Table 3).

 

 ϵ 

 iC2z

 iC2x

 iC2y

 

A1g

 1

 1

 1

 1

Δ1

A

 1

 -1

 1

 -1

Δ3

A2g

 1

 1

 -1

 -1

Δ2

A

 1

 -1

 -1

 1

Δ4

B1g

 1

 1

 1

 1

Δ1

B

 1

 -1

 1

 -1

Δ3

B2g

 1

 1

 -1

 -1

Δ2

B

 1

 -1

 -1

 1

Δ4

Eg

 2

 -2

 0

 0

Δ3+ Δ4

Eμ

 2

 2

 0

 0

Δ1+ Δ2

Table 3 Splitting behaviors in Δ1, Δ2, Δ3, and Δ4 at Γ.

Now, along (001) direction, the group of the wave vector contains {Δε|0},{ C 4 | τ },{ C 4 3 | τ },{ C 2z |0},{i C 2x | τ },{i C 2y | τ },{ σ d |0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EaGGaaiab=r5aejab=v7aLjaacYhacaaIWaGaaiyFaiaacYca caGG7bGaam4qa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacaGG8b GafqiXdq3dayaalaWdbiaac2hacaGGSaGaai4EaiaadoeapaWaa0ba aSqaa8qacaaI0aaapaqaa8qacaaIZaaaaOGaaiiFaiqbes8a09aaga Wca8qacaGG9bGaaiilaiaacUhacaWGdbWdamaaBaaaleaapeGaaGOm aiaadQhaa8aabeaak8qacaGG8bGaaGimaiaac2hacaGGSaGaai4Eai aadMgacaWGdbWdamaaBaaaleaapeGaaGOmaiaadIhaa8aabeaak8qa caGG8bGafqiXdq3dayaalaWdbiaac2hacaGGSaGaai4EaiaadMgaca WGdbWdamaaBaaaleaapeGaaGOmaiaadMhaa8aabeaak8qacaGG8bGa fqiXdq3dayaalaWdbiaac2hacaGGSaGaai4Eaiabeo8aZ9aadaWgaa WcbaWdbiaadsgaa8aabeaak8qacaGG8bGaaGimaiaac2haaaa@6FF1@ , and { σ d' |0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Eaiabeo8aZ9aadaWgaaWcbaWdbiaadsgacaGGNaaapaqabaGc peGaaiiFaiaaicdacaGG9baaaa@3EB4@ .

Since the point symmetry operations form C  point group, the character can be given as Table 4, where the phase factor e   i K τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbGaaeiOa8aadaahaaWcbeqaa8qacaWGPbGabm4sa8aagaWc a8qacuaHepaDpaGbaSaaaaaaaa@3C44@  is taken out (as same as (100) case). 

 

 ϵ 

  C 2z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaikdacaWG6baapaqabaaaaa@3A0C@  

  2 C 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiaadoeapaWaaSbaaSqaa8qacaaI0aaapaqabaaaaa@39CB@  

  i C x ,i C y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadoeapaWaaSbaaSqaa8qacaWG4baapaqabaGccaGGSaWd biaadMgacaWGdbWdamaaBaaaleaapeGaamyEaaWdaeqaaaaa@3E14@  

  2 σ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabeo8aZ9aadaWgaaWcbaWdbiaadsgaa8aabeaaaaa@3AF1@  

Σ1

 1

 1

 1

 1

 1

Σ2

 1

 1

 1

 -1

 -1

Σ3

 1

 1

 -1

 1

 -1

Σ4

 1

 1

 -1

 -1

 1

Σ5

 2

 -2

 0

 0

 0

Table 4 Characters in prespective of Σn

Table 5 shows the decomposition of each mode.  

 

 ϵ 

  C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@390D@  

  2 C 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiaadoeapaWaaSbaaSqaa8qacaaI0aaapaqabaaaaa@39CB@  

  2 σ v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabeo8aZ9aadaWgaaWcbaWdbiaadAhaa8aabeaaaaa@3B03@  

  2 σ d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabeo8aZ9aadaWgaaWcbaWdbiaadsgaa8aabeaaaaa@3AF1@  

 

A1g

 1

 1

 1

 1

 1

 Σ1 

A

 1

 1

 1

 -1

 -1

 Σ2 

A2g

 1

 1

 1

 -1

 -1

 Σ2 

A

 1

 1

 1

 1

 1

 Σ1 

B1g

 1

 1

 -1

 1

 -1

 Σ3 

B

 1

 1

 -1

 -1

 1

 Σ4 

B2g

 1

 1

 -1

 -1

 1

 Σ4 

B

 1

 1

 -1

 1

 -1

 Σ3 

Eg

 2

 -2

 0

 0

 0

 Σ5 

Eμ

 2

 -2

 0

 0

 0

 Σ5 

Table 5 Decomposition of each mode of Σn

The splitting mode is presented in Figure 3.

Figure 3 Sketchy of the mode splitting behaviors.

Energy dispersion

Using the empty lattice, we find the energy eigenvalues, degeneracies and symmetry types for the two electronic levels of lowest energy for the fcc lattice at the Γ  point ( k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4Aa8aagaWcaaaa@3840@  = 0). Note that the lowest energy state is a non-degenerate state with Γ  1 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4KdiaabckapaWaa0baaSqaa8qacaaIXaaapaqaa8qacqGHRaWk aaaaaa@3B73@  symmetry.

Reciprocal lattice of fcc →  bcc lattice

The nearest neighbor point in reciprocal lattice:

2π a ( 111 ), 2π a ( 111 ), 2π a ( 111 ), 2π a ( 111 ), 2π a ( 111 ), 2π a ( 111 ), 2π a ( 111 ), 2π a ( 111 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqadeaaae aaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIYaGaeqiWdahapaqaa8qa caWGHbaaamaabmaapaqaa8qacaaIXaGaaGymaiaaigdaaiaawIcaca GLPaaacaGGSaWaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWdbiaa dggaaaWaaeWaa8aabaWdbiabgkHiTiaaigdacaaIXaGaaGymaaGaay jkaiaawMcaaiaacYcadaWcaaWdaeaapeGaaGOmaiabec8aWbWdaeaa peGaamyyaaaadaqadaWdaeaapeGaaGymaiabgkHiTiaaigdacaaIXa aacaGLOaGaayzkaaGaaiilaaWdaeaapeWaaSaaa8aabaWdbiaaikda cqaHapaCa8aabaWdbiaadggaaaWaaeWaa8aabaWdbiaaigdacaaIXa GaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacYcadaWcaaWdaeaapeGa aGOmaiabec8aWbWdaeaapeGaamyyaaaadaqadaWdaeaapeGaeyOeI0 IaaGymaiabgkHiTiaaigdacaaIXaaacaGLOaGaayzkaaGaaiilamaa laaapaqaa8qacaaIYaGaeqiWdahapaqaa8qacaWGHbaaamaabmaapa qaa8qacqGHsislcaaIXaGaaGymaiabgkHiTiaaigdaaiaawIcacaGL PaaacaGGSaaapaqaa8qadaWcaaWdaeaapeGaaGOmaiabec8aWbWdae aapeGaamyyaaaadaqadaWdaeaapeGaaGymaiabgkHiTiaaigdacqGH sislcaaIXaaacaGLOaGaayzkaaGaaiilamaalaaapaqaa8qacaaIYa GaeqiWdahapaqaa8qacaWGHbaaamaabmaapaqaa8qacqGHsislcaaI XaGaeyOeI0IaaGymaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGUa aaaaaa@8449@   (3)

At Γ  point, the energy eigenvalues are given by

E= 2 2m κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da9maalaaapaqaa8qacqWIpecApaWaaWbaaSqabeaa peGaaGOmaaaaaOWdaeaapeGaaGOmaiaad2gaaaGafqOUdS2dayaala WaaWbaaSqabeaapeGaaGOmaaaaaaa@4002@ , where κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqOUdS2dayaalaWaaWbaaSqabeaapeGaaGOmaaaaaaa@39FB@  is the reciprocal lattice vector. Therefore, the lowest energy eigenvalue = 0. Also, second lowest energy eigenvalue can be obtained as followed equation.

2 2m ( 2π a ) 2 ( 1 2 + 1 2 + 1 2 )=6 π 2 2 m a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaaaaGc paqaa8qacaaIYaGaamyBaaaacaGGOaWaaSaaa8aabaWdbiaaikdacq aHapaCa8aabaWdbiaadggaaaGaaiyka8aadaahaaWcbeqaa8qacaaI YaaaaOWaaeWaa8aabaWdbiaaigdapaWaaWbaaSqabeaapeGaaGOmaa aakiabgUcaRiaaigdapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUca RiaaigdapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaai abg2da9iaaiAdadaWcaaWdaeaapeGaeqiWda3damaaCaaaleqabaWd biaaikdaaaGccqWIpecApaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaamyBaiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaaa@544F@   (4)

Since there are 8 equivalent {1 1 1} points, the degeneracy of the second lowest level is 8. The group of the wave vector at Γ  point is Oh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4taiaadIgaaaa@38F0@ . The characters for the equivalent transform are shown in Table 6.

 

 E 

  3 C 4 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaG4maiaadoeapaWaa0baaSqaa8qacaaI0aaapaqaa8qacaaIYaaa aaaa@3A99@  

  6 C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaadoeapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@39CD@  

  8 C 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGioaiaadoeapaWaaSbaaSqaa8qacaaIZaaapaqabaaaaa@39D0@  

  6 C 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaadoeapaWaaSbaaSqaa8qacaaI0aaapaqabaaaaa@39CF@  

  i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381D@  

  3 C 4 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaG4maiaadoeapaWaa0baaSqaa8qacaaI0aaapaqaa8qacaaIYaaa aaaa@3A99@  

  6i C 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaadMgacaWGdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa @3ABB@  

  8i C 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGioaiaadMgacaWGdbWdamaaBaaaleaapeGaaG4maaWdaeqaaaaa @3ABE@  

  6i C 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaadMgacaWGdbWdamaaBaaaleaapeGaaGinaaWdaeqaaaaa @3ABD@  

χ 000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2damaaBaaaleaapeGaaGimaiaaicdacaaIWaaapaqabaaa aa@3B6E@

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

χ 111 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2damaaBaaaleaapeGaaGymaiaaigdacaaIXaaapaqabaaa aa@3B71@

 8

 0

 0

 2

 0

 0

 0

 4

 0

 0

Table 6 The characters for the equivalent transform of Σn

Therefore, lowest energy and second lowest levels are

χ 000 = Γ 1 + ( lowest ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2damaaBaaaleaapeGaaGimaiaaicdacaaIWaaapaqabaGc peGaeyypa0Jaae4Kd8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiabgU caRaaakmaabmaapaqaa8qacaWGSbGaam4BaiaadEhacaWGLbGaam4C aiaadshaaiaawIcacaGLPaaaaaa@471D@   (5)

χ 111 = Γ 1 + + Γ 2 + Γ 15 + Γ 25 + ( second ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2damaaBaaaleaapeGaaGymaiaaigdacaaIXaaapaqabaGc peGaeyypa0Jaae4Kd8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiabgU caRaaakiabgUcaRiaabo5apaWaa0baaSqaa8qacaaIYaaapaqaa8qa cqGHsislaaGccqGHRaWkcaqGtoWdamaaDaaaleaapeGaaGymaiaaiw daa8aabaWdbiabgkHiTaaakiabgUcaRiaabo5apaWaa0baaSqaa8qa caaIYaGaaGynaaWdaeaapeGaey4kaScaaOWaaeWaa8aabaWdbiaado hacaWGLbGaam4yaiaad+gacaWGUbGaamizaaGaayjkaiaawMcaaaaa @54BB@   (6)

We also find the appropriate linear combination of plane waves which provide basis functions for the two lowest L-point electronic states for the fcc lattice.

At L( π a , π a , π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabec8aWbWdaeaapeGaamyyaaaacaGGSaWaaSaa a8aabaWdbiabec8aWbWdaeaapeGaamyyaaaacaGGSaWaaSaaa8aaba Wdbiabec8aWbWdaeaapeGaamyyaaaaaaa@4162@ ) point, the energy levels are given by E= 2 2m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaaaaGc paqaa8qacaaIYaGaamyBaaaaaaa@3B66@  (k1 + k). The lowest energy level corresponds to

κ= 2π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSMaeyypa0ZaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWd biaadggaaaaaaa@3D94@ =  (0,0,0) and κ= -2π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSMaeyypa0ZaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWd biaadggaaaaaaa@3D94@ =  (-1,-1,-1) with E0 = 3 2 π 2 2 m a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaikdaaaWaaSaaa8aabaWd biabec8aW9aadaahaaWcbeqaa8qacaaIYaaaaOGaeS4dHG2damaaCa aaleqabaWdbiaaikdaaaaak8aabaWdbiaad2gacaWGHbWdamaaCaaa leqabaWdbiaaikdaaaaaaaaa@412E@

The plane waves are e   i π a ( x+y+z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaabaaa aaaaaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGPbWaaSaaa8aabaWd biabec8aWbWdaeaapeGaamyyaaaadaqadaWdaeaapeGaamiEaiabgU caRiaadMhacqGHRaWkcaWG6baacaGLOaGaayzkaaaaaaaa@42B4@ for (111) and e   i π a ( x+y+z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaabaaa aaaaaapeGaaeiOa8aadaahaaWcbeqaa8qacqGHsislcaWGPbWaaSaa a8aabaWdbiabec8aWbWdaeaapeGaamyyaaaadaqadaWdaeaapeGaam iEaiabgUcaRiaadMhacqGHRaWkcaWG6baacaGLOaGaayzkaaaaaaaa @43A1@ for (-1-1-1).

The second energy level consists of k= 2π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWdbiaadggaaaaaaa@3ADC@ (-1-11), 2π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWdbiaadggaaaaaaa@3ADC@ (1-1-1), 2π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWdbiaadggaaaaaaa@3ADC@ (-11-1), 2π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWdbiaadggaaaaaaa@3ADC@ (00-2), 2π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWdbiaadggaaaaaaa@3ADC@ (0-20), 2π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaikdacqaHapaCa8aabaWdbiaadggaaaaaaa@3ADC@ (-200) with E1 = 11 2 π 2 2 m a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdacaaIXaaapaqaa8qacaaIYaaaamaalaaa paqaa8qacqaHapaCpaWaaWbaaSqabeaapeGaaGOmaaaakiabl+qiO9 aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGTbGaamyya8aa daahaaWcbeqaa8qacaaIYaaaaaaaaaa@41E7@ .

The corresponding plane waves are:

e i π a ( xy+3z ) , e i π a ( x+y3z ) , e i π a ( x3y+z ) , e i π a ( x3y+z ) , e i π a ( 3xyz ) , e i π a ( 3xyz ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaapeGaamyAamaalaaa paqaa8qacqaHapaCa8aabaWdbiaadggaaaWaaeWaa8aabaWdbiabgk HiTiaadIhacqGHsislcaWG5bGaey4kaSIaaG4maiaadQhaaiaawIca caGLPaaaaaGccaGGSaGaamyza8aadaahaaWcbeqaa8qacaWGPbWaaS aaa8aabaWdbiabec8aWbWdaeaapeGaamyyaaaadaqadaWdaeaapeGa amiEaiabgUcaRiaadMhacqGHsislcaaIZaGaamOEaaGaayjkaiaawM caaaaakiaacYcacaWGLbWdamaaCaaaleqabaWdbiaadMgadaWcaaWd aeaapeGaeqiWdahapaqaa8qacaWGHbaaamaabmaapaqaa8qacaWG4b GaeyOeI0IaaG4maiaadMhacqGHRaWkcaWG6baacaGLOaGaayzkaaaa aOGaaiilaaWdaeaapeGaamyza8aadaahaaWcbeqaa8qacqGHsislca WGPbWaaSaaa8aabaWdbiabec8aWbWdaeaapeGaamyyaaaadaqadaWd aeaapeGaamiEaiabgkHiTiaaiodacaWG5bGaey4kaSIaamOEaaGaay jkaiaawMcaaaaakiaacYcacaWGLbWdamaaCaaaleqabaWdbiaadMga daWcaaWdaeaapeGaeqiWdahapaqaa8qacaWGHbaaamaabmaapaqaa8 qacaaIZaGaamiEaiabgkHiTiaadMhacqGHsislcaWG6baacaGLOaGa ayzkaaaaaOGaaiilaiaadwgapaWaaWbaaSqabeaapeGaeyOeI0Iaam yAamaalaaapaqaa8qacqaHapaCa8aabaWdbiaadggaaaWaaeWaa8aa baWdbiaaiodacaWG4bGaeyOeI0IaamyEaiabgkHiTiaadQhaaiaawI cacaGLPaaaaaGccaGGUaaaaaaa@8827@   (7)

We denote these plane wave states by (-1-13), (11-3), (1-31), (3-1-1), (-311).

At L point, the group of the wave vector is D3d , the character is shown in Table 7.

 

 E 

 2C3

 3C2

 i

 2iC3

 3iC2

L1

 1

 1

 1

 1

 1

 1

L2

 1

 1

 -1

 1

 1

 -1

L3

 2

 -1

 0

 2

 -1

 0

L 1 '

 1

 1

 1

 -1

 -1

 -1

L2 '

 1

 1

 -1

 -1

 -1

 1

L3 '

 2

 -1

 0

 -2

 1

 0

Table 7 The group of the wave vector is D3d at L point

The equivalence transform of the plane waves are shown in Table 8.

 

 E 

 2C3

 3C’2

 i

 2iC3

 3iC’2

 

(111), (-1-1-1)

 2

 2

 0

 0

 0

 2

L   +   1 +L     2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaabaaa aaaaaapeGaaeiOa8aadaahaaWcbeqaa8qacqGHRaWkaaGccaqGGcWd amaaBaaaleaapeGaaGymaaWdaeqaaOGaey4kaSIaamita8qacaqGGc WdamaaCaaaleqabaWdbiabgkHiTaaakiaabckapaWaaSbaaSqaa8qa caaIYaaapaqabaaaaa@41E6@

(-311), etc

 6

 0

 0

 0

 0

 2

L   +   1 +L   +   3 +L     2 +L     3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaabaaa aaaaaapeGaaeiOa8aadaahaaWcbeqaa8qacqGHRaWkaaGccaqGGcWd amaaBaaaleaapeGaaGymaaWdaeqaaOGaey4kaSIaamita8qacaqGGc WdamaaCaaaleqabaWdbiabgUcaRaaakiaabckapaWaaSbaaSqaa8qa caaIZaaapaqabaGccqGHRaWkcaWGmbWdbiaabckapaWaaWbaaSqabe aapeGaeyOeI0caaOGaaeiOa8aadaWgaaWcbaWdbiaaikdaa8aabeaa kiabgUcaRiaadYeapeGaaeiOa8aadaahaaWcbeqaa8qacqGHsislaa GccaqGGcWdamaaBaaaleaapeGaaG4maaWdaeqaaaaa@4EB5@

Table 8 The equivalence transform of the plane waves

The symmetry of the lowest state at L point is L   +   1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiOa8aadaahaaWcbeqaa8qacqGHRaWkaaGccaqGGcWdamaaBaaa leaapeGaaGymaaWdaeqaaaaa@3BC2@  + L     2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiOa8aadaahaaWcbeqaa8qacqGHsislaaGccaqGGcWdamaaBaaa leaapeGaaGOmaaWdaeqaaaaa@3BCE@ . The basis functions of the two symmetry states are:

L 1 + : 1 2 [ ( 111 )+( 111 ) ]=cos π a ( x+y+z ) L 2 : 1 2i [ ( 111 )( 111 ) ]=sin π a ( x+y+z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aaqaaaaaaaaaWdbiaadYeapaWaa0baaSqaa8qacaaIXaaapaqaa8qa cqGHRaWkaaGccaGG6aWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaWaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaaGymaiaaigda aiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaeyOeI0IaaGymai abgkHiTiaaigdacqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaeyypa0Jaam4yaiaad+gacaWGZbWaaSaaa8aabaWdbiabec 8aWbWdaeaapeGaamyyaaaadaqadaWdaeaapeGaamiEaiabgUcaRiaa dMhacqGHRaWkcaWG6baacaGLOaGaayzkaaaapaqaa8qacaWGmbWdam aaDaaaleaapeGaaGOmaaWdaeaapeGaeyOeI0caaOGaaiOoamaalaaa paqaa8qacaaIXaaapaqaa8qacaaIYaGaamyAaaaadaWadaWdaeaape WaaeWaa8aabaWdbiaaigdacaaIXaGaaGymaaGaayjkaiaawMcaaiab gkHiTmaabmaapaqaa8qacqGHsislcaaIXaGaeyOeI0IaaGymaiabgk HiTiaaigdaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpcaWG ZbGaamyAaiaad6gadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaWGHb aaamaabmaapaqaa8qacaWG4bGaey4kaSIaamyEaiabgUcaRiaadQha aiaawIcacaGLPaaaaaaaaa@786A@   (8)

The symmetry of the second lowest state is L   +   1 +L   +   3 +L     2 +L     3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbGaaeiOa8aadaahaaWcbeqaa8qacqGHRaWkaaGccaqGGcWd amaaBaaaleaapeGaaGymaaWdaeqaaOGaey4kaSIaamita8qacaqGGc WdamaaCaaaleqabaWdbiabgUcaRaaakiaabckapaWaaSbaaSqaa8qa caaIZaaapaqabaGccqGHRaWkcaWGmbWdbiaabckapaWaaWbaaSqabe aapeGaeyOeI0caaOGaaeiOa8aadaWgaaWcbaWdbiaaikdaa8aabeaa kiabgUcaRiaadYeapeGaaeiOa8aadaahaaWcbeqaa8qacqGHsislaa GccaqGGcWdamaaBaaaleaapeGaaG4maaWdaeqaaaaa@4EB5@ . The basis functions are obtained as follows:

L 1 + :( 113 )+( 113 )+( 131 )+( 131 )+( 311 )+( 311 ) =cos π a ( x+y3z )+cos π a ( x3y+z )+cos π a ( 3xyz ) L 3 + :( 113 )( 113 )+( 131 )( 131 )+( 311 )( 311 ) =sin π a ( x+y3z )+sin π a ( x3y+z )+sin π a ( 3xyz ) L 2 :( 113 )+( 113 )+ω[ ( 131 )+( 131 ) ]+ ω 2 ( 311 )+( 311 )] =cos π a ( x+y3z )+ωcos π a + ω 2 cos π a ( 3xyz ) L 3 :( 113 )( 113 )+ω[ ( 131 )( 131 ) ]+ ω 2 ( 311 )( 311 )] =sin π a ( x+y3z )+ωsin π a + ω 2 sin π a ( 3xyz ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGmbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaey4kaSca aOGaaiOoamaabmaapaqaa8qacqGHsislcaaIXaGaeyOeI0IaaGymai aaiodaaiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaaGymaiaa igdacqGHsislcaaIZaaacaGLOaGaayzkaaGaey4kaSYaaeWaa8aaba WdbiabgkHiTiaaigdacaaIZaGaeyOeI0IaaGymaaGaayjkaiaawMca aiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaaG4maiaaigdaai aawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaaG4maiabgkHiTiaa igdacqGHsislcaaIXaaacaGLOaGaayzkaaGaey4kaSYaaeWaa8aaba WdbiabgkHiTiaaiodacaaIXaGaaGymaaGaayjkaiaawMcaaaqaaiab g2da9iaadogacaWGVbGaam4Camaalaaapaqaa8qacqaHapaCa8aaba WdbiaadggaaaWaaeWaa8aabaWdbiaadIhacqGHRaWkcaWG5bGaeyOe I0IaaG4maiaadQhaaiaawIcacaGLPaaacqGHRaWkcaWGJbGaam4Bai aadohadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaWGHbaaamaabmaa paqaa8qacaWG4bGaeyOeI0IaaG4maiaadMhacqGHRaWkcaWG6baaca GLOaGaayzkaaGaey4kaSIaam4yaiaad+gacaWGZbWaaSaaa8aabaWd biabec8aWbWdaeaapeGaamyyaaaadaqadaWdaeaapeGaaG4maiaadI hacqGHsislcaWG5bGaeyOeI0IaamOEaaGaayjkaiaawMcaaaqaaiaa dYeapaWaa0baaSqaa8qacaaIZaaapaqaa8qacqGHRaWkaaGccaGG6a WaaeWaa8aabaWdbiabgkHiTiaaigdacqGHsislcaaIXaGaaG4maaGa ayjkaiaawMcaaiabgkHiTmaabmaapaqaa8qacaaIXaGaaGymaiabgk HiTiaaiodaaiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaeyOe I0IaaGymaiaaiodacqGHsislcaaIXaaacaGLOaGaayzkaaGaeyOeI0 YaaeWaa8aabaWdbiaaigdacqGHsislcaaIZaGaaGymaaGaayjkaiaa wMcaaiabgUcaRmaabmaapaqaa8qacaaIZaGaeyOeI0IaaGymaiabgk HiTiaaigdaaiaawIcacaGLPaaacqGHsisldaqadaWdaeaapeGaeyOe I0IaaG4maiaaigdacaaIXaaacaGLOaGaayzkaaaabaGaeyypa0Jaam 4CaiaadMgacaWGUbWaaSaaa8aabaWdbiabec8aWbWdaeaapeGaamyy aaaadaqadaWdaeaapeGaamiEaiabgUcaRiaadMhacqGHsislcaaIZa GaamOEaaGaayjkaiaawMcaaiabgUcaRiaadohacaWGPbGaamOBamaa laaapaqaa8qacqaHapaCa8aabaWdbiaadggaaaWaaeWaa8aabaWdbi aadIhacqGHsislcaaIZaGaamyEaiabgUcaRiaadQhaaiaawIcacaGL PaaacqGHRaWkcaWGZbGaamyAaiaad6gadaWcaaWdaeaapeGaeqiWda hapaqaa8qacaWGHbaaamaabmaapaqaa8qacaaIZaGaamiEaiabgkHi TiaadMhacqGHsislcaWG6baacaGLOaGaayzkaaaabaGaamita8aada qhaaWcbaWdbiaaikdaa8aabaWdbiabgkHiTaaakiaacQdadaqadaWd aeaapeGaeyOeI0IaaGymaiabgkHiTiaaigdacaaIZaaacaGLOaGaay zkaaGaey4kaSYaaeWaa8aabaWdbiaaigdacaaIXaGaeyOeI0IaaG4m aaGaayjkaiaawMcaaiabgUcaRiabeM8a3naadmaapaqaa8qadaqada WdaeaapeGaeyOeI0IaaGymaiaaiodacqGHsislcaaIXaaacaGLOaGa ayzkaaGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaaIZaGaaG ymaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgUcaRiabeM8a39aa daahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaiodacqGHsi slcaaIXaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgUcaRmaabmaa paqaa8qacqGHsislcaaIZaGaaGymaiaaigdaaiaawIcacaGLPaaaca GGDbaabaGaeyypa0Jaam4yaiaad+gacaWGZbWaaSaaa8aabaWdbiab ec8aWbWdaeaapeGaamyyaaaadaqadaWdaeaapeGaamiEaiabgUcaRi aadMhacqGHsislcaaIZaGaamOEaaGaayjkaiaawMcaaiabgUcaRiab eM8a3jaadogacaWGVbGaam4Camaalaaapaqaa8qacqaHapaCa8aaba WdbiaadggaaaGaey4kaSIaeqyYdC3damaaCaaaleqabaWdbiaaikda aaGccaWGJbGaam4BaiaadohadaWcaaWdaeaapeGaeqiWdahapaqaa8 qacaWGHbaaamaabmaapaqaa8qacaaIZaGaamiEaiabgkHiTiaadMha cqGHsislcaWG6baacaGLOaGaayzkaaaabaGaamita8aadaqhaaWcba Wdbiaaiodaa8aabaWdbiabgkHiTaaakiaacQdadaqadaWdaeaapeGa eyOeI0IaaGymaiabgkHiTiaaigdacaaIZaaacaGLOaGaayzkaaGaey OeI0YaaeWaa8aabaWdbiaaigdacaaIXaGaeyOeI0IaaG4maaGaayjk aiaawMcaaiabgUcaRiabeM8a3naadmaapaqaa8qadaqadaWdaeaape GaeyOeI0IaaGymaiaaiodacqGHsislcaaIXaaacaGLOaGaayzkaaGa eyOeI0YaaeWaa8aabaWdbiaaigdacqGHsislcaaIZaGaaGymaaGaay jkaiaawMcaaaGaay5waiaaw2faaiabgUcaRiabeM8a39aadaahaaWc beqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaiodacqGHsislcaaIXa GaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgkHiTmaabmaapaqaa8qa cqGHsislcaaIZaGaaGymaiaaigdaaiaawIcacaGLPaaacaGGDbaaba Gaeyypa0Jaam4CaiaadMgacaWGUbWaaSaaa8aabaWdbiabec8aWbWd aeaapeGaamyyaaaadaqadaWdaeaapeGaamiEaiabgUcaRiaadMhacq GHsislcaaIZaGaamOEaaGaayjkaiaawMcaaiabgUcaRiabeM8a3jaa dohacaWGPbGaamOBamaalaaapaqaa8qacqaHapaCa8aabaWdbiaadg gaaaGaey4kaSIaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGccaWG ZbGaamyAaiaad6gadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaWGHb aaamaabmaapaqaa8qacaaIZaGaamiEaiabgkHiTiaadMhacqGHsisl caWG6baacaGLOaGaayzkaaaaaaa@86AF@   (9)

We had have question that "which states of the lower and upper energy levels in (a) and (b) are coupled by optical dipole transitions?".

At Γ points, χ   vector MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4XdmMaaeiOa8aadaWgaaWcbaWdbiaadAhacaWGLbGaam4yaiaa dshacaWGVbGaamOCaaWdaeqaaaaa@4014@ = Γ  15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4KdiaabckapaWaa0baaSqaa8qacaaIXaGaaGynaaWdaeaapeGa eyOeI0caaaaa@3C3D@ . The lowest energy state has symmetry Γ  1 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4KdiaabckapaWaa0baaSqaa8qacaaIXaaapaqaa8qacqGHRaWk aaaaaa@3B73@ .

Γ 1 + Γ 15 = Γ 15 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiabgUcaRaaakiab gEPielaabo5apaWaa0baaSqaa8qacaaIXaGaaGynaaWdaeaapeGaey OeI0caaOGaeyypa0Jaae4Kd8aadaqhaaWcbaWdbiaaigdacaaI1aaa paqaa8qacqGHsislaaGccaGGUaaaaa@4605@   (10)

Therefore, only the Γ 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaigdacaaI1aaapaqaa8qacqGHsisl aaaaaa@3B1A@  state in the second energy level will couple with Γ 1 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiabgUcaRaaaaaa@3A50@  state in the lowest energy level. At L point, χ vector =L ' 2 +L ' 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2damaaBaaaleaapeGaamODaiaadwgacaWGJbGaamiDaiaa d+gacaWGYbaapaqabaGcpeGaeyypa0JaamitaiaacEcapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaey4kaSIaamitaiaacEcapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@4632@ . The lowest level has symmetry L1 +L’2 . For L1  state, L1   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4LIqmaaa@3938@  (L’2 +L’3 )= L’2 +L’3. Therefore, the L1  state in the lower level will couple with L’2  and L’3  states in the upper level via optical transition.

For L2  state, L’2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4LIqmaaa@3938@  (L’2 +L’3 )= L1 +L3 . Therefore, the L’2  state in the lower level is coupled with L1  and L3  states (Figure 4).

Figure 4 Sketchy of the transition behaviors.

Using compatibility relations, we find the symmetries of the energy levels that connect the two -point and two L-point energy levels. For  = ( k =(κ,κ,κ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4Aa8aagaWca8qacqGH9aqpcaGGOaGaeqOUdSMaaiilaiabeQ7a RjaacYcacqaH6oWAcaGGPaaaaa@4124@ ), the group of wavevector is C3v  {E,2C3, 3 σ   v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4WdmNaaeiOa8aadaWgaaWcbaWdbiaadAhaa8aabeaaaaa@3B6A@ }.

Therefore equations are presented as followed.

Γ 1 + 1 L 1 Γ 2 1 L ' 2 Γ 15 1 + 3 L ' 2 +L ' 3 Γ 25 1 + 3 L 1 + L 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqafeaaaa qaaabaaaaaaaaapeGaae4Kd8aadaqhaaWcbaWdbiaaigdaa8aabaWd biabgUcaRaaakiabgkziUkabgEIiz=aadaWgaaWcbaWdbiaaigdaa8 aabeaak8qacqGHsgIRcaWGmbWdamaaBaaaleaapeGaaGymaaWdaeqa aaGcbaWdbiaabo5apaWaa0baaSqaa8qacaaIYaaapaqaa8qacqGHsi slaaGccqGHsgIRcqGHNis2paWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyOKH4QaamitaiaacEcapaWaaSbaaSqaa8qacaaIYaaapaqaba aakeaapeGaae4Kd8aadaqhaaWcbaWdbiaaigdacaaI1aaapaqaa8qa cqGHsislaaGccqGHsgIRcqGHNis2paWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGaey4kaSIaey4jIK9damaaBaaaleaapeGaaG4maaWdaeqa aOWdbiabgkziUkaadYeacaGGNaWdamaaBaaaleaapeGaaGOmaaWdae qaaOWdbiabgUcaRiaadYeacaGGNaWdamaaBaaaleaapeGaaG4maaWd aeqaaaGcbaWdbiaabo5apaWaa0baaSqaa8qacaaIYaGaaGynaaWdae aapeGaeyOeI0caaOGaeyOKH4Qaey4jIK9damaaBaaaleaapeGaaGym aaWdaeqaaOWdbiabgUcaRiabgEIiz=aadaWgaaWcbaWdbiaaiodaa8 aabeaak8qacqGHsgIRcaWGmbWdamaaBaaaleaapeGaaGymaaWdaeqa aOWdbiabgUcaRiaadYeapaWaaSbaaSqaa8qacaaIZaaapaqabaaake aaaaaaaa@77A7@   (11)

Perturbation theory

Using Ek perturbation theory and we find the form of the kp relations near the L-point in the Brillouin zone for a face centered cubic lattice arising from the lowest levels with L1  and L’2  symmetry that are doubly degenerate in the free electron model.

Let’s assume |i>  has L1  symmetry and |j>  has L2  has L’  symmetry. Since p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiCa8aagaWcaaaa@3845@  transform as a vector,

χ vector MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Xdm2damaaBaaaleaapeGaamODaiaadwgacaWGJbGaamiDaiaa d+gacaWGYbaapaqabaaaaa@3EF1@ =L’2 +L’3  at L point.

L1   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4LIqmaaa@3938@  L’2  = L’2 . So it contains L’2 .

L2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4LIqmaaa@3938@  L’32  = L’3 . So it does not contains L’2 .

Now, let’s take the new κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@39F6@ , κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@39F6@ , and κ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@39F6@  coordinates where κ ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqOUdS2dayaajaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@3A06@  is parallel to (111) in the original coordinate. In this new coordinate, κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@39F6@  transforms like L ' 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitaiaacEcapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@39C1@  whereas κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGOmaaWdaeqaaaaa@39F7@ , and κ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaG4maaWdaeqaaaaa@39F8@  transform like L ' 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitaiaacEcapaWaaSbaaSqaa8qacaaIZaaapaqabaaaaa@39C2@ .

Therefore, the only non-vanishing matrix element is

i| p 1 |j= L 1 | p 1 | L ' 2 =α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa4raa8aabaWdbiaadMgaaeqacaGLPmIaay5bSdGaamiCa8aadaWg aaWcbaWdbiaaigdaa8aabeaak8qadaGhcaqab8aabaWdbiaadQgaai aawEa7caGLQmcacqGH9aqpdaGhbaWdaeaapeGaamita8aadaWgaaWc baWdbiaaigdaa8aabeaaaOWdbeqacaGLPmIaay5bSdGaamiCa8aada WgaaWcbaWdbiaaigdaa8aabeaak8qadaGhcaqab8aabaWdbiaadYea caGGNaWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaay5bSlaawQ Yiaiabg2da9iabeg7aHbaa@507B@   (12)

Then, equation would becomes

ϵ( κ )=± 1 2 ( ϵ g 2 + 4 2 m 2 κ 1 2 α 2 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfiaeaaaaaaaaa8qacqWF1pG8 daqadaWdaeaapeGaeqOUdSgacaGLOaGaayzkaaGaeyypa0JaeyySae 7aaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaaiikaiab=v=a Y=aadaqhaaWcbaWdbiaadEgaa8aabaWdbiaaikdaaaGccqGHRaWkda WcaaWdaeaapeGaaGinaiabl+qiO9aadaahaaWcbeqaa8qacaaIYaaa aaGcpaqaa8qacaWGTbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaeq OUdS2damaaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiabeg7a H9aadaahaaWcbeqaa8qacaaIYaaaaOGaaiyka8aadaahaaWcbeqaa8 qacaaIXaGaai4laiaaikdaaaaaaa@6014@   (13)

Therefore,

E n ( k )= 2 ( k 0 + κ ) 2 2m ± 1 2 ( ϵ g 2 + 4 2 m 2 κ 1 2 α 2 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaa peGabm4Aa8aagaWcaaWdbiaawIcacaGLPaaacqGH9aqpdaWcaaWdae aapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaGccaGGOaGabm4A a8aagaWcamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgUcaRiqbeQ 7aR9aagaWca8qacaGGPaWdamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaaikdacaWGTbaaaiabgglaXoaalaaapaqaa8qacaaIXaaapa qaa8qacaaIYaaaaiaacIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbciab=v=aY=aadaqhaaWcbaWdbiaadEgaa8aabaWdbi aaikdaaaGccqGHRaWkdaWcaaWdaeaapeGaaGinaiabl+qiO9aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGTbWdamaaCaaaleqaba WdbiaaikdaaaaaaOGaeqOUdS2damaaDaaaleaapeGaaGymaaWdaeaa peGaaGOmaaaakiabeg7aH9aadaahaaWcbeqaa8qacaaIYaaaaOGaai yka8aadaahaaWcbeqaa8qacaaIXaGaai4laiaaikdaaaaaaa@6ADC@   (14)

Using the Slater Koster technique, we find the form for E(k) for the lowest two levels for a face centered cubic lattice.

For fcc lattice, d=0 is the zeroth neighbor at a(0,0,0), d=1 is the nearest neighbor at a(1/2,1/2,0) and d=2 are the second nearest neighbor at a(1,0,0).

E n ( k )= ϵ n ( 0 )+ ϵ n ( 1 )[cos a 2 ( k y + k z )+cos a 2 ( k y k z )+cos a 2 ( k z + k x )+cos a 2 ( k z k x )+cos a 2 ( k x + k y )+cos a 2 ( k x k y )]+... MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaa peGabm4Aa8aagaWcaaWdbiaawIcacaGLPaaacqGH9aqptuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aY=aadaWgaaWc baWdbiaad6gaa8aabeaak8qadaqadaWdaeaapeGaaGimaaGaayjkai aawMcaaiabgUcaRiab=v=aY=aadaWgaaWcbaWdbiaad6gaa8aabeaa k8qadaqadaWdaeaapeGaaGymaaGaayjkaiaawMcaaiaacUfacaWGJb Gaam4BaiaadohadaWcaaWdaeaapeGaamyyaaWdaeaapeGaaGOmaaaa daqadaWdaeaapeGaam4Aa8aadaWgaaWcbaWdbiaadMhaa8aabeaak8 qacqGHRaWkcaWGRbWdamaaBaaaleaapeGaamOEaaWdaeqaaaGcpeGa ayjkaiaawMcaaiabgUcaRiaadogacaWGVbGaam4Camaalaaapaqaa8 qacaWGHbaapaqaa8qacaaIYaaaamaabmaapaqaa8qacaWGRbWdamaa BaaaleaapeGaamyEaaWdaeqaaOWdbiabgkHiTiaadUgapaWaaSbaaS qaa8qacaWG6baapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaam4y aiaad+gacaWGZbWaaSaaa8aabaWdbiaadggaa8aabaWdbiaaikdaaa WaaeWaa8aabaWdbiaadUgapaWaaSbaaSqaa8qacaWG6baapaqabaGc peGaey4kaSIaam4Aa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaOWdbi aawIcacaGLPaaacqGHRaWkcaWGJbGaam4BaiaadohadaWcaaWdaeaa peGaamyyaaWdaeaapeGaaGOmaaaadaqadaWdaeaapeGaam4Aa8aada WgaaWcbaWdbiaadQhaa8aabeaak8qacqGHsislcaWGRbWdamaaBaaa leaapeGaamiEaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRiaado gacaWGVbGaam4Camaalaaapaqaa8qacaWGHbaapaqaa8qacaaIYaaa amaabmaapaqaa8qacaWGRbWdamaaBaaaleaapeGaamiEaaWdaeqaaO WdbiabgUcaRiaadUgapaWaaSbaaSqaa8qacaWG5baapaqabaaak8qa caGLOaGaayzkaaGaey4kaSIaam4yaiaad+gacaWGZbWaaSaaa8aaba Wdbiaadggaa8aabaWdbiaaikdaaaWaaeWaa8aabaWdbiaadUgapaWa aSbaaSqaa8qacaWG4baapaqabaGcpeGaeyOeI0Iaam4Aa8aadaWgaa WcbaWdbiaadMhaa8aabeaaaOWdbiaawIcacaGLPaaacaGGDbGaey4k aSIaaiOlaiaac6cacaGGUaaaaa@A5BD@   (15)

We expand your our results for the L-point in a Taylor expansion. At L point, k 0 =( π a , π a , π a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4Aa8aagaWcamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da 9maabmaapaqaa8qadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaWGHb aaaiaacYcadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaWGHbaaaiaa cYcadaWcaaWdaeaapeGaeqiWdahapaqaa8qacaWGHbaaaaGaayjkai aawMcaaaaa@4640@

Let  k = k 0 + κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4Aa8aagaWca8qacqGH9aqpceWGRbWdayaalaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaey4kaSIafqOUdS2dayaalaaaaa@3E3B@

then

cos a 2 ( k y + k z )=cos a 2 ( 2π a + κ y + κ z )=1+ 1 2 a 2 4 ( κ y + κ z ) 2 cos a 2 ( k y k z )=1 1 2 a 2 4 ( κ y κ z ) 2 cos k x a=cos( a( π a + κ x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4yaiaad+gacaWGZbWaaSaaa8aabaWdbiaadggaa8aabaWdbiaa ikdaaaWaaeWaa8aabaWdbiaadUgapaWaaSbaaSqaa8qacaWG5baapa qabaGcpeGaey4kaSIaam4Aa8aadaWgaaWcbaWdbiaadQhaa8aabeaa aOWdbiaawIcacaGLPaaacqGH9aqpcaWGJbGaam4BaiaadohadaWcaa WdaeaapeGaamyyaaWdaeaapeGaaGOmaaaadaqadaWdaeaapeWaaSaa a8aabaWdbiaaikdacqaHapaCa8aabaWdbiaadggaaaGaey4kaSIaeq OUdS2damaaBaaaleaapeGaamyEaaWdaeqaaOWdbiabgUcaRiabeQ7a R9aadaWgaaWcbaWdbiaadQhaa8aabeaaaOWdbiaawIcacaGLPaaacq GH9aqpcqGHsislcaaIXaGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aa baWdbiaaikdaaaWaaSaaa8aabaWdbiaadggapaWaaWbaaSqabeaape GaaGOmaaaaaOWdaeaapeGaaGinaaaacaGGOaGaeqOUdS2damaaBaaa leaapeGaamyEaaWdaeqaaOWdbiabgUcaRiabeQ7aR9aadaWgaaWcba WdbiaadQhaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWdbiaaikda aaGccaWGJbGaam4BaiaadohadaWcaaWdaeaapeGaamyyaaWdaeaape GaaGOmaaaadaqadaWdaeaapeGaam4Aa8aadaWgaaWcbaWdbiaadMha a8aabeaak8qacqGHsislcaWGRbWdamaaBaaaleaapeGaamOEaaWdae qaaaGcpeGaayjkaiaawMcaaiabg2da9iaaigdacqGHsisldaWcaaWd aeaapeGaaGymaaWdaeaapeGaaGOmaaaadaWcaaWdaeaapeGaamyya8 aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaI0aaaaiaacIca cqaH6oWApaWaaSbaaSqaa8qacaWG5baapaqabaGcpeGaeyOeI0Iaeq OUdS2damaaBaaaleaapeGaamOEaaWdaeqaaOWdbiaacMcapaWaaWba aSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4CaiaadUgapaWaaS baaSqaa8qacaWG4baapaqabaGcpeGaamyyaiabg2da9iaadogacaWG VbGaam4Camaabmaapaqaa8qacaWGHbWaaeWaa8aabaWdbmaalaaapa qaa8qacqaHapaCa8aabaWdbiaadggaaaGaey4kaSIaeqOUdS2damaa BaaaleaapeGaamiEaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkai aawMcaaaaa@9AB4@   (16)

Therefore

E n ( k )= E n ( k 0 + κ )=ϵ ' n ( 0 )+ϵ ' n ( 1 ) ( κ x + κ y + κ z ) 2 /2+( ϵ ' n ( 2 )ϵ ' n ( 1 )/2 )( κ x 2 + κ y 2 + κ z 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaa peGabm4Aa8aagaWcaaWdbiaawIcacaGLPaaacqGH9aqpcaWGfbWdam aaBaaaleaapeGaamOBaaWdaeqaaOWdbmaabmaapaqaa8qaceWGRbWd ayaalaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaey4kaSIafqOUdS 2dayaalaaapeGaayjkaiaawMcaaiabg2da9mrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfiGae8x9diVaai4ja8aadaWgaaWcba Wdbiaad6gaa8aabeaak8qadaqadaWdaeaapeGaaGimaaGaayjkaiaa wMcaaiabgUcaRiab=v=aYlaacEcapaWaaSbaaSqaa8qacaWGUbaapa qabaGcpeWaaeWaa8aabaWdbiaaigdaaiaawIcacaGLPaaacaGGOaGa eqOUdS2damaaBaaaleaapeGaamiEaaWdaeqaaOWdbiabgUcaRiabeQ 7aR9aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGHRaWkcqaH6oWA paWaaSbaaSqaa8qacaWG6baapaqabaGcpeGaaiyka8aadaahaaWcbe qaa8qacaaIYaaaaOGaai4laiaaikdacqGHRaWkdaqadaWdaeaapeGa e8x9diVaai4ja8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqada WdaeaapeGaaGOmaaGaayjkaiaawMcaaiabgkHiTiab=v=aYlaacEca paWaaSbaaSqaa8qacaWGUbaapaqabaGcpeWaaeWaa8aabaWdbiaaig daaiaawIcacaGLPaaacaGGVaGaaGOmaaGaayjkaiaawMcaamaabmaa paqaa8qacqaH6oWApaWaa0baaSqaa8qacaWG4baapaqaa8qacaaIYa aaaOGaey4kaSIaeqOUdS2damaaDaaaleaapeGaamyEaaWdaeaapeGa aGOmaaaakiabgUcaRiabeQ7aR9aadaqhaaWcbaWdbiaadQhaa8aaba WdbiaaikdaaaaakiaawIcacaGLPaaaaaa@9000@   (17)

 Now, let’s use κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@39F6@ , κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGOmaaWdaeqaaaaa@39F7@ , κ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaG4maaWdaeqaaaaa@39F8@   coordinate where κ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdS2damaaBaaaleaapeGaaGymaaWdaeqaaaaa@39F6@  is parallel to (111) direction.

Then we obtain followed equation.

E n ( k 0 + κ )= ϵ n '' ( 0 )+ ϵ n '' ( 1 ) κ 1 2 + ϵ n '' ( 2 ) κ 2 =α+β κ 1 2 +γ( κ 2 2 + κ 3 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaa peGabm4Aa8aagaWcamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgU caRiqbeQ7aR9aagaWcaaWdbiaawIcacaGLPaaacqGH9aqptuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aY=aadaqhaa WcbaWdbiaad6gaa8aabaWdbiaabEcacaqGNaaaaOWaaeWaa8aabaWd biaaicdaaiaawIcacaGLPaaacqGHRaWkcqWF1pG8paWaa0baaSqaa8 qacaWGUbaapaqaa8qacaqGNaGaae4jaaaakmaabmaapaqaa8qacaaI XaaacaGLOaGaayzkaaGaeqOUdS2damaaDaaaleaapeGaaGymaaWdae aapeGaaGOmaaaakiabgUcaRiab=v=aY=aadaqhaaWcbaWdbiaad6ga a8aabaWdbiaabEcacaqGNaaaaOWaaeWaa8aabaWdbiaaikdaaiaawI cacaGLPaaacqaH6oWApaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da 9iabeg7aHjabgUcaRiabek7aIjabeQ7aR9aadaqhaaWcbaWdbiaaig daa8aabaWdbiaaikdaaaGccqGHRaWkcqaHZoWzdaqadaWdaeaapeGa eqOUdS2damaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiabgU caRiabeQ7aR9aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaikdaaaaa kiaawIcacaGLPaaaaaa@7E77@   (18)

Now, let’s Taylor expand the result.

E n ( k )= 2 2m (| k 0 | 2 +2| k 0 | κ 2 )± 1 2 ( ϵ g 2 + 4 2 m 2 α 2 κ 1 2 ) 1/2 =α'+β' ( κ 1 +δ) 2 γ'( κ 2 2 + κ   2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaa peGabm4Aa8aagaWcaaWdbiaawIcacaGLPaaacqGH9aqpdaWcaaWdae aapeGaeS4dHG2damaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaa ikdacaWGTbaaaiaacIcacaGG8bGabm4Aa8aagaWcamaaBaaaleaape GaaGimaaWdaeqaaOWdbiaacYhapaWaaWbaaSqabeaapeGaaGOmaaaa kiabgUcaRiaaikdadaabdaWdaeaapeGabm4Aa8aagaWcamaaBaaale aapeGaaGimaaWdaeqaaaGcpeGaay5bSlaawIa7aiabeQ7aR9aadaah aaWcbeqaa8qacaaIYaaaaOGaaiykaiabgglaXoaalaaapaqaa8qaca aIXaaapaqaa8qacaaIYaaaaiaacIcatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbciab=v=aY=aadaqhaaWcbaWdbiaadEgaa8 aabaWdbiaaikdaaaGccqGHRaWkdaWcaaWdaeaapeGaaGinaiabl+qi O9aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGTbWdamaaCa aaleqabaWdbiaaikdaaaaaaOGaeqySde2damaaCaaaleqabaWdbiaa ikdaaaGccqaH6oWApaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYa aaaOGaaiyka8aadaahaaWcbeqaa8qacaaIXaGaai4laiaaikdaaaGc cqGH9aqpcqaHXoqycaGGNaGaey4kaSIaeqOSdiMaai4jaiaacIcacq aH6oWApaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaeqiT dqMaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaOGaeq4SdCMaai4jam aabmaapaqaa8qacqaH6oWApaWaa0baaSqaa8qacaaIYaaapaqaa8qa caaIYaaaaOGaey4kaSIaeqOUdS2damaaBaaaleaapeGaaeiOa8aada ahaaadbeqaa8qacaaIYaaaaaWcpaqabaaak8qacaGLOaGaayzkaaaa aa@8F1D@   (19)

This result suggests that carriers at L point have anisotropic effective mass tensor.

Application of perturbation theory

Using perturbation theory, we find the form of the secular equation for the valence band of Si with Γ 25 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaikdacaaI1aaapaqaa8qacqGHRaWk aaaaaa@3B10@  symmetry. For the valence band of Si with Γ 25 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaikdacaaI1aaapaqaa8qacqGHRaWk aaaaaa@3B10@  symmetry, we use the degenerate kp MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiaadchaaaa@3914@  perturbation theory. Due to the parity requirement ( Γ 25 + | H' | Γ 25 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaWaa8aabaWdbiaabo5apaWaa0baaSqaa8qacaaIYaGaaGynaaWd aeaapeGaey4kaScaaOWaaqWaa8aabaWdbiaadIeacaGGNaaacaGLhW UaayjcSdGaae4Kd8aadaqhaaWcbaWdbiaaikdacaaI1aaapaqaa8qa cqGHRaWkaaaakiaawMYicaGLQmcaaaa@45AD@ =0 since H’ has the odd parity), we have to to the second-order perturbation.

Since H’ transforms like Γ 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaigdacaaI1aaapaqaa8qacqGHsisl aaaaaa@3B1A@  and Γ 25 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaikdacaaI1aaapaqaa8qacqGHRaWk aaaaaa@3B10@   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4LIqmaaa@3938@   Γ 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaigdacaaI1aaapaqaa8qacqGHsisl aaaaaa@3B1A@  = Γ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiabgkHiTaaaaaa@3A5C@  + Γ 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaigdacaaIYaaapaqaa8qacqGHsisl aaaaaa@3B17@  + Γ 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaigdacaaI1aaapaqaa8qacqGHsisl aaaaaa@3B1A@  + Γ 25 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaikdacaaI1aaapaqaa8qacqGHsisl aaaaaa@3B1B@ ,

Γ 25 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaikdacaaI1aaapaqaa8qacqGHRaWk aaaaaa@3B10@  is coupled with only the following intermediated states;

Γ 2 , Γ 12 , Γ 15 , Γ 25 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Kd8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiabgkHiTaaakiaa cYcacaqGtoWdamaaDaaaleaapeGaaGymaiaaikdaa8aabaWdbiabgk HiTaaakiaacYcacaqGtoWdamaaDaaaleaapeGaaGymaiaaiwdaa8aa baWdbiabgkHiTaaakiaacYcacaqGtoWdamaaDaaaleaapeGaaGOmai aaiwdaa8aabaWdbiabgkHiTaaaaaa@4849@    (20)

For k =( κ,κ,κ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4Aa8aagaWca8qacqGH9aqpdaqadaWdaeaapeGaeqOUdSMaaiil aiabeQ7aRjaacYcacqaH6oWAaiaawIcacaGLPaaaaaa@4174@  where 0<κ< π a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iabeQ7aRjabgYda8maalaaapaqaa8qacqaHapaC a8aabaWdbiaadggaaaaaaa@3E94@ , the secular equation becomes followed equation.

E= E 0 + L+2M±2N 3 κ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da9iaadweapaWaaWbaaSqabeaapeGaaGimaaaakiab gUcaRmaalaaapaqaa8qacaWGmbGaey4kaSIaaGOmaiaad2eacqGHXc qScaaIYaGaamOtaaWdaeaapeGaaG4maaaacqaH6oWApaWaaWbaaSqa beaapeGaaGOmaaaaaaa@463E@   (21)

 If we suppose that our silicon sample is a thin film with 10 nm thick grown pseudomorphically on a germanium substrate, what happens to E(k) for the silicon valence band in the thin film if the germanium substrate is oriented along a (100) direction or if it is oriented along a (110) direction? Since there is a lattice mismatch between Si and Ge, thin silicon film has tensile stress when it grows on Ge substrate. Therefore, the symmetry of the crystal is reduced as follows:

( 100 )directionOh D 4h ( 110 )directionOh D 2h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aaqaaaaaaaaaWdbmaabmaapaqaa8qacaaIXaGaaGimaiaaicdaaiaa wIcacaGLPaaacaqGKbGaaeyAaiaabkhacaqGLbGaae4yaiaabshaca qGPbGaae4Baiaab6gacaWGpbGaamiAaiabgkziUkaadseapaWaaSba aSqaa8qacaaI0aGaamiAaaWdaeqaaaGcbaWdbmaabmaapaqaa8qaca aIXaGaaGymaiaaicdaaiaawIcacaGLPaaacaqGKbGaaeyAaiaabkha caqGLbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaWGpbGaamiAai abgkziUkaadseapaWaaSbaaSqaa8qacaaIYaGaamiAaaWdaeqaaaaa aaa@5CB2@   (22)

Conclusion

Nature of SnO2 particles strongly influenced the corresponding Raman spectra. According to our study using group theory, a single SnO2 crystal with rutile-type structure shows four Raman active modes, A 1g, B 1g, B 2g and E g. The additional A  and E μ modes correspond to transverse-optical (TO) and longitudinal-optical (LO) vibrations. Moreover, we applied application of perturbation theory, consequently, the spectrum of commercial SnO2 sample showed the Raman bands in accordance with the theory.

Conflicts of interest

The authors declare no conflict of interest with respect to the publication of this manuscript.

Acknowledgments

None.

Funding

None.

References

  1. Yoichi Ogo, Hidenori Hiramatsu, Kenji Nomura, et al.  p-channel thin-film transistor using p-type oxide semiconductor, sno.   Applied Physics Letters. 2008;93(3).
  2. Shujiang Ding, Deyan Luan, Freddy Yin, et al.  Sno2 nanosheets grown on graphene sheets with enhanced lithium storage properties.   Chemical Communications. 2011;47(25):7155–7157.
  3. Spencer JA, Mock AL, Jacobs AG, et al.  A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2o3, al2o3, in2o3, zno, sno2, cdo, nio, cuo, and sc2o3.   Applied Physics Reviews. 2022;9(1).
  4. Shumin Huang, Peiyu Li, Jing Wang, et al.  Modification of sno2 electron transport layer: brilliant strategies to make perovskite solar cells stronger.   Chemical Engineering Journal. 2022;439.
  5. Pfeiffer CA, Economou EN, Ngai KL. Surface polaritons in a circularly cylindrical interface: surface plasmons.   Physical review B. 1974;10(8):3038.
  6. Juan Alejandro Herbsommer, Gerd Schuppener, Robert Floyd Payne.  Dielectric waveguide with non-planar interface surface and mating deformable material. 2016.
  7. Morcrette M, Chabre Y, Vaughan G, et al.  In situ x-ray diffraction techniques as a powerful tool to study battery electrode materials. Electrochimica Acta. 2002;47(19):3137–3149.
  8. Alain Lafond, Léo Choubrac, Catherine Guillot-Deudon, et al.  X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic cu2znsns4 compound.   Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2014;70(2):390–394.
  9. Tamura N, Celestre RS, MacDowell AA, et al.  Submicron x-ray diffraction and its applications to problems in materials and environmental science.   Review of scientific instruments. 2002;73(3):1369–1372.
  10. Wangwei Ren, Jingkai Yang, Jiaxin Zhang, et al.  Recent progress in sno2/g-c3n4 heterojunction photocatalysts: synthesis, modification, and application.   Journal of Alloys and Compounds. 2022;906.
  11. Zhicheng Cai, Sunghoon Park.  A superior sensor consisting of porous, pd nanoparticle–decorated sno2 nanotubes for the detection of ppb-level hydrogen gas.   Journal of Alloys and Compounds. 2022;907.
  12. William Raymond Scott. Group theory. Courier Corporation. 2012.
  13. Wu-Ki Tung. Group theory in physics. 1985;1.
Creative Commons Attribution License

©2022 Jekal, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.