Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Mini Review Volume 4 Issue 2

Chemical compound formation and diffusion – as parallel processes in grain boundary

Petelin AL, Bokstein BS, Novikov AA, Novikova EA

Department of Physical Chemistry, National University of Science and Technology “MISIS”, Russia

Correspondence: Petelin AL, Department of Physical Chemistry, National University of Science and Technology “MISIS”, Leninsky Pr. 4, Moscow, RU-119049, Russia

Received: January 29, 2020 | Published: March 11, 2020

Citation: Petelin AL, Bokstein BS, Novikov AA, et al. Chemical compound formation and diffusion – as parallel processes in grain boundary. Material Sci & Eng. 2020;4(2):45-47. DOI: 10.15406/mseij.2020.04.00125

Download PDF

Abstract

The new model of grain boundary diffusion is developed taking into account the simultaneous grain boundary diffusion (in Fisher-Gibbs approximation) and chemical interaction, which leads to the formation of the molecules MN type in binary system. The evaluation is made of “reaction” effect on the rate of the whole process.

Keywords: chemical compound, kinetic, diffusion, fisher’s model, grain boundaries

Introduction

The Fischer's model1 is the base of the standard description of the diffusion along grain boundary (GB) with leakage to grain bulk. Various versions of calculation diffusant concentration field were realized: for self diffusion and hetero diffusion, with a grain boundary segregation2,3 and formation of atomic complexes in GB,4‒6 for various temperature areas7 and various structural types of GBs.8 It may seem strange, but the model describing influence of chemical processes in GB, which bind a part of diffusing atoms, on the rate of their moving in GB wasn't developed. Though the experimental fact of grain boundary diffusion (GBD) delay due to precipitation of nanoparticles in GB is well-known, it is usually connected with the idea that fine particles which are formed in GB reduce the section of boundary and diffusive flux. The direction of this investigation is the development the Fisher’s model of GBD taking into account simultaneous chemical interaction of diffusive and matrix atoms in GB. The events of this kind – parallel carrying out two processes with participation of the same atoms – are well-known in heterogeneous kinetics.9 As a typical example of those processes it can be considered the steel nitration process.

Model

Let's consider a bicrystal sample consists of substance M – two grains with grain boundary in the middle. The thickness of GB is δ (Figure 1). The substance N is diffusing impurity which can diffuse along GB. We propose there are three processes during GBD at the same time: two correspond to Fisher's model - advanced diffusion of N atoms in GB and leakage to the bulk - and the third, connected with forming in GB of a chemical compound of MpNq type. Further we will restrict our consideration to the simplest case of MN compound. For description of the first two processes we use Fisher's model: GB is located normally to external surface, the substance N moves from a surface where its concentration cs = const, along GB (on y axis), with diffusion coefficient Db, and also run from GB into grain bulk (along x axis) with coefficient D<<Db (Figure 1). Let's keep all assumptions of Fisher’s model, corresponding to the B - regime according to Harrison /7/: width of GB is, where t is the time of diffusion annealing, we will neglect direct diffusion from the surface to the bulk. Let's describe a process of formation of MN molecule in GB as a chemical reaction:

M+N k ' MN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai abgUcaRiaad6eadaGdKaqaaKqzadGaam4AaSWaaWbaaKqbagqabaqc LbmacaGGNaaaaaqcfayabiaawkziaiaad2eacaWGobaaaa@4173@     (1)

Figure 1 N diffusion in GB with leakage to the bulk, δ – the GB thickness.

According to the theory of simple collisions /9/ the reaction rate v can be described as:

v= d c b dt = k ' c b (M) c b (N) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b Gaeyypa0JaeyOeI0scfa4aaSaaaeaajugibiaadsgacaWGJbqcfa4a aSbaaeaajugibiaadkgaaKqbagqaaaqaaKqzGeGaamizaiaadshaaa Gaeyypa0Jaam4AaKqbaoaaCaaabeqaaiaacEcaaaqcLbsacaWGJbWc daWgaaqcfayaaKqzadGaamOyaaqcfayabaqcLbsacaGGOaGaamytai aacMcacaWGJbWcdaWgaaGcbaqcLbmacaWGIbaakeqaaKqzGeGaaiik aiaad6eacaGGPaaaaa@526C@     (2)

where cb(M) and cb(N) – are the concentrations of M and N in GB, and k – constant of the process rate (1). In a bulk we neglect formation of MN compound. As cb(M)=const, instead of (2) it is possible to write:

v=k c b (N) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODai abg2da9iaadUgacaWGJbWaaSbaaeaajugWaiaadkgaaKqbagqaaiaa cIcacaWGobGaaiykaaaa@3F4D@     (3)

where k= k ' c b (M) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaadUgadaahaaqabeaacaGGNaaaaiaadogalmaaBaaajuaG baqcLbmacaWGIbaajuaGbeaacaGGOaGaamytaiaacMcaaaa@40A7@ .Taking into account reaction (3), Fisher's equations will look like:

c(x,y,t) t =D 2 c(x,y,t) x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGJbGaaiikaiaadIhacaGGSaGaamyEaiaacYcacaWG 0bGaaiykaaqaaiabgkGi2kaadshaaaGaeyypa0Jaamiramaalaaaba GaeyOaIy7aaWbaaeqabaqcLbmacaaIYaaaaKqbakaadogacaGGOaGa amiEaiaacYcacaWG5bGaaiilaiaadshacaGGPaaabaGaeyOaIyRaam iEamaaCaaabeqaaKqzadGaaGOmaaaaaaaaaa@51D1@     (4)

c b (y,t) t = D b 2 c b (y,t) y 2 + 2 sδ D c(x,y,t) x | x=± δ 2 k c b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGJbWaaSbaaeaacaWGIbaabeaacaGGOaGaamyEaiaa cYcacaWG0bGaaiykaaqaaiabgkGi2kaadshaaaGaeyypa0Jaamiram aaBaaabaGaamOyaaqabaWaaSaaaeaacqGHciITdaahaaqabeaajugW aiaaikdaaaqcfaOaam4yamaaBaaabaGaamOyaaqabaGaaiikaiaadM hacaGGSaGaamiDaiaacMcaaeaacqGHciITcaWG5bWaaWbaaeqakeaa jugWaiaaikdaaaaaaKqbakabgUcaRmaalaaabaGaaGOmaaqaaiaado hacqaH0oazaaGaamiramaalaaabaGaeyOaIyRaam4yaiaacIcacaWG 4bGaaiilaiaadMhacaGGSaGaamiDaiaacMcaaeaacqGHciITcaWG4b aaamaaeeaabaWaaSbaaeaacaWG4bGaeyypa0JaeyySae7aaSaaaeaa cqaH0oazaeaacaaIYaaaaaqabaaacaGLhWoacqGHsislcaWGRbGaam 4yamaaBaaabaqcLbmacaWGIbaajuaGbeaaaaa@6F4A@     (5)

Here c is the concentration of the element N in a grain bulk. The third term of sum in the right part of equation (5) describes reduction of concentration of diffusing element in GB due to the binding of part of N atoms – this is a new element of the model. The second term of the sum, as well as at Fisher’s model, describes leakage of N atoms from GB to the bulk. s is a segregation factor

s=( c b c )| x=±δ/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb Gaeyypa0tcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadogajuaG daWgaaWcbaqcLbmacaWGIbaaleqaaaGcbaqcLbsacaWGJbaaaaGcca GLOaGaayzkaaqcfa4aaqqaaOqaaKqbaoaaBaaaleaajugibiaadIha cqGH9aqpcqGHXcqScqaH0oazcaGGVaGaaGOmaaWcbeaaaOGaay5bSd aaaa@4BB7@     (6)

Results and discussion

Solving the equation (4), and, according to the Fisher’s quasistationary condition, assuming c b t =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGaae aacqGHciITcaWGJbWaaSbaaeaajugWaiaadkgaaKqbagqaaaqaaiab gkGi2kaadshaaaGaeyypa0JaaGimaaaa@3FC7@ , we receive instead of the equation (5)

d 2 c b d y 2 ( k D b + 2 D sδ D b πt ) c b =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aajugibiaadsgajuaGdaahaaqabeaajugWaiaaikdaaaqcLbsacaWG Jbqcfa4aaSbaaeaajugibiaadkgaaKqbagqaaaqaaKqzGeGaamizai aadMhajuaGdaahaaqabeaajugWaiaaikdaaaaaaKqzGeGaeyOeI0Ia aiikaKqbaoaalaaabaqcLbsacaWGRbaajuaGbaqcLbsacaWGebqcfa 4aaSbaaeaajugWaiaadkgaaKqbagqaaaaajugibiabgUcaRKqbaoaa laaabaqcLbsacaaIYaqcfa4aaOaaaeaajugibiaadseaaKqbagqaaa qaaKqzGeGaam4Caiabes7aKjaadseajuaGdaWgaaqaaKqzadGaamOy aaqcfayabaWaaOaaaeaajugibiabec8aWjaadshaaKqbagqaaaaaju gibiaacMcacaWGJbWcdaWgaaqcfayaaKqzadGaamOyaaqcfayabaqc LbsacqGH9aqpcaaIWaaaaa@6635@     (7)

The equation (7) differs from the usual Fisher’s by the term ( k D b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaam4AaaGcbaqcLbsacaWGebWcdaWgaaqaaKqzadGaamOy aaWcbeaaaaaaaa@3BCB@ ) which describes contribution of chemical interaction in GBD. The solution of the equation (7) looks like

c b = c s exp( y L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yaS WaaSbaaKqbagaajugWaiaadkgaaKqbagqaaiabg2da9iaadogalmaa BaaajuaGbaqcLbmacaWGZbaajuaGbeaaciGGLbGaaiiEaiaacchada qadaqaaiabgkHiTmaalaaabaGaamyEaaqaaiaadYeaaaaacaGLOaGa ayzkaaaaaa@4755@     (8)

where  

L= L k L D ( L k 2 + L D 2 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitai abg2da9maalaaabaGaamitamaaBaaabaqcLbmacaWGRbaajuaGbeaa caWGmbWaaSbaaeaajugWaiaadseaaKqbagqaaaqaamaabmaabaGaam itaSWaa0baaKqbagaajugWaiaadUgaaKqbagaajugWaiaaikdaaaqc faOaey4kaSIaamitaSWaa0baaKqbagaajugWaiaadseaaKqbagaaju gWaiaaikdaaaaajuaGcaGLOaGaayzkaaWcdaahaaqcfayabeaajugW aiaaigdacaGGVaGaaGOmaaaaaaaaaa@5337@     (9)

L k 2 = D d k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaqhaaqaaKqzadGaam4AaaWcbaqcLbmacaaIYaaaaKqzGeGaeyyp a0tcfa4aaSaaaOqaaKqzGeGaamiraKqbaoaaBaaaleaajugWaiaads gaaSqabaaakeaajugibiaadUgaaaaaaa@4390@     (10)

and

L D 2 = sδ D b πt 2 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaqhaaqaaKqzadGaamiraaWcbaqcLbmacaaIYaaaaKqzGeGaeyyp a0tcfa4aaSaaaOqaaKqzGeGaam4Caiabes7aKjaadseajuaGdaWgaa WcbaqcLbmacaWGIbaaleqaaKqbaoaakaaakeaajugibiabec8aWjaa dshaaSqabaaakeaajugibiaaikdajuaGdaGcaaGcbaqcLbsacaWGeb aaleqaaaaaaaa@4BD3@     (11)

In these equations – LD is diffusion length or usual Fisher’s length, i.e. distance on which concentration of diffusing substance decreases in “e” times owing to GBD and outflow, and Lk - kinetic length - concentration decreases due to formation of a chemical compound MN. Linear dependence of lncb upon y remains, but as L k 2 + L D 2 > L D 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitaS Waa0baaKqbagaajugWaiaadUgaaKqbagaajugWaiaaikdaaaqcfaOa ey4kaSIaamitaSWaa0baaKqbagaajugWaiaadseaaKqbagaajugWai aaikdaaaqcfaOaeyOpa4JaamitaSWaa0baaKqbagaajugWaiaadsea aKqbagaajugWaiaaikdaaaaaaa@4BA2@ , diffusion at GB is slowed down. In accordance with the system (8–11) we can introduce two limiting regimes of GBD. In the first the rate of diffusion is controlled by atom movement in GB and leakage to the bulk (diffusion regime). In the second – by reaction of MN molecule formation (kinetic regime). The border between these two regimes can be found from the condition L k = L D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbWdamaaBaaabaqcLbmapeGaam4Aaaqcfa4daeqaa8qa cqGH9aqpcaWGmbWdamaaBaaabaqcLbmapeGaamiraaqcfa4daeqaaa aa@3F2B@ . We can transform LD from (11) to

L D 2 = π α D b t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitaS Waa0baaKqbagaajugWaiaadseaaKqbagaajugWaiaaikdaaaqcfaOa eyypa0ZaaOaaaeaacqaHapaCaeqaaiabeg7aHjaadseadaWgaaqaaK qzadGaamOyaaqcfayabaGaamiDaaaa@4605@     (12)

In (12) α= sδ 2 Dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde Maeyypa0ZaaSaaaeaacaWGZbGaeqiTdqgabaGaaGOmamaakaaabaGa amiraiaadshaaeqaaaaaaaa@3E64@  is a dimensionless parameter introduced by Le Claire11 For GBD in B-regime (according to Harrison /7/) α0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaeyizImQaaGimaiaacYcacaaIXaaaaa@3BFD@ .  We evaluate LD for T = 0,5 Tm, t = 3,6•105 s and α0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaeyizImQaaGimaiaacYcacaaIXaaaaa@3BFD@ . To estimate Db we use empirical rule12

D b =exp( E b RT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiraS WaaSbaaKqbagaajugWaiaadkgaaKqbagqaaiabg2da9iGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGfbWaaSbaaeaaca WGIbaabeaaaeaacaWGsbGaamivaaaaaiaawIcacaGLPaaaaaa@4493@     (13)

where Db = 10-5 m2s-1 and Eb = 9RTm.10 Consequently, D b 1,5 10 13 m 2 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebWdamaaBaaabaqcLbmapeGaamOyaaqcfa4daeqaa8qa cqGHijYUcaaIXaGaaiilaiaaiwdacaGGIaIaaGymaiaaicdal8aada ahaaqcfayabeaajugWa8qacqGHsislcaaIXaGaaG4maaaajuaGcaWG TbWdamaaCaaabeqaaKqzadWdbiaaikdaaaqcfaOaam4Ca8aadaahaa qabeaajugWa8qacqGHsislcaaIXaaaaaaa@4D3A@ , L D 2 10 10 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitaS Waa0baaKqbagaajugWaiaadseaaKqbagaajugWaiaaikdaaaqcfaOa eyyzImRaaGymaiaaicdadaahaaqabeaajugWaiabgkHiTiaaigdaca aIWaaaaKqbakaad2gadaahaaqabeaajugWaiaaikdaaaaaaa@4786@ and L D 10 5 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaabaqcLbmacaWGebaajuaGbeaacqGHLjYScaaIXaGaaGimaSWa aWbaaKqbagqabaqcLbmacqGHsislcaaI1aaaaKqbakaad2gaaaa@424B@ . To evaluate Lk, we need the value of k, which is unknown. We use the next consideration. To form a molecule of compound MN, the solute atom N has to jump and form the bond with solvent atom M. Other words it is necessary to overcome the potential barrier which is also unknown. Naturally, we assume that the rate constant k is less, than the atom jump frequency (Γb) in grain boundary. To evaluate the Γb value we remember that in cubic crystals D= a 2 12 Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamirai abg2da9maalaaabaGaamyyamaaCaaabeqaaKqzadGaaGOmaaaaaKqb agaacaaIXaGaaGOmaaaacqqHtoWraaa@3EC2@ , where a is inter atomic distance. For simple metals a ≈ 0,4nm and Γ b = 12 D b a 2 = 10 7 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC 0aaSbaa4qaaKqzadGaamOyaaqcfayabaGaeyypa0ZaaSaaaeaacaaI XaGaaGOmaiaadseadaWgaaqaaKqzadGaamOyaaqcfayabaaabaGaam yyamaaCaaabeqaaKqzadGaaGOmaaaaaaqcfaOaeyypa0JaaGymaiaa icdadaahaaqabeaajugWaiaaiEdaaaqcfaOaam4CamaaCaaabeqaaK qzadGaeyOeI0IaaGymaaaaaaa@4D62@  (for T =0,5 Tm). (14). Equalizing Lk from (10) and LD from (12) with α0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaeyizImQaaGimaiaacYcacaaIXaaaaa@3BFD@  and a ≈ 0,4 nm we recue

k * = 2,4 10 20 Γ t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aam aaCaaabeqaaiaacQcaaaGaeyypa0ZaaSaaaeaacaaIYaGaaiilaiaa isdacqGHflY1caaIXaGaaGimaSWaaWbaaKqbagqabaqcLbmacaaIYa GaaGimaaaaaKqbagaacqqHtoWrcqGHflY1caWG0bWaaWbaaeqabaqc LbmacaaIYaaaaaaaaaa@49E7@     (15)

Where k* is the k-value which corresponds to L k = L D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbWdamaaBaaabaqcLbmapeGaam4Aaaqcfa4daeqaa8qa cqGH9aqpcaWGmbWdamaaBaaabaqcLbmapeGaamiraaqcfa4daeqaaa aa@3F2B@  – the border between diffusion and kinetics regimes. One can see that increase of temperature and annealing time leads to decrease of k*. Now we can examine cb–dependence on the penetration depth using the system of equations (8 –11) with above evaluated values of Lk, LD and k*, the results are shown on Figure 2. From Eq. (15) it follows that k* depends inversely on Γ and t2. For t=100 hours=3,6•105 s k*=2•1010/ Г and with Г=107 s-1

k * =2 10 3 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaCaaabeqaaiaacQcaaaWdbiabg2da9iaaikda caGGIaIaaGymaiaaicdapaWaaWbaaeqabaqcLbmapeGaaG4maaaaju aGcaWGZbWdamaaCaaabeqaaKqzadWdbiabgkHiTiaaigdaaaaaaa@4349@

Naturally   k * <Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWdamaaCaaabeqaaKqzadGaaiOkaaaajuaGcqGH8aap cqqHtoWraaa@3C9B@ .

Figure 2 cb - dependence on the penetration depth, the line corresponds to k=k* and Lk=LD. The region above the line corresponds to diffusion, and below – to kinetic regimes.

Conclusion

The simultaneous realization of GBD with cleavage to the bulk and “reaction” of molecule MN type formation in binary system is discussed. It is shown that we can introduce two limiting regimes – diffusion and kinetic. The estimations show that the formation of MN molecule slows down GBD. Do not taking into account the kinetic correction, we obtain the data for sδDb, which are less then true ones.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

Creative Commons Attribution License

©2020 Petelin, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.