Submit manuscript...
eISSN: 2574-9927

Material Science & Engineering International Journal

Mini Review Volume 2 Issue 6

Analysis in magnetocrystalline anisotropy energy and intrinsic coercivity for body-centered cubic crystal lattices

Amrit Panthi, Bipin Lamichhane, Dhiraj Basnet, Anusha Lamichhane

Department of Electrical Engineering, Tribhuvan University, Nepal

Correspondence: Amrit Panthi, Department of Electrical Engineering, Institute of Engineering (IOE), Pulchowk Campus,Tribhuvan University, Nepal

Received: July 27, 2018 | Published: November 20, 2018

Citation: Panthi A, Lamichhane B, Basnet D, et al. Analysis in magnetocrystalline anisotropy energy and intrinsic coercivity for body-centered cubic crystal lattices. Material Sci & Eng. 2018;2(6):190–191. DOI: 10.15406/mseij.2018.02.00055

Download PDF

Abstract

Magnetic diploe moment can be modeled in a similar manner to a loop of wire carrying current i. Energy stored in that dipole moment can be obtained by integrating the torque produced by that current carrying current loop. The summation of magnetic dipole moment over the volume Δv yields a new property of material called magnetization. The property of aligning domains within a permanent magnet itself with its internal field and in absence of external field is called spontaneous magnetization. In other words, a permanent magnet should sustain flux by virtue of its own internal field that requires spontaneous alignment of the magnetic dipole moments, or spontaneous magnetization. Magnetic materials are made in such a way that they have properties in one preferred axis that is easily possible using anisotropic materials because of their lattice structure. MagnetoCrystalline anisotropy energy refers as the change in energy required to rotate the magnetic dipole µm by an angle ɸ that is required to rotate µm from a preferred axis (ɸ=0). Body centered cubic crystal lattice structure with six preferred direction of magnetization is depicted in this paper.

Energy stored in a dipole moment

The torque developed by a small area  depends upon the area of the strip and its magnetic flux density.

δT=iδABsinϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azcaWGubGaeyypa0JaamyAaiabes7aKjaadgeacaGGcbGaai4Caiaa cMgacaGGUbGaeqy1dygaaa@42C6@    (1)

Integrating the equation 1

T=iABsinϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiivai abg2da9iaacMgacaGGbbGaaiOqaiaacohacaGGPbGaaiOBaiabew9a Mbaa@3F78@    (2)

Current time’s area in a magnetic circuit can be symbolized as the Magnetic Dipole Moment.

μ m =iA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaWgaaWcbaqcLbmacaWGTbaaleqaaKqzGeGaeyypa0JaamyA aiaadgeaaaa@3E69@
T= μ m Bsinϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub Gaeyypa0JaeqiVd0wcfa4aaSbaaSqaaKqzadGaamyBaaWcbeaajugi biaadkeaciGGZbGaaiyAaiaac6gacqaHvpGzaaa@42F5@

The energy constituted within a dipole having torque ‘T’ can be derived from the equation (3)

E= T.d ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb Gaeyypa0tcfa4aa8qaaOqaaKqzGeGaamivaiaac6cacaWGKbaaleqa beqcLbsacqGHRiI8aiabew9aMbaa@4035@    (3)

E= μ o μ m Mcosϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb Gaeyypa0JaeyOeI0IaeqiVd0wcfa4aaSbaaSqaaKqzadGaam4BaaWc beaajugibiabeY7aTTWaaSbaaeaajugWaiaad2gaaSqabaqcLbsaca WGnbGaci4yaiaac+gacaGGZbGaeqy1dygaaa@4877@    (4)

The energy obtained from a magnetic dipole assuming it to be a current carrying loop is obtained as in equation (4).

Magnetocrystalline anisotropy

Some of the materials itself has preferred directions for magnetic moments.These alignments of the magnetic dipole moments in the lattice is called magnetocrystalline anisotropy. Equation (4) implies that the work done to rotate the µm with magnetization ‘M’. This work done is minimum when µm and M are aligned to each other.

Equation (4) can be written as;

E= μ o μ m M(12si n 2 ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb Gaeyypa0JaeyOeI0IaeqiVd0wcfa4aaSbaaSqaaKqzadGaam4BaaWc beaajugibiabeY7aTLqbaoaaBaaaleaajugWaiaad2gaaSqabaqcLb sacaWGnbGaaiikaiaaigdacqGHsislcaaIYaGaai4CaiaacMgacaGG Ubqcfa4aaWbaaSqabeaajugWaiaaikdaaaqcfa4aaSaaaOqaaKqzGe Gaeqy1dygakeaajugibiaaikdaaaGaaiykaaaa@51F6@    (5)

MagnetoCrystalline Anisotropy Energy Ek can be defined as the additional energy required to rotate µm from a preferred axis (ɸ=0).

E k =2 μ o μ m M(si n 2 ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaSqaaKqzGeGaam4AaaWcbeaajugibiabg2da9iaaikda cqaH8oqBlmaaBaaabaqcLbmacaWGVbaaleqaaKqzGeGaeqiVd0wcfa 4aaSbaaSqaaKqzadGaamyBaaWcbeaajugibiaad2eacaGGOaGaai4C aiaacMgacaGGUbWcdaahaaqabeaajugWaiaaikdaaaqcfa4aaSaaaO qaaKqzGeGaeqy1dygakeaajugibiaaikdaaaGaaiykaaaa@5118@    (6)

There are six preferred direction of magnetization in a body centered cubic crystal lattice.

[0, 0, 1] - Positive z direction

[0, 1, 0] - Positive y direction

[1, 0, 0] - Positive x direction

[0, 0, -1] - Negative z direction

[0, -1, 0] – Negative y direction

[-1, 0, 0] – Negative x direction

In order to increase the periodicity in equation (6), we modify the equation (6) as (Figure 1);

Figure 1 Magnetocrystalline anisotropy energy in a cubic crystal lattice structure.

E k =2 μ o μ m M(si n 2 ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaSqaaKqzGeGaam4AaaWcbeaajugibiabg2da9iaaikda cqaH8oqBlmaaBaaabaqcLbmacaWGVbaaleqaaKqzGeGaeqiVd0wcfa 4aaSbaaSqaaKqzadGaamyBaaWcbeaajugibiaad2eacaGGOaGaai4C aiaacMgacaGGUbWcdaahaaqabeaajugWaiaaikdaaaqcfa4aaSaaaO qaaKqzGeGaeqy1dygakeaajugibiaaikdaaaGaaiykaaaa@5118@    (7)

Plot for equation (7) is provided below; Equation (7) can be represented as

E k =k sin 2 2ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiabg2da9iaadUga ciGGZbGaaiyAaiaac6gajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaju gibiaaikdacqaHvpGzaaa@4547@     (8)

Here, k is commonly described as a crystallographic constant that is experimentally identified using a tool called torque magnetometer (Figure 2). Magnetocrystalline Anisotropy tries to maintain the alignment of its domains whereas the external electromagnets try to oppose the anisotropy. These two forces create a torque that is measured by the magnetometer. The data from the device can be used to obtain the crystellographic constant of a material. The action of two forces creating a net torgue is shown in the Figure 3. Considering a bulk of iron sample that is already spontaneously magnetized in its posative x axis direction or simply towards [1, 0, 0]. But whenever a sufficient external magnetizing field is applied to the sample then all the magnetic moments would align along with the magnetizing field of the electromagnet. Assuming Φ to be the angle of saturated magnetic field ‘M’ of the sample with posative x axis and Φh be the angle of the magnetizing field ‘H’ with posative x axis [1, 0, 0]. The component of M that acts along the direction of the applied field H is given as

Figure 2 An illustration of magnetomenter.

Figure 3 Illustration of Magnetization force (M) of the sample and the magnetizing field force of the electromagnet (H).

M H =Mcos( ϕ h ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaSbaaSqaaKqzadGaamisaaWcbeaajugibiabg2da9iaad2ea ciGGJbGaai4BaiaacohacaGGOaGaeqy1dy2cdaWgaaqaaKqzadGaam iAaaWcbeaajugibiabgkHiTiabew9aMjaacMcaaaa@4808@    (9)

Here, is the component of saturated magnetic field M along the direction of applied field H. Applied field energy per unit volume after when H is at an angle of  is given as

E H = μ 0 MHcos( ϕ h ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqaaKqzadGaamisaaWcbeaajugibiabg2da9iabgkHiTiab eY7aTTWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacaWGnbGaamisai GacogacaGGVbGaai4CaiaacIcacqaHvpGzlmaaBaaabaqcLbmacaWG ObaaleqaaKqzGeGaeyOeI0Iaeqy1dyMaaiykaaaa@4D90@    (10)

Now, the total energy stored in the sample will be the sum of  and . So, adding equations (8) and (10), we get

E=k sin 2 2ϕ μ 0 MHcos( ϕ h ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb Gaeyypa0Jaam4AaiGacohacaGGPbGaaiOBaKqbaoaaCaaaleqabaqc LbmacaaIYaaaaKqzGeGaaGOmaiabew9aMjabgkHiTiabeY7aTLqbao aaBaaaleaajugWaiaaicdaaSqabaqcLbsacaWGnbGaamisaiGacoga caGGVbGaai4CaiaacIcacqaHvpGzjuaGdaWgaaWcbaqcLbmacaWGOb aaleqaaKqzGeGaeyOeI0Iaeqy1dyMaaiykaaaa@556B@    (11)

Differentiating the equation (11) in order to obtain the minimum total energy.

   dE dϕ =2 k 1 sin4ϕ μ 0 MHsin( ϕ h ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckacaGGGcqcfa4damaalaaabaqcLbsacaWGKbGaamyr aaqcfayaaKqzGeGaamizaiabew9aMbaacqGH9aqpcaaIYaGaam4AaK qbaoaaBaaabaqcLbmacaaIXaaajuaGbeaajugibiGacohacaGGPbGa aiOBaiaaisdacqaHvpGzcqGHsislcqaH8oqBjuaGdaWgaaqaaKqzad GaaGimaaqcfayabaqcLbsacaWGnbGaamisaiGacohacaGGPbGaaiOB aiaacIcacqaHvpGzlmaaBaaajuaGbaqcLbmacaWGObaajuaGbeaaju gibiabgkHiTiabew9aMjaacMcaaaa@6005@    (12)

The intrinsic coercivity of a material is the value of H that causes M to suddenly reverse in opposite direction.

This intrinsic coercivity can be obtained by differentiating equation (12).

d 2 E d ϕ 2 =8 k 1 cos4ϕ μ 0 MHcos(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaamyr aaGcbaqcLbsacaWGKbGaeqy1dywcfa4aaWbaaSqabeaajugWaiaaik daaaaaaKqzGeGaeyypa0JaaGioaiaadUgalmaaBaaabaqcLbmacaaI XaaaleqaaKqzGeGaci4yaiaac+gacaGGZbGaaGinaiabew9aMjabgk HiTiabeY7aTLqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacaWG nbGaamisaiGacogacaGGVbGaai4CaiaacIcacqaHvpGzcaGGPaaaaa@5A36@     (13)

For total reversal, the angle  is 180o

At, =0, d 2 E d ϕ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbWaaWbaaeqabaqcLbmacaaIYaaaaKqbakaadweaaeaacaWG KbGaeqy1dy2aaWbaaeqabaqcLbmacaaIYaaaaaaaaaa@3F9E@ =0

Therefore, equation (13) is reduced to

H ci = 8 k 1 μ 0 M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGib WcdaWgaaqaaKqzadGaam4yaiaadMgaaSqabaqcLbsacqGH9aqpjuaG daWcaaGcbaqcLbsacaaI4aGaam4AaKqbaoaaBaaaleaajugWaiaaig daaSqabaaakeaajugibiabeY7aTLqbaoaaBaaaleaajugWaiaaicda aSqabaqcLbsacaWGnbaaaaaa@4816@    (14)

is the intrinsic coercivity. Equation (14) provides a measure of the direct external demagnetization force that a sample can withstand.

Conclusion

The above plot in fig.1 demonstrates that the unstable condition for µm lies at an angle of π/4. Other elements used in permanent magnets may have complex lattice structure. This model for cubic crystal structure is of iron. This process helps to understand the basics of magnetic characteristics. Similarly, brief– knowledge can be extracted about the intrinsic coercivity or maximum demagnetization force that a sample can withstand.1–3

Acknowledgements

None.

Conflict of interest

Authors declare that there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Panthi, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.