Submit manuscript...
MOJ
eISSN: 2572-8520

Civil Engineering

Research Article Volume 7 Issue 1

A simulation study of leveling control for railway cranes on curved tracks

Zhao Tianjiao, Qi Zhaohui, Xu jinshuai

Dalian University of Technology, Mechanic Department, Dalian, China

Correspondence: Zhao Tianjiao, Dalian University of Technology, Mechanic Department, Dalian, China

Received: August 18, 2023 | Published: August 30, 2023

Citation: Tianjiao Z, Zhaohui Q, Jinshuai X. A simulation study of leveling control for railway cranes on curved tracks. MOJ Civil Eng. 2023;7(1):28-40. DOI: 10.15406/mojce.2023.07.00170

Download PDF

Abstract

Compared with ordinary locomotives, railway cranes are characterized by larger load and higher center of gravity. Therefore, leveling control is required in order to ensure safe operation when a railway crane is traveling on a curved track with superelevated outer rail. Accurate simulation of the leveling process requires not only consideration of the influence of wheel-rail motion on curved track, but also reasonable simulation of the lateral and vertical motion of railway crane. A railway crane can be regarded as a complex multi-body system composed of various components. To simulate this system, it is necessary to define rigid and flexible bodies (such as chassis, leveling arc plate, bogie, wheelset and suspension spring), restraints and force elements, and then determine the characteristics of individual components and their connections. In this study, with all the above factors considered, a curved track model was constructed reasonably and then used to simulate the longitudinal kinematic relationship between wheel and rail. Later, a dynamic analysis of the lateral and vertical dynamic responses of railway crane was performed. Moreover, the relationship between the real-time sensor observations and the piston expansion adjustment required was established, and a non-continuous leveling control method was proposed. Based on this, a dynamic simulation software was developed to simulate the mechanical response of railway cranes before and after leveling. This article establishes the relationship between the real-time data obtained by sensors and the expansion and contraction of the leveling cylinder piston. Through calculation, the control data is obtained, which can ensure the smooth operation of the vehicle.

Keywords: railway crane, leveling control, multibody system, wheel-rail motion, curved track

Introduction

In recent years, railway cranes have been widely used for their good operability, high travel speed and superior adaptability. However, when a railway crane operates on a curved track with a heavy load and low speed, the front and rear axle loads are significantly unbalanced, and the component of the car body’s gravity directed towards the inner rail is far greater than the required centripetal force. This will cause the crane to tilt overall, making it impossible to ensure its rated lifting performance, safety and reliability, and even causing accidents. Therefore, in order to prevent a reduction in their lifting performance on curves and allow them to pass through curves safely, railway cranes are equipped with an automatic superelevation leveling device, which can keep the chassis levelled when the cranes travel on curves.

Railway cranes are a type of rail vehicle. To explore their leveling control during movement, it is necessary to effectively describe the multi-body system model composed of vehicle components and determine the characteristics of individual components and their connections. Then a series of dynamics equations for the multi-body vehicle system can be obtained and solved.1 Three common methods for establishing dynamic differential equations are Lagrangian method, Kane method and Newton Euler method.2–4

Ling Liang from Southwest Jiaotong University established a longitudinal/transverse/vertical three-dimensional coupling dynamic model for high-speed train based on the rigid multi-body theory and a rigid-flexible coupling dynamic model with a wide analysis frequency range, and studied the dynamic response characteristics of a high-speed train at a variable speed.5 Based on the theory of flexible multi-body system dynamics combined with the characteristics of vehicle dynamics, Lu Zhenggang established a flexible rigid body dynamics model of railway vehicles for performance prediction, dynamic load calculation and fatigue evaluation, and active vibration control, and carried out research on flexible rigid body dynamics of railway vehicles.6 Despite abundant research results on railway vehicle dynamics, these is still a lack of simulation work on the automatic leveling system of railway cranes in China. This is because such system is time-varying, nonlinear and easily disturbed, which brings various difficulties to the control process. Chen Zhenhua et al. proposed a control method for automatic leveling of outriggers based on the operation process and safety control requirements for railway cranes.7 Zhang et al. designed a fuzzy PID controller based on fuzzy logic control algorithm and conventional PID algorithm, combined with the mechanics and mathematical model of the automatic leveling system for railway cranes.8

In this paper, a model for the test track was established by deducing the differential equation for transition curves according to the design specification for curved railway tracks. Later, the kinematic relationship between wheel and rail was simulated based on an analysis of the characteristics of wheel-rail contact during movement of a railway vehicle on a curved track. Moreover, based on the principle of virtual power, the connections between components of the railway crane were determined and dynamic equations for the system were set up. A non-continuous automatic leveling control method based on real-time sensor data is presented. Numerical examples demonstrate the correctness of the simulation and the rationality of the proposed method.

Structure and leveling principle of a railway crane

In practical engineering, railway cranes can be divided into many types for different purposes, such as general purpose, construction, rescue, etc., but their structures are basically identical and can be divided into two parts: on-board and off-board parts. The on-board part is the general term for the upper structures of the crane that can rotate around the revolving center line, including the slewing support and all the structures, mechanisms and systems above it (boom, turntable, driver's cab, machine room, etc.). These are the core parts of a railway crane. "Off-board” part refers to the mechanisms and devices below the slewing support, generally including the traveling mechanism of the crane, train connection devices, leveling devices, chassis, outrigger, etc. The traveling mechanism includes bogie and running drive, which are either dedicated for cranes or common ones in locomotives. The train connection devices are coupler and buffer device, which can be connected to the tractor. A leveling device includes an arc plate, a bi-directional hydraulic cylinder, a supporting slider and other mechanisms installed between the bogie frame and the chassis (Figure 1).9

Figure 1 Structural diagram of Railway Crane.

The off-board part of the railway crane includes the components that are most closely related to railway technology, and are also the key components to transfer the external load borne by the on-board part and the entire vehicle’s dead weight to the track surface. Therefore, this part plays a very important role in ensuring safety of travelling and lifting. The components of the bogie are connected in a way similar to that in common rail locomotives. The bogie located at the bottom hauls and guides the crane along the rail.10 It is mainly composed of wheelsets, axle boxes, primary suspension devices, frames, etc. The frame is mounted on wheelsets by primary suspensions to mitigate the impact to the frame caused by track irregularities (Figure 2).

Figure 2 Diagram of leveling device.

Unlike in ordinary locomotives, a leveling device for adjusting the horizontal inclination of a railway crane’s chassis is installed between the bogie and the chassis, and it consists of an oscillating center plate, secondary suspension device, arc plate, bi-directional hydraulic cylinder, supporting slider and other components. The arc plate is connected with the bogie through the spherical hinge and can oscillate in all directions, but it is limited by factors like structure size and joint bearing and thus has a maximum swing angle. The secondary suspension device is mainly composed of four steel coil springs with large deflection and rubber pads in series with them, with the left and right sides symmetrically fixed on the bottom surface of the arc plate. One side of each rubber pad contacts the bogie and is allowed to slide on the bogie’s top surface so that it can absorb the track impact transferred to the bogie frame again. The bi-directional hydraulic cylinder is connected to the upper part of the arc plate by a pin shaft and rotates around the pin shaft, while its piston is fixed to the chassis. The leveling cylinder and the piston work together. The chassis can be deflected around the arc plate by the supporting slider.

An inclination sensor is installed on the chassis of the railway crane to measure the absolute transverse and longitudinal angles between the chassis and the horizontal plane in real time (the longitudinal direction is along the length of the chassis and the transverse direction is along its width direction). A linkage mechanism is provided between the arc plate’s pin shaft and the chassis to measure the relative angle between the longitudinal direction of the arc plate (along its length) and the transverse direction of the chassis in real time. When the crane chassis tilts, it is necessary to determine the adjustment required for piston expansion according to the real-time sensor data. Driven by the bi-directional hydraulic cylinder, the chassis can move inversely around the arc surface of the arc plate installed on the bogie frame to keep the chassis horizontal. In this way, automatic control of railway crane leveling is achieved.

Modeling of curved test track

A curved railway track is generally divided into five parts: straight line, transition curve, circular curve, transition curve and straight line. The transition curve connecting a straight line with a circular curve has a radius of ∞ at the connection with the straight line (straight transition point). As the distance increases, the radius gradually decreases to that of the circular curve, R, at the connection with the circular curve (circular transition point). As the radius decreases, the superelevation increases gradually, and the curves for the purpose of transition are also called easement curves.11

At present, the commonly used easement curve on railways is a cubic parabola, which usually can be described by a linear equation:                                                  

y= x 3 6LR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0dYdi9arFj0xirFj0d Xdbba91qpepGe9FjuP0=is0dXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaamyEai abg2da9OWaaSaaaeaajugibiaadIhakmaaCaaaleqabaqcLbmacaaI ZaaaaaGcbaqcLbsacaaI2aGaamitaiaadkfaaaaaaa@41F9@    (1)

Where R is the radius of the circular curve and L is the length of the parabola. However, the curvature radius of the easement curves at the points where they intersect with the circular curve solved in this way is not equal to the radius of the circular curve, due to some error.

In this paper, given the fact that the radius of the easement curves changes gradually from the straight transition point to the circular transition point, a differential equation for the transition curves is established to overcome the above problems, which is described in detail below.

As shown in Figure 3, a transition curve of length L 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaaaaa@3C52@ is inserted between the straight line and the circular curve with radius R, with A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbyacaWGbb aaaa@39FA@ denoting the circular transition point and B denoting the straight transition point. Then a coordinate system is established, with the center of the circular curve O taken as the origin point and the angular bisector of the circular curve as the y axis. The negative half of the x-axis is along the tangent to the circular curve at point C, where the circular curve meets its angular bisector. Let P be an arbitrary point on the transition curve, and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbyacqaHXo qyaaa@3AD3@  be the steering angle or tangent deflection angle (the angle between the tangent at point P and the axis x) with respect to the tangent at point C. The coordinates of point P can be obtained:

Figure 3 Equation for transition curves.

{ x=ρsinα y=ρcosα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiaadIhacqGH9aqpcqGHsislcqaHbpGCciGG ZbGaaiyAaiaac6gacqaHXoqyaOqaaKqzGeGaamyEaiabg2da9iabeg 8aYjGacogacaGGVbGaai4Caiabeg7aHbaakiaawUhaaaaa@4ACF@    (2)

According to the mathematical definition of curvature, i.e. the rate of change of the forward azimuth angle with the arc length, we can obtain the curvature at point P:

κ p = dα ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH6o WAjuaGdaWgaaWcbaqcLbmacaWGWbaaleqaaKqzGeGaeyypa0tcfa4a aSaaaOqaaKqzGeGaamizaiabeg7aHbGcbaqcLbsacaWGKbGaam4Caa aaaaa@453C@    (3)

At the same time, curvature and radius of curvature are reciprocals of each other:

κ p = 1 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH6o WAjuaGdaWgaaWcbaqcLbmacaWGWbaaleqaaKqzGeGaeyypa0tcfa4a aSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacqaHbpGCaaaaaa@434E@    (4)

According to Formula (2) - (4), the rates of change in P point’s coordinates with arc length can be obtained:

{ dx ds =cosα dy ds =sinα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajuaGdaWcaaGcbaqcLbsacaWGKbGaamiEaaGcbaqc LbsacaWGKbGaam4CaaaacqGH9aqpcqGHsislciGGJbGaai4Baiaaco hacqaHXoqyaOqaaKqbaoaalaaakeaajugibiaadsgacaWG5baakeaa jugibiaadsgacaWGZbaaaiabg2da9iabgkHiTiGacohacaGGPbGaai OBaiabeg7aHbaakiaawUhaaaaa@5052@    (5)

The curvature of the transition curve changes linearly from the circular transition point (curvature 1/R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWaaSGbaeaaca aIXaaabaqcLbyacaWGsbaaaaaa@3ADC@ ) to the straight transition point (curvature 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaGimaaaa@38FF@ ), that is

dα ds =(1 s L 0 ) 1 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiabeg7aHbGcbaqcLbsacaWGKbGaam4CaaaacqGH 9aqpcaGGOaGaaGymaiabgkHiTKqbaoaalaaakeaajugibiaadohaaO qaaKqzGeGaamitaKqbaoaaBaaaleaajugWaiaaicdaaSqabaaaaKqz GeGaaiykaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOuaa aaaaa@4CBC@    (6)

From this, the differential equation for the transition curve can be obtained

( dx ds , dy ds , dα ds )=f(x,y,α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaGGOa qcfa4aaSaaaOqaaKqzGeGaamizaiaadIhaaOqaaKqzGeGaamizaiaa dohaaaGaaiilaKqbaoaalaaakeaajugibiaadsgacaWG5baakeaaju gibiaadsgacaWGZbaaaiaacYcajuaGdaWcaaGcbaqcLbsacaWGKbGa eqySdegakeaajugibiaadsgacaWGZbaaaiaacMcacqGH9aqpcaWGMb GaaiikaiaadIhacaGGSaGaamyEaiaacYcacqaHXoqycaGGPaaaaa@52EC@    (7)

The coordinates and steering angle at the circular transition point are selected as the initial values for the equation above:

{ x 0 =ρsin α A y 0 =ρcos α A α 0 = α A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiaadIhajuaGdaWgaaWcbaqcLbmacaaIWaaa leqaaKqzGeGaeyypa0JaeyOeI0IaeqyWdiNaci4CaiaacMgacaGGUb GaeqySdewcfa4aaSbaaSqaaKqzadGaamyqaaWcbeaaaOqaaKqzGeGa amyEaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacqGH9aqpcq aHbpGCciGGJbGaai4BaiaacohacqaHXoqyjuaGdaWgaaWcbaqcLbma caWGbbaaleqaaaGcbaqcLbsacqaHXoqyjuaGdaWgaaWcbaqcLbmaca aIWaaaleqaaKqzGeGaeyypa0JaeqySdewcfa4aaSbaaSqaaKqzadGa amyqaaWcbeaaaaGccaGL7baaaaa@618C@    (8)

An inertial coordinate system oxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb GaeyOeI0IaamiEaiaadMhacaWG6baaaa@3DAF@ is created by introducing a z-axis to the coordinate system shown in Figure 3 according to the right-hand rule, as shown in Figure 4.12

Figure 4 Curve track model.

The functional relationship describing the track centerline p 0 = p 0 (s) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabg2da9iaahcha juaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaaiikaiaadohaca GGPaaaaa@4495@  is obtained by solving equation (7). If the base vectors of the inertial coordinate system are { e x , e y , e z } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCyzaKqbaoaaBaaaleaajugWaiaadIhaaSqabaqcLbsacaGGSaGa aCyzaKqbaoaaBaaaleaajugWaiaadMhaaSqabaqcLbsacaGGSaGaaC yzaKqbaoaaBaaaleaajugWaiaadQhaaSqabaqcLbsacaqG9baaaa@497C@ , the tangent direction of the track centerline is expressed as

e s =sinα e x cosα e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHLb qcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaajugibiabg2da9iGacoha caGGPbGaaiOBaiabeg7aHjaahwgajuaGdaWgaaWcbaqcLbmacaWG4b aaleqaaKqzGeGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqySdeMaaCyz aKqbaoaaBaaaleaajugWaiaadMhaaSqabaaaaa@4E18@    (9)

And it normal direction is

e n =cosα e x +sinα e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHLb qcfa4aaSbaaSqaaKqzadGaamOBaaWcbeaajugibiabg2da9iGacoga caGGVbGaai4Caiabeg7aHjaahwgajuaGdaWgaaWcbaqcLbmacaWG4b aaleqaaKqzGeGaey4kaSIaci4CaiaacMgacaGGUbGaeqySdeMaaCyz aKqbaoaaBaaaleaajugWaiaadMhaaSqabaaaaa@4E08@    (10)

The function for the inner rail curve corresponding to the arc length coordinate is

p in = p 0 1 2 w 0 e n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaamyAaiaad6gaaSqabaqcLbsacqGH9aqp caWHWbqcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabgkHiTK qbaoaaleaaleaajugibiaaigdaaSqaaKqzGeGaaGOmaaaacaWG3bqc fa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiaahwgajuaGdaWgaa WcbaqcLbmacaWGUbaaleqaaaaa@4D62@    (11)

The curve function for the outer rail is

p out = p 0 + 1 2 w 0 e n +z e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaam4BaiaadwhacaWG0baaleqaaKqzGeGa eyypa0JaaCiCaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacq GHRaWkjuaGdaWcbaWcbaqcLbsacaaIXaaaleaajugibiaaikdaaaGa am4DaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacaWHLbqcfa 4aaSbaaSqaaKqzadGaamOBaaWcbeaajugibiabgUcaRiaadQhacaWH Lbqcfa4aaSbaaSqaaKqzadGaamOEaaWcbeaaaaa@54AD@    (12)

Wherein, w 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeWacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWG3b qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaaaaa@3A30@ is the standard gauge of the track, z is the superelevation value (the height difference between the outer and inner rails), which changes linearly:

z=0 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaam4CaiabgI Giodaa@3875@ Straight line (13)

z= z h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG6b Gaeyypa0JaamOEaKqbaoaaBaaaleaajugWaiaadIgaaSqabaaaaa@3C6C@   s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGZb GaeyicI4maaa@3904@  Circular curve (14)

z=ξ z h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG6b Gaeyypa0JaeqOVdGNaamOEaKqbaoaaBaaaleaajugWaiaadIgaaSqa baaaaa@3E2F@   s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGZb GaeyicI4maaa@3904@  Transition curve (15)

Where, z h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG6b qcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaaaaa@3A67@ is the superelevation of the circular curve, which ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH+o aEaaa@384B@  varies linearly from 0 to 1.

Kinematic analysis of wheel-rail contact

Wheel-rail relationship is a unique contact relationship in rail vehicles, including railway cranes, and is the basis for simulating the longitudinal motion of railway cranes.13 Like in other rail vehicles, the wheel treads of railway cranes are mostly rotating conical surfaces. During operation, the lateral relative position between rail surface and tread constantly changes, and slight hunting sometimes occurs. When a crane travels on a curved track, the radius of the rolling circle of a wheel tread contacting the outer rail is greater than that of the corresponding wheel tread contacting the inner rail. This results in a speed difference between the centers of the wheels on the inner and outer rails, thus guiding the crane to turn along the curved track.

In order to simulate and study leveling control for railway cranes and reasonably establish the wheel-rail contact model, this paper primarily considers the influence of curved track’s superelevation change and curvature radius change while neglecting the influence of secondary factors such as rail can’t change. Additionally, each wheel is treated as a rigid body and given a conical tread.

The number of wheelsets on each bogie of a railway crane varies depending on lifting capacity. This paper takes the common four axle bogie as an example to illustrate. Because the wheelsets are assembled on the bogie frame, the relative position between the wheelsets is constrained by the distance between the centers of axles on the same bogie. Therefore it is reasonable to regard the frontmost wheelset as the driving wheelset first, and derive its wheel-rail contact relationship. The other wheelsets can be regarded as the driven wheelsets and corresponding wheel-rail relationships can be obtained based on relative position constraint.

Spatial description of wheelset attitude

As shown in Figure 5, the arc length coordinates s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGZb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C7A@ and s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGZb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3C7B@ of the contact points between a wheelset and the inner and outer rails, and the sum of the distances d 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGKb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C6B@ and d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGKb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3C6C@  between the transient rolling wheel center and the innermost wheel centers are selected as the descriptive variables, so as to uniquely determine the transient state of the contact between the wheelset and the rails.14

Figure 5 Status of Wheelset on curved track.

Then the radius vectors of the contact points between the wheelset and the inner and outer rails can be expressed as

p 1 = p in ( s 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabg2da9iaahcha juaGdaWgaaWcbaqcLbmacaWGPbGaamOBaaWcbeaajugibiaacIcaca WGZbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaacMcaaaa@46AE@    (16)

p 2 = p out ( s 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaahcha juaGdaWgaaWcbaqcLbmacaWGVbGaamyDaiaadshaaSqabaqcLbsaca GGOaGaam4CaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGG Paaaaa@47B6@    (17)

The rolling circle radiuses of wheels on the inner and outer rails can be written as

r 1 = r in δ d 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabg2da9iaadkha juaGdaWgaaWcbaqcLbmacaWGPbGaamOBaaWcbeaajugibiabgkHiTi abes7aKjaadsgajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa@4745@    (18)

r 2 = r in δ d 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaadkha juaGdaWgaaWcbaqcLbmacaWGPbGaamOBaaWcbeaajugibiabgkHiTi abes7aKjaadsgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa@4747@    (19)

Wherein, δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azaaa@3A79@ is the taper of conical tread and r in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaSqaaKqzadGaamyAaiaad6gaaSqabaaaaa@3D9F@ is the maximum rolling circle radius of wheel. Rolling centers of wheels on the inner and outer rails are

p 3 = p 1 + r 1 g 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiabg2da9iaahcha juaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaamOCaK qbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaWHNbqcfa4aaSba aSqaaKqzadGaaG4maaWcbeaaaaa@48B2@    (20)

p 4 = p 2 + r 2 g 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaaGinaaWcbeaajugibiabg2da9iaahcha juaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaey4kaSIaamOCaK qbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaWHNbqcfa4aaSba aSqaaKqzadGaaG4maaWcbeaaaaa@48B5@    (21)

To describe the rotation of the wheelset, two coordinate systems need to be established. One moves together with the wheelset; its origin is at the geometric center of the wheelset, x-axis is along the normal direction at the contact point on the inner rail curve, y-axis is along the tangent direction at the contact point on the inner rail curve, and the z-axis is directed vertically upward. The other is the coordinate system fixed to the wheelset o x w y w z w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb GaeyOeI0IaamiEaKqbaoaaBaaaleaajugWaiaadEhaaSqabaqcLbsa caWG5bqcfa4aaSbaaSqaaKqzadGaam4DaaWcbeaajugibiaadQhaju aGdaWgaaWcbaqcLbmacaWG3baaleqaaaaa@479A@ . The axis x w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG4b qcfa4aaSbaaSqaaKqzadGaam4DaaWcbeaaaaa@3CC0@ points to the outer rail along the direction of the axle, and the axis y w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG5b qcfa4aaSbaaSqaaKqzadGaam4DaaWcbeaaaaa@3CC1@ follows the direction of the wheelset, which conforms to the right-hand rule.

Let { t 1 , t 2 , t 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCiDaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aCiDaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC iDaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48E3@  be the base vectors of the translational coordinate system oxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb GaeyOeI0IaamiEaiaadMhacaWG6baaaa@3DAF@ and { g 1 , g 2 , g 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaC4zaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aC4zaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC 4zaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48BC@  be the base vectors of the fixed coordinate system,and then we have

{ t 1 =sin α 1 e x cos α 1 e y t 2 =cos α 1 e x +sin α 1 e y t 3 = e z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiaahshajuaGdaWgaaWcbaqcLbmacaaIXaaa leqaaKqzGeGaeyypa0Jaci4CaiaacMgacaGGUbGaeqySdewcfa4aaS baaSqaaKqzadGaaGymaaWcbeaajugibiaahwgajuaGdaWgaaWcbaqc LbmacaWG4baaleqaaKqzGeGaeyOeI0Iaci4yaiaac+gacaGGZbGaeq ySdewcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaahwgajuaG daWgaaWcbaqcLbmacaWG5baaleqaaaGcbaqcLbsacaWH0bqcfa4aaS baaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iGacogacaGGVbGa ai4Caiabeg7aHLqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsaca WHLbqcfa4aaSbaaSqaaKqzadGaamiEaaWcbeaajugibiabgUcaRiGa cohacaGGPbGaaiOBaiabeg7aHLqbaoaaBaaaleaajugWaiaaigdaaS qabaqcLbsacaWHLbqcfa4aaSbaaSqaaKqzadGaamyEaaWcbeaaaOqa aKqzGeGaaCiDaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacq GH9aqpcaWHLbqcfa4aaSbaaSqaaKqzadGaamOEaaWcbeaaaaGccaGL 7baaaaa@7EDC@    (22)

Wherein, α 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa@3D21@ is the steering angle corresponding to the arc length coordinate of the inner rail contact point.

The fixed coordinate system is obtained by yawing and rolling the translational coordinate system. In order to facilitate derivation of the steering angle, the rolling angle is divided into two parts. Then the translational coordinate system is rotated three times to obtain the fixed coordinate system. The following transformations are applied to the base vectors: { t 1 , t 2 , t 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCiDaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aCiDaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC iDaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48E3@ { k 1 , k 2 , k 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaC4AaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aC4AaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC 4AaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48C8@ { v 1 , v 2 , v 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCODaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aCODaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC ODaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48E9@ { g 1 , g 2 , g 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaC4zaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aC4zaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC 4zaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48BC@

{ k 1 k 2 k 3 }=[ cos ϑ 1 sin ϑ 1 0 sin ϑ 1 cos ϑ 1 0 0 0 1 ]{ t 1 t 2 t 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaiWaaK qzGeabaeqakeaajugibiaahUgajuaGdaWgaaWcbaqcLbmacaaIXaaa leqaaaGcbaqcLbsacaWHRbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbe aaaOqaaKqzGeGaaC4AaKqbaoaaBaaaleaajugWaiaaiodaaSqabaaa aOGaay5Eaiaaw2haaKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGeqbae qabmWaaaGcbaqcLbsaciGGJbGaai4BaiaacohacqaHrpGsjuaGdaWg aaWcbaqcLbmacaaIXaaaleqaaaGcbaqcLbsacqGHsislciGGZbGaai yAaiaac6gacqaHrpGsjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGc baqcLbsacaaIWaaakeaajugibiGacohacaGGPbGaaiOBaiabeg9akL qbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaajugibiGacogacaGG VbGaai4Caiabeg9akLqbaoaaBaaaleaajugWaiaaigdaaSqabaaake aajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaaIWaaakeaa jugibiaaigdaaaaakiaawUfacaGLDbaajuaGdaGadaqcLbsaeaqabO qaaKqzGeGaaCiDaKqbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaa jugibiaahshajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGcbaqcLb sacaWH0bqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaGccaGL7bGa ayzFaaaaaa@81A9@    (23)

{ v 1 v 2 v 3 }=[ cos ϑ 2 0 sin ϑ 2 0 1 0 sin ϑ 2 0 cos ϑ 2 ]{ k 1 k 2 k 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaiWaaK qzGeabaeqakeaajugibiaahAhajuaGdaWgaaWcbaqcLbmacaaIXaaa leqaaaGcbaqcLbsacaWH2bqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbe aaaOqaaKqzGeGaaCODaKqbaoaaBaaaleaajugWaiaaiodaaSqabaaa aOGaay5Eaiaaw2haaKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGeqbae qabmWaaaGcbaqcLbsaciGGJbGaai4BaiaacohacqaHrpGsjuaGdaWg aaWcbaqcLbmacaaIYaaaleqaaaGcbaqcLbsacaaIWaaakeaajugibi GacohacaGGPbGaaiOBaiabeg9akLqbaoaaBaaaleaajugWaiaaikda aSqabaaakeaajugibiaaicdaaOqaaKqzGeGaaGymaaGcbaqcLbsaca aIWaaakeaajugibiabgkHiTiGacohacaGGPbGaaiOBaiabeg9akLqb aoaaBaaaleaajugWaiaaikdaaSqabaaakeaajugibiaaicdaaOqaaK qzGeGaci4yaiaac+gacaGGZbGaeqy0dOucfa4aaSbaaSqaaKqzadGa aGOmaaWcbeaaaaaakiaawUfacaGLDbaajuaGdaGadaqcLbsaeaqabO qaaKqzGeGaaC4AaKqbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaa jugibiaahUgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGcbaqcLb sacaWHRbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaGccaGL7bGa ayzFaaaaaa@81B3@    (24)

{ g 1 g 2 g 3 }=[ cos ϑ 3 0 sin ϑ 3 0 1 0 sin ϑ 3 0 cos ϑ 3 ]{ v 1 v 2 v 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaiWaaK qzGeabaeqakeaajugibiaahEgajuaGdaWgaaWcbaqcLbmacaaIXaaa leqaaaGcbaqcLbsacaWHNbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbe aaaOqaaKqzGeGaaC4zaKqbaoaaBaaaleaajugWaiaaiodaaSqabaaa aOGaay5Eaiaaw2haaKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGeqbae qabmWaaaGcbaqcLbsaciGGJbGaai4BaiaacohacqaHrpGsjuaGdaWg aaWcbaqcLbmacaaIZaaaleqaaaGcbaqcLbsacaaIWaaakeaajugibi GacohacaGGPbGaaiOBaiabeg9akLqbaoaaBaaaleaajugWaiaaioda aSqabaaakeaajugibiaaicdaaOqaaKqzGeGaaGymaaGcbaqcLbsaca aIWaaakeaajugibiabgkHiTiGacohacaGGPbGaaiOBaiabeg9akLqb aoaaBaaaleaajugWaiaaiodaaSqabaaakeaajugibiaaicdaaOqaaK qzGeGaci4yaiaac+gacaGGZbGaeqy0dOucfa4aaSbaaSqaaKqzadGa aG4maaWcbeaaaaaakiaawUfacaGLDbaajuaGdaGadaqcLbsaeaqabO qaaKqzGeGaaCODaKqbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaa jugibiaahAhajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGcbaqcLb sacaWH2bqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaGccaGL7bGa ayzFaaaaaa@81AB@    (25)

Wherein, ϑ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHrp GsjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa@3D2A@ is the yawing angle of the wheelset and ϑ 2 + ϑ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHrp GsjuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaey4kaSIaeqy0 dOucfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaa@42F4@ is the rolling angle.

The purpose of the first two rotations is to make the base vector parallel to the line connecting the wheelset’s contact points on the inner and outer rails, namely

v 1 =( p 2 p 1 ) p 2 p 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWH2b qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabg2da9iaacIca caWHWbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabgkHiTi aahchajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaaiykaKqb aoaafmaakeaajugibiaahchajuaGdaWgaaWcbaqcLbmacaaIYaaale qaaKqzGeGaeyOeI0IaaCiCaKqbaoaaBaaaleaajugWaiaaigdaaSqa baaakiaawMa7caGLkWoajuaGdaahaaWcbeqaaKqzadGaeyOeI0IaaG ymaaaaaaa@5730@    (26)

The angles of the first two rotations can be obtained

ϑ 1 =atan2( v 1 t 1 , v 1 t 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHrp GsjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0Jaciyy aiaacshacaGGHbGaaiOBaiaaikdacaGGOaGaeyOeI0IaaCODaKqbao aaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHflY1caWH0bqcfa4a aSbaaSqaaKqzadGaaGymaaWcbeaajugibiaacYcacaWH2bqcfa4aaS baaSqaaKqzadGaaGymaaWcbeaajugibiabgwSixlaahshajuaGdaWg aaWcbaqcLbmacaaIYaaaleqaaKqzGeGaaiykaaaa@595B@    (27)

ϑ 2 =arcsin( v 1 t 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHrp GsjuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyypa0Jaciyy aiaackhacaGGJbGaai4CaiaacMgacaGGUbGaaiikaiaahAhajuaGda WgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeyyXICTaaCiDaKqbaoaa BaaaleaajugWaiaaiodaaSqabaqcLbsacaGGPaaaaa@4E28@    (28)

The angle of the third rotation can be determined from the rolling circle radiuses of wheels on the inner and outer rails:

ϑ 3 =arcsin(( r 2 r 1 ) ( L a + d 1 + d 2 ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHrp GsjuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaKqzGeGaeyypa0Jaciyy aiaackhacaGGJbGaai4CaiaacMgacaGGUbGaaiikaiaacIcacaWGYb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabgkHiTiaadkha juaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaaiykaiaacIcaca WGmbqcfa4aaSbaaSqaaKqzadGaamyyaaWcbeaajugibiabgUcaRiaa dsgajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaam izaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGPaqcfa4a aWbaaSqabeaajugWaiabgkHiTiaaigdaaaqcLbsacaGGPaaaaa@61D9@    (29)

Wherein, L a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaSqaaKqzadGaamyyaaWcbeaaaaa@3C7E@ is the length of the wheelset axle marked in Figure 5.

Analysis of wheel/rail motion for the driving wheelset

In view of the fact that a railway crane’s wheels will neither slip along the track nor rub against rails laterally during normal operation, it is reasonable to assume that the wheel/rail motion is pure rolling without relative sliding in both the longitudinal and transverse directions.

Based on the above pure rolling assumption (no relative sliding between wheel tread and rail), the forward speed of the wheelset is decomposed in the longitudinal and transverse directions of the track. Then it can be inferred that:

  1. The speeds of the rolling circle centers of wheels on the inner and outer rails in the forward direction g 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHNb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3C73@ are the product of the angular speedof the wheel set and the corresponding rolling circle radius, that is
  2. ω r 1 = g 2 p ˙ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHjp WDcaWGYbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabg2da 9iaahEgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyyXIC TabCiCayaacaqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaa@47B8@    (30)

    ω r 2 = g 2 p ˙ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHjp WDcaWGYbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da 9iaahEgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyyXIC TabCiCayaacaqcfa4aaSbaaSqaaKqzadGaaGinaaWcbeaaaaa@47BA@    (31)

    The forward speed of the crane can be expressed as

    v 0 =ω r 1 +( 1 2 L a + d 1 ) g 2 T g ˙ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabg2da9iabeM8a 3jaadkhajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaae4kai aacIcajuaGdaWcbaWcbaqcLbsacaaIXaaaleaajugibiaaikdaaaGa amitaKqbaoaaBaaaleaajugWaiaadggaaSqabaqcLbsacqGHRaWkca WGKbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaacMcacaWH Nbqcfa4aa0baaSqaaKqzadGaaGOmaaWcbaqcLbmacaWGubaaaKqzGe GabC4zayaacaqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@5A35@    (32)

    Then the angular velocity of the wheelset can be obtained

    ω= r 1 1 ( v 0 ( 1 2 L a + d 1 ) g 2 T g ˙ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHjp WDcqGH9aqpcaWGYbqcfa4aa0baaSqaaKqzadGaaGymaaWcbaqcLbma cqGHsislcaaIXaaaaKqzGeGaaiikaiaadAhajuaGdaWgaaWcbaqcLb macaaIWaaaleqaaKqzGeGaeyOeI0IaaiikaKqbaoaaleaaleaajugi biaaigdaaSqaaKqzGeGaaGOmaaaacaWGmbqcfa4aaSbaaSqaaKqzad GaamyyaaWcbeaajugibiabgUcaRiaadsgajuaGdaWgaaWcbaqcLbma caaIXaaaleqaaKqzGeGaaiykaiaahEgajuaGdaqhaaWcbaqcLbmaca aIYaaaleaajugWaiaadsfaaaqcLbsaceWHNbGbaiaajuaGdaWgaaWc baqcLbmacaaIXaaaleqaaKqzGeGaaiykaaaa@5F32@    (33)

    Equations (30) and (31) can be written as

    g 2 T [ p 3,1 + r 1 λ 0 g 1,1 p 3,2 + r 1 λ 0 g 1,2 p 4,1 + r 2 λ 0 g 1,1 p 4,2 + r 2 λ 0 g 1,2 ][ s ˙ 1 s ˙ 2 ]=[ ω 0 r 1 ω 0 r 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHNb qcfa4aa0baaSqaaKqzadGaaGOmaaWcbaqcLbmacaWGubaaaKqbaoaa dmaakeaajugibuaabeqaciaaaOqaaKqzGeGaaCiCaKqbaoaaBaaale aajugWaiaaiodacaGGSaGaaGymaaWcbeaajugibiabgUcaRiaadkha juaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeq4UdWwcfa4aaS baaSqaaKqzadGaaGimaaWcbeaajugibiaahEgajuaGdaWgaaWcbaqc LbmacaaIXaGaaiilaiaaigdaaSqabaaakeaajugibiaahchajuaGda WgaaWcbaqcLbmacaaIZaGaaiilaiaaikdaaSqabaqcLbsacqGHRaWk caWGYbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabeU7aSL qbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacaWHNbqcfa4aaSba aSqaaKqzadGaaGymaiaacYcacaaIYaaaleqaaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaaGinaiaacYcacaaIXaaaleqaaKqzGeGa ey4kaSIaamOCaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaaC4zaKqb aoaaBaaaleaajugWaiaaigdacaGGSaGaaGymaaWcbeaaaOqaaKqzGe GaaCiCaKqbaoaaBaaaleaajugWaiaaisdacaGGSaGaaGOmaaWcbeaa jugibiabgUcaRiaadkhajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaK qzGeGaeq4UdWwcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiaa hEgajuaGdaWgaaWcbaqcLbmacaaIXaGaaiilaiaaikdaaSqabaaaaa GccaGLBbGaayzxaaqcfa4aamWaaOqaaKqzGeqbaeqabiqaaaGcbaqc LbsaceWGZbGbaiaajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGcba qcLbsaceWGZbGbaiaajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa aOGaay5waiaaw2faaKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGeqbae qabiqaaaGcbaqcLbsacqaHjpWDjuaGdaWgaaWcbaqcLbmacaaIWaaa leqaaKqzGeGaamOCaKqbaoaaBaaaleaajugWaiaaigdaaSqabaaake aajugibiabeM8a3LqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsa caWGYbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawUfaca GLDbaaaaa@B7AB@    (34)

    Where

    ω 0 = r 1 1 v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaeyypa0JaamOC aKqbaoaaDaaaleaajugWaiaaigdaaSqaaKqzadGaeyOeI0IaaGymaa aajugibiaadAhajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaaaa@474A@    (35)

    λ 0 = r 1 1 ( 1 2 L a + d 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH7o aBjuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaeyypa0JaamOC aKqbaoaaDaaaleaajugWaiaaigdaaSqaaKqzadGaeyOeI0IaaGymaa aajugibiaacIcajuaGdaWcbaWcbaqcLbsacaaIXaaaleaajugibiaa ikdaaaGaamitaKqbaoaaBaaaleaajugWaiaadggaaSqabaqcLbsacq GHRaWkcaWGKbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaa cMcaaaa@516D@    (36)

    In which g i,j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHNb qcfa4aaSbaaSqaaKqzadGaamyAaiaacYcacaWGQbaaleqaaaaa@3E44@  is g i / s j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeyOaIyRaaC4zaKqbaoaaBaaaleaajugWaiaadMgaaSqa baaakeaajugibiabgkGi2kaadohajuaGdaWgaaWcbaqcLbmacaWGQb aaleqaaaaaaaa@4492@  and p i,j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaamyAaiaacYcacaWGQbaaleqaaaaa@3E4D@  is p i / s j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeyOaIyRaaCiCaKqbaoaaBaaaleaajugWaiaadMgaaSqa baaakeaajugibiabgkGi2kaadohajuaGdaWgaaWcbaqcLbmacaWGQb aaleqaaaaaaaa@449B@ .

  3. The components of the rolling center speeds of wheels on the inner and outer rails along the axle direction are
  4. d ˙ 1 = g 1 p ˙ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWGKb GbaiaajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0Ja eyOeI0IaaC4zaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacq GHflY1ceWHWbGbaiaajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa @46D0@    (37)

    d ˙ 2 = g 1 p ˙ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWGKb GbaiaajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyypa0Ja aC4zaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHflY1ce WHWbGbaiaajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa@45E5@    (38)

  5. The above equation can be expressed as
  6. [ d ˙ 1 d ˙ 2 ]= g 1 T [ p 1,1 0 0 p 2,2 ][ s ˙ 1 s ˙ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabiqaaaGcbaqcLbsaceWGKbGbaiaajuaGdaWgaaWc baqcLbmacaaIXaaaleqaaaGcbaqcLbsaceWGKbGbaiaajuaGdaWgaa WcbaqcLbmacaaIYaaaleqaaaaaaOGaay5waiaaw2faaKqzGeGaeyyp a0JaaC4zaKqbaoaaDaaaleaajugWaiaaigdaaSqaaKqzadGaamivaa aajuaGdaWadaGcbaqcLbsafaqabeGacaaakeaajugibiabgkHiTiaa hchajuaGdaWgaaWcbaqcLbmacaaIXaGaaiilaiaaigdaaSqabaaake aajugibiaaicdaaOqaaKqzGeGaaGimaaGcbaqcLbsacaWHWbqcfa4a aSbaaSqaaKqzadGaaGOmaiaacYcacaaIYaaaleqaaaaaaOGaay5wai aaw2faaKqbaoaadmaakeaajugibuaabeqaceaaaOqaaKqzGeGabm4C ayaacaqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGabm 4Cayaacaqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaaakiaawUfa caGLDbaaaaa@66B5@    (39)

Equation (34) and Equation (39) together form the first order differential equation for describing the wheelset's motion on the curved track. It can be seen that the motion of the wheelset on the track is determined by the position constraint on the wheelset imposed by the track. Based on this, the kinematic model of the wheel-rail contact is established.

Analysis of the wheel-rail relationship for the driven wheelsets

The bogie and wheelsets are connected by axle boxes equipped with primary suspension devices.15 While wheelset movement is constrained by the track, the relative position between wheelsets is constrained by the distance between the bogie’s wheel centers, In simple terms.

  1. The geometric centers of all wheelsets have the same speed along the forward direction g 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHNb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3C73@ ;
  2. The projections of the axles of all wheelsets on the horizontal plane are parallel to each other and their directions are given by

a 0 = g 2 × e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHHb qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabg2da9iaahEga juaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaey41aqRaaCyzaK qbaoaaBaaaleaajugWaiaadQhaaSqabaaaaa@45E9@    (40)

As shown in Figure 6, the descriptive variable of a driven wheelset can be expressed as

Figure 6 Constraints between wheel sets.

s 1 = ρ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGZb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabg2da9iabeg8a YLqbaoaaBaaaleaajugWaiaaigdaaSqabaaaaa@4040@ s 2 = ρ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGZb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iabeg8a YLqbaoaaBaaaleaajugWaiaaikdaaSqabaaaaa@4042@   (41)

d 1 = δ 1 1 2 L a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGKb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabg2da9iabes7a KLqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHsisljuaGda WcbaWcbaqcLbsacaaIXaaaleaajugibiaaikdaaaGaamitaKqbaoaa BaaaleaajugWaiaadggaaSqabaaaaa@4886@ d 2 = δ 2 1 2 L a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGKb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iabes7a KLqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacqGHsisljuaGda WcbaWcbaqcLbsacaaIXaaaleaajugibiaaikdaaaGaamitaKqbaoaa BaaaleaajugWaiaadggaaSqabaaaaa@4888@   (42)

Herein, La is the axle length of the wheelset marked in Figure 5. Calculating the intersection points A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGbb aaaa@399A@  and B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGcb aaaa@399B@  between the projection of the driven wheel axle on the horizontal plane and the projections of the inner and outer rail curves on the horizontal plane, the nonlinear equations can be derived

{ c 1 L 1 g 2 + δ 2 a 0 =( e x e x T + e y e y T ) p out ( ρ 2 ) c 1 L 1 g 2 δ 1 a 0 = p in ( ρ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91j=BHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeWabaWaaeaaeaaakeaajuaGdaGabaqcLb saeaqabOqaaKqzGeGaaC4yaKqbaoaaBaaajyaGbaGaaGymaaWcbeaa jugibiabgkHiTiaadYeajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaK qzGeGaaC4zaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacqGH RaWkcqaH0oazjuaGdaWgaaqcgayaaKqzadGaaGOmaaWcbeaajugibi aahggajuaGdaWgaaqcgayaaiaaicdaaSqabaqcLbsacqGH9aqpjuaG daqadaGcbaqcLbsacaWHLbqcfa4aaSbaaKGbagaajugWaiaadIhaaS qabaqcLbsacaWHLbqcfa4aa0baaKGbagaacaWG4baabaGaamivaaaa jugibiabgUcaRiaahwgajuaGdaWgaaqcgayaaiaadMhaaSqabaqcLb sacaWHLbqcfa4aa0baaKGbagaacaWG5baabaGaamivaaaaaOGaayjk aiaawMcaaKqzGeGaaCiCaKqbaoaaBaaajyaGbaGaam4Baiaadwhaca WG0baaleqaaKqbaoaabmaakeaajugibiabeg8aYLqbaoaaBaaajyaG baGaaGOmaaWcbeaaaOGaayjkaiaawMcaaaqaaKqzGeGaaC4yaKqbao aaBaaajyaGbaGaaGymaaWcbeaajugibiabgkHiTiaadYeajuaGdaWg aaqcgayaaiaaigdaaSqabaqcLbsacaWHNbqcfa4aaSbaaKGbagaaca aIYaaaleqaaKqzGeGaeyOeI0IaeqiTdqwcfa4aaSbaaKGbagaacaaI XaaaleqaaKqzGeGaaCyyaKqbaoaaBaaajyaGbaGaaGimaaWcbeaaju gibiabg2da9iaahchajuaGdaWgaaqcgayaaiaadMgacaWGUbaaleqa aKqbaoaabmaakeaajugibiabeg8aYLqbaoaaBaaajyaGbaGaaGymaa WcbeaaaOGaayjkaiaawMcaaaaacaGL7baaaaa@930E@    (43)

wherein, c 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHJb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C6E@ is the projection of the radius vector of the driving wheelset’s geometric center (the origin of the fixed coordinate system) on the horizontal plane, l 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGSb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C73@ is the distance between the centers of the driven and driving wheel axles, p in ( ρ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaaCiCaK qbaoaaBaaajyaGbaqcLbmacaWGPbGaamOBaaqcfayabaWaaeWaaeaa jugibiabeg8aYLqbaoaaBaaajyaGbaqcLbmacaaIXaaajuaGbeaaai aawIcacaGLPaaaaaa@441D@ and p out ( ρ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaaCiCaK qbaoaaBaaajyaGbaqcLbmacaWGVbGaamyDaiaadshaaKqbagqaamaa bmaabaqcLbsacqaHbpGCjuaGdaWgaaqcgayaaKqzadGaaGOmaaqcfa yabaaacaGLOaGaayzkaaaaaa@4524@ are respectively the radius vectors of contact points between the driven wheels and the inner and outer rails.

Equation (43) is a system of nonlinear equations for calculating the driven wheelset’s descriptive variables using known wheel-rail relationship for the driving wheelset, and then determining the wheel-rail relationship for the driven wheelset. In essence, this equation considers not only the constraints between bogie and wheelsets, but also the constraints between track and driven wheelset. Thus it can reflect the actual operation of the crane on the track.

Dynamic analysis of crane in lateral and vertical directions

When simulating and studying the dynamic response of each component of the railway crane during operation, it is necessary to abstract the actual system into a physical or mechanical model, and then establish the corresponding mathematical model, i.e. the differential equation of system dynamics, to find its solution.16 The chassis (including car body), leveling devices, bogie frame, wheelsets and spring suspension devices of the crane constitute a system composed of springs, dampers and masses.17,18 However, such a system is a complex multi-body system with multiple degrees of freedom. Studying all of its dynamic characteristics will not only bring great difficulties to analysis and calculation, but also is unnecessary. Therefore, in actual analysis and calculation, the specific objects can be appropriately simplified based on considerations of the main factors affecting the dynamic performance and actual needs, and corresponding assumptions can be made. These assumptions include:

  1. Components like wheelsets, bogie frame, leveling arc plates and chassis have much smaller elasticity than the elastic elements of suspension system, and are thus considered as rigid bodies, whose elastic deformation is neglected;
  2. Some connections between rigid bodies can be regarded as moving connections formed by proper hinges (spherical hinges, cylindrical hinges, rotary hinges, etc.); The mass of each spring in the suspension device is very small compared with the system mass and is distributed on the rigid body to which it is attached. A spring is regarded as a force element, and only the influence of its elastic deformation on the potential energy of the system is considered;
  3. The front and rear bogies have exactly the same structural and size parameters, so do the front and rear leveling devices. The chassis, leveling devices and bogies are symmetrical in structure.
  4. Since the pistons in the front and rear leveling devices are firmly connected to the chassis, the oil cylinder is connected to the arc plate by the pin shaft, and each arc plate has four sliders to support the chassis, the chassis, as a whole, restricts the relative position between the front and rear arc plates. The front and rear arc plates have the same orientation during operation.
  5. When the railway crane is running, the driving wheels on the front and rear bogies have the same angular velocity around the axle.

Figure 7 shows a simplified topology diagram of the railway crane multi-body system. The wheel-rail relationship essentially describes the longitudinal motion of the crane on the track and it has been obtained in the sections above. On this basis, virtual power equations are derived according to the kinematic relationships between the main components using the virtual power principle, and the dynamic equations for the system are assembled. Then the lateral and vertical dynamic responses of railway crane traveling at different speeds on curved track are calculated.

Figure 7 Topology diagram of railway crane multibody system.

Principles of dynamic modeling

The multibody system for a railway crane has multiple spring force elements.19 The whole system can be regarded as a new particle system composed of the subparticle systems determined by each rigid body. Thus according to the virtual power equation for a single rigid body in a multibody system

δ P i =δ r ˙ i ( m i r ¨ i m i g F i a )+δ ω i ( J i ω ˙ i + ω i × J i ω i M i a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azcaWGqbqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaajugibiabg2da 9iabes7aKjqahkhagaGaaKqbaoaaBaaaleaajugWaiaadMgaaSqaba qcLbsacqGHflY1juaGdaqadaGcbaqcLbsacaWGTbqcfa4aaSbaaSqa aKqzadGaamyAaaWcbeaajugibiqahkhagaWaaKqbaoaaBaaaleaaju gWaiaadMgaaSqabaqcLbsacqGHsislcaWGTbqcfa4aaSbaaSqaaKqz adGaamyAaaWcbeaajugibiaahEgacqGHsislcaWHgbqcfa4aa0baaS qaaKqzadGaamyAaaWcbaqcLbmacaWGHbaaaaGccaGLOaGaayzkaaqc LbsacqGHRaWkcqaH0oazcaWHjpqcfa4aaSbaaSqaaKqzadGaamyAaa WcbeaajugibiabgwSixNqbaoaabmaakeaajugibiaahQeajuaGdaWg aaWcbaqcLbmacaWGPbaaleqaaKqzGeGaeyyXICTabCyYdyaacaqcfa 4aaSbaaSqaaKqzadGaamyAaaWcbeaajugibiabgUcaRiaahM8ajuaG daWgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGaey41aqRaaCOsaKqbao aaBaaaleaajugWaiaadMgaaSqabaqcLbsacqGHflY1caWHjpqcfa4a aSbaaSqaaKqzadGaamyAaaWcbeaajugibiabgkHiTiaah2eajuaGda qhaaWcbaqcLbmacaWGPbaaleaajugWaiaadggaaaaakiaawIcacaGL Paaaaaa@905F@    (44)

The virtual power equation for a rigid multibody system can be obtained by superposition

δ P w = i δ P i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaeqiTdq MaamiuaKqbaoaaBaaajyaGbaGaam4DaaWcbeaajugibiabg2da9Kqb aoaaqafakeaajugibiabes7aKjaadcfajuaGdaWgaaqcgayaaiaadM gaaSqabaaajyaGbaGaamyAaaWcbeqcLbsacqGHris5aaaa@466A@    (45)

The force exerted by the spring force elements on the connected object is related to the distance and relative speed between the connection points of the force elements. The relative motion of the object will cause the spring to continuously change in tension and compression, and the potential energy of the suspension devices in the system will change accordingly. The spring can be regarded as a purely flexible element without mass. Its virtual power equation is approximated by the virtual power of flexible body deformation as

δ P e = i δ ε ˙ i f i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaeqiTdq MaamiuaKqbaoaaBaaajyaGbaGaamyzaaWcbeaajugibiabg2da9Kqb aoaaqafakeaajugibiabes7aKjqbew7aLzaacaqcfa4aaSbaaKGbag aacaWGPbaaleqaaKqzGeGaamOzaKqbaoaaBaaajyaGbaGaamyAaaWc beaaaKGbagaacaWGPbaaleqajugibiabggHiLdaaaa@4AE4@    (46)

In which f i = k i ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaamOzaK qbaoaaBaaajyaGbaGaamyAaaWcbeaajugibiabg2da9iaadUgajuaG daWgaaqcgayaaiaadMgaaSqabaqcLbsacqaH1oqzjuaGdaWgaaqcga yaaiaadMgaaSqabaaaaa@4267@ is the spring force when the amount of deformation is ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaaaa@3D5C@ .

The virtual power equation for the system is

δP=δ P w +δ P e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azcaWGqbGaeyypa0JaeqiTdqMaamiuaKqbaoaaBaaaleaajugWaiaa dEhaaSqabaqcLbsacqGHRaWkcqaH0oazcaWGqbqcfa4aaSbaaSqaaK qzadGaamyzaaWcbeaaaaa@4638@    (47)

Unlike those of a single rigid body, the centroid velocity and angular velocity of each object in a multibody system are not independent. The centroid acceleration of the object can be expressed as r ¨ i = α i q ¨ + w i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHYb GbamaajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0Ja aCySdKqbaoaaBaaaleaajugWaiaadMgaaSqabaqcLbsaceWGXbGbam aacqGHRaWkcaWH3bqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaaaaa@48BF@ and its angular acceleration can be expressed as ω ˙ i = β i q ¨ + σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHjp GbaiaajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0Ja aCOSdKqbaoaaBaaaleaajugWaiaadMgaaSqabaqcLbsaceWGXbGbam aacqGHRaWkcaWHdpqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaaaaa@4968@ . According to the definition of virtual velocity, the virtual velocity of the object's centroid and the virtual angular velocity of the object are respectively.

{ δ r ˙ i = α i δ q ˙ δ ω i = β i δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiabes7aKjqahkhagaGaaKqbaoaaBaaaleaa jugWaiaadMgaaSqabaqcLbsacqGH9aqpcaWHXoqcfa4aaSbaaSqaaK qzadGaamyAaaWcbeaajugibiabes7aKjqadghagaGaaaGcbaqcLbsa cqaH0oazcaWHjpqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaajugibi abg2da9iaahk7ajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGa eqiTdqMabmyCayaacaaaaOGaay5Eaaaaaa@56B4@    (48)

The virtual variation in the rate of change in the deformation of each spring force element with time is expressed as

δ ε ˙ i = γ i δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azcuaH1oqzgaGaaKqbaoaaBaaaleaajugWaiaadMgaaSqabaqcLbsa cqGH9aqpcaWHZoqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaajugibi abes7aKjqadghagaGaaaaa@45A5@    (49)

Substituting Eqs. (48) and (49) into Eq. (47), we can get

δP=δ q ˙ T i α i T ( m i α i q ¨ + m i w i m i g F i a ) +δ q ˙ T i β i T ( J i β i q ¨ + J i σ i + ω i × J i ω i M i a ) +δ q ˙ T i γ i T f i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOabaqqabaqcfaOaeq iTdqMaamiuaiabg2da9iabes7aKjqadghagaGaamaaCaaabeqcgaya aiaadsfaaaqcfa4aaabuaeaacaWHXoWaa0baaKGbagaacaWGPbaaba GaamivaaaajuaGcaGGOaGaamyBamaaBaaajyaGbaGaamyAaaqcfaya baGaaCySdmaaBaaajyaGbaGaamyAaaqcfayabaGabmyCayaadaGaey 4kaSIaamyBamaaBaaajyaGbaGaamyAaaqcfayabaGaaC4DamaaBaaa jyaGbaGaamyAaaqcfayabaGaeyOeI0IaamyBamaaBaaajyaGbaGaam yAaaqcfayabaGaaC4zaiabgkHiTiaadAeadaqhaaqcgayaaiaadMga aeaacaWGHbaaaKqbakaacMcaaKGbagaacaWGPbaajuaGbeGaeyyeIu oaaeaacqGHRaWkcqaH0oazceWGXbGbaiaadaahaaqabKGbagaacaWG ubaaaKqbaoaaqafabaGaaCOSdmaaDaaajyaGbaGaamyAaaqaaiaads faaaqcfaOaaiikaiaahQeadaWgaaqcgayaaiaadMgaaKqbagqaaiaa hk7adaWgaaqcgayaaiaadMgaaKqbagqaaiqadghagaWaaiabgUcaRi aahQeadaWgaaqcgayaaiaadMgaaKqbagqaaiaaho8adaWgaaqcgaya aiaadMgaaKqbagqaaiabgUcaRiaahM8adaWgaaqcgayaaiaadMgaaK qbagqaaiabgEna0kaahQeadaWgaaqcgayaaiaadMgaaKqbagqaaiab gwSixlaahM8adaWgaaqcgayaaiaadMgaaKqbagqaaiabgkHiTiaah2 eadaqhaaqcgayaaiaadMgaaeaacaWGHbaaaKqbakaacMcaaKGbagaa caWGPbaajuaGbeGaeyyeIuoaaOqaaKqbakabgUcaRiabes7aKjqadg hagaGaamaaCaaabeqcgayaaiaadsfaaaqcfa4aaabuaeaacaWHZoWa a0baaKGbagaacaWGPbaabaGaamivaaaajuaGcaWGMbWaaSbaaKGbag aacaWGPbaajuaGbeaaaKGbagaacaWGPbaajuaGbeGaeyyeIuoaaaaa @A533@    (50)

According to the principle of virtual power δP=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azcaWGqbGaeyypa0JaaGimaaaa@3D0E@ , the above equation is further simplified as20

δ q ˙ T (M q ¨ F)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWGXbGbaiaajuaGdaahaaWcbeqaaKqzadGaamivaaaajugibiaa cIcacaWHnbGabmyCayaadaGaeyOeI0IaaCOraiaacMcacqGH9aqpca aIWaaaaa@4337@    (51)

Since q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbyaceWGXb Gbaiaaaaa@3A33@  is an independent variable, the dynamic equation for the system can be obtained

M q ¨ F=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHnb GabmyCayaadaGaeyOeI0IaaCOraiabg2da9iaaicdaaaa@3BE9@    (52)

Rigid body modeling of each part

Rigid bodies in the system include eight wheelsets, front and rear bogie frames, front and rear leveling arc plates, and chassis. Wheelset motion is substituted into the system’s equation as a known term. Next, it is necessary to establish a virtual power model for the bogie frames, the arc plates and the chassis successively from bottom to top based on the kinematic relationships between the components.

Bogie frame

As shown in Figure 8, a coordinate system oxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb GaeyOeI0IaamiEaiaadMhacaWG6baaaa@3DAF@ conforming to the right-hand rule is fixed to the bogie frame, with the spherical center of the spherical bowl where the spherical hinge is installed taken as the origin. The x-axis points towards the outer rail along the lateral direction of the top surface, while the y-axis points towards the forward direction along the longitudinal direction of the top surface. Let { b 1 , b 2 , b 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepKI8Vfc8Eeeu0dYdi9arFj0xirFj0d Xdbba91qpepGe9FjuP0=is0dXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakaabUhaca WHIbWaaSbaaKGbagaacaaIXaaajuaGbeaacaGGSaGaaCOyamaaBaaa jyaGbaGaaGOmaaqcfayabaGaaiilaiaahkgadaWgaaqcgayaaiaaio daaKqbagqaaiaab2haaaa@4533@  be the base vectors of this coordinate system.

Figure 8 Schematic diagram of the coordinate system fixed to bogie frame.

Taking the coordinate system fixed to the driving wheelset on the bogie frame as the reference system, we mainly consider the effects of the vertical displacement ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH+o aEaaa@3A97@ , pitching angle β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHYo GyjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa@3D23@ and rolling angle β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHYo GyjuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa@3D24@ of the bogie frame relative to the wheelset caused by the primary suspension device. The relationships between the base vectors can be written as

{ u 1 u 2 u 3 }=[ cos β 2 0 sin β 2 0 1 0 sin β 2 0 cos β 2 ]{ g 1 g 2 g 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaacmaaea qabeaajugibiaahwhajuaGdaWgaaqcgayaaiaaigdaaKqbagqaaaqa aiaahwhadaWgaaqcgayaaiaaikdaaKqbagqaaaqaaiaahwhadaWgaa qcgayaaiaaiodaaKqbagqaaaaacaGL7bGaayzFaaGaeyypa0ZaamWa aeaafaqabeWadaaabaGaci4yaiaac+gacaGGZbGaeqOSdi2aaSbaaK GbagaacaaIYaaajuaGbeaaaeaacaaIWaaabaGaci4CaiaacMgacaGG UbGaeqOSdi2aaSbaaKGbagaacaaIYaaajuaGbeaaaeaacaaIWaaaba GaaGymaaqaaiaaicdaaeaacqGHsislciGGZbGaaiyAaiaac6gacqaH YoGydaWgaaqcgayaaiaaikdaaKqbagqaaaqaaiaaicdaaeaaciGGJb Gaai4BaiaacohacqaHYoGydaWgaaqcgayaaiaaikdaaKqbagqaaaaa aiaawUfacaGLDbaadaGadaabaeqabaGaaC4zamaaBaaajyaGbaGaaG ymaaqcfayabaaabaGaaC4zamaaBaaajyaGbaGaaGOmaaqcfayabaaa baGaaC4zamaaBaaajyaGbaGaaG4maaqcfayabaaaaiaawUhacaGL9b aaaaa@6F6F@    (53)

{ b 1 b 2 b 3 }=[ 1 0 0 0 cos β 1 sin β 1 0 sin β 1 cos β 1 ]{ u 1 u 2 u 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaacmaaea qabeaacaWHIbWaaSbaaKGbagaacaaIXaaajuaGbeaaaeaacaWHIbWa aSbaaKGbagaacaaIYaaajuaGbeaaaeaacaWHIbWaaSbaaKGbagaaca aIZaaajuaGbeaaaaGaay5Eaiaaw2haaiabg2da9maadmaabaqbaeqa bmWaaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaci GGJbGaai4BaiaacohacqaHYoGydaWgaaqcgayaaiaaigdaaKqbagqa aaqaaiGacohacaGGPbGaaiOBaiabek7aInaaBaaajyaGbaGaaGymaa qcfayabaaabaGaaGimaaqaaiabgkHiTiGacohacaGGPbGaaiOBaiab ek7aInaaBaaajyaGbaGaaGymaaqcfayabaaabaGaci4yaiaac+gaca GGZbGaeqOSdi2aaSbaaKGbagaacaaIXaaajuaGbeaaaaaacaGLBbGa ayzxaaWaaiWaaqaabeqaaiaahwhadaWgaaqcgayaaiaaigdaaKqbag qaaaqaaiaahwhadaWgaaqcgayaaiaaikdaaKqbagqaaaqaaiaahwha daWgaaqcgayaaiaaiodaaKqbagqaaaaacaGL7bGaayzFaaaaaa@6E3F@    (54)

Then the angular velocity is

ω b =( b ˙ 2 b 3 ) b 1 +( b ˙ 3 b 1 ) b 2 +( b ˙ 1 b 2 ) b 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHjp qcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaajugibiabg2da9iaacIca ceWHIbGbaiaajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaey yXICTaaCOyaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaGG PaGaaCOyaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHRa WkcaGGOaGabCOyayaacaqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaa jugibiabgwSixlaahkgajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaK qzGeGaaiykaiaahkgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqz GeGaey4kaSIaaiikaiqahkgagaGaaKqbaoaaBaaaleaajugWaiaaig daaSqabaqcLbsacqGHflY1caWHIbqcfa4aaSbaaSqaaKqzadGaaGOm aaWcbeaajugibiaacMcacaWHIbqcfa4aaSbaaSqaaKqzadGaaG4maa Wcbeaaaaa@6DF5@    (55)

The origin of the coordinate system fixed to the bogie frame, i.e. the center of the spherical hinge, is expressed as

r 0 b = c 1 +ξ e z + h b b 3 ( l 1 + 1 2 l 1 ) b 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakaahkhada qhaaqcgayaaiaaicdaaeaacaWGIbaaaKqbakabg2da9iaahogadaWg aaqcgayaaiaaigdaaKqbagqaaiabgUcaRiabe67a4jaahwgadaWgaa qcgayaaiaadQhaaKqbagqaaiabgUcaRiaadIgadaWgaaqcgayaaiaa dkgaaKqbagqaaiaahkgadaWgaaqcgayaaiaaiodaaKqbagqaaiabgk HiTiaacIcacaWGSbWaaSbaaKGbagaacaaIXaaajuaGbeaacqGHRaWk daWcbaqaaiaaigdaaeaacaaIYaaaaiaadYgadaWgaaqcgayaaiaaig daaKqbagqaaiaacMcacaWHIbWaaSbaaKGbagaacaaIYaaajuaGbeaa aaa@58B2@    (56)

As shown in Figure 8, c 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHJb qcfa4aaSbaaeaajugWaiaaigdaaKqbagqaaaaa@3CE6@ is the geometric center of the driving wheelset, h b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGOb qcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaaaaa@3C9B@  is the vertical height from the geometric center of the driving wheelset to the origin of the coordinate system fixed to the bogie in the initial state, l 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGSb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C73@ and l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGSb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3C74@  are the distances between the centers of three adjacent wheel axles. The centroid of bogie frame is

r c b = r 0 b +R p b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakaahkhada qhaaqcgayaaiaadogaaeaacaWGIbaaaKqbakabg2da9iaahkhadaqh aaqcgayaaiaaicdaaeaacaWGIbaaaKqbakabgUcaRiaahkfacaWHWb WaaSbaaKGbagaacaWGIbaajuaGbeaaaaa@449E@    (57)

Wherein, R=[ b 1 b 2 b 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xMi=hEeeu0dYdi9arFj0xirFj0d Xdbba91qpepGe9FjuP0=is0dXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaaCOuai abg2da9iaacUfafaqabeqadaaajugGbeaajugibiaahkgajuaGdaWg aaqcgayaaiaaigdaaSqabaaajugGbeaajugibiaahkgajuaGdaWgaa qcgayaaiaaikdaaSqabaaajugGbeaajugibiaahkgajuaGdaWgaaqc gayaaiaaiodaaSqabaaaaKqzGeGaaiyxaaaa@49F2@ , and p b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaaaaa@3CA7@ is the component of the bogie frame’s centroid in the fixed coordinate system.

The virtual power of the bogie frame relative to the fixed coordinate system can be obtained from equation (44)

δ p w b =δ [ r ˙ 0 b ω b ] T ( M b [ r ¨ 0 b ω ˙ b ]+ F b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azcaWGWbqcfa4aa0baaSqaaKqzadGaam4DaaWcbaqcLbmacaWGIbaa aKqzGeGaeyypa0JaeqiTdqwcfa4aamWaaOqaaKqzGeqbaeqabiqaaa GcbaqcLbsaceWHYbGbaiaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaa jugWaiaadkgaaaaakeaajugibiaahM8ajuaGdaWgaaWcbaqcLbmaca WGIbaaleqaaaaaaOGaay5waiaaw2faaKqbaoaaCaaaleqabaqcLbma caWGubaaaKqbaoaabmaakeaajugibiaah2eajuaGdaWgaaWcbaqcLb macaWGIbaaleqaaKqbaoaadmaakeaajugibuaabeqaceaaaOqaaKqz GeGabCOCayaadaqcfa4aa0baaSqaaKqzadGaaGimaaWcbaqcLbmaca WGIbaaaaGcbaqcLbsaceWHjpGbaiaajuaGdaWgaaWcbaqcLbmacaWG IbaaleqaaaaaaOGaay5waiaaw2faaKqzGeGaey4kaSIaaCOraKqbao aaBaaaleaajugWaiaadkgaaSqabaaakiaawIcacaGLPaaaaaa@6C60@    (58)

Where the mass matrix

M b =[ m b E m b ( r ˜ c b r ˜ 0 b ) m b ( r ˜ c b r ˜ 0 b ) J b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakaah2eada WgaaqcgayaaiaadkgaaKqbagqaaiabg2da9maadmaabaqbaeqabiGa aaqaaiaad2gadaWgaaqcgayaaiaadkgaaKqbagqaaiaahweaaeaacq GHsislcaWGTbWaaSbaaKGbagaacaWGIbaajuaGbeaacaGGOaGabCOC ayaaiaWaa0baaKGbagaacaWGJbaabaGaamOyaaaajuaGcqGHsislce WHYbGbaGaadaqhaaqcgayaaiaaicdaaeaacaWGIbaaaKqbakaacMca aeaacaWGTbWaaSbaaKGbagaacaWGIbaajuaGbeaacaGGOaGabCOCay aaiaWaa0baaKGbagaacaWGJbaabaGaamOyaaaajuaGcqGHsislceWH YbGbaGaadaqhaaqcgayaaiaaicdaaeaacaWGIbaaaKqbakaacMcaae aacaWHkbWaaSbaaKGbagaacaWGIbaajuaGbeaaaaaacaGLBbGaayzx aaaaaa@5F64@    (59)

And the force matrix

F b =[ m b ω ˜ b ω ˜ b ( r c b r 0 b ) m b g ω ˜ b J b ω b + m b ( r ˜ c b r ˜ 0 b )g ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHgb qcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaajugibiabg2da9Kqbaoaa dmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamyBaKqbaoaaBaaale aajugWaiaadkgaaSqabaqcLbsaceWHjpGbaGaajuaGdaWgaaWcbaqc LbmacaWGIbaaleqaaKqzGeGabCyYdyaaiaqcfa4aaSbaaSqaaKqzad GaamOyaaWcbeaajugibiaacIcacaWHYbqcfa4aa0baaSqaaKqzadGa am4yaaWcbaqcLbmacaWGIbaaaKqzGeGaeyOeI0IaaCOCaKqbaoaaDa aaleaajugWaiaaicdaaSqaaKqzadGaamOyaaaajugibiaacMcacqGH sislcaWGTbqcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaajugibiaahE gaaOqaaKqzGeGabCyYdyaaiaqcfa4aaSbaaSqaaKqzadGaamOyaaWc beaajugibiaahQeajuaGdaWgaaWcbaqcLbmacaWGIbaaleqaaKqzGe GaaCyYdKqbaoaaBaaaleaajugWaiaadkgaaSqabaqcLbsacqGHRaWk caWGTbqcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaajugibiaacIcace WHYbGbaGaajuaGdaqhaaWcbaqcLbmacaWGJbaaleaajugWaiaadkga aaqcLbsacqGHsislceWHYbGbaGaajuaGdaqhaaWcbaqcLbmacaaIWa aaleaajugWaiaadkgaaaqcLbsacaGGPaGaaC4zaaaaaOGaay5waiaa w2faaaaa@8682@    (60)

In these equations, m b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGTb qcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaaaaa@3CA0@ is the mass of the bogie frame, and J b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHkb qcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaaaaa@3C81@  is the moment of inertia of the bogie frame relative to the fixed coordinate system.

It is previously assumed that the front and rear bogies have the same composition and symmetrical structure, and the corresponding driving wheels have the same angular velocity around axle during operation. So the rear bogie’s frame and wheelsets can be modelled in the same way as those of the front bogie.

Leveling arc plate

As the relative position between the front and rear leveling arc plates is constrained by the chassis as a whole, it is reasonable to assume that the front and rear leveling arc plates always have the same orientation during operation, and the line passing through the centers of the front and rear spherical hinges is parallel to the longitudinal direction of the chassis. Otherwise the chassis will be deformed, which is inconsistent with the principles for actual engineering design. This verifies the validity of the previous assumption (Figure 9).

Figure 9 Constraints on front and rear leveling arc plates imposed by chassis.

As shown in Figure 10, a coordinate system oxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb GaeyOeI0IaamiEaiaadMhacaWG6baaaa@3DAF@ is fixed to a leveling arc plate, with the spherical hinge center being as the origin. The x-axis points to the outer rail along the longitudinal direction (length) of the arc plate, the y-axis points to the forward direction along the transverse direction (width) of the arc plate, and the z-axis points upward along the height of the arc plate. Let { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCyzaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aCyzaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC yzaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48B6@  represent the base vectors of this coordinate system.

Figure 10 Schematic diagram of the coordinate system fixed to leveling arc plate.

The coordinate system fixed to the bogie frame is used as the reference system. As each leveling arc plate is connected to the bogie frame by a spherical hinge, it is necessary to consider the influence of the yawing angle χ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHhp WyjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa@3D39@ , pitching angle χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHhp WyjuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa@3D3A@ and rolling angle χ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHhp WyjuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaaa@3D3B@ of the leveling arc plate relative to the bogie frame. Thus following transformations are applied to the base vectors:

{ b 1 , b 2 , b 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCOyaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aCOyaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC OyaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48AD@ { m 1 , m 2 , m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCyBaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aCyBaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC yBaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48CE@ { n 1 , n 2 , n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCOBaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aCOBaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC OBaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48D1@ { e 1 , e 2 , e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaqG7b GaaCyzaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacaGGSaGa aCyzaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacaGGSaGaaC yzaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaqG9baaaa@48B6@

{ m 1 m 2 m 3 }=[ cos χ 1 sin χ 1 0 sin χ 1 cos χ 1 0 0 0 1 ]{ b 1 b 2 b 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaacmaaea qabeaacaWHTbWaaSbaaKGbagaacaaIXaaajuaGbeaaaeaacaWHTbWa aSbaaKGbagaacaaIYaaajuaGbeaaaeaacaWHTbWaaSbaaKGbagaaca aIZaaajuaGbeaaaaGaay5Eaiaaw2haaiabg2da9maadmaabaqbaeqa bmWaaaqaaiGacogacaGGVbGaai4CaiabeE8aJnaaBaaajyaGbaGaaG ymaaqcfayabaaabaGaci4CaiaacMgacaGGUbGaeq4Xdm2aaSbaaKGb agaacaaIXaaajuaGbeaaaeaacaaIWaaabaGaeyOeI0Iaci4CaiaacM gacaGGUbGaeq4Xdm2aaSbaaKGbagaacaaIXaaajuaGbeaaaeaaciGG JbGaai4BaiaacohacqaHhpWydaWgaaqcgayaaiaaigdaaKqbagqaaa qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaaaacaGLBbGa ayzxaaWaaiWaaqaabeqaaiaahkgadaWgaaqcgayaaiaaigdaaKqbag qaaaqaaiaahkgadaWgaaqcgayaaiaaikdaaKqbagqaaaqaaiaahkga daWgaaqcgayaaiaaiodaaKqbagqaaaaacaGL7bGaayzFaaaaaa@6E7F@    (61)

{ n 1 n 2 n 3 }=[ 1 0 0 0 cos χ 2 sin χ 2 0 sin χ 2 cos χ 2 ]{ m 1 m 2 m 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaacmaaea qabeaacaWHUbWaaSbaaKGbagaacaaIXaaajuaGbeaaaeaacaWHUbWa aSbaaKGbagaacaaIYaaajuaGbeaaaeaacaWHUbWaaSbaaKGbagaaca aIZaaajuaGbeaaaaGaay5Eaiaaw2haaiabg2da9maadmaabaqbaeqa bmWaaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaci GGJbGaai4BaiaacohacqaHhpWydaWgaaqcgayaaiaaikdaaKqbagqa aaqaaiGacohacaGGPbGaaiOBaiabeE8aJnaaBaaajyaGbaGaaGOmaa qcfayabaaabaGaaGimaaqaaiabgkHiTiGacohacaGGPbGaaiOBaiab eE8aJnaaBaaajyaGbaGaaGOmaaqcfayabaaabaGaci4yaiaac+gaca GGZbGaeq4Xdm2aaSbaaKGbagaacaaIYaaajuaGbeaaaaaacaGLBbGa ayzxaaWaaiWaaqaabeqaaiaah2gadaWgaaqcgayaaiaaigdaaKqbag qaaaqaaiaah2gadaWgaaqcgayaaiaaikdaaKqbagqaaaqaaiaah2ga daWgaaqcgayaaiaaiodaaKqbagqaaaaacaGL7bGaayzFaaaaaa@6EA7@    (62)

{ e 1 e 2 e 3 }=[ cos χ 3 0 sin χ 3 0 1 0 sin χ 3 0 cos χ 3 ]{ n 1 n 2 n 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaacmaaea qabeaacaWHLbWaaSbaaKGbagaacaaIXaaajuaGbeaaaeaacaWHLbWa aSbaaKGbagaacaaIYaaajuaGbeaaaeaacaWHLbWaaSbaaKGbagaaca aIZaaajuaGbeaaaaGaay5Eaiaaw2haaiabg2da9maadmaabaqbaeqa bmWaaaqaaiGacogacaGGVbGaai4CaiabeE8aJnaaBaaajyaGbaGaaG 4maaqcfayabaaabaGaaGimaaqaaiabgkHiTiGacohacaGGPbGaaiOB aiabeE8aJnaaBaaajyaGbaGaaG4maaqcfayabaaabaGaaGimaaqaai aaigdaaeaacaaIWaaabaGaci4CaiaacMgacaGGUbGaeq4Xdm2aaSba aKGbagaacaaIZaaajuaGbeaaaeaacaaIWaaabaGaci4yaiaac+gaca GGZbGaeq4Xdm2aaSbaaKGbagaacaaIZaaajuaGbeaaaaaacaGLBbGa ayzxaaWaaiWaaqaabeqaaiaah6gadaWgaaqcgayaaiaaigdaaKqbag qaaaqaaiaah6gadaWgaaqcgayaaiaaikdaaKqbagqaaaqaaiaah6ga daWgaaqcgayaaiaaiodaaKqbagqaaaaacaGL7bGaayzFaaaaaa@6E93@    (63)

Then the angular velocity is

ω e =( e ˙ 2 e 3 ) e 1 +( e ˙ 3 e 1 ) e 2 +( e ˙ 1 e 2 ) e 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHjp qcfa4aaSbaaSqaaKqzadGaamyzaaWcbeaajugibiabg2da9iaacIca ceWHLbGbaiaajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaey yXICTaaCyzaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaGG PaGaaCyzaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHRa WkcaGGOaGabCyzayaacaqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaa jugibiabgwSixlaahwgajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaK qzGeGaaiykaiaahwgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqz GeGaey4kaSIaaiikaiqahwgagaGaaKqbaoaaBaaaleaajugWaiaaig daaSqabaqcLbsacqGHflY1caWHLbqcfa4aaSbaaSqaaKqzadGaaGOm aaWcbeaajugibiaacMcacaWHLbqcfa4aaSbaaSqaaKqzadGaaG4maa Wcbeaaaaa@6E13@    (64)

The upper surface of each slider on the leveling arc plate forms a plane that coincides with the plane of the chassis. Ignoring the minimal impact of installation clearance on this situation, as shown in Figure 9, the y-axis of coordinate system fixed to the arc plate must be parallel to the longitudinal direction of the chassis, and thereby the line between centers of the front and rear spherical hinges, that is

e 2 =( r 0 e r 0 e ) r 0 e r 0 e -1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaaCyzaK qbaoaaBaaajyaGbaGaaGOmaaWcbeaajugibiabg2da9Kqbaoaabmaa keaajugibiqahkhagaWdaKqbaoaaDaaajyaGbaGaaGimaaqaaiaadw gaaaqcLbsacqGHsislceWHYbGba4aajuaGdaqhaaqcgayaaiaaicda aeaacaWGLbaaaaGccaGLOaGaayzkaaqcfa4aauWaaOqaaKqzGeGabC OCayaapaqcfa4aa0baaKGbagaacaaIWaaabaGaamyzaaaajugibiab gkHiTiqahkhagaGdaKqbaoaaDaaajyaGbaGaaGimaaqaaiaadwgaaa aakiaawMa7caGLkWoajuaGdaahaaWcbeqcgayaaiaab2cacaaIXaaa aaaa@5712@    (65)

Where r 0 e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHYb Gba8aajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadwgaaaaa aa@3C3F@  and r 0 e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHYb Gba4aajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadwgaaaaa aa@3C3E@  are the centers of the spherical hinges on the front and rear leveling arc plates, respectively. They are also the centers of spherical bowls on the front and rear bogie frames for installting the spherical hinges. Then the yawing angle and pitching angle are respectively

χ 1 =atan2( b 1 e 2 , b 2 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakabeE8aJn aaBaaajyaGbaGaaGymaaqcfayabaGaeyypa0JaamyyaiGacshacaGG HbGaaiOBaiaaikdacaGGOaGaeyOeI0IaaCOyamaaBaaajyaGbaGaaG ymaaqcfayabaGaeyyXICTaaCyzamaaBaaajyaGbaGaaGOmaaqcfaya baGaaiilaiaahkgadaWgaaqcgayaaiaaikdaaKqbagqaaiabgwSixl aahwgadaWgaaqcgayaaiaaikdaaKqbagqaaiaacMcaaaa@5306@    (66)

χ 2 =asin( b 3 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakabeE8aJn aaBaaajyaGbaGaaGOmaaqcfayabaGaeyypa0JaamyyaiGacohacaGG PbGaaiOBaiaacIcacaWHIbWaaSbaaKGbagaacaaIZaaajuaGbeaacq GHflY1caWHLbWaaSbaaKGbagaacaaIYaaajuaGbeaacaGGPaaaaa@48A0@    (67)

The centroids of front and rear leveling arc plates are

r c e = r 0 e +R p e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakqahkhaga WdamaaDaaajyaGbaGaam4yaaqaaiaadwgaaaqcfaOaeyypa0JabCOC ayaapaWaa0baaKGbagaacaaIWaaabaGaamyzaaaajuaGcqGHRaWkca WHsbGaaCiCamaaBaaajyaGbaGaamyzaaqcfayabaaaaa@44B5@    (68)

r c e = r 0 e +R p e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakqahkhaga GdamaaDaaajyaGbaGaam4yaaqaaiaadwgaaaqcfaOaeyypa0JabCOC ayaaoaWaa0baaKGbagaacaaIWaaabaGaamyzaaaajuaGcqGHRaWkca WHsbGaaCiCamaaBaaajyaGbaGaamyzaaqcfayabaaaaa@44B3@    (69)

Where R=[ e 1 e 2 e 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHsb Gaeyypa0Jaai4wauaabeqabmaaaKqzagqaaKqzGeGaaCyzaKqbaoaa BaaaleaajugWaiaaigdaaSqabaaajugGbeaajugibiaahwgajuaGda WgaaWcbaqcLbmacaaIYaaaleqaaaqcLbyabaqcLbsacaWHLbqcfa4a aSbaaSqaaKqzadGaaG4maaWcbeaaaaqcLbsacaGGDbaaaa@4C64@ and p e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaamyzaaWcbeaaaaa@3CAA@  is the component of the centroid of a leveling arc plate in the fixed coordinate system.

According to formula (44), the virtual power of the front leveling arc plate relative to the coordinate system fixed to it is        

δ p w e =δ [ r ˙ 0 e ω e ] T ( M e [ r ¨ 0 e ω ˙ e ]+ F e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azcaWGWbqcfa4aa0baaSqaaKqzadGaam4DaaWcbaqcLbmacaWGLbaa aKqzGeGaeyypa0JaeqiTdqwcfa4aamWaaOqaaKqzGeqbaeqabiqaaa GcbaqcLbsaceWHYbGbaiaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaa jugWaiaadwgaaaaakeaajugibiaahM8ajuaGdaWgaaWcbaqcLbmaca WGLbaaleqaaaaaaOGaay5waiaaw2faaKqbaoaaCaaaleqabaqcLbma caWGubaaaKqbaoaabmaakeaajugibiaah2eajuaGdaWgaaWcbaqcLb macaWGLbaaleqaaKqbaoaadmaakeaajugibuaabeqaceaaaOqaaKqz GeGabCOCayaadaqcfa4aa0baaSqaaKqzadGaaGimaaWcbaqcLbmaca WGLbaaaaGcbaqcLbsaceWHjpGbaiaajuaGdaWgaaWcbaqcLbmacaWG LbaaleqaaaaaaOGaay5waiaaw2faaKqzGeGaey4kaSIaaCOraKqbao aaBaaaleaajugWaiaadwgaaSqabaaakiaawIcacaGLPaaaaaa@6C75@    (70)

Where, the mass matrix   M e =[ m e E m e ( r ˜ c e r ˜ 0 e ) m e ( r ˜ c e r ˜ 0 b ) J e ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakaah2eada WgaaqcgayaaiaadwgaaKqbagqaaiabg2da9maadmaabaqbaeqabiGa aaqaaiaad2gadaWgaaqcgayaaiaadwgaaKqbagqaaiaahweaaeaacq GHsislcaWGTbWaaSbaaKGbagaacaWGLbaajuaGbeaacaGGOaGabCOC ayaaiaWaa0baaKGbagaacaWGJbaabaGaamyzaaaajuaGcqGHsislce WHYbGbaGaadaqhaaqcgayaaiaaicdaaeaacaWGLbaaaKqbakaacMca aeaacaWGTbWaaSbaaKGbagaacaWGLbaajuaGbeaacaGGOaGabCOCay aaiaWaa0baaKGbagaacaWGJbaabaGaamyzaaaajuaGcqGHsislceWH YbGbaGaadaqhaaqcgayaaiaaicdaaeaacaWGIbaaaKqbakaacMcaae aacaWHkbWaaSbaaKGbagaacaWGLbaajuaGbeaaaaaacaGLBbGaayzx aaaaaa@5F7C@   (71)

And the force matrix

F e =[ m e ω ˜ e ω ˜ e ( r c e r 0 e ) m e g ω ˜ e J e ω e + m e ( r ˜ c e r ˜ 0 e )g ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHgb qcfa4aaSbaaSqaaKqzadGaamyzaaWcbeaajugibiabg2da9Kqbaoaa dmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamyBaKqbaoaaBaaale aajugWaiaadwgaaSqabaqcLbsaceWHjpGbaGaajuaGdaWgaaWcbaqc LbmacaWGLbaaleqaaKqzGeGabCyYdyaaiaqcfa4aaSbaaSqaaKqzad GaamyzaaWcbeaajugibiaacIcacaWHYbqcfa4aa0baaSqaaKqzadGa am4yaaWcbaqcLbmacaWGLbaaaKqzGeGaeyOeI0IaaCOCaKqbaoaaDa aaleaajugWaiaaicdaaSqaaKqzadGaamyzaaaajugibiaacMcacqGH sislcaWGTbqcfa4aaSbaaSqaaKqzadGaamyzaaWcbeaajugibiaahE gaaOqaaKqzGeGabCyYdyaaiaqcfa4aaSbaaSqaaKqzadGaamyzaaWc beaajugibiaahQeajuaGdaWgaaWcbaqcLbmacaWGLbaaleqaaKqzGe GaaCyYdKqbaoaaBaaaleaajugWaiaadwgaaSqabaqcLbsacqGHRaWk caWGTbqcfa4aaSbaaSqaaKqzadGaamyzaaWcbeaajugibiaacIcace WHYbGbaGaajuaGdaqhaaWcbaqcLbmacaWGJbaaleaajugWaiaadwga aaqcLbsacqGHsislceWHYbGbaGaajuaGdaqhaaWcbaqcLbmacaaIWa aaleaajugWaiaadwgaaaqcLbsacaGGPaGaaC4zaaaaaOGaay5waiaa w2faaaaa@86A9@    (72)

wherein, m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGTb qcfa4aaSbaaSqaaKqzadGaamyzaaWcbeaaaaa@3CA3@ is the mass of the leveling arc plate, and J e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHkb qcfa4aaSbaaSqaaKqzadGaamyzaaWcbeaaaaa@3C84@ is the moment of inertia of the leveling arc plate relative to the fixed coordinate system.

The virtual power of the rear leveling arc plate relative to the coordinate system fixed to it can be obtained in the same way as that of the front leveling arc plate.

Chassis (including car body)

As shown in Figure 11, a coordinate system oxyz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb GaeyOeI0IaamiEaiaadMhacaWG6baaaa@3DAF@ conforming to the right-hand rule is fixed to the chassis, with the geometric center of the upper surface of the chassis used as the origin. The x-axis points to the outer rail along the transverse direction (width) of the chassis, and the y-axis points to the forward direction along the longitudinal direction (length) of the chassis. Let { h 1 , h 2 , h 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepKI8Vfc8Eeeu0dYdi9arFj0xirFj0d Xdbba91qpepGe9FjuP0=is0dXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaae4Eai aahIgajuaGdaWgaaqcgayaaKqzadGaaGymaaqcfayabaqcLbsacaGG SaGaaCiAaKqbaoaaBaaajyaGbaqcLbmacaaIYaaajuaGbeaajugibi aacYcacaWHObqcfa4aaSbaaKGbagaajugWaiaaiodaaKqbagqaaKqz GeGaaeyFaaaa@4C27@ be the coordinate system’s base vectors.

Figure 11 Schematic diagram of the coordinate system fixed to the chassis (including car body).

The coordinate system fixed to a leveling arc plate is used as the reference system.20–25 According to the constraint on the leveling arc plate imposed by the chassis, the y-axis of the coordinate system fixed to the arc plate is parallel to the y-axis y of the coordinate system fixed to the chassis. Then the movement of the chassis with respect to the leveling arc plate is pure rotation around the base vector e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHLb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3C71@  (rolling). This relative movement is the result of the joint action of the oil cylinder and piston installed on the leveling arc plate. The model for this relative motion can be simplified as shown in Figure 12.

Figure 12 Geometric relation representing the relative motion between chassis and arc plate.

o 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C76@ - Circle center of arc plate; o 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3C77@  - Center of pin shaft; o 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGVb qcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaaaa@3C78@  - Piston center

The vertical median lines of the left and right support sliders

When the leveling cylinder piston is not retracted, the chassis can be regarded as firmly connected with the front and rear arc plates. Then the base vectors of the chassis-fixed coordinate system have the same directions as those of the leveling arc plate. At this time, the initial angle for a given arc radius of the arc plate is

ϑ 0 =asin( 1 2 L g R 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakabeg9akn aaBaaajyaGbaGaaGimaaqcfayabaGaeyypa0JaciyyaiaacohacaGG PbGaaiOBaiaacIcadaWcbaqaaiaaigdaaeaacaaIYaaaaiaadYeada WgaaqcgayaaiaadEgaaKqbagqaaiaadkfadaahaaqabKGbagaacqGH sislcaaIXaaaaKqbakaacMcaaaa@48B7@    (73)

Where R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaamOuaaaa@391C@  is the arc radius and L g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGNbaabeaaaaa@3A2E@  is the piston length.

Distance from piston center to circle center of arc plate

h g =Rcos ϑ 0 + h 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGOb qcfa4aaSbaaSqaaKqzadGaam4zaaWcbeaajugibiabg2da9iaadkfa ciGGJbGaai4BaiaacohacqaHrpGsjuaGdaWgaaWcbaqcLbmacaaIWa aaleqaaKqzGeGaey4kaSIaamiAaKqbaoaaBaaaleaajugWaiaaicda aSqabaaaaa@48D4@    (74)

After the right cylinder is retracted by d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaamizaaaa@36E2@ , the angle of rotation of the chassis relative to the arc plate is

γ=asin(d h g 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHZo WzcqGH9aqpciGGHbGaai4CaiaacMgacaGGUbGaaiikaiaadsgacaWG Obqcfa4aa0baaSqaaKqzadGaam4zaaWcbaqcLbmacqGHsislcaaIXa aaaKqzGeGaaiykaaaa@4647@    (75)

Then the base vector of the chassis-fixed coordinate system is

{ h 1 h 2 h 3 }=[ cosγ 0 sinγ 0 1 0 sinγ 0 cosγ ]{ e 1 e 2 e 3 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaacmaaju gibqaabeGcbaqcLbsacaWHObqcfa4aaSbaaKGbagaacaaIXaaaleqa aaGcbaqcLbsacaWHObqcfa4aaSbaaKGbagaacaaIYaaaleqaaaGcba qcLbsacaWHObqcfa4aaSbaaKGbagaacaaIZaaaleqaaaaakiaawUha caGL9baajugibiabg2da9KqbaoaadmaakeaajugibuaabeqadmaaaO qaaKqzGeGaci4yaiaac+gacaGGZbGaeq4SdCgakeaajugibiaaicda aOqaaKqzGeGaci4CaiaacMgacaGGUbGaeq4SdCgakeaajugibiaaic daaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIWaaakeaajugibiabgkHi TiGacohacaGGPbGaaiOBaiabeo7aNbGcbaqcLbsacaaIWaaakeaaju gibiGacogacaGGVbGaai4Caiabeo7aNbaaaOGaay5waiaaw2faaKqb aoaacmaajugibqaabeGcbaqcLbsacaWHLbqcfa4aaSbaaKGbagaaca aIXaaaleqaaaGcbaqcLbsacaWHLbqcfa4aaSbaaKGbagaacaaIYaaa leqaaaGcbaqcLbsacaWHLbqcfa4aaSbaaKGbagaacaaIZaaaleqaaa aakiaawUhacaGL9baaaaa@7250@    (76)

The angular velocity is

ω h =( h ˙ 2 h 3 ) h 1 +( h ˙ 3 h 1 ) h 2 +( h ˙ 1 h 2 ) h 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHjp qcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaajugibiabg2da9iaacIca ceWHObGbaiaajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaey yXICTaaCiAaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsacaGG PaGaaCiAaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHRa WkcaGGOaGabCiAayaacaqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaa jugibiabgwSixlaahIgajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaK qzGeGaaiykaiaahIgajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqz GeGaey4kaSIaaiikaiqahIgagaGaaKqbaoaaBaaaleaajugWaiaaig daaSqabaqcLbsacqGHflY1caWHObqcfa4aaSbaaSqaaKqzadGaaGOm aaWcbeaajugibiaacMcacaWHObqcfa4aaSbaaSqaaKqzadGaaG4maa Wcbeaaaaa@6E31@    (77)

The origin of the chassis-fixed coordinate system is

r 0 h = 1 2 ( ρ + ρ 2d h 1 +2 h 1 h 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHYb qcfa4aa0baaSqaaKqzadGaaGimaaWcbaqcLbmacaWGObaaaKqzGeGa eyypa0tcfa4aaSqaaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaK qbaoaabmaakeaajugibiqahg8agaWdaiabgUcaRiqahg8agaGdaiab gkHiTiaaikdacaWGKbGaaCiAaKqbaoaaBaaaleaajugWaiaaigdaaS qabaqcLbsacqGHRaWkcaaIYaGaamiAaKqbaoaaBaaaleaajugWaiaa igdaaSqabaqcLbsacaWHObqcfa4aaSbaaSqaaKqzadGaaG4maaWcbe aaaOGaayjkaiaawMcaaaaa@5796@    (78)

Wherein, h 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGOb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C6F@ is the vertical distance between the piston center and the chassis center in the initial state, and ρ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHbp qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3CCF@ and ρ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHbp qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaaa@3CD0@ are the centers of pin shafts on the front and rear leveling arc plates.

The centroid of the chassis is

r c h = r 0 h +R p h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakaahkhada qhaaqcgayaaiaadogaaeaacaWGObaaaKqbakabg2da9iaahkhadaqh aaqcgayaaiaaicdaaeaacaWGObaaaKqbakabgUcaRiaahkfacaWHWb WaaSbaaKGbagaacaWGObaajuaGbeaaaaa@44B0@    (79)

Where R=[ h 1 h 2 h 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepKI8Vfc8Eeeu0dYdi9arFj0xirFj0d Xdbba91qpepGe9FjuP0=is0dXdbba9pGe9xq=Jbba9suk9fr=xfr=x frpeWZqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakaahkfacq GH9aqpcaGGBbqbaeqabeWaaaqaaiaahIgadaWgaaqcgayaaiaaigda aKqbagqaaaqaaiaahIgadaWgaaqcgayaaiaaikdaaKqbagqaaaqaai aahIgadaWgaaqcgayaaiaaiodaaKqbagqaaaaacaGGDbaaaa@4597@  and p h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHWb qcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaaaaa@3CAD@  is the component of the chassis’s centroid in the fixed coordinate system.

The virtual power of the chassis relative to the fixed coordinate system26 can be obtained from equation (44)             

δ p w h =δ [ r ˙ 0 h ω h ] T ( M h [ r ¨ 0 h ω ˙ h ]+ F h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azcaWGWbqcfa4aa0baaSqaaKqzadGaam4DaaWcbaqcLbmacaWGObaa aKqzGeGaeyypa0JaeqiTdqwcfa4aamWaaOqaaKqzGeqbaeqabiqaaa GcbaqcLbsaceWHYbGbaiaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaa jugWaiaadIgaaaaakeaajugibiaahM8ajuaGdaWgaaWcbaqcLbmaca WGObaaleqaaaaaaOGaay5waiaaw2faaKqbaoaaCaaaleqabaqcLbma caWGubaaaKqbaoaabmaakeaajugibiaah2eajuaGdaWgaaWcbaqcLb macaWGObaaleqaaKqbaoaadmaakeaajugibuaabeqaceaaaOqaaKqz GeGabCOCayaadaqcfa4aa0baaSqaaKqzadGaaGimaaWcbaqcLbmaca WGObaaaaGcbaqcLbsaceWHjpGbaiaajuaGdaWgaaWcbaqcLbmacaWG ObaaleqaaaaaaOGaay5waiaaw2faaKqzGeGaey4kaSIaaCOraKqbao aaBaaaleaajugWaiaadIgaaSqabaaakiaawIcacaGLPaaaaaa@6C8A@    (80)

Where, the mass matrix   M h =[ m h E m h ( r ˜ c h r ˜ 0 h ) m h ( r ˜ c h r ˜ 0 h ) J h ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaaCytaK qbaoaaBaaajyaGbaGaamiAaaWcbeaajugibiabg2da9Kqbaoaadmaa keaajugibuaabeqaciaaaOqaaKqzGeGaamyBaKqbaoaaBaaajyaGba GaamiAaaWcbeaajugibiaahweaaOqaaKqzGeGaeyOeI0IaamyBaKqb aoaaBaaajyaGbaGaamiAaaWcbeaajugibiaacIcaceWHYbGbaGaaju aGdaqhaaqcgayaaiaadogaaeaacaWGObaaaKqzGeGaeyOeI0IabCOC ayaaiaqcfa4aa0baaKGbagaacaaIWaaabaGaamiAaaaajugibiaacM caaOqaaKqzGeGaamyBaKqbaoaaBaaajyaGbaGaamiAaaWcbeaajugi biaacIcaceWHYbGbaGaajuaGdaqhaaqcgayaaiaadogaaeaacaWGOb aaaKqzGeGaeyOeI0IabCOCayaaiaqcfa4aa0baaKGbagaacaaIWaaa baGaamiAaaaajugibiaacMcaaOqaaKqzGeGaaCOsaKqbaoaaBaaajy aGbaGaamiAaaWcbeaaaaaakiaawUfacaGLDbaaaaa@6721@   (81)

And the force matrix

F h =[ m h ω ˜ h ω ˜ h ( r c h r 0 h ) m h g ω ˜ h J h ω h + m h ( r ˜ c h r ˜ 0 h )g ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHgb qcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaajugibiabg2da9Kqbaoaa dmaakeaajugibuaabeqaceaaaOqaaKqzGeGaamyBaKqbaoaaBaaale aajugWaiaadIgaaSqabaqcLbsaceWHjpGbaGaajuaGdaWgaaWcbaqc LbmacaWGObaaleqaaKqzGeGabCyYdyaaiaqcfa4aaSbaaSqaaKqzad GaamiAaaWcbeaajugibiaacIcacaWHYbqcfa4aa0baaSqaaKqzadGa am4yaaWcbaqcLbmacaWGObaaaKqzGeGaeyOeI0IaaCOCaKqbaoaaDa aaleaajugWaiaaicdaaSqaaKqzadGaamiAaaaajugibiaacMcacqGH sislcaWGTbqcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaajugibiaahE gaaOqaaKqzGeGabCyYdyaaiaqcfa4aaSbaaSqaaKqzadGaamiAaaWc beaajugibiaahQeajuaGdaWgaaWcbaqcLbmacaWGObaaleqaaKqzGe GaaCyYdKqbaoaaBaaaleaajugWaiaadIgaaSqabaqcLbsacqGHRaWk caWGTbqcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaajugibiaacIcace WHYbGbaGaajuaGdaqhaaWcbaqcLbmacaWGJbaaleaajugWaiaadIga aaqcLbsacqGHsislceWHYbGbaGaajuaGdaqhaaWcbaqcLbmacaaIWa aaleaajugWaiaadIgaaaqcLbsacaGGPaGaaC4zaaaaaOGaay5waiaa w2faaaaa@86D0@    (82)

Wherein, m h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGTb qcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaaaaa@3CA6@ is the mass of the chassis and J h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHkb qcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaaaaa@3C87@ is the moment of inertia of the chassis relative to the fixed coordinate system.

Representation of suspension springs and the limit on the swing angles of spherical hinges

Due to the constraints from the spherical bowls, the swing angles of the spherical hinges between bogies and leveling arc plates cannot exceed 1.5 °. The spherical hinges are considered subjected to the action of springs during the swing process. The spring stiffness is shown in the following Figure 13.

Figure 13 Variation in spring stiffness with spherical hinge’s swing angle.

The virtual power equation is                                                     

δ P e = i δ ε ˙ i f i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakabes7aKj aadcfadaWgaaqcgayaaiaadwgaaKqbagqaaiabg2da9maaqafabaGa eqiTdqMafqyTduMbaiaadaWgaaqcgayaaiaadMgaaKqbagqaaiaadA gadaWgaaqcgayaaiaadMgaaKqbagqaaaqcgayaaiaadMgaaKqbagqa cqGHris5aaaa@492F@    (83)

Wherein, the deformation in the suspension spring ε i = r i r ¯ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0JabmOC ayaataqcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaajugibiabgkHiTi qadkhagaqeaKqbaoaaBaaaleaajugWaiaadMgaaSqabaaaaa@484F@  and the deformation in the spherical hinge’s spring ε i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaaaa@3D5C@ is represented by swing angle.

Assembly of dynamic equations for the system

According to the above analysis, the virtual power equation for the system is

δP=δ P w b +δ P w b +δ P w e +δ P w e +δ P w h +δ P e 1 +δ P e 2 +δ P e c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakabes7aKj aadcfacqGH9aqpcqaH0oazceWGqbGba8aadaqhaaqcgayaaiaadEha aeaacaWGIbaaaKqbakabgUcaRiabes7aKjqadcfagaGdamaaDaaajy aGbaGaam4DaaqaaiaadkgaaaqcfaOaey4kaSIaeqiTdqMabmiuayaa paWaa0baaKGbagaacaWG3baabaGaamyzaaaajuaGcqGHRaWkcqaH0o azceWGqbGba4aadaqhaaqcgayaaiaadEhaaeaacaWGLbaaaKqbakab gUcaRiabes7aKjaadcfadaqhaaqcgayaaiaadEhaaeaacaWGObaaaK qbakabgUcaRiabes7aKjaadcfadaqhaaqcgayaaiaadwgaaeaacaaI XaaaaKqbakabgUcaRiabes7aKjaadcfadaqhaaqcgayaaiaadwgaae aacaaIYaaaaKqbakabgUcaRiabes7aKjaadcfadaqhaaqcgayaaiaa dwgaaeaacaWGJbaaaaaa@6CBF@    (84)

Some parameters can be used as independent parameters to describe the relative motions between components, including vertical displacement ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH+o aEaaa@3A97@ , pitching angle β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHYo GyjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa@3D23@  and rolling angle β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHYo GyjuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa@3D24@  of front and rear bogie frames relative to their driving wheelsets, the angle between leveling arc plate and the front bogie frame χ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHhp WyjuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaaa@3D3B@ , and the angle of the chassis relative to leveling arc plate γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHZo Wzaaa@3A7B@ . However, γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHZo Wzaaa@3A7B@ is determined by the piston of leveling oil cylinder and thus cannot be used as an independent parameter. This will be described in details later in the section about leveling control. Therefore, the array of the selected descriptive parameters is

q=[ ξ β 1 β 2 ξ β 1 β 2 χ 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakaahghacq GH9aqpcaGGBbqbaeqabeWbaaaabaGafqOVdGNba8aaaeaacuaHYoGy gaWdamaaBaaajyaGbaGaaGymaaqcfayabaaabaGafqOSdiMba8aada WgaaqcgayaaiaaikdaaKqbagqaaaqaaiqbe67a4zaaoaaabaGafqOS diMba4aadaWgaaqcgayaaiaaigdaaKqbagqaaaqaaiqbek7aIzaaoa WaaSbaaKGbagaacaaIYaaajuaGbeaaaeaacqaHhpWydaWgaaqcgaya aiaaiodaaKqbagqaaaaacaGGDbaaaa@50E3@    (85)

The center acceleration and angular acceleration of each object are

r ¨ 0 b = T 0 b q ¨ + α 0 b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHYb Gba8GbamaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadkga aaqcLbsacqGH9aqpceWHubGba8aajuaGdaqhaaWcbaqcLbmacaaIWa aaleaajugWaiaadkgaaaqcLbsaceWHXbGbamaacqGHRaWkceWHXoGb a8aajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadkgaaaaaaa@4C3A@  ; ω ˙ b = T ω b q ¨ + α ω b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHjp Gba8GbaiaajuaGdaWgaaWcbaqcLbmacaWGIbaaleqaaKqzGeGaeyyp a0JabCivayaapaqcfa4aa0baaSqaaKqzadGaeqyYdChaleaajugWai aadkgaaaqcLbsaceWHXbGbamaacqGHRaWkceWHXoGba8aajuaGdaqh aaWcbaqcLbmacqaHjpWDaSqaaKqzadGaamOyaaaaaaa@4CD0@   (86)

r ¨ 0 b = T 0 b q ¨ + α 0 b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHYb Gba4GbamaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadkga aaqcLbsacqGH9aqpceWHubGba4aajuaGdaqhaaWcbaqcLbmacaaIWa aaleaajugWaiaadkgaaaqcLbsaceWHXbGbamaacqGHRaWkceWHXoGb a4aajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadkgaaaaaaa@4C37@  ; ω ˙ b = T ω b q ¨ + α ω b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHjp Gba4GbaiaajuaGdaWgaaWcbaqcLbmacaWGIbaaleqaaKqzGeGaeyyp a0JabCivayaaoaqcfa4aa0baaSqaaKqzadGaeqyYdChaleaajugWai aadkgaaaqcLbsaceWHXbGbamaacqGHRaWkceWHXoGba4aajuaGdaqh aaWcbaqcLbmacqaHjpWDaSqaaKqzadGaamOyaaaaaaa@4CCD@   (87)

r ¨ 0 e = T 0 e q ¨ + α 0 e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHYb Gba8GbamaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadwga aaqcLbsacqGH9aqpceWHubGba8aajuaGdaqhaaWcbaqcLbmacaaIWa aaleaajugWaiaadwgaaaqcLbsaceWHXbGbamaacqGHRaWkceWHXoGb a8aajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadwgaaaaaaa@4C43@  ; ω ˙ e = T ω e q ¨ + α ω e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHjp Gba8GbaiaajuaGdaWgaaWcbaqcLbmacaWGLbaaleqaaKqzGeGaeyyp a0JabCivayaapaqcfa4aa0baaSqaaKqzadGaeqyYdChaleaajugWai aadwgaaaqcLbsaceWHXbGbamaacqGHRaWkceWHXoGba8aajuaGdaqh aaWcbaqcLbmacqaHjpWDaSqaaKqzadGaamyzaaaaaaa@4CD9@   (88)

r ¨ 0 e = T 0 e q ¨ + α 0 e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHYb Gba4GbamaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadwga aaqcLbsacqGH9aqpceWHubGba4aajuaGdaqhaaWcbaqcLbmacaaIWa aaleaajugWaiaadwgaaaqcLbsaceWHXbGbamaacqGHRaWkceWHXoGb a4aajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadwgaaaaaaa@4C40@  ; ω ˙ e = T ω e q ¨ + α ω e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHjp Gba4GbaiaajuaGdaWgaaWcbaqcLbmacaWGLbaaleqaaKqzGeGaeyyp a0JabCivayaaoaqcfa4aa0baaSqaaKqzadGaeqyYdChaleaajugWai aadwgaaaqcLbsaceWHXbGbamaacqGHRaWkceWHXoGba4aajuaGdaqh aaWcbaqcLbmacqaHjpWDaSqaaKqzadGaamyzaaaaaaa@4CD6@   (89)

r ¨ 0 h = T 0 h q ¨ + α 0 h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHYb GbamaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaadIgaaaqc LbsacqGH9aqpcaWHubqcfa4aa0baaSqaaKqzadGaaGimaaWcbaqcLb macaWGObaaaKqzGeGabCyCayaadaGaey4kaSIaaCySdKqbaoaaDaaa leaajugWaiaaicdaaSqaaKqzadGaamiAaaaaaaa@4C0B@  ; ω ˙ h = T ω h q ¨ + α ω h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWHjp GbaiaajuaGdaWgaaWcbaqcLbmacaWGObaaleqaaKqzGeGaeyypa0Ja aCivaKqbaoaaDaaaleaajugWaiabeM8a3bWcbaqcLbmacaWGObaaaK qzGeGabCyCayaadaGaey4kaSIaaCySdKqbaoaaDaaaleaajugWaiab eM8a3bWcbaqcLbmacaWGObaaaaaa@4CA1@   (90)

The corresponding virtual velocity and virtual angular acceleration are

δ r ˙ 0 b = T 0 b δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHYbGba8GbaiaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugW aiaadkgaaaqcLbsacqGH9aqpceWHubGba8aajuaGdaqhaaWcbaqcLb macaaIWaaaleaajugWaiaadkgaaaqcLbsacqaH0oazceWHXbGbaiaa aaa@488A@  ; δ ω b = T ω b δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHjpGba8aajuaGdaWgaaWcbaqcLbmacaWGIbaaleqaaKqzGeGa eyypa0JabCivayaapaqcfa4aa0baaSqaaKqzadGaeqyYdChaleaaju gWaiaadkgaaaqcLbsacqaH0oazceWHXbGbaiaaaaa@4806@   (91)

δ r ˙ 0 b = T 0 b δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHYbGba4GbaiaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugW aiaadkgaaaqcLbsacqGH9aqpceWHubGba4aajuaGdaqhaaWcbaqcLb macaaIWaaaleaajugWaiaadkgaaaqcLbsacqaH0oazceWHXbGbaiaa aaa@4888@  ; δ ω b = T ω b δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHjpGba4aajuaGdaWgaaWcbaqcLbmacaWGIbaaleqaaKqzGeGa eyypa0JabCivayaaoaqcfa4aa0baaSqaaKqzadGaeqyYdChaleaaju gWaiaadkgaaaqcLbsacqaH0oazceWHXbGbaiaaaaa@4804@   (92)

δ r ˙ 0 e = T 0 e δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHYbGba8GbaiaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugW aiaadwgaaaqcLbsacqGH9aqpceWHubGba8aajuaGdaqhaaWcbaqcLb macaaIWaaaleaajugWaiaadwgaaaqcLbsacqaH0oazceWHXbGbaiaa aaa@4890@  ; δ ω e = T ω e δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHjpGba8aajuaGdaWgaaWcbaqcLbmacaWGLbaaleqaaKqzGeGa eyypa0JabCivayaapaqcfa4aa0baaSqaaKqzadGaeqyYdChaleaaju gWaiaadwgaaaqcLbsacqaH0oazceWHXbGbaiaaaaa@480C@   (93)

δ r ˙ 0 e = T 0 e δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHYbGba4GbaiaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugW aiaadwgaaaqcLbsacqGH9aqpceWHubGba4aajuaGdaqhaaWcbaqcLb macaaIWaaaleaajugWaiaadwgaaaqcLbsacqaH0oazceWHXbGbaiaa aaa@488E@  ; δ ω e = T ω e δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHjpGba4aajuaGdaWgaaWcbaqcLbmacaWGLbaaleqaaKqzGeGa eyypa0JabCivayaaoaqcfa4aa0baaSqaaKqzadGaeqyYdChaleaaju gWaiaadwgaaaqcLbsacqaH0oazceWHXbGbaiaaaaa@480A@   (94)

δ r ˙ 0 h = T 0 h δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azceWHYbGbaiaajuaGdaqhaaWcbaqcLbmacaaIWaaaleaajugWaiaa dIgaaaqcLbsacqGH9aqpcaWHubqcfa4aa0baaSqaaKqzadGaaGimaa WcbaqcLbmacaWGObaaaKqzGeGaeqiTdqMabCyCayaacaaaaa@486B@  ; δ ω h = T ω h δ q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaH0o azcaWHjpqcfa4aaSbaaSqaaKqzadGaamiAaaWcbeaajugibiabg2da 9iaahsfajuaGdaqhaaWcbaqcLbmacqaHjpWDaSqaaKqzadGaamiAaa aajugibiabes7aKjqahghagaGaaaaa@47E6@   (95)

Substituting Eqs. (85) through (94) into Eq. (83) yields

δ q ˙ T (M q ¨ F)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakabes7aKj qahghagaGaamaaCaaabeqcgayaaiaadsfaaaqcfaOaaiikaiaah2ea ceWHXbGbamaacqGHsislcaWHgbGaaiykaiabg2da9iaaicdaaaa@4258@    (96)

Then the dynamic equation for the system is obtained

M q ¨ F=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHnb GabCyCayaadaGaeyOeI0IaaCOraiabg2da9iaaicdaaaa@3BED@    (97)

Determination of leveling control method for railway cranes

Automatic control systems fall into many categories, and can be divided into continuous control and discontinuous control according to the way of signal collection by sensors. Considering the way of data collection by sensors for railway cranes and the constraints imposed by chassis on the relative position between front and rear leveling arc plates, this paper adopts synchronous leveling of front and rear cylinder pistons and discontinuous automatic control is achieved.

The sensors for railway cranes can actually collect the following data in real time

  1. The angle between the transverse direction h 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHOb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C73@ of chassis and the absolute horizontal plane
  2. α 1 =asin( e z h 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0Jaamyy aiaacohacaGGPbGaaiOBaiaacIcacaWHLbqcfa4aaSbaaSqaaKqzad GaamOEaaWcbeaajugibiabgwSixlaahIgajuaGdaWgaaWcbaqcLbma caaIXaaaleqaaKqzGeGaaiykaaaa@4C47@    (98)

  3. The angle between the transverse axis h 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHOb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C73@ of chassis and the longitudinal direction e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWHLb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaaaa@3C70@  of arc plate
  4. α 2 =asin( h 3 e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyypa0Jaamyy aiaacohacaGGPbGaaiOBaiaacIcacaWHObqcfa4aaSbaaSqaaKqzad GaaG4maaWcbeaajugibiabgwSixlaahwgajuaGdaWgaaWcbaqcLbma caaIXaaaleqaaKqzGeGaaiykaaaa@4C05@    (99)

Set the sampling period and store the sensor data for the three periods between these points: t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaaaaa@3C7A@ , t 0 + t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabgUcaRiaadsha juaGdaWgaaWcbaqcLbmacaWGZbaaleqaaaaa@41CF@ , t 0 +2 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabgUcaRiaaikda caWG0bqcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaaaaa@428B@ , and t 0 +3 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabgUcaRiaaioda caWG0bqcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaaaaa@428C@ . Then the angle values at t 0 +4 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabgUcaRiaaisda caWG0bqcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaaaaa@428D@ can be predicted by polynomial interpolation:

α 1 | t 0 +4 t s = α 1 | t 0 +4 α 1 | t 0 + t s 6 α 1 | t 0 +2 t s +4 α 1 | t 0 +3 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaaeiaaba GaeqySde2aaSbaaKGbagaacaaIXaaajuaGbeaaaiaawIa7amaaBaaa jyaGbaGaamiDamaaBaaabaGaaGimaaqabaGaey4kaSIaaGinaiaads hadaWgaaqaaiaadohaaeqaaaqcfayabaGaeyypa0JaeyOeI0YaaqGa aeaacqaHXoqydaWgaaqcgayaaiaaigdaaKqbagqaaaGaayjcSdWaaS baaKGbagaacaWG0bWaaSbaaeaacaaIWaaabeaaaKqbagqaaiabgUca Riaaisdadaabcaqaaiabeg7aHnaaBaaajyaGbaGaaGymaaqcfayaba aacaGLiWoadaWgaaqcgayaaiaadshadaWgaaqaaiaaicdaaeqaaiab gUcaRiaadshadaWgaaqaaiaadohaaeqaaaqcfayabaGaeyOeI0IaaG OnamaaeiaabaGaeqySde2aaSbaaKGbagaacaaIXaaajuaGbeaaaiaa wIa7amaaBaaajyaGbaGaamiDamaaBaaabaGaaGimaaqabaGaey4kaS IaaGOmaiaadshadaWgaaqaaiaadohaaeqaaaqcfayabaGaey4kaSIa aGinamaaeiaabaGaeqySde2aaSbaaKGbagaacaaIXaaajuaGbeaaai aawIa7amaaBaaajyaGbaGaamiDamaaBaaabaGaaGimaaqabaGaey4k aSIaaG4maiaadshadaWgaaqaaiaadohaaeqaaaqcfayabaaaaa@74E1@    (100)

α 2 | t 0 +4 t s = α 2 | t 0 +4 α 2 | t 0 + t s 6 α 2 | t 0 +2 t s +4 α 2 | t 0 +3 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaaeiaaba GaeqySde2aaSbaaKGbagaacaaIYaaajuaGbeaaaiaawIa7amaaBaaa jyaGbaGaamiDamaaBaaabaGaaGimaaqabaGaey4kaSIaaGinaiaads hadaWgaaqaaiaadohaaeqaaaqcfayabaGaeyypa0JaeyOeI0YaaqGa aeaacqaHXoqydaWgaaqcgayaaiaaikdaaKqbagqaaaGaayjcSdWaaS baaKGbagaacaWG0bWaaSbaaeaacaaIWaaabeaaaKqbagqaaiabgUca Riaaisdadaabcaqaaiabeg7aHnaaBaaajyaGbaGaaGOmaaqcfayaba aacaGLiWoadaWgaaqcgayaaiaadshadaWgaaqaaiaaicdaaeqaaiab gUcaRiaadshadaWgaaqaaiaadohaaeqaaaqcfayabaGaeyOeI0IaaG OnamaaeiaabaGaeqySde2aaSbaaKGbagaacaaIYaaajuaGbeaaaiaa wIa7amaaBaaajyaGbaGaamiDamaaBaaabaGaaGimaaqabaGaey4kaS IaaGOmaiaadshadaWgaaqaaiaadohaaeqaaaqcfayabaGaey4kaSIa aGinamaaeiaabaGaeqySde2aaSbaaKGbagaacaaIYaaajuaGbeaaai aawIa7amaaBaaajyaGbaGaamiDamaaBaaabaGaaGimaaqabaGaey4k aSIaaG4maiaadshadaWgaaqaaiaadohaaeqaaaqcfayabaaaaa@74E6@    (101)

According to the geometric relationship shown in Figure 12, the desired value for angle γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHZo Wzaaa@3A7B@  at t 0 +4 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqi=u0Je9sqqrpepC0xbbL8F4rqqrpipG0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiabgUcaRiaaisda caWG0bqcfa4aaSbaaSqaaKqzadGaam4CaaWcbeaaaaa@428D@  to keep the chassis levelled is

γ| t 0 +4 t s = α 2 | t 0 +4 t s α 1 | t 0 +4 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaaeiaaba Gaeq4SdCgacaGLiWoadaWgaaqcgayaaiaadshadaWgaaqaaiaaicda aeqaaiabgUcaRiaaisdacaWG0bWaaSbaaeaacaWGZbaabeaaaKqbag qaaiabg2da9maaeiaabaGaeqySde2aaSbaaKGbagaacaaIYaaajuaG beaaaiaawIa7amaaBaaajyaGbaGaamiDamaaBaaabaGaaGimaaqaba Gaey4kaSIaaGinaiaadshadaWgaaqaaiaadohaaeqaaaqcfayabaGa eyOeI0YaaqGaaeaacqaHXoqydaWgaaqcgayaaiaaigdaaKqbagqaaa GaayjcSdWaaSbaaKGbagaacaWG0bWaaSbaaeaacaaIWaaabeaacqGH RaWkcaaI0aGaamiDamaaBaaabaGaam4CaaqabaaajuaGbeaaaaa@5A93@    (102)

The desired cylinder retraction is

d| t 0 +4 t s = h g sin( γ| t 0 +4 t s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbaoaaeiaaba GaamizaaGaayjcSdWaaSbaaKGbagaacaWG0bWaaSbaaeaacaaIWaaa beaacqGHRaWkcaaI0aGaamiDamaaBaaabaGaam4CaaqabaaajuaGbe aacqGH9aqpcaWGObWaaSbaaKGbagaacaWGNbaajuaGbeaaciGGZbGa aiyAaiaac6gadaqadaqaamaaeiaabaGaeq4SdCgacaGLiWoadaWgaa qcgayaaiaadshadaWgaaqaaiaaicdaaeqaaiabgUcaRiaaisdacaWG 0bWaaSbaaeaacaWGZbaabeaaaKqbagqaaaGaayjkaiaawMcaaaaa@527D@    (103)

In the interval ( t 0 +3 t s , t 0 +4 t s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamiDaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsa cqGHRaWkcaaIZaGaamiDaKqbaoaaBaaaleaajugWaiaadohaaSqaba qcLbsacaGGSaGaamiDaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqc LbsacqGHRaWkcaaI0aGaamiDaKqbaoaaBaaaleaajugWaiaadohaaS qabaaakiaawIcacaGLPaaaaaa@4D43@ ,

d= t 0 +4 t s t t s d| t 0 +3 t s + t t 0 3 t s t s d| t 0 +4 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqzGeGaamizai abg2da9KqbaoaaleaabaqcLbsacaWG0bqcfa4aaSbaaKGbagaacaaI WaaajuaGbeaajugibiabgUcaRiaaisdacaWG0bqcfa4aaSbaaKGbag aacaWGZbaajuaGbeaajugibiabgkHiTiaadshaaKqbagaajugibiaa dshajuaGdaWgaaqcgayaaiaadohaaKqbagqaaaaadaabcaqaaKqzGe GaamizaaqcfaOaayjcSdWaaSbaaKGbagaacaWG0bWaaSbaaeaacaaI WaaabeaacqGHRaWkcaaIZaGaamiDamaaBaaabaGaam4Caaqabaaaju aGbeaajugibiabgUcaRKqbaoaaleaabaqcLbsacaWG0bGaeyOeI0Ia amiDaKqbaoaaBaaajyaGbaGaaGimaaqcfayabaqcLbsacqGHsislca aIZaGaamiDaKqbaoaaBaaajyaGbaGaam4CaaqcfayabaaabaqcLbsa caWG0bqcfa4aaSbaaKGbagaacaWGZbaajuaGbeaaaaWaaqGaaeaaju gibiaadsgaaKqbakaawIa7amaaBaaajyaGbaGaamiDamaaBaaabaGa aGimaaqabaGaey4kaSIaaGinaiaadshadaWgaaqaaiaadohaaeqaaa qcfayabaaaaa@7197@    (104)

d ˙ = t s 1 d| t 0 +4 t s t s 1 d| t 0 +3 t s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepKI8Vfc8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqadeaadaqaaqaaaOqaaKqbakqadsgaga Gaaiabg2da9iaadshadaqhaaqcgayaaiaadohaaeaacqGHsislcaaI XaaaaKqbaoaaeiaabaGaamizaaGaayjcSdWaaSbaaKGbagaacaWG0b WaaSbaaeaacaaIWaaabeaacqGHRaWkcaaI0aGaamiDamaaBaaabaGa am4CaaqabaaajuaGbeaacqGHsislcaWG0bWaa0baaKGbagaacaWGZb aabaGaeyOeI0IaaGymaaaajuaGdaabcaqaaiaadsgaaiaawIa7amaa BaaajyaGbaGaamiDamaaBaaabaGaaGimaaqabaGaey4kaSIaaG4mai aadshadaWgaaqaaiaadohaaeqaaaqcfayabaaaaa@55D4@    (105)

d ¨ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsaceWGKb GbamaacqGH9aqpcaaIWaaaaa@391B@    (106)

According to the formulas, we have

γ ˙ = ( h g cosγ ) 1 d ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacuaHZo WzgaGaaiabg2da9KqbaoaabmaakeaajugibiaadIgajuaGdaWgaaWc baqcLbmacaWGNbaaleqaaKqzGeGaci4yaiaac+gacaGGZbGaeq4SdC gakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzadGaeyOeI0IaaGym aaaajugibiqadsgagaGaaaaa@49C0@    (107)

γ ¨ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacuaHZo WzgaWaaiabg2da9iaaicdaaaa@39DA@    (108)

Therefore, the relationship between the real-time sensor observations and the amount of piston retraction needed to keep the chassis horizontal is established.

The lateral and vertical dynamic equations for railway cranes are a set of differential equations with multiple degrees of freedom. Differential equations can be solved using Newmark method, Wilson θ method, HHT method, generalized α. This paper uses the ODE45 solver, which is a stiff differential equation solver and can ensure the stability of numerical solution.

In order to accurately and effectively simulate the sensors, the data transmitted by the sensors are added to the differential equations as variables to limit the maximum step size, so that simulated sensor data can be obtained and stored in real time based on the time step calculated by the solver. Then the data obtained can be used to accurately and effectively predict the retraction and rotation angle of cylinder for the next time step through polynomial interpolation. The predictions are transmitted to the dynamic equation for the system in real time to simulate the action of actuator in actual operation process.

These are changes that will occur during leveling of a railway crane. When leveling is shut off, the locking cylinder will lock the leveling process. At this time, the retraction of the cylinder is

d=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacaWGKb Gaeyypa0JaaGimaaaa@3911@    (109)

And the corresponding rotation angle of rotation is

γ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Jf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaqcLbsacqaHZo WzcqGH9aqpcaaIWaaaaa@39CF@    (110)

These can be substituted into the differential equation to calculate the dynamic response of a railway crane when leveling is shut off.

Numerical examples

Based on the theoretical method presented in this paper, analysis software for use in Matlab environment is developed. It uses ODE45 solver, and its relative accuracy and absolute accuracy are 1e-3 and 1e-4, respectively (Figure 14).

Figure 14 NS1600A Hydraulic railway crane.

Take the size parameters of NS1600A hydraulic railway rescue crane imported from Kirow Leipzig factory in Germany during 2007-2010 as an example to illustrate the calculation results.

First of all, a curved test track model is constructed. Both straight sections are 40m long, and both transition curves have an arc length of 15m. The circular curve has an arc length of 40m, a radius of 240m, and a superelevation of 25mm. The gauge is 1435mm. Using the calculation method for transition curves described in this paper, the variations in the outer rail’s curvature and superelevation can be obtained (Figure 15) (Figure 16).

Figure 15 Variation in track’s curve radius with arc length coordinate.

Figure 16 Variation in outer rail superelevation with coordinate arc length.

As shown in the above figure, the transition curves in the railway curve track can be calculated by solving the first-order differential equation. When the length of each section is given, it is possible, in a strict sense, to achieve a gradual curvature increase from 0 to 1/240 and a superelevation increase from 0 to 25 mm, from the straight section to the circular curve. This meets the railway design specifications. Next, let the railway crane carry a load of 64 tons and travel along the curved track model mentioned above at a speed of 40km/h. The responses of each component before and after wheel/rail movement and leveling are calculated. The representation of the involved axles ① - ⑧ is shown in the Figure 17 below.

Figure 17 Schematic diagram of numbered wheel sets of the railway crane.

Figure18 shows the lateral displacement of each wheelset of the railway crane along the axle direction during operation. It can be seen that when entering a curved track, each wheel set moves along the axle to the outer edge of the track. As the tread is a rotating conical surface, the rolling radius of the outer rail will be greater than that of the inner rail. This will result in a speed difference between the rolling centers of wheels on the inner and outer rails, leading the crane to turn. It is clear that after the crane moves to the straight section from the curved section, the lateral displacement oscillates, which causes slight hunting of the crane along the track.

Figure 18 Schematic diagram of numbered wheel sets of the railway crane.

Figure 19 shows the arc length coordinate difference between the contact points on the inner and outer rails for each wheelset of the front and rear bogies and reveals the yawing motion of each wheelset on the track. It can be seen from the figure that when the railway crane is traveling on the curved track, the yawing angle of wheelset on each bogie gradually increases, and it will hover slightly at about 0 ° after the crane leaves the curved track.

Figure 19 Arc length coordinate difference between inner and outer rail contact points of each wheel set of front and rear bogies.

The sampling period for the simulated sensor is set to 40ms based on the delay time of the hydraulic leveling system of the railway crane. The following figure provides a comparison before and after leveling.

As shown in Figure 20, when the railway crane is traveling with load, its center of gravity will move forward appropriately. As a result, the reaction force applied by the primary spring on the front-bogie wheelset is greater than that on the rear-bogie wheelset. It can be seen from the figure that when the leveling mechanism is turned off, the primary spring’s reaction force on the inner driving wheel of the rear bogie will reach -4.42kN, and the absolute value is equal to the gravity of the wheel. At this time, the wheel pressure will be equal to 0. Leveling can help avoid this dangerous situation and greatly reduce the vibration amplitude of the primary suspension spring.

Figure 20 Reaction forces on driving wheels of front and rear bogies exerted by primary suspension springs before and after leveling.

As shown in Figure 21, when the railway crane is running on a curved track with leveling disabled, the chassis will incline together with the car body to the outer edge of the track due to centrifugal effect. At the current driving speed, the chassis has a maximum transverse inclination of 6° and tends to swing laterally. After leveling is enabled, the chassis can always be kept horizontal by the leveling cylinder pistons and has a minimal inclination. Figure 22 shows the change in piston retraction during the whole leveling process.

Figure 21 Change of horizontal inclination of underframe before and after leveling.

Figure 22 Change in retraction of the cylinder piston during leveling.

In a word, the simulation results from the software developed based on the theoretical method proposed are largely in line with the actual situation of NS1600A hydraulic railway crane traveling on curved track, thus verifying the correctness of the model.

Conclusion

In this paper, longitudinal, transverse and vertical dynamic models were constructed for a railway crane to describe its movement on a curved track. Based on its leveling characteristics, the relationships between real-time sensor data and the retraction of leveling cylinder piston were established by using discontinuous control. The dynamic responses of each component of the railway crane before and after leveling by discontinuous control were simulated and analyzed, and results demonstrate the necessity and effect of leveling. Moreover, analysis software for leveling control of railway cranes was written. It not only can be used to analyze and simulate different types of railway cranes, but also provides a discontinuous control method for synchronous leveling of railway cranes.

Acknowledgments

None.

Conflicts of interest

Author declares there are no conflicts of interests.

Fundings

None.

References

  1. Bingrong M, Shoune X, Dingchang J. Research on modeling and analysis of a complex multibody system using simpack. Mechanical Science and Technology for Aerospace Engineering. 2006;25(7):813–816.
  2. Hao Zhu. Research on control strategies for vehicle active suspension based on multi-body dynamics theory. Central South University; 2006.
  3. Young TH, Li CY. Vertical vibration analysis of vehicle/imperfect track systems. Vehicle System Dynamics. 2003;40(5):329–349.
  4. Ripke B, Knothe K. Simulation of high frequency vehicle-track interactions. Vehicle System Dynamics. 2007;24(sup1):72–85.
  5. Ling Liang. 3D rigid-flexible coupling dynamics of high-speed train/track system. 2015.
  6. Lu Zhenggang. Research on dynamic and structural vibration control of flexible rigid body system for railway vehicles. 2005.
  7. Zhenhua C, Mingxin T, Cheng N. Design of leveling system for railway rescue crane based on can bus. Hoisting and Conveying Machinery. 2012;12:26–29.
  8. Zhang L, Shao JP, Sun GT, et al. Research on automatic leveling system of railway rescue crane. Advanced Materials Research. 2014;909:241–246.
  9. Sisheng F, Liqun Z. Railway rescue cranes. China Railway Publishing House; 2014.
  10. Zhou Weijiang. Research on design of signgle-axle driving bogie. Southwest Jiaotong University; 2008.
  11. Daoqiu W, Shiming Y, Xiumei Z. Calculation of the cubic parabolic transition curve in high speed railway. Symposium on Traffic Engineering Surveying Technology; 2011.
  12. Ping W, Jingmang X, Jiasheng F, et al. Progress in theoretical research on high-speed railway track structure. High speed railway technology. 2020;11(2):18–26.
  13. Zhang Weihua. Calculation method of wheel/roller (rail) spatial contact point. Railway Science in China. 2006;27(4):76–79.
  14. Zhaojiu Y, Zhiyuan S, Zhiyuan S, et al. The first monograph on the dynamics of railway large-scale systems in China - review of "vehicle track coupling dynamics". China Book Review. 1999;1:58–22.
  15. Zhifeng C, Manifesto, Lan W. Research ideas on the dynamics and control of railway vehicle bridge coupling systems. Science and Technology Innovation Introduction. 2011;7:253–255.
  16. Dalian Y, Hong Z, Bin L. Bogie for CRH2 200km/h EMUs. Electr Driv Locom. 2008;3:1–5.
  17. Zhang Hui. Study on dynamic performance of high-speed train bogies. Central South University; 2011.
  18. Chen Shihua. New development of railway vehicle dynamics simulation. Railway Vehicles. 1981;3:6–9.
  19. Trees research on the vertical inertia force value of goods under the condition of 27 ton axle load truck. Beijing Jiaotong University. 2017.
  20. Qi Zhaohui. Dynamics of multibody systems. Science Press; 2008.
  21. Xie Guowei. Simulation of vertical coupling dynamics of railway vehicles and tracks. Kunming University of Science and Technology; 2014.
  22. Zhang Jian. Research on optimization design of railway vehicle wheel profile. Southwest Jiaotong University; 2014.
  23. Chunshuang N, Qiyong H, Jiazhen H. Overview of multi body dynamics of railway vehicles. Chinese Railway Science. 1996;4:1–11.
  24. Tianshu W, Caishan L. Progress in multibody dynamics and aerospace dynamics and control. Journal of Dynamics and Control. 2018;16(2):95–96.
  25. Quan H, Yinghong J, Shijie X. Improvement of Kane's method for multibody system dynamics. Journal of Mechanics. 2011;43(5):968–972
  26. Zhunyong L, Jiazhen H. Current status and prospects of dynamic research on flexible multi body systems. Journal of Computational Mechanics. 2008 ;4:411–416.
Creative Commons Attribution License

©2023 Tianjiao, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.