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Introduction
In recent years, railway cranes have been widely used for their 

good operability, high travel speed and superior adaptability. However, 
when a railway crane operates on a curved track with a heavy load and 
low speed, the front and rear axle loads are significantly unbalanced, 
and the component of the car body’s gravity directed towards the 
inner rail is far greater than the required centripetal force. This will 
cause the crane to tilt overall, making it impossible to ensure its rated 
lifting performance, safety and reliability, and even causing accidents. 
Therefore, in order to prevent a reduction in their lifting performance 
on curves and allow them to pass through curves safely, railway 
cranes are equipped with an automatic superelevation leveling device, 
which can keep the chassis levelled when the cranes travel on curves.

Railway cranes are a type of rail vehicle. To explore their leveling 
control during movement, it is necessary to effectively describe the 
multi-body system model composed of vehicle components and 
determine the characteristics of individual components and their 
connections. Then a series of dynamics equations for the multi-body 
vehicle system can be obtained and solved.1 Three common methods 
for establishing dynamic differential equations are Lagrangian 
method, Kane method and Newton Euler method.2–4 

Ling Liang from Southwest Jiaotong University established a 
longitudinal/transverse/vertical three-dimensional coupling dynamic 
model for high-speed train based on the rigid multi-body theory 
and a rigid-flexible coupling dynamic model with a wide analysis 
frequency range, and studied the dynamic response characteristics of 
a high-speed train at a variable speed.5 Based on the theory of flexible 
multi-body system dynamics combined with the characteristics of 
vehicle dynamics, Lu Zhenggang established a flexible rigid body 
dynamics model of railway vehicles for performance prediction, 

dynamic load calculation and fatigue evaluation, and active vibration 
control, and carried out research on flexible rigid body dynamics 
of railway vehicles.6 Despite abundant research results on railway 
vehicle dynamics, these is still a lack of simulation work on the 
automatic leveling system of railway cranes in China. This is because 
such system is time-varying, nonlinear and easily disturbed, which 
brings various difficulties to the control process. Chen Zhenhua et al. 
proposed a control method for automatic leveling of outriggers based 
on the operation process and safety control requirements for railway 
cranes.7 Zhang et al. designed a fuzzy PID controller based on fuzzy 
logic control algorithm and conventional PID algorithm, combined 
with the mechanics and mathematical model of the automatic leveling 
system for railway cranes.8

In this paper, a model for the test track was established by 
deducing the differential equation for transition curves according to 
the design specification for curved railway tracks. Later, the kinematic 
relationship between wheel and rail was simulated based on an analysis 
of the characteristics of wheel-rail contact during movement of a 
railway vehicle on a curved track. Moreover, based on the principle 
of virtual power, the connections between components of the railway 
crane were determined and dynamic equations for the system were 
set up. A non-continuous automatic leveling control method based on 
real-time sensor data is presented. Numerical examples demonstrate 
the correctness of the simulation and the rationality of the proposed 
method.

Structure and leveling principle of a railway crane

In practical engineering, railway cranes can be divided into many 
types for different purposes, such as general purpose, construction, 
rescue, etc., but their structures are basically identical and can be 
divided into two parts: on-board and off-board parts. The on-board 
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Compared with ordinary locomotives, railway cranes are characterized by larger load and 
higher center of gravity. Therefore, leveling control is required in order to ensure safe 
operation when a railway crane is traveling on a curved track with superelevated outer rail. 
Accurate simulation of the leveling process requires not only consideration of the influence 
of wheel-rail motion on curved track, but also reasonable simulation of the lateral and 
vertical motion of railway crane. A railway crane can be regarded as a complex multi-body 
system composed of various components. To simulate this system, it is necessary to define 
rigid and flexible bodies (such as chassis, leveling arc plate, bogie, wheelset and suspension 
spring), restraints and force elements, and then determine the characteristics of individual 
components and their connections. In this study, with all the above factors considered, a 
curved track model was constructed reasonably and then used to simulate the longitudinal 
kinematic relationship between wheel and rail. Later, a dynamic analysis of the lateral and 
vertical dynamic responses of railway crane was performed. Moreover, the relationship 
between the real-time sensor observations and the piston expansion adjustment required 
was established, and a non-continuous leveling control method was proposed. Based on 
this, a dynamic simulation software was developed to simulate the mechanical response of 
railway cranes before and after leveling. This article establishes the relationship between 
the real-time data obtained by sensors and the expansion and contraction of the leveling 
cylinder piston. Through calculation, the control data is obtained, which can ensure the 
smooth operation of the vehicle.
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part is the general term for the upper structures of the crane that can 
rotate around the revolving center line, including the slewing support 
and all the structures, mechanisms and systems above it (boom, 
turntable, driver’s cab, machine room, etc.). These are the core parts 
of a railway crane. “Off-board” part refers to the mechanisms and 
devices below the slewing support, generally including the traveling 
mechanism of the crane, train connection devices, leveling devices, 
chassis, outrigger, etc. The traveling mechanism includes bogie and 
running drive, which are either dedicated for cranes or common ones 
in locomotives. The train connection devices are coupler and buffer 
device, which can be connected to the tractor. A leveling device 
includes an arc plate, a bi-directional hydraulic cylinder, a supporting 
slider and other mechanisms installed between the bogie frame and 
the chassis (Figure 1).9

Figure 1 Structural diagram of Railway Crane.

The off-board part of the railway crane includes the components 
that are most closely related to railway technology, and are also the key 
components to transfer the external load borne by the on-board part 
and the entire vehicle’s dead weight to the track surface. Therefore, 
this part plays a very important role in ensuring safety of travelling and 
lifting. The components of the bogie are connected in a way similar 
to that in common rail locomotives. The bogie located at the bottom 
hauls and guides the crane along the rail.10 It is mainly composed of 
wheelsets, axle boxes, primary suspension devices, frames, etc. The 
frame is mounted on wheelsets by primary suspensions to mitigate the 
impact to the frame caused by track irregularities (Figure 2).

Figure 2 Diagram of leveling device.

Unlike in ordinary locomotives, a leveling device for adjusting 
the horizontal inclination of a railway crane’s chassis is installed 
between the bogie and the chassis, and it consists of an oscillating 
center plate, secondary suspension device, arc plate, bi-directional 
hydraulic cylinder, supporting slider and other components. The arc 
plate is connected with the bogie through the spherical hinge and can 
oscillate in all directions, but it is limited by factors like structure 
size and joint bearing and thus has a maximum swing angle. The 
secondary suspension device is mainly composed of four steel coil 
springs with large deflection and rubber pads in series with them, with 
the left and right sides symmetrically fixed on the bottom surface of 

the arc plate. One side of each rubber pad contacts the bogie and is 
allowed to slide on the bogie’s top surface so that it can absorb the 
track impact transferred to the bogie frame again. The bi-directional 
hydraulic cylinder is connected to the upper part of the arc plate by a 
pin shaft and rotates around the pin shaft, while its piston is fixed to 
the chassis. The leveling cylinder and the piston work together. The 
chassis can be deflected around the arc plate by the supporting slider.

An inclination sensor is installed on the chassis of the railway crane 
to measure the absolute transverse and longitudinal angles between the 
chassis and the horizontal plane in real time (the longitudinal direction 
is along the length of the chassis and the transverse direction is along 
its width direction). A linkage mechanism is provided between the arc 
plate’s pin shaft and the chassis to measure the relative angle between 
the longitudinal direction of the arc plate (along its length) and the 
transverse direction of the chassis in real time. When the crane chassis 
tilts, it is necessary to determine the adjustment required for piston 
expansion according to the real-time sensor data. Driven by the bi-
directional hydraulic cylinder, the chassis can move inversely around 
the arc surface of the arc plate installed on the bogie frame to keep 
the chassis horizontal. In this way, automatic control of railway crane 
leveling is achieved.

Modeling of curved test track
A curved railway track is generally divided into five parts: straight 

line, transition curve, circular curve, transition curve and straight line. 
The transition curve connecting a straight line with a circular curve 
has a radius of ∞ at the connection with the straight line (straight 
transition point). As the distance increases, the radius gradually 
decreases to that of the circular curve, R, at the connection with the 
circular curve (circular transition point). As the radius decreases, the 
superelevation increases gradually, and the curves for the purpose of 
transition are also called easement curves.11

At present, the commonly used easement curve on railways is a 
cubic parabola, which usually can be described by a linear equation:	

3

6
xy
LR

=
                                                                                           

(1)

Where R is the radius of the circular curve and L is the length of 
the parabola. However, the curvature radius of the easement curves at 
the points where they intersect with the circular curve solved in this 
way is not equal to the radius of the circular curve, due to some error.

In this paper, given the fact that the radius of the easement curves 
changes gradually from the straight transition point to the circular 
transition point, a differential equation for the transition curves is 
established to overcome the above problems, which is described in 
detail below.

As shown in Figure 3, a transition curve of length 0L is inserted 
between the straight line and the circular curve with radius R, with
A denoting the circular transition point and B denoting the straight 

transition point. Then a coordinate system is established, with the 
center of the circular curve O taken as the origin point and the angular 
bisector of the circular curve as the y axis. The negative half of the 
x-axis is along the tangent to the circular curve at point C, where 
the circular curve meets its angular bisector. Let P be an arbitrary 
point on the transition curve, and α  be the steering angle or tangent 
deflection angle (the angle between the tangent at point P and the axis 
x) with respect to the tangent at point C. The coordinates of point P 
can be obtained:
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Figure 3 Equation for transition curves.

According to the mathematical definition of curvature, i.e. the rate 
of change of the forward azimuth angle with the arc length, we can 
obtain the curvature at point P:

p

d

ds

α
κ =

                                                                                          
(3)

At the same time, curvature and radius of curvature are reciprocals 
of each other:

1
pκ

ρ
=

                                                                                             
(4)

According to Formula (2) - (4), the rates of change in P point’s 
coordinates with arc length can be obtained:
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sin

dx

ds
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α
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(5)

The curvature of the transition curve changes linearly from the 
circular transition point (curvature1 R ) to the straight transition point 
(curvature 0 ), that is

0

1
(1 )

d s

ds L R

α
= −

                                                                                  

(6)

From this, the differential equation for the transition curve can be 
obtained

( , , ) ( , , )
dx dy d

f x y
ds ds ds

α
α=

                                                                     
(7)

The coordinates and steering angle at the circular transition point 
are selected as the initial values for the equation above:
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(8)

An inertial coordinate system o xyz− is created by introducing 
a z-axis to the coordinate system shown in Figure 3 according to the 
right-hand rule, as shown in Figure 4.12

The functional relationship describing the track centerline 
0 0 ( )s=p p  is obtained by solving equation (7). If the base vectors of 

the inertial coordinate system are{ , , }x y ze e e , the tangent direction of 
the track centerline is expressed as

sin coss x yα α= −e e e
                                                                       

(9)

And it normal direction is

cos sinn x yα α= +e e e
                                                                

(10)

The function for the inner rail curve corresponding to the arc 
length coordinate is

0 0
1
2in nw= −p p e

                                                                        
(11)

The curve function for the outer rail is

0 0
1
2out n zw z= + +p p e e

                                                            
(12)

Wherein, 0w is the standard gauge of the track, z is the 
superelevation value (the height difference between the outer and 
inner rails), which changes linearly:

z=0 s∈Straight line                                                                       (13)

 hz z=  s ∈Circular curve                                                              (14)

 hz zξ=  s ∈Transition curve                                                       (15)

Where, hz is the superelevation of the circular curve, which ξ  
varies linearly from 0 to 1.

Figure 4 Curve track model.

Kinematic analysis of wheel-rail contact
Wheel-rail relationship is a unique contact relationship in rail 

vehicles, including railway cranes, and is the basis for simulating the 
longitudinal motion of railway cranes.13 Like in other rail vehicles, the 
wheel treads of railway cranes are mostly rotating conical surfaces. 
During operation, the lateral relative position between rail surface 
and tread constantly changes, and slight hunting sometimes occurs. 
When a crane travels on a curved track, the radius of the rolling circle 
of a wheel tread contacting the outer rail is greater than that of the 
corresponding wheel tread contacting the inner rail. This results in a 
speed difference between the centers of the wheels on the inner and 
outer rails, thus guiding the crane to turn along the curved track.

In order to simulate and study leveling control for railway cranes 
and reasonably establish the wheel-rail contact model, this paper 
primarily considers the influence of curved track’s superelevation 
change and curvature radius change while neglecting the influence of 
secondary factors such as rail can’t change. Additionally, each wheel 
is treated as a rigid body and given a conical tread.

The number of wheelsets on each bogie of a railway crane 
varies depending on lifting capacity. This paper takes the common 
four axle bogie as an example to illustrate. Because the wheelsets 
are assembled on the bogie frame, the relative position between the 
wheelsets is constrained by the distance between the centers of axles 
on the same bogie. Therefore it is reasonable to regard the frontmost 
wheelset as the driving wheelset first, and derive its wheel-rail contact 
relationship. The other wheelsets can be regarded as the driven 
wheelsets and corresponding wheel-rail relationships can be obtained 
based on relative position constraint.
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Spatial description of wheelset attitude

As shown in Figure 5, the arc length coordinates 1s and 2s of the 
contact points between a wheelset and the inner and outer rails, and 
the sum of the distances 1d and 2d  between the transient rolling wheel 
center and the innermost wheel centers are selected as the descriptive 
variables, so as to uniquely determine the transient state of the contact 
between the wheelset and the rails.14

Figure 5 Status of Wheelset on curved track.

Then the radius vectors of the contact points between the wheelset 
and the inner and outer rails can be expressed as

1 1( )in s=p p
                                                                                  

(16)

2 2( )out s=p p
                                                                                 

(17)

The rolling circle radiuses of wheels on the inner and outer rails 
can be written as

1 1inr r dδ= −
                                                                                      

(18)

2 2inr r dδ= −
                                                                                 

(19)

Wherein, δ is the taper of conical tread and inr is the maximum 
rolling circle radius of wheel. Rolling centers of wheels on the inner 
and outer rails are

3 1 1 3r= +p p g
                                                                              

(20)

4 2 2 3r= +p p g
                                                                                  

(21)

To describe the rotation of the wheelset, two coordinate systems 
need to be established. One moves together with the wheelset; its 
origin is at the geometric center of the wheelset, x-axis is along the 
normal direction at the contact point on the inner rail curve, y-axis 
is along the tangent direction at the contact point on the inner rail 
curve, and the z-axis is directed vertically upward. The other is the 
coordinate system fixed to the wheelset w w wo x y z− . The axis wx
points to the outer rail along the direction of the axle, and the axis 

wy follows the direction of the wheelset, which conforms to the right-
hand rule.

Let 1 2 3{ , , }t t t  be the base vectors of the translational coordinate 
system o xyz− and 1 2 3{ , , }g g g  be the base vectors of the fixed 
coordinate system,and then we have

1 1 1

2 1 1
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= +

=
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
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


t e e

t e e

t e                                                                

(22)

Wherein, 1α is the steering angle corresponding to the arc length 
coordinate of the inner rail contact point.

The fixed coordinate system is obtained by yawing and rolling 
the translational coordinate system. In order to facilitate derivation 
of the steering angle, the rolling angle is divided into two parts. Then 
the translational coordinate system is rotated three times to obtain the 

fixed coordinate system. The following transformations are applied 

to the base vectors: 1 2 3{ , , }t t t → 1 2 3{ , , }k k k → 1 2 3{ , , }v v v →

1 2 3{ , , }g g g

1 11 1

2 1 1 2

3 3

cos sin 0
sin cos 0

0 0 1

ϑ ϑ
ϑ ϑ

−
=
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k t

k t

k t
                                             

(23)
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2 2

2 23 3
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ϑ ϑ

ϑ ϑ
=

−
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v k

v k

v k
                                         

(24)

1 13 3

2 2

3 33 3

cos 0 sin
0 1 0

sin 0 cos

ϑ ϑ

ϑ ϑ
=

−

           
        

g v

g v

g v

                                          (25)

Wherein, 1ϑ is the yawing angle of the wheelset and 2 3ϑ ϑ+ is the 
rolling angle.

The purpose of the first two rotations is to make the base vector 
1v parallel to the line connecting the wheelset’s contact points on the 

inner and outer rails, namely
1

1 2 1 2 1( )
−

= − −v p p p p                                                             (26)

The angles of the first two rotations can be obtained

1 1 1 1 2atan 2( , )ϑ = − ⋅ ⋅v t v t                                                            (27)

2 1 3arcsin( )ϑ = ⋅v t                                                                       (28)

The angle of the third rotation can be determined from the rolling 
circle radiuses of wheels on the inner and outer rails:

1
3 2 1 1 2arcsin(( )( ) )ar r L d dϑ −= − + +                                         (29)

Wherein, aL is the length of the wheelset axle marked in Figure 5.

Analysis of wheel/rail motion for the driving wheelset

In view of the fact that a railway crane’s wheels will neither slip 
along the track nor rub against rails laterally during normal operation, 
it is reasonable to assume that the wheel/rail motion is pure rolling 
without relative sliding in both the longitudinal and transverse 
directions.

Based on the above pure rolling assumption (no relative sliding 
between wheel tread and rail), the forward speed of the wheelset is 
decomposed in the longitudinal and transverse directions of the track. 
Then it can be inferred that: 

1.	 The speeds of the rolling circle centers of wheels on the inner 
and outer rails in the forward direction 2g  are the product of the 
angular speedω of the wheel set and the corresponding rolling 
circle radius, that is

1 2 3rω = ⋅ g p                                                                                        (30)

2 2 4rω = ⋅ g p                                                                                  (31)

The forward speed of the crane can be expressed as

0 1 1 2 1
1+( )2

T
av r L dω= + g g                                                            (32)

Then the angular velocity of the wheelset can be obtained
1

1 0 1 2 1
1( ( ) )2

T
ar v L dω −= − + g g                                                  (33)
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Equations (30) and (31) can be written as

3,1 1 0 1,1 3,2 1 0 1,2 0 11
2

4,1 2 0 1,1 4,2 2 0 1,2 2 0 2

T r r rs
r r s r
λ λ ω
λ λ ω

+ +
=

+ +
    
        





p g p g
g

p g p g
                              (34)

Where
1

0 1 0r vω −=                                                                                    (35)
1

0 1 1
1( )2 ar L dλ −= +                                                                       (36)

In which ,i jg
 
is i js∂ ∂g

 
and ,i jp  is i js∂ ∂p .

2.	 The components of the rolling center speeds of wheels on the 
inner and outer rails along the axle direction are

1 1 1d = − ⋅ g p                                                                                  (37)

2 1 2d = ⋅ g p                                                                                (38)

3.	 The above equation can be expressed as

1,11 1
1

2 2,2 2

0

0
Td s

d s
−

=
    
        

 

 

p
g

p
                                                    (39)

Equation (34) and Equation (39) together form the first order 
differential equation for describing the wheelset’s motion on the 
curved track. It can be seen that the motion of the wheelset on the 
track is determined by the position constraint on the wheelset imposed 
by the track. Based on this, the kinematic model of the wheel-rail 
contact is established. 

Analysis of the wheel-rail relationship for the driven 
wheelsets

The bogie and wheelsets are connected by axle boxes equipped 
with primary suspension devices.15 While wheelset movement is 
constrained by the track, the relative position between wheelsets is 
constrained by the distance between the bogie’s wheel centers, In 
simple terms.

1.	 The geometric centers of all wheelsets have the same speed along 
the forward direction 2g ;

2.	 The projections of the axles of all wheelsets on the horizontal 
plane are parallel to each other and their directions are given by

0 2 z= ×a g e                                                                               (40)

As shown in Figure 6, the descriptive variable of a driven wheelset 
can be expressed as

1 1s ρ= ; 2 2s ρ=                                                                        (41)

1 1
1
2 ad Lδ= − ; 2 2

1
2 ad Lδ= −                                                  (42)

Figure 6 Constraints between wheel sets.

Herein, La is the axle length of the wheelset marked in Figure 5. 
Calculating the intersection points A  and B  between the projection 
of the driven wheel axle on the horizontal plane and the projections of 

the inner and outer rail curves on the horizontal plane, the nonlinear 
equations can be derived

( )
( )

1 21 2 0 2

1 1 2 1 0 1

T T

x x y y out

in

L

L

δ ρ

δ ρ

  − + = +   
 − − =

c g a e e e e p

c g a p

                                         (43)

wherein, 1c is the projection of the radius vector of the driving 
wheelset’s geometric center (the origin of the fixed coordinate system) 
on the horizontal plane, 1l is the distance between the centers of the 
driven and driving wheel axles, ( )1in ρp and ( )2out ρp are respectively 
the radius vectors of contact points between the driven wheels and the 
inner and outer rails.

Equation (43) is a system of nonlinear equations for calculating 
the driven wheelset’s descriptive variables using known wheel-rail 
relationship for the driving wheelset, and then determining the wheel-
rail relationship for the driven wheelset. In essence, this equation 
considers not only the constraints between bogie and wheelsets, but 
also the constraints between track and driven wheelset. Thus it can 
reflect the actual operation of the crane on the track.

Dynamic analysis of crane in lateral and vertical 
directions

When simulating and studying the dynamic response of each 
component of the railway crane during operation, it is necessary 
to abstract the actual system into a physical or mechanical model, 
and then establish the corresponding mathematical model, i.e. the 
differential equation of system dynamics, to find its solution.16 
The chassis (including car body), leveling devices, bogie frame, 
wheelsets and spring suspension devices of the crane constitute a 
system composed of springs, dampers and masses.17,18 However, 
such a system is a complex multi-body system with multiple degrees 
of freedom. Studying all of its dynamic characteristics will not 
only bring great difficulties to analysis and calculation, but also is 
unnecessary. Therefore, in actual analysis and calculation, the specific 
objects can be appropriately simplified based on considerations of the 
main factors affecting the dynamic performance and actual needs, and 
corresponding assumptions can be made. These assumptions include:

1)	 Components like wheelsets, bogie frame, leveling arc plates and 
chassis have much smaller elasticity than the elastic elements 
of suspension system, and are thus considered as rigid bodies, 
whose elastic deformation is neglected;

2)	 Some connections between rigid bodies can be regarded as 
moving connections formed by proper hinges (spherical hinges, 
cylindrical hinges, rotary hinges, etc.); The mass of each spring 
in the suspension device is very small compared with the system 
mass and is distributed on the rigid body to which it is attached. 
A spring is regarded as a force element, and only the influence 
of its elastic deformation on the potential energy of the system 
is considered;

3)	 The front and rear bogies have exactly the same structural and 
size parameters, so do the front and rear leveling devices. The 
chassis, leveling devices and bogies are symmetrical in structure. 

4)	 Since the pistons in the front and rear leveling devices are firmly 
connected to the chassis, the oil cylinder is connected to the 
arc plate by the pin shaft, and each arc plate has four sliders to 
support the chassis, the chassis, as a whole, restricts the relative 
position between the front and rear arc plates. The front and rear 
arc plates have the same orientation during operation. 
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5)	 When the railway crane is running, the driving wheels on the front 
and rear bogies have the same angular velocity around the axle. 

Figure 7 shows a simplified topology diagram of the railway crane 
multi-body system. The wheel-rail relationship essentially describes 
the longitudinal motion of the crane on the track and it has been 
obtained in the sections above. On this basis, virtual power equations 
are derived according to the kinematic relationships between the 
main components using the virtual power principle, and the dynamic 
equations for the system are assembled. Then the lateral and vertical 
dynamic responses of railway crane traveling at different speeds on 
curved track are calculated.

Figure 7 Topology diagram of railway crane multibody system.

Principles of dynamic modeling

The multibody system for a railway crane has multiple spring 
force elements.19 The whole system can be regarded as a new particle 
system composed of the subparticle systems determined by each rigid 
body. Thus according to the virtual power equation for a single rigid 
body in a multibody system 

                                                (44)

The virtual power equation for a rigid multibody system can be 
obtained by superposition

w ii
P Pδ δ∑=                                                                                  (45)

The force exerted by the spring force elements on the connected 
object is related to the distance and relative speed between the 
connection points of the force elements. The relative motion of the 
object will cause the spring to continuously change in tension and 
compression, and the potential energy of the suspension devices in 
the system will change accordingly. The spring can be regarded as 
a purely flexible element without mass. Its virtual power equation is 
approximated by the virtual power of flexible body deformation as

e i ii
P fδ δε∑=                                                                                   (46)

In which i i if k ε= is the spring force when the amount of 

deformation is iε .

The virtual power equation for the system is

w eP P Pδ δ δ= +                                                                              (47)

Unlike those of a single rigid body, the centroid velocity and 
angular velocity of each object in a multibody system are not 
independent. The centroid acceleration of the object can be expressed 

as  and its angular acceleration can be expressed as
 

i i iq= + ù â ó . According to the definition of virtual velocity, the virtual 
velocity of the object’s centroid and the virtual angular velocity of the 
object are respectively. 

           

                                                                             (48)

The virtual variation in the rate of change in the deformation of 
each spring force element with time is expressed as

i i qδε δ= ã                                                                                     (49)

Substituting Eqs. (48) and (49) into Eq. (47), we can get
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                                             (50)

According to the principle of virtual power 0Pδ = , the above 
equation is further simplified as20

( ) 0Tq qδ − = M F                                                                          (51)

Since q  is an independent variable, the dynamic equation for the 
system can be obtained

0q − =M F \* MERGEFORMAT                                                  (52)

Rigid body modeling of each part

Rigid bodies in the system include eight wheelsets, front and rear 
bogie frames, front and rear leveling arc plates, and chassis. Wheelset 
motion is substituted into the system’s equation as a known term. 
Next, it is necessary to establish a virtual power model for the bogie 
frames, the arc plates and the chassis successively from bottom to top 
based on the kinematic relationships between the components.

1)	 Bogie frame

As shown in Figure 8, a coordinate system o xyz− conforming 
to the right-hand rule is fixed to the bogie frame, with the spherical 
center of the spherical bowl where the spherical hinge is installed 
taken as the origin. The x-axis points towards the outer rail along the 
lateral direction of the top surface, while the y-axis points towards the 
forward direction along the longitudinal direction of the top surface. 
Let 1 2 3{ , , }b b b  be the base vectors of this coordinate system.

Figure 8 Schematic diagram of the coordinate system fixed to bogie frame.

Taking the coordinate system fixed to the driving wheelset on the 
bogie frame as the reference system, we mainly consider the effects 
of the vertical displacementξ , pitching angle 1β and rolling angle 2β
of the bogie frame relative to the wheelset caused by the primary 
suspension device. The relationships between the base vectors can be 
written as

1 12 2

2 2

2 23 3

cos 0 sin
0 1 0

sin 0 cos

β β

β β

    
    

=    
    −    

u g
u g
u g

                                                (53)
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                                                (54)

Then the angular velocity is

                                            (55)

The origin of the coordinate system fixed to the bogie frame, i.e. 
the center of the spherical hinge, is expressed as

0 1 3 1 1 2
1( )2

b
z bh l lξ= + + − +r c e b b                                          (56)

As shown in Figure 8, 
1

c is the geometric center of the driving 
wheelset, bh  is the vertical height from the geometric center of the 
driving wheelset to the origin of the coordinate system fixed to the 
bogie in the initial state, 1l and 2l  are the distances between the 
centers of three adjacent wheel axles. The centroid of bogie frame is

0
b b

c b= +r r Rp                                                                                  (57)

Wherein, 1 2 3[ ]=R b b b , and bp is the component of the bogie 
frame’s centroid in the fixed coordinate system.

The virtual power of the bogie frame relative to the fixed coordinate 
system can be obtained from equation (44)

                                                (58)

Where the mass matrix

0

0

( )

( )

b b
b b c

b b b
b c b

m m

m

 − −
 =
 − 

 

 

E r r
M

r r J
                                                (59)

And the force matrix

                                                  (60)

In these equations, bm is the mass of the bogie frame, and bJ  is the 
moment of inertia of the bogie frame relative to the fixed coordinate 
system.

It is previously assumed that the front and rear bogies have the 
same composition and symmetrical structure, and the corresponding 
driving wheels have the same angular velocity around axle during 
operation. So the rear bogie’s frame and wheelsets can be modelled in 
the same way as those of the front bogie.

2)	 Leveling arc plate

As the relative position between the front and rear leveling arc 
plates is constrained by the chassis as a whole, it is reasonable to 
assume that the front and rear leveling arc plates always have the same 
orientation during operation, and the line passing through the centers 
of the front and rear spherical hinges is parallel to the longitudinal 
direction of the chassis. Otherwise the chassis will be deformed, which 
is inconsistent with the principles for actual engineering design. This 
verifies the validity of the previous assumption (Figure 9).

As shown in Figure 10, a coordinate system o xyz− is fixed to a 
leveling arc plate, with the spherical hinge center being as the origin. 
The x-axis points to the outer rail along the longitudinal direction 
(length) of the arc plate, the y-axis points to the forward direction 
along the transverse direction (width) of the arc plate, and the z-axis 
points upward along the height of the arc plate. Let 1 2 3{ , , }e e e  
represent the base vectors of this coordinate system.

Figure 9 Constraints on front and rear leveling arc plates imposed by chassis.

Figure 10 Schematic diagram of the coordinate system fixed to leveling arc 
plate.

The coordinate system fixed to the bogie frame is used as the 
reference system. As each leveling arc plate is connected to the bogie 
frame by a spherical hinge, it is necessary to consider the influence 
of the yawing angle 1χ , pitching angle 2χ and rolling angle 3χ of 
the leveling arc plate relative to the bogie frame. Thus following 
transformations are applied to the base vectors:

1 2 3{ , , }b b b → 1 2 3{ , , }m m m → 1 2 3{ , , }n n n → 1 2 3{ , , }e e e
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3 3
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                                               (61)
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                                         (62)
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                                                 (63)

Then the angular velocity is

                                                (64)

The upper surface of each slider on the leveling arc plate forms 
a plane that coincides with the plane of the chassis. Ignoring the 
minimal impact of installation clearance on this situation, as shown 
in Figure 9, the y-axis of coordinate system fixed to the arc plate must 
be parallel to the longitudinal direction of the chassis, and thereby 
the line between centers of the front and rear spherical hinges, that is

( ) -1

2 0 0 0 0
e e e e= − −   e r r r r                                                               (65)

Where 0
er  and 0

er  are the centers of the spherical hinges on the 
front and rear leveling arc plates, respectively. They are also the 
centers of spherical bowls on the front and rear bogie frames for 
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installting the spherical hinges. Then the yawing angle and pitching 
angle are respectively 

 1 1 2 2 2tan 2( , )aχ = − ⋅ ⋅b e b e                                                     (66)

2 3 2sin( )aχ = ⋅b e                                                                       (67)

The centroids of front and rear leveling arc plates are

0
e e

c e= + r r Rp                                                                               (68)

0
e e

c e= + r r Rp                                                                                (69)

Where 1 2 3[ ]=R e e e and ep  is the component of the centroid 

of a leveling arc plate in the fixed coordinate system.

According to formula (44), the virtual power of the front leveling 
arc plate relative to the coordinate system fixed to it is	

                                                    (70)

Where, the mass matrix	 0

0

( )

( )

e e
e e c

e e b
e c e

m m

m

 − −
 =
 − 

 

 

E r r
M

r r J
   (71)

And the force matrix

                                                      (72)

wherein, em is the mass of the leveling arc plate, and eJ is the 
moment of inertia of the leveling arc plate relative to the fixed 
coordinate system.

The virtual power of the rear leveling arc plate relative to the 
coordinate system fixed to it can be obtained in the same way as that 
of the front leveling arc plate.

1)	 Chassis (including car body)

As shown in Figure 11, a coordinate system o xyz− conforming 
to the right-hand rule is fixed to the chassis, with the geometric center 
of the upper surface of the chassis used as the origin. The x-axis points 
to the outer rail along the transverse direction (width) of the chassis, 
and the y-axis points to the forward direction along the longitudinal 
direction (length) of the chassis. Let 1 2 3{ , , }h h h be the coordinate 
system’s base vectors.

Figure 11 Schematic diagram of the coordinate system fixed to the chassis 
(including car body).

The coordinate system fixed to a leveling arc plate is used as the 
reference system.20–25 According to the constraint on the leveling arc 
plate imposed by the chassis, the y-axis of the coordinate system fixed 
to the arc plate is parallel to the y-axis y of the coordinate system 
fixed to the chassis. Then the movement of the chassis with respect 
to the leveling arc plate is pure rotation around the base vector 2e  
(rolling). This relative movement is the result of the joint action of the 

oil cylinder and piston installed on the leveling arc plate. The model 
for this relative motion can be simplified as shown in Figure 12.

Figure 12 Geometric relation representing the relative motion between 
chassis and arc plate.

1o - Circle center of arc plate; 2o  - Center of pin shaft; 3o  - Piston 
center

The vertical median lines of the left and right support sliders.

When the leveling cylinder piston is not retracted, the chassis can 
be regarded as firmly connected with the front and rear arc plates. 
Then the base vectors of the chassis-fixed coordinate system have the 
same directions as those of the leveling arc plate. At this time, the 
initial angle for a given arc radius of the arc plate is

1
0

1asin( )2 gL Rϑ −=                                                                       (73)

Where R  is the arc radius and gL  is the piston length.

Distance from piston center to circle center of arc plate

0 0cosgh R hϑ= +                                                                        (74)

After the right cylinder is retracted by d , the angle of rotation of 
the chassis relative to the arc plate is

1asin( )gdhγ −=                                                                              (75)

Then the base vector of the chassis-fixed coordinate system is	

1 1

2 2

3 3

cos 0 sin
0 1 0

sin 0 cos

γ γ

γ γ
=

−

           
        

h e

h e

h e

                                             (76)

The angular velocity is

                                   (77)

The origin of the chassis-fixed coordinate system is

                                                            (78)

Wherein, 1h is the vertical distance between the piston center and 
the chassis center in the initial state, and 1ñ and 2ñ are the centers of 
pin shafts on the front and rear leveling arc plates.
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The centroid of the chassis is

0
h h

c h= +r r Rp                                                                                     (79)

Where 1 2 3[ ]=R h h h
 
and hp  is the component of the chassis’s 

centroid in the fixed coordinate system.

The virtual power of the chassis relative to the fixed coordinate 
system26 can be obtained from equation (44)	

                                                   (80)

Where, the mass matrix	 0

0

( )
( )

h h
h h c
h hh

h c h

m m
m

− −
=

−

 
  

 

 

E r r
M

r r J         (81)

And the force matrix

                                                    (82)

Wherein, hm is the mass of the chassis and hJ is the moment of 
inertia of the chassis relative to the fixed coordinate system. 

Representation of suspension springs and the limit on 
the swing angles of spherical hinges 

Due to the constraints from the spherical bowls, the swing angles 
of the spherical hinges between bogies and leveling arc plates cannot 
exceed 1.5 °. The spherical hinges are considered subjected to the 
action of springs during the swing process. The spring stiffness is 
shown in the following Figure 13. 

Figure 13 Variation in spring stiffness with spherical hinge’s swing angle.

The virtual power equation is	

i ie i
P fδ δε∑=                                                                                 (83)

Wherein, the deformation in the suspension spring i i ir rε = −  
and the deformation in the spherical hinge’s spring iε is represented 
by swing angle.

Assembly of dynamic equations for the system

According to the above analysis, the virtual power equation for 
the system is

                                       (84)

Some parameters can be used as independent parameters to 
describe the relative motions between components, including vertical 
displacementξ , pitching angle 1β  and rolling angle 2β  of front 

and rear bogie frames relative to their driving wheelsets, the angle 
between leveling arc plate and the front bogie frame 3χ , and the 
angle of the chassis relative to leveling arc plate γ . However, γ is 
determined by the piston of leveling oil cylinder and thus cannot be 
used as an independent parameter. This will be described in details 
later in the section about leveling control. Therefore, the array of the 
selected descriptive parameters is 

1 2 1 2 3[ ]ξ β β ξ β β χ=
     

q                                             (85)

The center acceleration and angular acceleration of each object are 

                                                                                                        (86)

                                                                                                      (87)

                                                                                                    (88)

                                                                                                        (89)

                                                                                                           (90)

The corresponding virtual velocity and virtual angular acceleration 
are

                                                                                                     
(91)

                                                                                                      
(92)

                                                                                                         (93)

                                                                                                      
(94)

                                                                                                         
(95)

Substituting Eqs. (85) through (94) into Eq. (83) yields

( ) 0T
δ − = q Mq F                                                                     (96)

Then the dynamic equation for the system is obtained

0− =Mq F                                                                                 (97)

Determination of leveling control method for railway 
cranes

Automatic control systems fall into many categories, and can be 
divided into continuous control and discontinuous control according 
to the way of signal collection by sensors. Considering the way of data 
collection by sensors for railway cranes and the constraints imposed 
by chassis on the relative position between front and rear leveling 
arc plates, this paper adopts synchronous leveling of front and rear 
cylinder pistons and discontinuous automatic control is achieved. 

The sensors for railway cranes can actually collect the following 
data in real time 

The angle between the transverse direction 1h
 
of chassis and the 

absolute horizontal plane 

1 1sin( )zaα = ⋅e h                                                                           (98)

The angle between the transverse axis 1h  of chassis and the 
longitudinal direction 1e  of arc plate

2 3 1sin( )aα = ⋅h e                                                                          (99)

Set the sampling period st and store the sensor data for the three 

periods between these points: 0t , 0 st t+ , 0 2 st t+ , and 0 3 st t+

. Then the angle values at 0 4 st t+ can be predicted by polynomial 
interpolation:

1 1 1 1 14 2 3
0 0 0 0 0

4 6 4t t t t t t t t t
s s s s

α α α α α+ + + += − + − +            (100)
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2 2 2 2 24 2 3
0 0 0 0 0

4 6 4t t t t t t t t t
s s s s

α α α α α+ + + += − + − +           (101)

According to the geometric relationship shown in Figure 12, the 
desired value for angle γ  at 0 4 st t+  to keep the chassis levelled is

2 14 4 4
0 0 0

t t t t t t
s s s

γ α α+ + += −                                                           (102)

The desired cylinder retraction is

4 4
0 0

sint t g t t
s s

d h γ+ +

 
=   

 
                                                            (103)

In the interval ( )0 03 , 4s st t t t+ +
,

0 0
3 4

0 0

4 3s s
t t t t

s ss s

t t t t t t
d d dt t+ +

+ − − −
= +                                              (104)

1 1
4 3

0 0
t t t ts s

s s
d t d t d− −

+ += −                                                             (105)

0d =                                                                                         (106)

According to the formulas, we have

( ) 1
cosgh dγ γ

−
=                                                                         (107)

0γ =                                                                                           (108)

Therefore, the relationship between the real-time sensor 
observations and the amount of piston retraction needed to keep the 
chassis horizontal is established.

The lateral and vertical dynamic equations for railway cranes 
are a set of differential equations with multiple degrees of freedom. 
Differential equations can be solved using Newmark method, Wilson 
θ method, HHT method, generalized α. This paper uses the ODE45 
solver, which is a stiff differential equation solver and can ensure the 
stability of numerical solution.

In order to accurately and effectively simulate the sensors, the data 
transmitted by the sensors are added to the differential equations as 
variables to limit the maximum step size, so that simulated sensor 
data can be obtained and stored in real time based on the time step 
calculated by the solver. Then the data obtained can be used to 
accurately and effectively predict the retraction and rotation angle of 
cylinder for the next time step through polynomial interpolation. The 
predictions are transmitted to the dynamic equation for the system in 
real time to simulate the action of actuator in actual operation process.

These are changes that will occur during leveling of a railway 
crane. When leveling is shut off, the locking cylinder will lock the 
leveling process. At this time, the retraction of the cylinder is

0d =                                                                                           (109)

And the corresponding rotation angle of rotation is

0γ =                                                                                          (110)

These can be substituted into the differential equation to calculate 
the dynamic response of a railway crane when leveling is shut off.

Numerical examples

Based on the theoretical method presented in this paper, analysis 
software for use in Matlab environment is developed. It uses ODE45 
solver, and its relative accuracy and absolute accuracy are 1e-3 and 
1e-4, respectively (Figure 14).

Figure 14 NS1600A Hydraulic railway crane.

Take the size parameters of NS1600A hydraulic railway rescue 
crane imported from Kirow Leipzig factory in Germany during 2007-
2010 as an example to illustrate the calculation results. 

First of all, a curved test track model is constructed. Both straight 
sections are 40m long, and both transition curves have an arc length 
of 15m. The circular curve has an arc length of 40m, a radius of 
240m, and a superelevation of 25mm. The gauge is 1435mm. Using 
the calculation method for transition curves described in this paper, 
the variations in the outer rail’s curvature and superelevation can be 
obtained (Figure 15) (Figure 16).

Figure15 Variation in track’s curve radius with arc length coordinate.

Figure 16 Variation in outer rail superelevation with coordinate arc length.

As shown in the above figure, the transition curves in the railway 
curve track can be calculated by solving the first-order differential 
equation. When the length of each section is given, it is possible, 
in a strict sense, to achieve a gradual curvature increase from 0 to 
1/240 and a superelevation increase from 0 to 25 mm, from the 
straight section to the circular curve. This meets the railway design 
specifications. Next, let the railway crane carry a load of 64 tons and 
travel along the curved track model mentioned above at a speed of 
40km/h. The responses of each component before and after wheel/
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rail movement and leveling are calculated. The representation of the 
involved axles ① - ⑧ is shown in the Figure 17 below. 

Figure 17 Schematic diagram of numbered wheel sets of the railway crane.

Figure18 shows the lateral displacement of each wheelset of the 
railway crane along the axle direction during operation. It can be seen 
that when entering a curved track, each wheel set moves along the 
axle to the outer edge of the track. As the tread is a rotating conical 
surface, the rolling radius of the outer rail will be greater than that of 
the inner rail. This will result in a speed difference between the rolling 
centers of wheels on the inner and outer rails, leading the crane to 
turn. It is clear that after the crane moves to the straight section from 
the curved section, the lateral displacement oscillates, which causes 
slight hunting of the crane along the track.

Figure18 Schematic diagram of numbered wheel sets of the railway crane.

Figure 19 shows the arc length coordinate difference between the 
contact points on the inner and outer rails for each wheelset of the 
front and rear bogies and reveals the yawing motion of each wheelset 
on the track. It can be seen from the figure that when the railway crane 
is traveling on the curved track, the yawing angle of wheelset on each 
bogie gradually increases, and it will hover slightly at about 0 ° after 
the crane leaves the curved track.

Figure 19 Arc length coordinate difference between inner and outer rail 
contact points of each wheel set of front and rear bogies.

The sampling period for the simulated sensor is set to 40ms based 
on the delay time of the hydraulic leveling system of the railway crane. 
The following figure provides a comparison before and after leveling.

As shown in Figure 20, when the railway crane is traveling with 
load, its center of gravity will move forward appropriately. As a result, 
the reaction force applied by the primary spring on the front-bogie 
wheelset is greater than that on the rear-bogie wheelset. It can be 
seen from the figure that when the leveling mechanism is turned off, 
the primary spring’s reaction force on the inner driving wheel of the 
rear bogie will reach -4.42kN, and the absolute value is equal to the 
gravity of the wheel. At this time, the wheel pressure will be equal to 
0. Leveling can help avoid this dangerous situation and greatly reduce 
the vibration amplitude of the primary suspension spring.

Figure 20 Reaction forces on driving wheels of front and rear bogies exerted 
by primary suspension springs before and after leveling.
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As shown in Figure 21, when the railway crane is running on a 
curved track with leveling disabled, the chassis will incline together 
with the car body to the outer edge of the track due to centrifugal 
effect. At the current driving speed, the chassis has a maximum 
transverse inclination of 6° and tends to swing laterally. After leveling 
is enabled, the chassis can always be kept horizontal by the leveling 
cylinder pistons and has a minimal inclination. Figure 22 shows the 
change in piston retraction during the whole leveling process. 

Figure 21 Change of horizontal inclination of underframe before and after 
leveling.

Figure 22 Change in retraction of the cylinder piston during leveling.

In a word, the simulation results from the software developed 
based on the theoretical method proposed are largely in line with the 
actual situation of NS1600A hydraulic railway crane traveling on 
curved track, thus verifying the correctness of the model.

Conclusion
In this paper, longitudinal, transverse and vertical dynamic models 

were constructed for a railway crane to describe its movement on a 
curved track. Based on its leveling characteristics, the relationships 
between real-time sensor data and the retraction of leveling cylinder 
piston were established by using discontinuous control. The dynamic 
responses of each component of the railway crane before and after 
leveling by discontinuous control were simulated and analyzed, and 
results demonstrate the necessity and effect of leveling. Moreover, 
analysis software for leveling control of railway cranes was written. 
It not only can be used to analyze and simulate different types of 
railway cranes, but also provides a discontinuous control method for 
synchronous leveling of railway cranes.
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