Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Mini Review Volume 7 Issue 1

Review of thermodynamics concerning phase transitions How to increase high temperature superconductivity via quantum entanglement

Harold Szu

Res. Ord. Professor, Bio-Med. Engineering, Visiting Scholar at CUA, Catholic University of America, USA

Correspondence: Harold H Szu, PhD (The Rockefeller U), Fellows (AIAA, INNS, AIMBE, IEEE, OSA, SPIE) Academician (RAS) (RNL. S. V. Malrosov, 135, 1999), Res Ord Prof., CUA, Wash D.C, USA

Received: April 18, 2023 | Published: May 12, 2023

Citation: Szu H. Review of thermodynamics concerning phase transitions. MOJ App Bio Biomech. 2023;7(1):27-29. DOI: 10.15406/mojabb.2023.07.00172

Download PDF

Abstract

We review thermodynamic 4 variables and 4 potentials, and recommend precision optics interference.

Measurement techniques for the phase transitions as follows. We consider the superconductivity as a Lambda (close to the 2nd order) phase transition phenomena. Then the quantum mechanics entanglement of two branches of superconductor wires that are made of YBCO 123 high temperature superconductor can be further increased one wire toward room temperature while still kept at zero resistance Ohm’s law measured by precision Optics Phase Conjugated Interferometer.

Background

We know winter’s ice & snow melting to summer’s water & creeks, these phenomena are thermodynamically known as phase transition. It happens at constant temperature T o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKaaGcbaaa aaaaaapeGaa8hvaOWdamaaBaaaleaapeGaam4BaaWdaeqaaaaa@3A41@  say 0 o  C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGkaaicdakm aaCaaajeaqbeqaaabaaaaaaaaapeGaam4BaiaacckaaaGccaWGdbaa aa@3C22@ , and constant pressure P( T o )=  P 0  , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKaaGcbaaa aaaaaapeGaa8huaOWaaeWaa8aabaqcaa6dbiaa=rfak8aadaWgaaWc baWdbiaa=9gaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaqGGc qcaaQaa8huaOWdamaaBaaajeaqbaWdbiaaicdaaSWdaeqaaOWdbiaa =bkacaGGSaaaaa@4479@ say 1 ATP (atmosphere pressure), the associated volume V changing from solid to liquid and vice versa has a singularity. Phase transition of state variables is always associated with singularity of associated thermodynamic potential. Can one measure them directly?

Review Thermodynamics

There are 4 thermodynamic variables: Pressures P, Volume V, Temperature T, and Entropy. There are associated 4 thermodynamic potentials1 Hermann Helmholtz free energy A UTS, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKaaGcbaaa aaaaaapeGaa8xqaiabggMi6kaa=bkacaWFvbGaeyOeI0Iaa8hvamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGae4NeXpLaai ilaaaa@4A6D@  where U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKaaGcbaaa aaaaaapeGaa8xvaaaa@38E9@  is the internal energy at the absolute temperature T and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFse=u aaa@42C5@  is the wasteful homogeneity called by the name of Entropy by Ludwig Boltzmann; moreover, the2 Josiah W. Gibbs chemical potential GA+PV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKaaGcbaaa aaaaaapeGaa83raiabggMi6kaa=feacqGHRaWkcaWFqbGaa8Nvaaaa @3DF0@ 3 enthalpy H=U+PV. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKaaGcbaaa aaaaaapeGaa8hsaiabg2da9iaa=vfacqGHRaWkcaWFqbGaa8Nvaiaa c6caaaa@3DF4@  Altogether, we have 4 thermodynamic potential: (internal energy U, Helmholtz A, Gibbs G, enthalpy H) All together we have 4+4=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaaGinaiabgUcaRiaaisdacqGH9aqpcaaI4aaaaa@3C2D@  variable collected as in the following diagram:

Figure 1

  1. Tisza Square; (1960) consist of 4 potentials and 4 dynamics variable,
  2. At a constant temperature T, e.g.C degree, snow/ ice melt down into water changes volume (in a complicate way due to ice crystal structures) as we plot here the simplest pressure versus its volume V monotonously.

Moreover, we consider 4 thermodynamic laws,

  1. zero-th Law (Ralph H. Fowler in the 1930s) “all heat are the same kind”;
  2. the 1st Law about conservation of energy heat Q and work W,
  3. 2nd Law direction of natural processes namely increasing the Entropy,
  4. the 3rd Law the entropy of a system at absolute zero is a well-defined constant. Note that the Tisza square whose 4 edges have 4 thermodynamic potentials A, U, G, H, and 4 corners 4 thermodynamic variable V, T, S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFse=u aaa@42C5@ , P.

Now for readers’ edifice, we itemize 4 potentials and 4 variables as follows.

  1. Internal energy   dU=dQdW=TdSPdV; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaGqadiaa=vfacqGH9aqpcaWGKbGaa8xuaiabgkHiTiaadsga caWFxbGaeyypa0Jaa8hvaiaadsgatuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGqbbiab+jr8tjabgkHiTiaadcfacaWFKbGaamOv aiaacUdaaaa@5102@
  2. Gibb energy:    dG=SdT+VdP; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaGqadiaa=DeacqGH9aqpcqGHsisltuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbbiab+jr8tjaa=rgacaWFubGaey4kaS Iaa8Nvaiaa=rgacaWFqbGaai4oaaaa@4C5B@
  3. enthalpy dH=TdS+VdP; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8xzaiaa=5gacaWF0bGaa8hAaiaa=fgacaWFSbGaa8hCaiaa =LhacaGGGcGaa8hzaiaa=HeacqGH9aqpcaWFubGaa8hzamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfeGae4NeXpLaey4kaSIa a8Nvaiaa=rgacaWFqbGaai4oaaaa@53FC@  
  4. Helmholtz dA= PdV  SdT; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hsaiaa=vgacaWFSbGaa8xBaiaa=HgacaWFVbGaa8hBaiaa =rhacaWF6bGaa8hOaiaa=rgacaWFbbGaeyypa0JaeyOeI0IaaiiOai aa=bfacaWFKbGaa8NvaiabgkHiTiaacckacaGGGcWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuqacqGFse=ucaWFKbGaa8hvai aacUdaaaa@5929@  

From1–4 follows the differential relationship expressed in partial derivative,

e.g.   T  =  ( U S );  P  =  ( U V );V=( G P );S=( A T )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKaaGcbaaa aaaaaapeGaa8hvaiaacckacaGGGcGaeyypa0JaaiiOaiaacckakmaa bmaajaaypaqaaOWdbmaalaaajaaypaqaa8qacqGHciITcaWFvbaapa qaa8qacqGHciITtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbbiab+jr8tbaaaiaawIcacaGLPaaajaaOcaGG7aGaaiiOaiaacc kacaWFqbGaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOaiabgkHiTOWa aeWaaKaaG9aabaGcpeWaaSaaaKaaG9aabaWdbiabgkGi2kaa=vfaa8 aabaWdbiabgkGi2kaa=zfaaaaacaGLOaGaayzkaaqcaaQaai4oaOGa amOvaiabg2da9maabmaapaqaa8qadaWcaaWdaeaapeGaeyOaIyRaa8 3raaWdaeaapeGaeyOaIyRaa8huaaaaaiaawIcacaGLPaaacaGG7aGa e4NeXpLaeyypa0JaeyOeI0YaaeWaa8aabaWdbmaalaaapaqaa8qacq GHciITcaWFbbaapaqaa8qacqGHciITcaWFubaaaaGaayjkaiaawMca aiaacckaaaa@7871@

After the formal definitions, we return to the initial remarks about the weather phase transition, as G=   m ice    g ice +  +   m water    g water ;  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKaaGcbaaa aaaaaapeGaa83raiabg2da9iaacckacaGGGcGaamyBaOWdamaaBaaa jeaybaWdbiaadMgacaWGJbGaamyzaaWdaeqaaKaaG+qacaGGGcGaai iOaiaa=Dgak8aadaWgaaqcbawaa8qacaWGPbGaam4yaiaadwgacaGG GcqcbaKaey4kaSscbaIaaiiOaaqcba2daeqaaKaaG+qacqGHRaWkca GGGcGaaiiOaiaad2gak8aadaWgaaqcbaAaa8qacaWG3bGaamyyaiaa dshacaWGLbGaamOCaiaacckaa8aabeaajaaOpeGaaiiOaiaa=Dgak8 aadaWgaaqcbaAaa8qacaWG3bGaamyyaiaadshacaWGLbGaamOCaaWd aeqaaKaaG+qacaGG7aGaaiiOaaaa@62EA@ these two states must be at a minimum δG=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaeqiTdqMaam4raiabg2da9iaaicdaaaa@3C38@ . This completes the review of the first order phase transition theory.

The resistance of electric currents will suddenly disappear in a very low temperature. Question is this a phase transition? What’s the associated math-physics theory? When the electrons have internal spins quantum number “ s “will be spitted in inhomogeneous external magnetic field into 2 lines: 2xs=2, s=1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaaGOmaiaadIhaieWacaWFZbGaeyypa0JaaGOmaiaacYcacaGG GcGaa83Caiabg2da9iaaigdacaGGVaGaaGOmaaaa@427A@  in the Otto Stern & Walther Gerlach Experiments as discovered by George Uhlenbeck and Samuel Goudsmit in 1925. These electrons with half integer angular momentum are called Fermions with resistance; but when pairs of electrons with the opposite spin will attract each other, forming pairs, will have no more resistance, called superconductor. We know that is due to pair of electrons with spin up and spin down forming the pair, Bosons, as pointed out by Leon N. Cooper 1956, ((Bardeen–Cooper–Schrieffer BCS pair at liquid Helium temperature   4 0  K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaaiiOaiaaisdak8aadaahaaqcbaCabKqaGeaapeGaaGimaiaa cckaaaqcaaQaam4saaaa@3E7F@ ). P. Ehrenfest [1933] introduced the second-order type due to the “heat capacity anomaly” in liquid He latent heat.

Recent decades, there are ceramic (not conductor, but insulator) compound discover by Paul C.W. Chu, M.K. Wu, et al.4 called Yttrium Bariums Copper Oxide (YBCO)1,2,3 compound where a large Barium molecule kept Cooper pairs bounded within ceramic lattice that can be still forming Cooper pairs beyond the liquid Nitrogen temperature 77 0 K+. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaaG4naiaaiEdak8aadaahaaqcbauabeaapeGaaGimaaaajaaO caWGlbGaey4kaSIaeyOKH4QaaiOlaaaa@3FD2@  Question in this communication, was our understanding still correct for the phase transition phenomena? If so, can we mathematically extend Nobel Laureate C.N. Yang & T.D. Lee their 1953 theory of phase transition from the first order to the second order phase transition?

Phase transitions

A liquid may become gas upon heating to its boiling point, resulting in an abrupt change in molecular volume. This abrupt or discontinuous change is mathematically called singularity, say the normalized Helmholtz free energyresulted in the first order phase transition resulted in the pressure versus volume plateau. While the pressure is kept at a constant, the molecular volume increases in gas phase. Let’s first introduce Ludwig Boltzmann measure of the degree of uniformity called the entropy S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFse=u aaa@42C5@ , which is multiplied the absolute temperature T, we have obtained the “free to do work energy” called Helmholtz free energy ΑUS T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGadKaaGcbaaa aaaaaapeGae8xKdeKaeyyyIORaaCyvaiabgkHiTmrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfeGae4NeXpLccaGGGcqcaaQaaC ivaaaa@4B1B@ such that Maxwell-Boltzmann called the weighted chemical potential the fugacity:

z= exp( μ ); μ=logz;  μ   A k B T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaacckaciGGLbGaaiiEaiaacchadaqadaWdaeaa peGaeqiVd0gacaGLOaGaayzkaaGaai4oaiaacckacqaH8oqBcqGH9a qpciGGSbGaai4BaiaacEgacaWG6bGaai4oaiaacckacaGGGcGaeqiV d0MaeyyyIORaaiiOaiaacckadaWcaaWdaeaapeGaamyqaaWdaeaape Gaam4Aa8aadaWgaaqcbauaa8qacaWGcbaal8aabeaak8qacaWGubaa aaaa@565E@

We will consider a mathematical model proposed by C. N. Yang and T.D. Lee which reveals the singularity of the Grand Canonical Ensemble in terms of the fugacity z1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabgsMiJkaaigdaaaa@3ACD@ . The Grand Partition Function where the number of particles goes to the infinite n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgkziUkabg6HiLcaa@3BAF@ , defined by Peano algorithm

n=n+1; =+1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaamOBaiabg2da9iaad6gacqGHRaWkcaaIXaGaai4oaiaaccka cqGHEisPcqGH9aqpcqGHEisPcqGHRaWkcaaIXaGaaiOlaaaa@44AA@

A mathematical model if n-th particle partition function is uniform  Q n 1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaamyuaOWdamaaBaaajeaObaWdbiaad6gaa8aabeaajaaOpeGa eyyrIaKaaGymaiaac6caaaa@3E2C@

YL =1+z Q 1  + z 2 Q 2 + z 3 Q 3 + z 4 Q 4 += 1 1z ; iff  Q n =1,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFAesu paWaaSbaaKqaafaapeGaamywaiabgkHiTiaadYeaa8aabeaak8qacq GH9aqpcaaIXaGaey4kaSIaamOEaiaadgfapaWaaSbaaKqaGeaapeGa aGymaaWdaeqaaKaaG9qacaGGGcGccqGHRaWkcaWG6bWdamaaCaaaje aqbeqaa8qacaaIYaaaaOGaamyua8aadaWgaaqcbasaa8qacaaIYaaa paqabaGcpeGaey4kaSIaamOEa8aadaahaaWcbeqcbauaa8qacaaIZa aaaOGaamyua8aadaWgaaqcbasaa8qacaaIZaaapaqabaGcpeGaey4k aSIaamOEa8aadaahaaqcbauabeaapeGaaGinaaaakiaadgfapaWaaS baaKqaGeaapeGaaGinaaWdaeqaaOWdbiabgUcaRiabgAci8kabg2da 9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaeyOeI0scaaQaam OEaaaakiaacUdacaGGGcGaamyAaiaadAgacaWGMbGaaiiOaiaadgfa paWaaSbaaKqaGfaapeGaamOBaaWdaeqaaOWdbiabg2da9iaaigdaca GGSaGaeyiaIiIaamOBaaaa@713E@

Where we observe clearly the first order phase transition modeled by C.N. Yang & T.D. Lee that has a phase transition diverges at Re[ z ]1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaadwgadaWadaWdaeaapeGaamOEaaGaay5waiaaw2faaiab gkziUkaaigdaaaa@3ED7@ .

Now, we5 wish to generalize Yang-Lee Model to the 2nd Order phase transition for superconductivity.

The first classification of general types of transition between phases of matter, introduced by Paul Ehrenfest in 1933, lies at a crossroads in the thermodynamically study of critical phenomena. It arose following the discovery in 1932 of a suprising new phase transition in liquid helium, the "lambda transition," when W. H. Keesom and coworkers in Leiden, Holland observed a -shaped "jump" discontinuity in the curve giving the temperature dependence of the specific heat of helium at a critical value. This apparent jump led Ehrenfest to introduce a classification of phase transitions on the basis of jumps in derivatives of the free energy function. This classification was immediately applied by A. J. Rutgers to the study of the transition from the normal to superconducting state in metals. Eduard Justi and Max von Laue soon questioned the possibility of its class of "second-order phase transitions" - of which the "lambda transition was believed to be the arche type - but CJ. Goiter and H. B. G. Casimir used an "order parameter to demonstrate their existence in superconductors. As a crossroads of study, the Ehrenfest classification was forced to undergo a slow, adaptive evolution during subsequent decades. During the 1940’s the classification was increasingly used in discussions of liquid-gas, order-disorder, paramagnetic-ferromagnetic and normalsuper-conducting phase transitions. Already in 1944 however, Lars Onsager's solution of the Ising model for two-dimensional magnets was seen to possess a derivative with a logarithmic divergence rather than a jump as the critical point was approached. In the 1950’s, experiments further revealed the lambda transition in helium to exhibit similar behavior. Rather than being a prime example of an Ehrenfest phase transition, the lambda transition was seen to lie outside the Ehrenfest classification. The Ehrenfest scheme was then extended to include such singularities, most notably by A. Brain Pippard in 1957, with widespread acceptance. During the 1960’s these logarithmic infinities were the focus of the investigation of "scaling" by Leo Kadanoff, B. Widom and others. By the 1970s, a radically simplified binary classification of phase transitions into "first-order" and "continuous" transitions was increasingly adopted.

Lemma: factorial function, replacing z  z! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaamOEaiaacckacqGHsgIRcaGGGcGaaiOEaiaacgcaaaa@3EDE@  and its derivative

Let’s define the Gamma function Γ( z+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaae4KdOWaaeWaaKaaG+aabaWdbiaadQhacqGHRaWkcaaIXaaa caGLOaGaayzkaaaaaa@3E17@ which has the Laplace transform

Γ( z+1 )    0 t z e t dt=z!=  z( z1 )( z2 )! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaae4KdOWaaeWaaKaaG+aabaWdbiaadQhacqGHRaWkcaaIXaaa caGLOaGaayzkaaGaeyyyIORcdaGfWbqcaaAabKqaG+aabaWdbiaaic daa8aabaWdbiabg6HiLcqcda6daeaapeGaey4kIiVaaiiOaiaaccka aaqcaaQaamiDaOWdamaaCaaajeaObeqaa8qacaWG6baaaKaaGkaadw gak8aadaahaaqcbaAabeaapeGaeyOeI0IaamiDaaaajaaOcaWGKbGa amiDaiabg2da9iaadQhacaGGHaGaeyypa0JaaiiOaiaacckacaWG6b Gcdaqadaqcaa6daeaapeGaamOEaiabgkHiTiaaigdaaiaawIcacaGL PaaakmaabmaajaaOpaqaa8qacaWG6bGaeyOeI0IaaGOmaaGaayjkai aawMcaaiaacgcaaaa@6542@

Theorem

dz! dz   =   dΓ(z+1) dz   =      0 z t z e t dt=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbGaamOEaiaacgcaaeaacaWGKbGaamOEaaaajaaO caGGGcGaaiiOaiabg2da9iaacckacaGGGcGcdaWcaaqaaiaadsgaca qGtoGaaiikaiaadQhacqGHRaWkcaaIXaGaaiykaaqaaiaadsgacaWG 6baaaKaaGkaacckacaGGGcGaeyypa0JaaiiOaiaacckakmaawahaja aObeqcba2daeaapeGaaGimaaWdaeaapeGaeyOhIukajmaOpaqaa8qa cqGHRiI8caGGGcGaaiiOaaaakmaalaaajaaybaGaeyOaIylabaGaey OaIyBcbaMaamOEaaaajaaOcaWG0bGcpaWaaWbaaSqabeaapeGaamOE aaaajaaOcaWGLbGcpaWaaWbaaSqabeaapeGaeyOeI0IaamiDaaaaja aOcaWGKbGaamiDaiabg2da9iaaicdaaaa@6915@

Lemma: Where use is made of the following derivative of arbitrary base” t” called “a”

d dz a z =   a z log a: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbaabaGaamizaiaadQhaaaqcaaQaamyyaOWdamaa CaaajeaObeWcbaWdbiaadQhaaaqcaaQaeyypa0JaaiiOaiaacckaca WGHbGcpaWaaWbaaKqaGgqaleaapeGaamOEaaaajaaOcaWGSbGaam4B aiaadEgacaGGGcGaamyyaiaacQdaaaa@4AEB@

Lemma Prof:  d a z a z =  d (log a z )=loga  dz; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaKaaG+aabaWdbiaadsgacaWGHbGcpaWaaWbaaSqabeaapeGa amOEaaaaaKaaG+aabaWdbiaadggak8aadaahaaqcbaAabSqaa8qaca WG6baaaaaajaaOcqGH9aqpcaGGGcGaaiiOaiaadsgacaGGGcGaaiik aiGacYgacaGGVbGaai4zaiaadggak8aadaahaaWcbeqaa8qacaWG6b aaaKaaGkaacMcacqGH9aqpciGGSbGaai4BaiaacEgacaWGHbGaaiiO aiaacckacaWGKbGaamOEaiaacUdaaaa@55C3@

d dz a z = a z loga MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaKaaG+aabaWdbiaadsgaa8aabaWdbiaadsgacaWG6baaaiaa dggak8aadaahaaWcbeqaa8qacaWG6baaaKaaGkabg2da9iaadggak8 aadaahaaWcbeqaa8qacaWG6baaaKaaGkGacYgacaGGVbGaai4zaiaa dggaaaa@45AA@

Theorem Prof:

0   t z  logt   e t dt   0  VdU=  UV 0  UdV=z!logt 0  z! 1 t dt=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaKaaGgqajeaypaqaa8qacaaIWaaapaqaa8qacqGHEisPaKWa G+aabaWdbiabgUIiYdaajaaOcaGGGcGaamiDaOWdamaaCaaajeaybe qaa8qacaWG6baaaKaaGkaacckacaWGSbGaam4BaiaadEgacaWG0bGc caGGGcqcaaQaaiiOaiaadwgak8aadaahaaWcbeqcbawaa8qacqGHsi slcaWG0baaaKaaGkaadsgacaWG0bGaeyyyIORcdaGfWbqcaaAabKqa G9aabaWdbiaaicdaa8aabaWdbiabg6HiLcqcda6daeaapeGaey4kIi VaaiiOaaaakiaacckajaaOcaWGwbGaamizaiaadwfacqGH9aqpcaGG GcGaaiiOaiaadwfacaWGwbGaeyOeI0IcdaGfWbqcaaAabKqaG9aaba Wdbiaaicdaa8aabaWdbiabg6HiLcqcda6daeaapeGaey4kIipaaKaa GkaacckacaWGvbGaamizaiaadAfacqGH9aqpcaWG6bGaaiyiaiaadY gacaWGVbGaam4zaiaadshacqGHsislkmaawahajaaObeqcba2daeaa peGaaGimaaWdaeaapeGaeyOhIukajmaOpaqaa8qacqGHRiI8aaqcaa QaaiiOaiaadQhacaGGHaGcdaWcaaqcaa6daeaapeGaaGymaaWdaeaa peGaamiDaaaacaWGKbGaamiDaiabg2da9iaaicdaaaa@8809@

Where: 

V=  logt;  dV=   1 t  dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaamOvaiabg2da9iaacckacaGGGcGaamiBaiaad+gacaWGNbGa amiDaiaacUdacaGGGcGaaiiOaiaadsgacaWGwbGaeyypa0JaaiiOai aacckakmaalaaajaaqpaqaa8qacaaIXaaapaqaa8qacaWG0baaaKaa GkaacckacaWGKbGaamiDaaaa@4E17@

dU=   t z   e t dt;  U= 0   t z   e t  dt=z!=Γ(z+1); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaamizaiaadwfacqGH9aqpcaGGGcGaaiiOaiaadshak8aadaah aaqcbawabKqaGeaapeGaamOEaaaajaaOcaGGGcGaamyzaOWdamaaCa aajeaibeqaa8qacqGHsislcaWG0baaaKaaGkaadsgacaWG0bGaai4o aiaacckacaGGGcGaamyvaiabg2da9OWaaybCaKaaGfqajeaipaqaa8 qacaaIWaaapaqaa8qacqGHEisPaKWaG9aabaWdbiabgUIiYdaajaaW caGGGcqcaaQaamiDaOWdamaaCaaajeaybeqaa8qacaWG6baaaKaaGj aacckajaaOcaWGLbGcpaWaaWbaaKqaGfqabaWdbiabgkHiTiaadsha aaqcaaQaaiiOaiaadsgacaWG0bGaeyypa0JaamOEaiaacgcacqGH9a qpcqqHtoWrcaGGOaGaamOEaiabgUcaRiaaigdacaGGPaGaai4oaaaa @6AD6@

Q.E.D. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGcbaaaaaaa aapeGaamyuaiaac6cacaWGfbGaaiOlaiaadseacaGGUaaaaa@3C86@

YL2 = 1 1z! =1+z!+z ! 2 +z ! 3 +z ! 4 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaqcaakeaaaaaaaaa8qacqWF Aesuk8aadaWgaaqcbauaa8qacaWGzbGaeyOeI0IaamitaiabgkHiTi aaikdaa8aabeaajaaOpeGaeyypa0JcdaWcaaqcaa6daeaapeGaaGym aaWdaeaapeGaaGymaiabgkHiTiaadQhacaGGHaaaaiabg2da9iaaig dacqGHRaWkcaWG6bGaaiyiaiabgUcaRiaadQhacaGGHaGcpaWaaWba aKqaafqabaWdbiaaikdaaaqcaaQaey4kaSIaamOEaiaacgcak8aada ahaaqcbauabeaapeGaaG4maaaajaaOcqGHRaWkcaWG6bGaaiyiaOWd amaaCaaajeaqbeqaa8qacaaI0aaaaKaaGkabgUcaRiabgAci8caa@62A4@

d YL2 dz = d dz   1 1z! =  (1z!) 2 (   dz! dz )= 1 (1z!) 2 * 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaKaaG+aabaWdbiaadsgatuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGqbaiab=PrirPWdamaaBaaajeaibaWdbiaadMfacq GHsislcaWGmbGaeyOeI0IaaGOmaaWdaeqaaaqcaaAaa8qacaWGKbGa amOEaaaacqGH9aqpkmaalaaajaaOpaqaa8qacaWGKbaapaqaa8qaca WGKbGaamOEaaaacaGGGcGcdaWcaaqcaa6daeaapeGaaGymaaWdaeaa peGaaGymaiabgkHiTiaadQhacaGGHaaaaiabg2da9iabgkHiTiaacc kacaGGOaGaaGymaiabgkHiTiaabQhacaGGHaGaaiykaOWdamaaCaaa jeaibeqaa8qacqGHsislcaaIYaaaaOWaaeWaaKaaG+aabaWdbiabgk HiTiaacckakmaalaaajaaOpaqaa8qacaqGKbGaamOEaiaacgcaa8aa baWdbiaabsgacaqG6baaaaGaayjkaiaawMcaaiabg2da9OWaaSaaaK aaG+aabaWdbiaaigdaa8aabaWdbiaacIcacaaIXaGaeyOeI0IaaeOE aiaacgcacaGGPaGcpaWaaWbaaKqaGgqajeaibaWdbiaaikdaaaaaaK aaGkaabQcacaGGGcGaaGimaaaa@7668@

Measurement technique

Phase-conjugate interferometer (1982), Patent number: 4280764 Abstract: A speckle interferometer including a beam splitter, a mirror in the object beam arm, and a phase-conjugate mirror in the reference beam arm, a converging lens and a photographic film. Laser light scattered retro-reflectively from a rough surface (new app: e.g. Ceramic YBCO123) under investigation and passed through an imaging lens illuminates the interferometer. Fringes occur upon sandwiching a pair of exposures of the interference pattern made before and after deformation of the rough surface. The relative magnitude of the displacements from the original position at different points of the surface can be determined from the position of the fringes. Date of Patent: July 28, 1981, The United States of America as represented by the Secretary of the Navy, Inventors: Louis Sica, Jr., Harold Hwaling Szu, NRL,Wash DC. Data of the first order or the second order remain to be demonstrated in subsequent works.

Application of Quantum entanglement to increase temperature for superconductivity: Alain Aspect ( France 1960), John F. Clauser, (California, 1980) and Anton Zeilinger( Austria, 1990) have won the Nobel Prize in physics 2022 for their landmark achievements in quantum mechanics for verified the Quantum Entanglement Phenomena, namely “when two particles behave as one and affect each other, even though they can be at a vast distance to one another, when millions cooper pairs of superconductor bosons are split into two branches of superconductor wires and one branch has higher temperature where Cooper pairs bosons are entangled with the other branch kept at usual superconductor temperature.

Figure 2

Figure 2 Schematic Diagram of Ceramic superconductor made of Yttrium Barium Copper Oxide YBCO123operated at Paul Chu et al operated at beyond the liquid Nitrogen temperature 93 o K+ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGyoaiaaiodapaWaaWbaaSqabKqaafaapeGaam4BaaaakiaadUea cqGHRaWkaaa@3C25@ is further split into two branches and the Cooper pairs bosons are kept at the Quantum Mechanics Entanglement of which numerous Cooper pairs  stream through will have much higher probability to be entangled with the lower temperature branch Cooper pairs    and stayed in the superconductor Boson domain, while they are operated in the higher temperature close to the room temperature region that Prof. Chu has been looking for decades.

Their discoveries have added to the work of 1964, British John Stewart Bell who cannot afford publication cost and appeared in an obscure journal and died of brain hemorrhage in Geneva 1990 when he was nominated as Nobel Prize Candidate. Let’s denote Alice binary particle measurements as A o , A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaqcbauaa8qacaWGVbaal8aabeaakiaacYcapeGa amyqa8aadaWgaaqcbauaa8qacaaIXaaal8aabeaaaaa@3CAB@  and when Bob receives this particle, he chooses one of two measurements, B o , B 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaqcbauaa8qacaWGVbaal8aabeaakiaacYcapeGa amOqa8aadaWgaaqcbauaa8qacaaIXaaal8aabeaaaaa@3CAD@  which are also binary. Then, J.S. Bell of Geneva proved the celebrated inequality.

A o  B o + A o  B 1 + A 1  B o    A 1  B 1     2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaWaa8aabaWdbiaadgeapaWaaSbaaKqaafaapeGaam4Baiaaccka aSWdaeqaaOWdbiaadkeapaWaaSbaaKqaafaapeGaam4BaaWcpaqaba aak8qacaGLPmIaayPkJaGaey4kaSYaaaWaa8aabaWdbiaadgeapaWa aSbaaKqaafaapeGaam4BaiaacckaaSWdaeqaaOWdbiaadkeapaWaaS baaKqaafaapeGaaGymaaWcpaqabaaak8qacaGLPmIaayPkJaGaey4k aSYaaaWaa8aabaWdbiaadgeapaWaaSbaaKqaafaapeGaaGymaiaacc kaaSWdaeqaaOWdbiaadkeapaWaaSbaaKqaafaapeGaam4BaaWcpaqa baaak8qacaGLPmIaayPkJaGaaiiOaiabgkHiTiaacckadaaadaWdae aapeGaamyqa8aadaWgaaqcbauaa8qacaaIXaGaaiiOaaWcpaqabaGc peGaamOqa8aadaWgaaqcbauaa8qacaaIXaaal8aabeaaaOWdbiaawM YicaGLQmcacaGGGcGaaiiOaiabgsMiJkaacckacaGGGcGaaGOmaaaa @6284@

This notion that hidden variables affect interactions between particles with his well-known Bell's inequalities, whose theorem about possible hidden variable changed the scientific world’s understanding of quantum mechanics. The US Patent 4280764 can apply the precision optics Phase-conjugate interferometer to determine/verify the phase transition from superconductor to normal conductor can happen at one place to affect the other place, due to the superconductor being a quantum system which should satisfy the quantum entanglement. In other words, we might verify that the longitudinal thermal heat can propagate faster than the transversal speed of the light.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The author declares no conflicts of interest.

References

Creative Commons Attribution License

©2023 Szu. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.