Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Mini Review Volume 7 Issue 1

Reentry vehicle friction heat estimated by means of Boltzmann integral-differential equation of fluctuation-dissipation theory

Harold Szu

Res. Ord. Professor, Bio-Med. Engineering, Visiting Scholar at CUA, Catholic University of America, USA

Correspondence: Harold H Szu, PhD (The Rockefeller U), Fellows (AIAA, INNS, AIMBE, IEEE, OSA, SPIE) Academician (RAS) (RNL. S. V. Malrosov, 135, 1999), Res Ord Prof., CUA, Wash D.C, USA

Received: June 10, 2023 | Published: June 21, 2023

Citation: Harold S. Reentry vehicle friction heat estimated by means of Boltzmann integral-differential equation of fluctuation-dissipation theory. MOJ App Bio Biomech. 2023;7(1):78-81. DOI: 10.15406/mojabb.2023.07.00178

Download PDF

Abstract

We begin with Atmosphere Einstein Brownian motions toward Knudsen Gas Boltzmann Kinetic formulism of the fluctuation-dissipation theory and applied the formulism to space travelers reentry vehicles. Early experimental results are estimated on the worst situation upper bound when a reentry vehicle is frictionally passing through a dense atmosphere. In reality, the vehicle has spent more time in a dilute atmosphere space. Accordingly, the fluctuation and dissipation theorem, derived from the Boltzmann kinetic equation, predicted a much less friction heat than the final reentry stage.

Introduction

We wish to estimate for Astronauts returning to the Earth with limited payload heat shields. In other words, we wonder whether the reentry vehicles bottom with an already 4-meter thick heat insulation layers can sustain the increasing burning off by frictional heating under different returning speed. The heat shield’s about 13-foot-diameter composite structure — located at the bottom, blunt end of the Dragon capsule — is detachable and interchangeable between the reusable spacecraft in SpaceX’s Dragon fleet (e.g. Dragon 1, flew 23 cargo missions to the Int’l Space Station (ISS) between 2010 and 2020 before being retired. SpaceX's CEO, Elon Musk, named the spacecraft after the 1963 song "Puff, the Magic Dragon" by Peter, Paul and Mary. For example, 63 foot tall Falcon-9, used $62 Millions per launch).

Figure 1 Dragon capsule — is detachable and interchangeable between the reusable spacecraft in SpaceX’s Dragon fleet. During a reentry, thermal protection system materials perform in temperature ranges from minus 250 F in the cold soak of space to entry temperatures that reach nearly 3,000 oF. Because the thermal protection system is installed on the outside of orbiter skin (used carbon-carbon material that won’t oxidize the outer surface is coated with silicon carbide designed by Rockwell Inc. and, Tom Stoebe of Wash U.), it established the aerodynamics function over the vehicle in addition to acting as the heat shield. The re-entry corridor is a narrow region in space that a re-entering vehicle must fly through. If the vehicle strays above the corridor, it may skip out.

If it stays below the corridor, it may burn up. F drag = 1 2 ρ V 2 C D  A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=zeapaWaaSbaaSqaa8qacaWFKbGaa8NCaiaa=fgacaWFNbaa paqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaGaa8xWdiaa=zfapaWaaWbaaSqabeaapeGaaGOmaaaakiaa=nea paWaaSbaaSqaa8qacaWFebaapaqabaGcpeGaa8hOaiaa=feaaaa@46A5@ , in terms of air density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCaaa@37D7@  velocity V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbaaaa@36F2@ , drag coefficient C D .  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadoeapaWaaSbaaSqaa8qacaWGebaapaqabaGcpeGaaiOlaiaaccka aaa@3BBE@  high Mach number collision cylinder with negligible sound speed v o ;  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAhapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaai4oaiaaccka aaa@3C2A@ ( V+ v o )AVA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGwbGaey4kaSIaamODa8aadaWgaaWcbaWdbiaa d+gaa8aabeaaaOWdbiaawIcacaGLPaaacqGHflY1caWGbbGaeyyrIa KaamOvaiabgwSixlaadgeaaaa@45D9@ . e.g. H. Julian Allen NASA, Ames Research Center Moffett Field.1

The shortfall, if any, is that1 it costs $10,000 to put a pound of payload (over 50 thousand pounds per Spaceship/Satellite in Lower Earth Orbit (LEO) Space Station.2 For safety reason we cannot reduce the payload without enough safe -margin for the detachable and interchangeable between the reusable spacecraft.

In this paper, we wish to provide a kinetic estimation with a safe margin from the statistical mechanics viewpoint to take into account the material thermal accommodation coefficient 0<γ<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaicdacqGH8aapcqaHZoWzcqGH8aapcaaIXaaaaa@3D07@  changes and the atmosphere molecular distribution function varies f( x , v ,t ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgadaqadaWdaeaapeGabmiEa8aagaWca8qacaGGSaGabmODa8aa gaWca8qacaGGSaGaamiDaaGaayjkaiaawMcaaiaac6caaaa@3FDB@  from an extreme rarefied Knudsen gas at an infinite mean free path (mfp) all the way to the hydrodynamics continuum limit. The medium may be expressed in terms of a variable mean free path (mfp) parameter relative to size of the vehicle from infinite to zero. The challenges are two folds.1 The mean free path (mfp) will change from the dilute collision-less Knudsen gas level at the infinity mfp, all the way to continuum hydrodynamic continuum level. Moreover,2 the boundary condition is a variable in terms of Maxwell thermal accommodation coefficient: 0<γ<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaicdacqGH8aapcqaHZoWzcqGH8aapcaaIXaaaaa@3D07@ , e.g. of which (1 γ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaaeaaaaaa aaa8qacaaIXaGaeyOeI0IaaiiOaiabeo7aN9aacaGGPaaaaa@3DBE@ will be specula reflection changing only the normal direction of velocity, the rest γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeo7aNbaa@398A@  component will be absorbed into the thick insulation wall and reaching the thermal equilibrium with the wall at the variable temperature T w ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadsfapaWaaSbaaSqaa8qacaWG3baapaqabaGcpeWaaeWaa8aabaWd biaadshaaiaawIcacaGLPaaaaaa@3CCD@  and diffusively re-emitted in Maxwell velocity equilibrium

y= x o + v o (t t mfp )+ x 2 ;    t> t mfp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhacqGH9aqpcaWG4bWdamaaBaaaleaapeGaam4BaaWdaeqaaOWd biabgUcaRiaadAhapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaai ikaiaadshacqGHsislcaWG0bWdamaaBaaaleaapeGaamyBaiaadAga caWGWbaapaqabaGcpeGaaiykaiabgUcaRiaadIhapaWaaWbaaSqabe aapeGaaGOmaaaakiaacUdacaGGGcGaaiiOaiaacckacaGGGcGaamiD aiabg6da+iaadshapaWaaSbaaSqaa8qacaWGTbGaamOzaiaadchaa8 aabeaaaaa@5575@

Figure 2 The Smoke comes off in linear free flight until multiple collisions with air molecules to reach parabolic curvature.

m 2   u 2 = 1 2 k B T w ( t );   u rms =   k B T w ( t ) m ;  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacaWGTbaapaqaa8qacaaIYaaaaiaacckadaaadaWd aeaapeGaamyDa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLPmIaay PkJaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGa am4Aa8aadaWgaaWcbaWdbiaadkeaa8aabeaak8qacaWGubWdamaaBa aaleaapeGaam4DaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGL OaGaayzkaaGaai4oaiaacckacaGGGcGaamyDa8aadaWgaaWcbaWdbi aadkhacaWGTbGaam4CaaWdaeqaaOWdbiabg2da9iaacckacaGGGcWa aOaaa8aabaWdbmaaliaapaqaa8qacaWGRbWdamaaBaaaleaapeGaam OqaaWdaeqaaOWdbiaadsfapaWaaSbaaSqaa8qacaWG3baapaqabaGc peWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaad2 gaaaaaleqaaOGaai4oaiaacckaaaa@5E00@  

t mfp x mfp / u rms MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshapaWaaSbaaSqaa8qacaWGTbGaamOzaiaadchaa8aabeaak8qa cqGHfjcqcaWG4bWdamaaBaaaleaapeGaamyBaiaadAgacaWGWbaapa qabaGcpeGaai4laiaadwhapaWaaSbaaSqaa8qacaWGYbGaamyBaiaa dohaa8aabeaaaaa@4680@  

The flower pollens motions are named after the botanist Robert Brown, who first described the phenomenon about two hundred years ago in 1827, in his doctoral thesis, under the supervision of Henri Poincare. Then, in 1905, Albert Einstein published a paper, explained as convincing evidence that atoms and molecules exist in water medium and was further verified experimentally by Jean Perrin in 1908, who was awarded the Nobel Prize in Physics in 1926 "for his work on the discontinuous structure of matter. We will review a probabilistic model of Albert Einstein and Marian Smoluchowski in the statistical mechanics, which converge (in hydrodynamic limit) to Brownian motion. In this way, Einstein was able to determine furthermore the size of atoms, and how many atoms there are in a mole, accordance to Avogadro's law, which is 22.4 liters at standard temperature and pressure with Avogadro number, 6.02× 10 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaiAdacaGGUaGaaGimaiaaikdacqGHxdaTcaaIXaGaaGima8aadaah aaWcbeqaa8qacaaIYaGaaG4maaaaaaa@401C@ . The first part of Einstein's theory in 1926 consists in the formulation of a diffusion equation for Brownian particles, in which the diffusion coefficient D o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=reapaWaaSbaaSqaa8qacaWFVbaapaqabaaaaa@39FE@  is related to the mean squared displacement of a Brownian particle, while the second part consists in relating the diffusion coefficient to measurable physical quantities such as friction, absolute temperature  T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckacaWGubaaaa@39E0@ . Since the re-entry vehicle final landing will be mostly likely in Oceans, we shall begin with Albert Einstein the Fluctuation and Dissipation theorem in liquid phase.

The diffusion equation has been derived by Adolf Fick in 1855.from the continuity equation, which states that a change in density is. ρ( t ,x ) t + J ( t ,x )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcqaHbpGCdaqadaWdaeaapeGaamiDa8aa daWhcaqaa8qacaGGSaGaamiEaaWdaiaawEniaaWdbiaawIcacaGLPa aaa8aabaWdbiabgkGi2kaadshaaaGaey4kaSIafy4bIe9dayaalaWd biabgwSixlqabQeapaGbaSaapeWaaeWaa8aabaWdbiaadshapaWaa8 HaaeaapeGaaiilaiaadIhaa8aacaGLxdcaa8qacaGLOaGaayzkaaGa eyypa0JaaGimaaaa@51D7@ ; J D o    ρ( t. x );   ρ( t ,x ) t = D o   ρ( t ,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiqa=PeapaGbaSaapeGaeyyyIORaeyOeI0Iaa8hra8aadaWgaaWc baWdbiaa=9gaa8aabeaak8qacaWFGcGafy4bIe9dayaalaWdbiaa=b kacaWFbpWaaeWaa8aabaWdbiaa=rhacaGGUaGab8hEa8aagaWcaaWd biaawIcacaGLPaaacaGG7aGaaiiOaiaacckadaWcaaWdaeaapeGaey OaIyRaeqyWdi3aaeWaa8aabaWdbiaadshapaWaa8HaaeaapeGaaiil aiaadIhaa8aacaGLxdcaa8qacaGLOaGaayzkaaaapaqaa8qacqGHci ITcaWG0baaaiabg2da9iaadseapaWaaSbaaSqaa8qacaWGVbaapaqa baGcpeGaaiiOaiqbgEGir=aagaWca8qacqGHflY1cuGHhis0paGbaS aapeGaeqyWdi3aaeWaa8aabaWdbiaadshapaWaa8HaaeaapeGaaiil aiaadIhaa8aacaGLxdcaa8qacaGLOaGaayzkaaaaaa@68AE@ due to inflow and outflow of material where the vector flux of the diffusing material J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadQeapaGbaSaaaaa@38D3@ and the diffusion constant D o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadseapaWaaSbaaSqaa8qacaWGVbaapaqabaaaaa@39FA@  is the proportionality.

Theorem 1: Kinetic derivation of diffusion equation

Given kinetic distribution function  f( x , v ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckacaWGMbWaaeWaa8aabaWdbiqadIhapaGbaSaapeGaaiilaiqa dAhapaGbaSaapeGaaiilaiaadshaaiaawIcacaGLPaaaaaa@404D@ of space-velocity & time, we average away the velocity to derive the spatial density function ρ( x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg8aYnaabmaapaqaa8qaceWG4bWdayaalaWdbiaacYcacaWG0baa caGLOaGaayzkaaaaaa@3E22@

ρ( x ,t )<f( t, x , v ) > V   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg8aYnaabmaapaqaa8qaceWG4bWdayaalaWdbiaacYcacaWG0baa caGLOaGaayzkaaGaeyyyIORaeyipaWJaamOzamaabmaapaqaa8qaca WG0bGaaiilaiqadIhapaGbaSaapeGaaiilaiqadAhapaGbaSaaa8qa caGLOaGaayzkaaGaeyOpa4ZdamaaBaaaleaapeGabmOva8aagaWcaa qabaGcpeGaaiiOaaaa@4BC2@ , which will satisfy a diffusion equation ρ t = D o 2 ρ  ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcqaHbpGCa8aabaWdbiabgkGi2kaadsha aaGaeyypa0Jaamira8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qacu GHhis0paGbaSaadaahaaWcbeqaa8qacaaIYaaaaOGaaeyWdiaabcka caqGGcGaai4oaaaa@47E3@

In 1855, physiologist Adolf Fick first reported flux j   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadQgapaGbaSaapeGaaiiOaaaa@3A27@ is the diffusion flux, of which the dimension is the amount of substance per unit area per unit time. j   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadQgapaGbaSaapeGaaiiOaaaa@3A27@ measures the amount of substance that will flow through a unit area during a unit time interval. D is the diffusion coefficient or diffusivity. Its dimension is area per unit time.

j =D ρ ;  ρ t + j =0;  ρ t =D 2 ρ    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadQgapaGbaSaapeGaeyypa0JaeyOeI0Iaamira8aadaWhcaqaa8qa cqGHhis0caqGbpaapaGaay51GaGaai4oa8qacaGGGcWaaSaaa8aaba WdbiabgkGi2kabeg8aYbWdaeaapeGaeyOaIyRaamiDaaaacqGHRaWk cuGHhis0paGbaSaapeGaeyyXICTabmOAa8aagaWca8qacqGH9aqpca aIWaGaai4oaiaacckadaWcaaWdaeaapeGaeyOaIyRaeqyWdihapaqa a8qacqGHciITcaWG0baaaiabg2da9iaadseacuGHhis0paGbaSaada ahaaWcbeqaa8qacaaIYaaaaOGaaeyWdiaabckacaqGGcGaaiiOaaaa @60D7@  

Kinetic theory would begin that a regional time changes equals to its spatial change. The temporal density function ρ( x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg8aYnaabmaapaqaa8qaceWG4bWdayaalaWdbiaacYcacaWG0baa caGLOaGaayzkaaaaaa@3E22@ change in finite time τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDaaa@37DC@ must equal to its spatial changes:

Proof:

ρ( x ,t )+ ρ t ) φ( Δ )d Δ =  ρ x φ( Δ ) Δ  d Δ +  1 2 x ρ x  ( φ( Δ )| Δ Δ   |d Δ ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg8aYnaabmaapaqaa8qaceWG4bWdayaalaWdbiaacYcacaWG0baa caGLOaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiabgkGi2kabeg8aYb WdaeaapeGaeyOaIyRaamiDaaaacaGGPaWdamaavacabeWcbeqaaiaa ygW7a0qaa8qacqGHRiI8aaGccqaHgpGAdaqadaWdaeaadaWhcaqaai abgs5aebGaay51GaaapeGaayjkaiaawMcaaiaadsgapaWaa8Haaeaa cqGHuoaraiaawEnia8qacqGH9aqpieWacaWFGcWaaSaaa8aabaWdbi abgkGi2kabeg8aYbWdaeaapeGaeyOaIyRabmiEa8aagaWcaaaadaqf GaqabSqabeaacaaMb8oaneaapeGaey4kIipaaOGaeqOXdO2aaeWaa8 aabaWaa8HaaeaacqGHuoaraiaawEniaaWdbiaawIcacaGLPaaapaWa a8HaaeaacqGHuoaraiaawEnia8qacaGGGcGaamiza8aadaWhcaqaai abgs5aebGaay51GaWdbiabgUcaRiaabckadaWcaaWdaeaapeGaaGym aaWdaeaapeGaaGOmaaaadaWcaaWdaeaapeGaeyOaIylapaqaa8qacq GHciITceWG4bWdayaalaaaa8qacqGHflY1daWcaaWdaeaapeGaeyOa IyRaeqyWdihapaqaa8qacqGHciITceWG4bWdayaalaaaa8qacaGGGc WaaeWaa8aabaWaaubiaeqaleqabaGaaGzaVdqdbaWdbiabgUIiYdaa kiabeA8aQnaabmaapaqaamaaFiaabaGaeyiLdqeacaGLxdcaa8qaca GLOaGaayzkaaWaaqWaa8aabaWaa8HaaeaacqGHuoaraiaawEniaiab gwSixpaaFiaabaGaeyiLdqeacaGLxdcapeGaaiiOaaGaay5bSlaawI a7aiaadsgapaWaa8HaaeaacqGHuoaraiaawEniaaWdbiaawIcacaGL PaaacaGG7aaaaa@9E18@   ρ t = D o 2 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcqaHbpGCa8aabaWdbiabgkGi2kaadsha aaGaeyypa0Jaamira8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qacu GHhis0paGbaSaadaahaaWcbeqaa8qacaaIYaaaaOGaaeyWdaaa@44DE@

where diffusion constant D o 1 2 | Δ | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadseapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaeyyyIO7aaSaa a8aabaWdbiaaigdaa8aabaWdbiaaikdaaaWaaaWaa8aabaWdbmaaem aapaqaamaaFiaabaGaeyiLdqeacaGLxdcaa8qacaGLhWUaayjcSdWd amaaCaaaleqabaWdbiaaikdaaaaakiaawMYicaGLQmcaaaa@46FF@ with jump Δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWhcaqaaiabgs 5aebGaay51Gaaaaa@3ADE@ probability density φ( Δ )d Δ =1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqfGaqabSqabe aacaaMb8oaneaaqaaaaaaaaaWdbiabgUIiYdaakiabeA8aQnaabmaa paqaamaaFiaabaGaeyiLdqeacaGLxdcaa8qacaGLOaGaayzkaaGaam iza8aadaWhcaqaaiabgs5aebGaay51GaWdbiabg2da9iaaigdacaGG Uaaaaa@48AE@

Theorem 2: Solving the diffusion equation ρ t = D o 2 ρ   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcqaHbpGCa8aabaWdbiabgkGi2kaadsha aaGaeyypa0Jaamira8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qacu GHhis0paGbaSaadaahaaWcbeqaa8qacaaIYaaaaOGaaeyWdiaabcka caqGGcaaaa@4724@

Assuming the reentry space craft A( x ,t=0 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeadaqadaWdaeaapeGabmiEa8aagaWca8qacaGGSaGaamiDaiab g2da9iaaicdaaiaawIcacaGLPaaacaGGGcaaaa@400C@ in the vast space may be represented by Dirac delta generalized function  δ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckacqaH0oazdaqadaWdaeaapeGabmiEa8aagaWcaaWdbiaawIca caGLPaaaaaa@3D82@ If A( x ,t=0 )=δ( x ), then  a k ( 0 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeadaqadaWdaeaapeGabmiEa8aagaWca8qacaGGSaGaamiDaiab g2da9iaaicdaaiaawIcacaGLPaaacqGH9aqpcqaH0oazdaqadaWdae aapeGabmiEa8aagaWcaaWdbiaawIcacaGLPaaacaGGSaGaaiiOaiaa dshacaWGObGaamyzaiaad6gacaGGGcGaamyya8aadaWgaaWcbaWdbi qadUgapaGbaSaaaeqaaOWdbmaabmaapaqaa8qacaaIWaaacaGLOaGa ayzkaaGaeyypa0JaaGymaaaa@51A3@  in terms of its Fourier transforms. We will adopt Fourier transform to replace the Laplacian operator 2 k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbgEGir=aagaWcamaaCaaaleqabaWdbiaaikdaaaGccqGHugYQceWG RbWdayaalaWaaWbaaSqabeaapeGaaGOmaaaaaaa@3E83@  

A( x ,t )  d k a k ( t ) e i k x  ;  a k ( t ) 1 (2π) 3 d x e i k x A( x ,t );   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeadaqadaWdaeaapeGabmiEa8aagaWca8qacaGGSaGaamiDaaGa ayjkaiaawMcaaiabggMi6kaacckapaWaaubiaeqaleqabaGaaGzaVd qdbaWdbiabgUIiYdaakiaadsgaceWGRbWdayaalaWdbiaadggapaWa aSbaaSqaa8qaceWGRbWdayaalaaabeaak8qadaqadaWdaeaapeGaam iDaaGaayjkaiaawMcaaiaadwgapaWaaWbaaSqabeaapeGaamyAaiqa dUgapaGbaSaapeGabmiEa8aagaWcaaaak8qacaGGGcGaai4oaiaacc kacaWGHbWdamaaBaaaleaapeGabm4Aa8aagaWcaaqabaGcpeWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaacqGHHjIUdaWcaaWdaeaape GaaGymaaWdaeaapeGaaiikaiaaikdacqaHapaCcaGGPaWdamaaCaaa leqabaWdbiaaiodaaaaaaOWdamaavacabeWcbeqaaiaaygW7a0qaa8 qacqGHRiI8aaGccaWGKbGabmiEa8aagaWca8qacaWGLbWdamaaCaaa leqabaWdbiabgkHiTiaadMgaceWGRbWdayaalaWdbiqadIhapaGbaS aaaaGcpeGaamyqamaabmaapaqaa8qaceWG4bWdayaalaWdbiaacYca caWG0baacaGLOaGaayzkaaGaai4oaiaacckacaqGGcaaaa@72C8@  

the diffusion equation is the Fourier space

1 (2π) 3 d k e i k x [ d a k dt + D o k 2 a k ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacaaIXaaapaqaa8qacaGGOaGaaGOmaiabec8aWjaa cMcapaWaaWbaaSqabeaapeGaaG4maaaaaaGcpaWaaubiaeqaleqaba GaaGzaVdqdbaWdbiabgUIiYdaakiaadsgaceWGRbWdayaalaWdbiaa dwgapaWaaWbaaSqabeaapeGaamyAa8aadaWhcaqaa8qacaWGRbGaey yXICnapaGaay51GaWdbiqadIhapaGbaSaaaaGcpeGaai4wamaalaaa paqaa8qacaWGKbGaamyya8aadaWgaaWcbaWdbiqadUgapaGbaSaaae qaaaGcbaWdbiaadsgacaWG0baaaiabgUcaRiaadseapaWaaSbaaSqa a8qacaWGVbaapaqabaGcpeGaam4Aa8aadaahaaWcbeqaa8qacaaIYa aaaOGaamyya8aadaWgaaWcbaWdbiqadUgapaGbaSaaaeqaaOWdbiaa c2facqGH9aqpcaaIWaaaaa@5C7E@

Since the first order time integral gives an exponential function, then d a k dt + D o k 2 a k =0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacaWGKbGaamyya8aadaWgaaWcbaWdbiqadUgapaGb aSaaaeqaaaGcbaWdbiaadsgacaWG0baaaiabgUcaRiaadseapaWaaS baaSqaa8qacaWGVbaapaqabaGcpeGaam4Aa8aadaahaaWcbeqaa8qa caaIYaaaaOGaamyya8aadaWgaaWcbaWdbiqadUgapaGbaSaaaeqaaO Wdbiabg2da9iaaicdacaGGGcaaaa@478E@ ; yields the final answer: a k = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbWdamaaBaaaleaapeGabm4Aa8aagaWcaaqabaGcpeGaeyyp a0daaa@3979@ a k ( 0 )exp( D o k 2 t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbWdamaaBaaaleaapeGabm4Aa8aagaWcaaqabaGcpeWaaeWa a8aabaWdbiaaicdaaiaawIcacaGLPaaacaqGLbGaaeiEaiaabchada qadaWdaeaapeGaeyOeI0Iaamira8aadaWgaaWcbaWdbiaad+gaa8aa beaak8qacaWGRbWdamaaCaaaleqabaWdbiaaikdaaaGccaWG0baaca GLOaGaayzkaaaaaa@456C@ = exp( D o k 2 t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGLbGaaeiEaiaabchadaqadaWdaeaapeGaeyOeI0Iaamira8aa daWgaaWcbaWdbiaad+gaa8aabeaak8qacaWGRbWdamaaCaaaleqaba WdbiaaikdaaaGccaWG0baacaGLOaGaayzkaaaaaa@40AE@  in the Fourier space, equivalently in the spatial domain:

A( x ,t )= d k 2π exp( i k x )exp( D o k 2 t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeadaqadaWdaeaapeGabmiEa8aagaWca8qacaGGSaGaamiDaaGa ayjkaiaawMcaaiabg2da98aadaqfGaqabSqabeaacaaMb8oaneaape Gaey4kIipaaOWaaSaaa8aabaWdbiaadsgaceWGRbWdayaalaaabaWd biaaikdacqaHapaCaaGaaeyzaiaabIhacaqGWbWaaeWaa8aabaWdbi aadMgaceWGRbWdayaalaWdbiqadIhapaGbaSaaa8qacaGLOaGaayzk aaGaaeyzaiaabIhacaqGWbWaaeWaa8aabaWdbiabgkHiTiaadseapa WaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaam4Aa8aadaahaaWcbeqa a8qacaaIYaaaaOGaamiDaaGaayjkaiaawMcaaaaa@5906@ ; Q.E.D.

Since the rocket thrust must be sufficient to take care the mass weight of rocket, we can avoid involve the computation with mass, geometry, etc. consideration. We will concentrate on the kinetic collision boundary condition. Thus, for geometry simplicity of all kind of reentry vehicles, we develop the molecular fluctuation dissipation theorem, e.g. French Physics Maurice Couette suggested simplified object geometry, i.e. one plate moves with respect to the other plate with gases between two plates. Now we wish to verify the boundary condition based on molecular thermal motion as the origin of the fluctuations. Its local property shall have nothing to do with the geometry object of immersed object and its boundary interaction condition.

Figure 3 Plane couette flow, uU ( 2 K B T m ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadwhacqGHHjIUcaWGvbGaaiikamaalaaapaqaa8qacaaIYaGaam4s a8aadaWgaaWcbaWdbiaadkeaa8aabeaak8qacaWGubaapaqaa8qaca WGTbaaaiaacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigda a8aabaWdbiaaikdaaaaaaaaa@43CA@ ; distance in terms of the mean free path λ= ( n o  σ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSjabg2da9iaacIcacaWGUbWdamaaBaaaleaapeGaam4BaaWd aeqaaOWdbiaacckacqaHdpWCcaGGPaWdamaaCaaaleqabaWdbiabgk HiTiaaigdaaaaaaa@432C@  interns of number density n o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gapaWaaSbaaSqaa8qacaWGVbaapaqabaaaaa@3A24@ , and molecular collision cross section σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeo8aZbaa@39A6@ .

We can prove the fluctuation and dissipation theorem without further ado; A solid body of mass M under Brownian motion is described by Paul Langevin (1832)-Newton force F(t) equation of the acceleration of the velocity  u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckacaWG1baaaa@3A01@ , and friction constant β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aIbaa@3984@  of which the total force F T ( t ) F( t ) + F ˜ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaWGubaapaqabaGcpeWaaeWaa8aabaWd biaadshaaiaawIcacaGLPaaacqGHHjIUdaaadaWdaeaapeGaamOram aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLPmIaayPkJaGa ey4kaSIabmOra8aagaaca8qadaqadaWdaeaapeGaamiDaaGaayjkai aawMcaaaaa@483C@ : we will derive the fluctuation-dissipation theorem from the equal partition law in the isotropic1-D motion:

M du dt =βu+ F ˜ ( t ); F( t ) =βu; F ˜ ( t ) F T ( t )  F( t ) ;   F ˜ ( t ) F ˇ ( t ) =2 D o δ( tt" ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=1eadaWcaaWdaeaapeGaamizaiaadwhaa8aabaWdbiaadsga caWG0baaaiabg2da9iabgkHiTiabek7aIjaadwhacqGHRaWkceWGgb WdayaaiaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaai4o amaaamaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaaaiaawMYicaGLQmcacqGH9aqpcqGHsislcqaHYoGycaWG1bGa ai4oaiqadAeapaGbaGaapeWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaacqGHHjIUcaWGgbWdamaaBaaaleaapeGaamivaaWdaeqaaOWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyOeI0IaaiiOam aaamaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadshaaiaawIcacaGL PaaaaiaawMYicaGLQmcacaGG7aWaaaWaa8aabaWdbiaacckaceWGgb WdayaaiaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaWdamaa xacabaWdbiaadAeaaSWdaeqabaWdbiaacESaaaGcdaqadaWdaeaape GabmiDa8aagaqbaaWdbiaawIcacaGLPaaaaiaawMYicaGLQmcacqGH 9aqpcaaIYaGaa8hra8aadaWgaaWcbaWdbiaa=9gaa8aabeaak8qacq aH0oazdaqadaWdaeaapeGaamiDaiabgkHiTiaadshacaGGIaaacaGL OaGaayzkaaaaaa@7A67@ ;

<u( t ) > u o = u o exp( β M t )+W[1exp( β M t );limt; <u( t ) > u o W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgYda8iaadwhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiab g6da+8aadaahaaWcbeqaa8qacaWG1bWdamaaBaaameaapeGaam4Baa Wdaeqaaaaakiabg2da98qacaWG1bWdamaaBaaaleaapeGaam4BaaWd aeqaaOWdbiGacwgacaGG4bGaaiiCamaabmaapaqaa8qacqGHsislda WcaaWdaeaapeGaeqOSdigapaqaa8qacaWGnbaaaiaadshaaiaawIca caGLPaaacqGHRaWkcaWGxbGaai4waiaaigdacqGHsislcaqGLbGaae iEaiaabchadaqadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiabek7a IbWdaeaapeGaamytaaaacaWG0baacaGLOaGaayzkaaGaai4oaiGacY gacaGGPbGaaiyBaiaabshacqGHsgIRcqaHEisPcaGG7aGaaeiOaiab gYda8iaadwhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg6 da+8aadaahaaWcbeqaa8qacaWG1bWdamaaBaaameaapeGaam4BaaWd aeqaaaaak8qacqGHsgIRcaWGxbaaaa@6F18@  

<(u - W) ( u W )>= ( uW ) ( u W ) + D βM {exp( β M |t t |)exp( β M |t+ t |)};  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgYda8iaacIcacaqG1bGaaeiiaiaab2cacaqGGaGaae4vaiaabMca caqGGaWaaeWaa8aabaWdbiqadwhapaGbauaapeGaeyOeI0Iaam4vaa GaayjkaiaawMcaaiabg6da+iabg2da9maaamaapaqaa8qadaqadaWd aeaapeGaamyDaiabgkHiTiaadEfaaiaawIcacaGLPaaaaiaawMYica GLQmcadaaadaWdaeaapeWaaeWaa8aabaWdbiqadwhapaGbauaapeGa eyOeI0Iaam4vaaGaayjkaiaawMcaaaGaayzkJiaawQYiaiabgUcaRm aalaaapaqaa8qacaWGebaapaqaa8qacqaHYoGycaWGnbaaaiaabUha ciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0YaaSaaa8aabaWdbiaabk 7aa8aabaWdbiaab2eaaaGaaiiFaiaadshacqGHsislceWG0bWdayaa faWdbiaacYhacaqGPaGaeyOeI0IaciyzaiaacIhacaGGWbGaaiikai abgkHiTmaalaaapaqaa8qacaqGYoaapaqaa8qacaqGnbaaaiaacYha caWG0bGaey4kaSIabmiDa8aagaqba8qacaGG8bGaaiykaiaac2haca GG7aGaaiiOaaaa@745E@  

Setting the equal partition law per degree of freedom:

 lim t M 2 < (uW) 2 >= D o 2β = 1 2 k B T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfqaqaaabaaa aaaaaapeGaaeiOaiaabYgacaqGPbGaaeyBaaWcpaqaa8qacaWG0bGa eyOKH4QaeyOhIukapaqabaGcpeWaaSaaa8aabaWdbiaad2eaa8aaba WdbiaaikdaaaGaeyipaWJaaiikaiaadwhacqGHsislcaWGxbGaaiyk a8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOpa4Jaeyypa0ZaaSaaa8 aabaacbmWdbiaa=reapaWaaSbaaSqaa8qacaWFVbaapaqabaaakeaa peGaaGOmaiabek7aIbaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdae aapeGaaGOmaaaacaWGRbWdamaaBaaaleaapeGaamOqaaWdaeqaaOWd biaadsfaaaa@5555@ ,

we have derived the fluctuation –dissipation theorem. D o = k B Tβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=reapaWaaSbaaSqaa8qacaWFVbaapaqabaGcpeGaeyypa0Ja a83Aa8aadaWgaaWcbaWdbiaa=jeaa8aabeaak8qacaWFubGaa8NSda aa@3F4C@ ;

F ˜ ( t ) F ˇ ( t )>=2 k B Tβδ( tt" ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiqa=zeapaGbaGaapeWaaeWaa8aabaWdbiaa=rhaaiaawIcacaGL PaaapaWaaCbiaeaapeGaa8NraaWcpaqabeaapeGaai4Xcaaakmaabm aapaqaa8qaceWF0bWdayaafaaapeGaayjkaiaawMcaaiabg6da+iab g2da9iaaikdacaWFRbWdamaaBaaaleaapeGaa8NqaaWdaeqaaOWdbi aa=rfacaWFYoGaeqiTdq2aaeWaa8aabaWdbiaadshacqGHsislcaWG 0bGaaiOiaaGaayjkaiaawMcaaiaacUdaaaa@4F77@  

The devil of fluctuation-dissipation truth is in the detail of molecular-boundary collisions and inter-collisions.

  1. Fluctuating Kinetic Theory of discrete molecular phase space f( x , v ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgadaqadaWdaeaapeGabmiEa8aagaWca8qacaGGSaGabmODa8aa gaWca8qacaGGSaGaamiDaaGaayjkaiaawMcaaaaa@3F29@ formulation augmented the Ludwig Boltzmann Integral-differential equation with fluctuation Fox sources. We shall simplify the collision kernel by L. Bhatnagar, E.P. Gross, M. Krook (BGK) relaxation equation{2} (Am. Math Soc. Providence RI, 1963, Ch. IV), and keep the fluctuation Fox sources S  ˜ ( t,  v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaaqaaGqada baaaaaaaaapeGaa83uaiaa=bkaa8aacaGLdmaapeWaaeWaa8aabaWd biaadshacaGGSaGaaiiOaiqadAhapaGbaSaaa8qacaGLOaGaayzkaa aaaa@4066@ (The Rockefeller Univ. 1970 Thesis of Ronald Fox)

f t + v α f x α = ( f t ) Col. f f ( o ) θ o +  S  ˜ ( t,  v ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcaWGMbaapaqaa8qacqGHciITcaWG0baa aiabgUcaRiqadAhapaGbaSaadaWgaaWcbaWdbiabeg7aHbWdaeqaaO Wdbmaalaaapaqaa8qacqGHciITcaWGMbaapaqaa8qacqGHciITcaWG 4bWdamaaBaaaleaapeGaeqySdegapaqabaaaaOWdbiabg2da9maabm aapaqaa8qadaWcaaWdaeaapeGaeyOaIyRaamOzaaWdaeaapeGaeyOa IyRaamiDaaaaaiaawIcacaGLPaaapaWaaSbaaSqaa8qacaWGdbGaam 4BaiaadYgacaGGUaaapaqabaGcpeGaeyyrIaKaeyOeI0YaaSaaa8aa baWdbiaadAgacqGHsislcaWGMbWdamaaCaaaleqabaWdbmaabmaapa qaa8qacaWGVbaacaGLOaGaayzkaaaaaaGcpaqaa8qacqaH4oqCpaWa aSbaaSqaa8qacaWGVbaapaqabaaaaOWdbiabgUcaRiaacckapaWaaa caaeaaieWapeGaa83uaiaa=bkaa8aacaGLdmaapeWaaeWaa8aabaWd biaa=rhacaGGSaGaa8hOaiqa=zhapaGbaSaaa8qacaGLOaGaayzkaa Gaai4oaaaa@6A14@  

S  ˜ ( t,  v ) S  ˜ ( t',  v ' )>=δ( t t )δ( v v ' } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaaqaaGqada baaaaaaaaapeGaa83uaiaa=bkaa8aacaGLdmaapeWaaeWaa8aabaWd biaadshacaGGSaGaaiiOaiqadAhapaGbaSaaa8qacaGLOaGaayzkaa WdamaaGaaabaWdbiaadofacaGGGcaapaGaay5adaWdbmaabmaapaqa a8qacaWG0bGaai4jaiaacYcacaGGGcGabmODa8aagaWcamaaCaaale qabaWdbiaacEcaaaaakiaawIcacaGLPaaacqGH+aGpcqGH9aqpcqaH 0oazdaqadaWdaeaapeGaamiDaiabgkHiTiqadshapaGbauaaa8qaca GLOaGaayzkaaGaeqiTdqMaaiikaiqadAhapaGbaSaapeGaeyOeI0Ia bmODa8aagaWcamaaCaaaleqabaWdbiaacEcaaaGccaGG9baaaa@5A6E@  

Where in the LHS, we have omitted the acceleration force term   a α f v α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckaceWGHbWdayaalaWaaSbaaSqaa8qacqaHXoqya8aabeaak8qa daWcaaWdaeaapeGaeyOaIyRaamOzaaWdaeaapeGaeyOaIyRabmODa8 aagaWcamaaBaaaleaapeGaeqySdegapaqabaaaaaaa@431D@ while in the RHS we have simplified the Boltzmann collision term with Stoke Ansatz collision kernel by the BGK relaxation decay model:

f ( o ) =n ( m 2π K B  T ) 3 2         e m 2 K B  T (vu) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbiaad+gaaiaawIca caGLPaaaaaGccqGH9aqpcaWGUbGaaiikamaalaaapaqaa8qacaWGTb aapaqaa8qacaaIYaGaeqiWdaNaam4sa8aadaWgaaWcbaWdbiaadkea caGGGcaapaqabaGcpeGaamivaaaacaGGPaWdamaaCaaaleqabaWdbm aaliaapaqaa8qacaaIZaaapaqaa8qacaaIYaGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaaaaaaOGaamyza8aada ahaaWcbeqaa8qacqGHsisldaWcaaWdaeaapeGaamyBaaWdaeaapeGa aGOmaiaadUeapaWaaSbaaWqaa8qacaWGcbGaaiiOaaWdaeqaaSWdbi aadsfaaaGaaiikaiaadAhacqGHsislcaWG1bGaaiyka8aadaahaaad beqaa8qacaaIYaaaaaaaaaa@5F7F@  

First of all we must introduce a fluctuation sources at solid boundary condition. Our goal is to demonstrate for an arbitrary Maxwell accommodation coefficient for absorbed and reemitted condition with the probability 0 <γ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaicdacaGGGcGaeyipaWJaeq4SdCMaeyizImQaaGymaaaa@3EDC@  that a Maxwellian distribution by the plate temperature dynamic condition

f ( o ) ( ± α 2 ;c )= n o ( m 2 K B T ) 3 2 exp[ c x 2 c y 2 ( c z ±  U 2 ) 2 ] f o  [ 1 ± c z  U )+ O( U 2  ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbiaad+gaaiaawIca caGLPaaaaaGcdaqadaWdaeaapeGaeyySae7aaSaaa8aabaWdbiabeg 7aHbWdaeaapeGaaGOmaaaacaGG7aGaam4yaaGaayjkaiaawMcaaiab g2da9iaad6gapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaaiikam aalaaapaqaa8qacaWGTbaapaqaa8qacaaIYaGaam4sa8aadaWgaaWc baWdbiaadkeaa8aabeaak8qacaWGubaaaiaacMcapaWaaWbaaSqabe aapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaikdaaaaaaOGaaeyz aiaabIhacaqGWbWaamWaa8aabaWdbiabgkHiTiaadogapaWaa0baaS qaa8qacaWG4baapaqaa8qacaaIYaaaaOGaeyOeI0Iaam4ya8aadaqh aaWcbaWdbiaadMhaa8aabaWdbiaaikdaaaGccqGHsisldaqcWaWdae aapeGaam4ya8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGHXcqS caGGGcWaaSaaa8aabaWdbiaadwfaa8aabaWdbiaaikdaaaGaaiyka8 aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzxaaGaeyyrIaKa amOza8aadaWgaaWcbaWdbiaad+gacaGGGcaapaqabaGccqGHflY1pe WaaKGea8aabaWdbiaaigdacaGGGcGaeyySaeRaam4ya8aadaWgaaWc baWdbiaadQhacaGGGcaapaqabaGcpeGaamyvaaGaay5waiaawMcaai abgUcaRiaacckacaWGpbWaaeWaa8aabaWdbiaadwfapaWaaWbaaSqa beaapeGaaGOmaiaacckaaaaakiaawIcacaGLPaaaaiaawUfacaGLDb aaaaa@80F7@  

Before fluctuation and dynamic case, we first analyze equilibrium case that a stationary flow and the plate at the same temperature and a constant density of gas:

h τ =0; ( 1,h )=( c 2 3 2 , h )=0; g( x )= 2 U ( c z ,h ); g( x )=g( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcaWGObaapaqaa8qacqGHciITcqaHepaD aaGaeyypa0JaaGimaiaacUdacaGGGcWaaeWaa8aabaWdbiaaigdaca GGSaGaamiAaaGaayjkaiaawMcaaiabg2da9maabmaapaqaa8qacaWG JbWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsisldaWcaaWdaeaape GaaG4maaWdaeaapeGaaGOmaaaacaGGSaGaaiiOaiaadIgaaiaawIca caGLPaaacqGH9aqpcaaIWaGaai4oaiaacckacaWGNbWaaeWaa8aaba WdbiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGOm aaWdaeaapeGaamyvaaaadaqadaWdaeaapeGaam4ya8aadaWgaaWcba WdbiaadQhaa8aabeaak8qacaGGSaGaamiAaaGaayjkaiaawMcaaiaa cUdacaGGGcGaam4zamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaa Gaeyypa0JaeyOeI0Iaam4zamaabmaapaqaa8qacqGHsislcaWG4baa caGLOaGaayzkaaaaaa@6B12@  

Linearized BGK equation for Cuette flow becomes

c x  h x + h= c z  Ug( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadogapaWaaSbaaSqaa8qacaWG4bGaaiiOaaWdaeqaaOWdbmaalaaa paqaa8qacqGHciITcaWGObaapaqaa8qacqGHciITcaWG4baaaiabgU caRiaacckacaWGObGaeyypa0Jaam4ya8aadaWgaaWcbaWdbiaadQha caGGGcaapaqabaGcpeGaamyvaiaadEgadaqadaWdaeaapeGaamiEaa GaayjkaiaawMcaaaaa@4C47@  

This must add boundary condition h + ( x,  c x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIgapaWaaWbaaSqabeaapeGaey4kaScaaOWaaeWaa8aabaWdbiaa dIhacaGGSaGaaiiOaiaadogapaWaaSbaaSqaa8qacaWG4baapaqaba aak8qacaGLOaGaayzkaaaaaa@40DA@  and h ( x,  c x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIgapaWaaWbaaSqabeaapeGaeyOeI0caaOWaaeWaa8aabaWdbiaa dIhacaGGSaGaaiiOaiabgkHiTiaadogapaWaaSbaaSqaa8qacaWG4b aapaqabaaak8qacaGLOaGaayzkaaaaaa@41D2@

We can write the Maxwell boundary conditions at α= d λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadggacaWG0bGaaiiOaiabeg7aHjabg2da9maalaaapaqaa8qacaWG Kbaapaqaa8qacqaH7oaBaaaaaa@4076@ is the inverse Knudsen number, and γ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeo7aNjaacckaaaa@3AAE@ is Maxwell thermal accommodation coefficients.

h + ( α 2 ,  c x )=γ c z  U+( 1γ ) h  ( α 2 ,  c x   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIgapaWaaWbaaSqabeaapeGaey4kaScaaOWaaeWaa8aabaWdbiab gkHiTmaalaaapaqaa8qacqaHXoqya8aabaWdbiaaikdaaaGaaiilai aacckacaWGJbWdamaaBaaaleaapeGaamiEaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabgkHiTiabeo7aNjaadogapaWaaSbaaSqaa8 qacaWG6baapaqabaGcpeGaaiiOaiaadwfacqGHRaWkdaqadaWdaeaa peGaaGymaiabgkHiTiabeo7aNbGaayjkaiaawMcaaiaadIgapaWaaW baaSqabeaapeGaeyOeI0caaOGaaiiOamaabmaapaqaa8qacqGHsisl daWcaaWdaeaapeGaeqySdegapaqaa8qacaaIYaaaaiaacYcacaGGGc GaeyOeI0Iaam4ya8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacaGG GcaacaGLOaGaayzkaaaaaa@6010@

h ( + α 2 , c ' x )=+γ c z  U+( 1γ ) h +  ( + α 2 ,  c x '   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIgapaWaaWbaaSqabeaapeGaeyOeI0caaOWaaeWaa8aabaWdbiab gUcaRmaalaaapaqaa8qacqaHXoqya8aabaWdbiaaikdaaaGaaiilai aacckacqGHsislcaWGJbGaai4ja8aadaWgaaWcbaWdbiaadIhaa8aa beaaaOWdbiaawIcacaGLPaaacqGH9aqpcqGHRaWkcqaHZoWzcaWGJb WdamaaBaaaleaapeGaamOEaaWdaeqaaOWdbiaacckacaWGvbGaey4k aSYaaeWaa8aabaWdbiaaigdacqGHsislcqaHZoWzaiaawIcacaGLPa aacaWGObWdamaaCaaaleqabaWdbiabgUcaRaaakiaacckadaqadaWd aeaapeGaey4kaSYaaSaaa8aabaWdbiabeg7aHbWdaeaapeGaaGOmaa aacaGGSaGaaiiOaiaadogapaWaa0baaSqaa8qacaWG4baapaqaa8qa caGGNaaaaOGaaiiOaaGaayjkaiaawMcaaaaa@6146@

Solution of Fluctuation and Dissipation Relationship with BGK Boltzmann integral-differential equation with Fox sources, under an arbitrary Maxwell thermal accommodation 0<γ1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaicdacqGH8aapcqaHZoWzcqGHKjYOcaaIXaaaaa@3DB9@ has been first given by Harold Szu’s dissertation in 1971 under Prof. George E. Uhlenbeck at the Rockefeller Univ. (Unpublished), the results can be compared with experiment data done by NASA and SpaceX Shuttle flights.

f ( o ) ( ± α 2 , c )= n o   ( m 2 K B  T ) 3 2  exp[ c x  2 c y 2 ( c z  ± U 2 ) 2  ]= f o (  1± c z U )+O( U 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbiaad+gaaiaawIca caGLPaaaaaGcdaqadaWdaeaapeGaeyySae7aaSaaa8aabaWdbiabeg 7aHbWdaeaapeGaaGOmaaaacaGGSaGaaiiOaiaadogaaiaawIcacaGL PaaacqGH9aqpcaWGUbWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbi aacckacaGGOaWaaSaaa8aabaWdbiaad2gaa8aabaWdbiaaikdacaWG lbWdamaaBaaaleaapeGaamOqaaWdaeqaaOWdbiaacckacaWGubaaai aacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWd biaaikdaaaaaaOGaaiiOaiaabwgacaqG4bGaaeiCaiaacUfacqGHsi slcaWGJbWdamaaDaaaleaapeGaamiEaiaacckaa8aabaWdbiaaikda aaGcpaGaeyOeI0YdbiaadogapaWaa0baaSqaa8qacaWG5baapaqaa8 qacaaIYaaaaOGaeyOeI0YaaKama8aabaWdbiaadogapaWaaSbaaSqa a8qacaWG6bGaaiiOaaWdaeqaaOWdbiabgglaXoaalaaapaqaa8qaca WGvbaapaqaa8qacaaIYaaaaiaacMcapaWaaWbaaSqabeaapeGaaGOm aiaacckaaaaakiaawIcacaGLDbaacqGH9aqpcaWGMbWdamaaBaaale aapeGaam4BaaWdaeqaaOWdbmaabmaapaqaa8qacaGGGcGaaGymaiab gglaXkaadogapaWaaSbaaSqaa8qacaWG6baapaqabaGcpeGaamyvaa GaayjkaiaawMcaaiabgUcaRiaad+eadaqadaWdaeaapeGaamyva8aa daahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaaaaa@7F5D@  

The complete Fluctuation-Dissipation solution can be found in Ph D dissertation of Harold Szu, Rockefeller University, 1971 (unpublished).

Further lab work

We shall estimate the Shuttle payload mass its average heat capacity of soil compared to the common sense, water 4,18 Joules of heat (1 kilocalorie) for the temperature of one kilogram of water to increase 1°C The specific heat of possible shuttle materials are listed in the following table specific heat defined as follows

[https://en.wikipedia.org/wiki/Specific_heat_capacity]

C o C M = 1 M  dQ dT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXp0d amaaBaaaleaapeGaam4BaaWdaeqaaOWdbiabggMi6oaalaaapaqaa8 qacqWFce=qa8aabaWdbiaad2eaaaGaeyypa0ZaaSaaa8aabaWdbiaa igdaa8aabaWdbiaad2eacaGGGcaaamaalaaapaqaa8qacaWGKbGaam yuaaWdaeaapeGaamizaiaadsfaaaaaaa@5109@  

Specific Heat C o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NaXp0d amaaBaaaleaapeGaam4BaaWdaeqaaaaa@4477@  capacity at a const. pressure versus const. volume ( β T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@3AB8@ isothermal compressibility, α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg7aHbaa@3983@ coeff. Of thermal expansion; op C oV = α 2 T ρβ T   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8NaHmKa ae4BaiaabchacqGHsislcaqGdbWdamaaBaaaleaapeGaae4BaiaabA faa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaaeySd8aadaahaaWc beqaa8qacaaIYaaaaOGaaeivaaWdaeaapeGaaeyWdiaabk7apaWaaS baaSqaa8qacaqGubaapaqabaaaaOWdbiaabckaaaa@51AA@  

Silicon won’t oxidize in the outer surface, as it is coated with silicon carbide designed by about 13-foot-diameter composite structure and 4 meter thick provided a burn-off mass generating the heat thermal energy should be equivalent, its general proof in the Appendix A.

Conclusion

The conclusions and future works are given as follows: Some suggestions are put forward to measure how we can reduce realistically due to the NASA and SpaceX used the worst situation at the hydrodynamic continuum limit to estimate the F drag = 1 2 ρ V 2 C D  A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=zeapaWaaSbaaSqaa8qacaWFKbGaa8NCaiaa=fgacaWFNbaa paqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaGaa8xWdiaa=zfapaWaaWbaaSqabeaapeGaaGOmaaaakiaa=nea paWaaSbaaSqaa8qacaWFebaapaqabaGcpeGaa8hOaiaa=feaaaa@46A6@ and used about $62 Millions per launch to the LEO Space Station. It seems to be overestimated the need of heat insulation material from the original 13-foot-diameter composite structure to 30% reduction as follows: 4x30%=1.2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaisdaieWacaWF4bGaaG4maiaaicdacaqGLaGaa8xpaiaabgdacaqG UaGaaeOmaaaa@3E9E@  meter thick. Such a dilute gas kinetic theory reduction can be justified to the reduction of burn-off Silicon Carbide. Thus we compute to be: 41.2=2.8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaisdacqGHsislcaaIXaGaaiOlaiaaikdacqGH9aqpcaaIYaGaaiOl aiaaiIdaaaa@3EEE@  meter thick Silicon Carbide. Then, the estimated reduction of cost is about $62Mx30%=18.6M, consequently, 62-18.6=43.4M per lunch. We conclude that NASA and SpaceX shall go back to the drawing board to redesign the heat insulator at the Dragon feet.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The author declares no conflicts of interest.

References

  1. THE AERODYNAMIC HEATING OF ATMOSPHERE ENTRY VEHICLES - A REVIEW By H. Julian Allen NASA, Ames Research Center Moffett Field, California Paper for Symposium on Fundamental Phenomena in Hypersonic Flow, Cornell Aeronautical Laboratory, Buffalo, New York. June 25-26, 1964.
  2. A study detailing the habitability of a nearby exo-planet appears to have caught the attention of SpaceX CEO Elon Musk, who has wished to transform humanity into a mult-planetary species with plans to colonise Mars within the next few decades. (Credit: Anthony Cuthbertson, Yahoo News Tue, June 13, 2023)
  3. Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. Phys Rev. 1954;94 (1954):511. Bhatnagar-Gross-Krook model. Encyclopedia of Mathematics.
  4. The Boltzmann equation, Gyu Eun Lee, https://www.math.ucla.edu/~gyueun.lee/writing/gso_boltzmann.pdf.
  5. Harold Hwaling Szu. The dissertation. The Rockefeller Univ. 1971:1–100.

Appendix

Appendix A the Mass Energy Equivalence Relationship of Albert Einstein

Einstein's mass-energy equivalence becomes important in Space travel, because the payload mass is equivalent to the energy consumption. Conversely, the heat energy consumption is equivalent to the mass energy usage.

F= d( mv ) dt =m dv dt +v dm dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=zeacqGH9aqpdaWcaaWdaeaapeGaamizamaabmaapaqaa8qa caWGTbGaa8NDaaGaayjkaiaawMcaaaWdaeaapeGaamizaiaadshaaa Gaeyypa0JaamyBamaalaaapaqaa8qacaWGKbGaa8NDaaWdaeaapeGa amizaiaadshaaaGaey4kaSIaa8NDamaalaaapaqaa8qacaWGKbGaam yBaaWdaeaapeGaamizaiaadshaaaaaaa@4C53@   

ΔE= 0vacuum f F  ds= 0  f ( m dv dt +v dm dt )    ds= 0  f mv dv+ 0 f v dm dt     ds= 1 2 0  f md( v 2 )+ 0 f v 2 dm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgs5aeHqadiaa=veacqGH9aqpdaGfWbqabSWdaeaapeGaaGimaiaa =zhacaWFHbGaa83yaiaa=vhacaWF1bGaa8xBaaWdaeaapeGaa8Nzaa qdpaqaa8qacqGHRiI8aaGccaWFgbGaeyyXICTaa8hOaiaacckacaWG KbGaa83Caiabg2da9maawahabeWcpaqaa8qacaaIWaGaa8hOaaWdae aapeGaa8Nzaaqdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaapeGaamyB amaalaaapaqaa8qacaWGKbGaa8NDaaWdaeaapeGaamizaiaadshaaa Gaey4kaSIaa8NDamaalaaapaqaa8qacaWGKbGaamyBaaWdaeaapeGa amizaiaadshaaaaacaGLOaGaayzkaaGaa8hOaiaacckacqGHflY1ca GGGcGaaiiOaiaadsgacaWFZbGaeyypa0ZaaybCaeqal8aabaWdbiaa icdacaWFGcaapaqaa8qacaWFMbaan8aabaWdbiabgUIiYdaakiaad2 gacaWF2bGaeyyXICTaaiiOaiaadsgacaWF2bGaey4kaSYaaybCaeqa l8aabaWdbiaaicdaa8aabaWdbiaadAgaa0WdaeaapeGaey4kIipaaO GaamODamaalaaapaqaa8qacaWGKbGaamyBaaWdaeaapeGaamizaiaa dshaaaGaaiiOaiaacckacqGHflY1caGGGcGaaiiOaiaadsgacaWFZb Gaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaWaaybC aeqal8aabaWdbiaaicdacaWFGcaapaqaa8qacaWFMbaan8aabaWdbi abgUIiYdaakiaad2gacaWGKbWaaeWaa8aabaWdbiaadAhapaWaaWba aSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRmaawahabe Wcpaqaa8qacaaIWaaapaqaa8qacaWGMbaan8aabaWdbiabgUIiYdaa kiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaakiaadsgacaWGTbaaaa@A076@  

Lorentz transform

m= m 0 1 v 2 c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gacqGH9aqpdaWcaaWdaeaaieWapeGaa8xBa8aadaWgaaWcbaWd biaaicdaa8aabeaaaOqaa8qadaGcaaWdaeaapeGaaGymaiabgkHiTm aalaaapaqaa8qacaWF2bWdamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaa=ngapaWaaWbaaSqabeaapeGaaGOmaaaaaaaabeaaaaaaaa@424C@     v 2 = c 2 ( 1 m o 2 m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=bkacaWF2bWdamaaCaaaleqabaWdbiaaikdaaaGccqGH9aqp caWFJbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaG ymaiabgkHiTmaalaaapaqaa8qacaWFTbWdamaaDaaaleaapeGaa83B aaWdaeaapeGaaGOmaaaaaOWdaeaapeGaa8xBa8aadaahaaWcbeqaa8 qacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@46C2@   d( v 2 ) dm = 2 m o  2 C 2 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaaGqad8qacaWFKbWaaeWaa8aabaWdbiaa=zhapaWaaWba aSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaWdaeaapeGaa8hzai aa=1gaaaGaeyypa0ZaaSaaa8aabaWdbiaaikdacaWFTbWdamaaDaaa leaapeGaa83Baiaa=bkaa8aabaWdbiaaikdaaaGccaWFdbWdamaaCa aaleqabaWdbiaaikdaaaaak8aabaWdbiaa=1gapaWaaWbaaSqabeaa peGaaG4maaaaaaaaaa@48B3@

ΔE= 1 2 0  f md( v 2 )+ 0 f v 2 dm= 0 f m m o  2 C 2 m 3 dm+ 0 f c 2 ( 1 m o 2 m 2 )dm= 0 f c 2 dm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgs5aeHqadiaa=veacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaa peGaaGOmaaaadaGfWbqabSWdaeaapeGaaGimaiaa=bkaa8aabaWdbi aa=zgaa0WdaeaapeGaey4kIipaaOGaamyBaiaadsgadaqadaWdaeaa peGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaa Gaey4kaSYaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaadAgaa0Wd aeaapeGaey4kIipaaOGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaO Gaamizaiaad2gacqGH9aqpdaGfWbqabSWdaeaapeGaaGimaaWdaeaa peGaa8Nzaaqdpaqaa8qacqGHRiI8aaGccaWGTbWaaSaaa8aabaWdbi aad2gapaWaa0baaSqaa8qacaWGVbGaaiiOaaWdaeaapeGaaGOmaaaa kiaadoeapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaamyBa8 aadaahaaWcbeqaa8qacaaIZaaaaaaakiaadsgacaWGTbGaey4kaSYa aybCaeqal8aabaWdbiaaicdaa8aabaWdbiaadAgaa0WdaeaapeGaey 4kIipaaOGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aa baWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyBa8aadaqhaaWcba Wdbiaad+gaa8aabaWdbiaaikdaaaaak8aabaWdbiaad2gapaWaaWba aSqabeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaacaqGKbGaaeyBai abg2da9maawahabeWcpaqaa8qacaaIWaaapaqaa8qacaqGMbaan8aa baWdbiabgUIiYdaakiaadogapaWaaWbaaSqabeaapeGaaGOmaaaaki aabsgacaqGTbaaaa@7D47@  

ΔE= C 2 Δm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi ablwJirjabgs5aejaadweacqGH9aqpcaWGdbWdamaaCaaaleqabaWd biaaikdaaaGccqGHuoarcaWGTbaaaa@4086@ ; E=m C 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgsJiCjaadweacqGH9aqpcaWGTbGaam4qa8aadaahaaWcbeqaa8qa caaIYaaaaaaa@3DB3@  Q.E.D.

Verification of Lorentz transform in terms of slow speed limit as follows:

E= m 0  C 2 1 v 2 c 2 m 0  C 2 { 1+ 1 2 v 2 c 2 + 3 8 v 4 c 4 + }= m 0  C 2 + 1 2 m 0  v 2 + 3 8 m 0  v 4 c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacqGH9aqpdaWcaaWdaeaapeGaamyBa8aadaWgaaWcbaWdbiaa icdacaGGGcaapaqabaGcpeGaam4qa8aadaahaaWcbeqaa8qacaaIYa aaaaGcpaqaa8qadaGcaaWdaeaapeGaaGymaiabgkHiTmaalaaapaqa a8qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaado gapaWaaWbaaSqabeaapeGaaGOmaaaaaaaabeaaaaGccqGHfjcqcaWG TbWdamaaBaaaleaapeGaaGimaiaacckaa8aabeaak8qacaWGdbWdam aaCaaaleqabaWdbiaaikdaaaGcdaGadaWdaeaapeGaaGymaiabgUca Rmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaamaalaaapaqaa8 qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadoga paWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGHRaWkdaWcaaWdaeaape GaaG4maaWdaeaapeGaaGioaaaadaWcaaWdaeaapeGaamODa8aadaah aaWcbeqaa8qacaaI0aaaaaGcpaqaa8qacaWGJbWdamaaCaaaleqaba WdbiaaisdaaaaaaOGaey4kaSIaeyOjGWlacaGL7bGaayzFaaGaeyyp a0JaamyBa8aadaWgaaWcbaWdbiaaicdacaGGGcaapaqabaGcpeGaam 4qa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSYaaSaaa8aabaWd biaaigdaa8aabaWdbiaaikdaaaGaamyBa8aadaWgaaWcbaWdbiaaic dacaGGGcaapaqabaGcpeGaamODa8aadaahaaWcbeqaa8qacaaIYaaa aOGaey4kaSYaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaiIdaaaGaam yBa8aadaWgaaWcbaWdbiaaicdacaGGGcaapaqabaGcpeWaaSaaa8aa baWdbiaadAhapaWaaWbaaSqabeaapeGaaGinaaaaaOWdaeaapeGaam 4ya8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@7777@

where the first term is zero velocity mass energy equivalence, and the second term is Newtonian kinetic energy, etc.

Appendix B Fluctuation-Dissipation Theory Estimated by BGK collision kernel.

There is more scientific eluciation in the 1971 Harold Szu PhD thesis of 100 pages (cf. Reference 5). For example, besides the bulk entropy source fluctuation that Ronny Fox derived and discussed in his 1970 Rockefeller Univ. PhD thesis, there are the boundary wall fluctuations that Harold Szu derived and discussed in  a dilute atmosphere medium where Fox"s molecular collisions become rare, but the Szu's boundary fluctuations due to dilute molecular collision become important, and thus the Couette plate were chosen to demonstrate the boundary effect in a dilute gas case. 

f t + v α f x α = ( f t ) Col. f f ( o ) θ o +  S  ˜ ( t,  v ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcaWGMbaapaqaa8qacqGHciITcaWG0baa aiabgUcaRiqadAhapaGbaSaadaWgaaWcbaWdbiabeg7aHbWdaeqaaO Wdbmaalaaapaqaa8qacqGHciITcaWGMbaapaqaa8qacqGHciITcaWG 4bWdamaaBaaaleaapeGaeqySdegapaqabaaaaOWdbiabg2da9maabm aapaqaa8qadaWcaaWdaeaapeGaeyOaIyRaamOzaaWdaeaapeGaeyOa IyRaamiDaaaaaiaawIcacaGLPaaapaWaaSbaaSqaa8qacaWGdbGaam 4BaiaadYgacaGGUaaapaqabaGcpeGaeyyrIaKaeyOeI0YaaSaaa8aa baWdbiaadAgacqGHsislcaWGMbWdamaaCaaaleqabaWdbmaabmaapa qaa8qacaWGVbaacaGLOaGaayzkaaaaaaGcpaqaa8qacqaH4oqCpaWa aSbaaSqaa8qacaWGVbaapaqabaaaaOWdbiabgUcaRiaacckapaWaaa caaeaaieWapeGaa83uaiaa=bkaa8aacaGLdmaapeWaaeWaa8aabaWd biaa=rhacaGGSaGaa8hOaiqa=zhapaGbaSaaa8qacaGLOaGaayzkaa Gaai4oaaaa@6A14@  

S  ˜ ( t,  v ) S  ˜ ( t',  v ' )>=δ( t t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaaqaaGqada baaaaaaaaapeGaa83uaiaa=bkaa8aacaGLdmaapeWaaeWaa8aabaWd biaadshacaGGSaGaaiiOaiqadAhapaGbaSaaa8qacaGLOaGaayzkaa WdamaaGaaabaWdbiaadofacaGGGcaapaGaay5adaWdbmaabmaapaqa a8qacaWG0bGaai4jaiaacYcacaGGGcGabmODa8aagaWcamaaCaaale qabaWdbiaacEcaaaaakiaawIcacaGLPaaacqGH+aGpcqGH9aqpcqaH 0oazdaqadaWdaeaapeGaamiDaiabgkHiTiqadshapaGbauaaa8qaca GLOaGaayzkaaaaaa@52F5@  

For the plane Couette flow, the stochastic BGK equations can be simplified to:

h τ + c x h x =h+2 c z ( c z ,h  )+  B  ˜ ( x ,  c ,τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITcaWGObaapaqaa8qacqGHciITcqaHepaD aaGaey4kaSIaam4ya8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qada WcaaWdaeaapeGaeyOaIyRaamiAaaWdaeaapeGaeyOaIyRaamiEaaaa cqGH9aqpcqGHsislcaWGObGaey4kaSIaaGOmaiaadogapaWaaSbaaS qaa8qacaWG6baapaqabaGcpeWaaeWaa8aabaWdbiaadogapaWaaSba aSqaa8qacaWG6baapaqabaGcpeGaaiilaiaadIgacaGGGcaacaGLOa GaayzkaaGaey4kaSIaaiiOa8aadaaiaaqaaGqad8qacaWFcbGaa8hO aaWdaiaawoWaa8qadaqadaWdaeaapeGab8hEa8aagaWca8qacaGGSa Gaa8hOaiqa=ngapaGbaSaapeGaaiilaiaa=r8aaiaawIcacaGLPaaa aaa@6032@ ;  B ˜  =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aaamaapaqaa8qaceWGcbWdayaaiaaapeGaayzkJiaawQYiaiaaccka cqGH9aqpcaaIWaaaaa@3DAC@

< B ˜   ( x , c ,τ )  B ˜  ( x ' , c ' , τ )     2 n o λ  3  [ π 3 2  exp (  1 2 (  | c | 2 + | c ' | 2   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgYda8iqadkeapaGbaGaapeGaaiiOaiaacckadaqadaWdaeaapeGa bmiEa8aagaWca8qacaGGSaGabm4ya8aagaWca8qacaGGSaGaeqiXdq hacaGLOaGaayzkaaGaaiiOaiqadkeapaGbaGaapeGaaiiOamaabmaa paqaa8qaceWG4bWdayaalaWaaWbaaSqabeaapeGaai4jaaaakiaacY caceWGJbWdayaalaWaaWbaaSqabeaapeGaai4jaaaakiaacYcacuaH epaDpaGbauaaa8qacaGLOaGaayzkaaGaaiiOaiaacckacqGHLjYSca GGGcGaaiiOamaalaaapaqaa8qacaaIYaaapaqaa8qacaWGUbWdamaa BaaaleaapeGaam4BaaWdaeqaaOWdbiabeU7aS9aadaahaaWcbeqaa8 qacaGGGcGaaG4maaaaaaGccaGGGcGaai4waiabec8aW9aadaahaaWc beqaa8qadaWccaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaGcca GGGcGaaeyzaiaabIhacaqGWbGaaiiOaiaacIcacaGGGcWaaSaaa8aa baWdbiaaigdaa8aabaWdbiaaikdaaaWaaeWaa8aabaWdbiaacckada abdaWdaeaapeGabm4ya8aagaWca8qacaGG8bWdamaaCaaaleqabaWd biaaikdaaaGccqGHRaWkaiaawEa7caGLiWoaceWGJbWdayaalaWaaW baaSqabeaapeGaai4jaaaakiaacYhapaWaaWbaaSqabeaapeGaaGOm aaaakiaacckaaiaawIcacaGLPaaaaaa@7AFC@   δ( c c ' )2 c z   c z ' ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes7aKnaabmaapaqaa8qaceWGJbWdayaalaWdbiabgkHiTiqadoga paGbaSaapeGaai4jaaGaayjkaiaawMcaaiabgkHiTiaaikdapaWaa8 HaaeaapeGaam4ya8aadaWgaaWcbaWdbiaadQhaa8aabeaaaOGaay51 GaWdbiaacckapaWaa8HaaeaapeGaam4ya8aadaWgaaWcbaWdbiaadQ haa8aabeaaaOGaay51GaWaaWbaaSqabeaapeGaai4jaaaakiaac2fa aaa@4BE7@

δ( x x )δ( τ τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes7aKnaabmaapaqaa8qaceWG4bWdayaalaWdbiabgkHiT8aadaWh caqaa8qaceWG4bWdayaafaaacaGLxdcaa8qacaGLOaGaayzkaaGaeq iTdq2aaeWaa8aabaWdbiabes8a0jabgkHiTiqbes8a09aagaqbaaWd biaawIcacaGLPaaaaaa@4836@ ];

Putting h= h  +[ h h ] h + h ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIgacqGH9aqpdaaadaWdaeaapeGaamiAaaGaayzkJiaawQYiaiaa cckacqGHRaWkdaWadaWdaeaapeGaamiAaiabgkHiTmaaamaapaqaa8 qacaWGObaacaGLPmIaayPkJaaacaGLBbGaayzxaaGaeyyyIO7aaaWa a8aabaWdbiaadIgaaiaawMYicaGLQmcacqGHRaWkceWGObWdayaaia aaaa@4C12@ and assuming h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aaamaapaqaa8qacaWGObaacaGLPmIaayPkJaaaaa@3AC0@ independent of τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a0baa@39A9@ , one gets back for h : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aaamaapaqaa8qacaWGObaacaGLPmIaayPkJaGaaiOoaaaa@3B7E@  

c x h x = h +2 c z ( c z , h   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadogapaWaaSbaaSqaa8qacaWG4baapaqabaGcpeWaaSaaa8aabaWd biabgkGi2oaaamaapaqaa8qacaWGObaacaGLPmIaayPkJaaapaqaa8 qacqGHciITcaWG4baaaiabg2da9iabgkHiTmaaamaapaqaa8qacaWG ObaacaGLPmIaayPkJaGaey4kaSIaaGOmaiaadogapaWaaSbaaSqaa8 qacaWG6baapaqabaGcpeWaaeWaa8aabaWdbiaadogapaWaaSbaaSqa a8qacaWG6baapaqabaGcpeGaaiilamaaamaapaqaa8qacaWGObaaca GLPmIaayPkJaGaaiiOaaGaayjkaiaawMcaaaaa@52AB@ ; while for h ˜ ( x, c ,τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadIgapaGbaGaapeWaaeWaa8aabaWdbiaadIhacaGGSaGabm4ya8aa gaWca8qacaGGSaGaeqiXdqhacaGLOaGaayzkaaaaaa@3FE2@ , one obtains

h ˜ τ + c x h ˜ x = h ˜ +2 c z ( c z , h ˜   )+  B  ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITceWGObWdayaaiaaabaWdbiabgkGi2kab es8a0baacqGHRaWkcaWGJbWdamaaBaaaleaapeGaamiEaaWdaeqaaO Wdbmaalaaapaqaa8qacqGHciITceWGObWdayaaiaaabaWdbiabgkGi 2kaadIhaaaGaeyypa0JaeyOeI0IabmiAa8aagaaca8qacqGHRaWkca aIYaGaam4ya8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qadaqadaWd aeaapeGaam4ya8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacaGGSa GabmiAa8aagaaca8qacaGGGcaacaGLOaGaayzkaaGaey4kaSIaaiiO a8aadaaiaaqaaGqad8qacaWFcbGaa8hOaaWdaiaawoWaaaaa@58EC@  

Note that

(1) Since the correlation of fluctuation source B  ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaaqaaGqada baaaaaaaaapeGaa8Nqaiaa=bkaa8aacaGLdmaaaaa@3AA5@  is related to the collision kernel K( c , c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=TeadaqadaWdaeaapeGab83ya8aagaWca8qacaGGSaWdamaa FiaabaWdbiqa=ngapaGbauaaaiaawEniaaWdbiaawIcacaGLPaaaaa a@3F0B@ if the intermolecular collision can be neglected in the Knudsen limit, then the effect of B  ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaaiaaqaaGqada baaaaaaaaapeGaa8Nqaiaa=bkaa8aacaGLdmaaaaa@3AA5@ will disappear.

(2) The drag depends on the accommodation coefficients γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=n7aaaa@3927@ , while the Fox bulk fluctuations are independent of γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieWaqaaaaaaaaa Wdbiaa=n7aaaa@3927@ . So that these fluctuations alone, the fluctuation-dissipation theorem cannot follow.

(3) There is a second source of fluctuation, which is due to the wall called wall fluctuations [Harold Szu 1971]. More details computation will not be presented but found in the dissertation The Rockefeller Univ., 1971, pp.1, 100.

Creative Commons Attribution License

©2023 Harold. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.