Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 1 Issue 5

Permeability and void ratio influences on heterogeneous deposition of chlorobium transport in coarse formation, applying numerical modeling and simulation

Eluozo SN,1 Amagbo LG,2 Afiibor BB3

1Department of Civil Engineering, Gregory University Uturu (GUU), Nigeria
2Department of Chem-Petrochemical Engineering, Rivers State University of Science and Technology Port Harcourt, Nigeria
3Department of Statistics, Nigeria

Correspondence: Eluozo SN, Department of Civil Engineering, Gregory University Uturu (GUU) Abia State of Nigeria

Received: June 24, 2017 | Published: December 11, 2017

Citation: Eluozo SN, Amagbo LG, Afiibor B. Permeability and void ratio influences on heterogeneous deposition of chlorobium transport in coarse formation, applying numerical modeling and simulation. MOJ App Bio Biomech. 2017;1(5):178–184. DOI: 10.15406/mojabb.2017.01.00027

Download PDF

Abstract

This paper monitored the migration level of Chlorobium in coarse formation, the study applied numerical modeling , the expression of the contaminants was through numerical simulation of the derived solution, the generated simulation values produces values that fluctuates and developed exponential in some conditions, these values range from 8.5600-0.00440, 0.1520-0.6270, 0.0045-0.6951,0.6587-0.0168,0.0362-0.0083, these simulation considered permeability and void ratio influences on Chlorobium deposition, these formation characteristics are reflected on the behaviour of Chlorobium migration in the formation, such predominant soil deposition express the rate of Chlorobium concentration in the strata, model validation carried out expressed the authenticity of the developed system, the application of this conceptual frame work will definitely predict the behaviour of the contaminant in any other part of deltaic environment.

Keywords: permeability, void ratio, chlorobium heterogeneous and coarse formation

Introduction

Many parts of sub-Saharan Africa, hydrogeologic data are sparse and difficult to access. One example is the Nigeria geological formations including other countries geological history like Keta Basin of southeastern Ghana and the Coastal Sedimentary Basin of Togo. Existing data quality on groundwater flow patterns and hydrodynamic aquifer characteristics from this region is weak, and subsurface geology is poorly understood in many parts of the region. In the present study, hydrochemistry and isotope geochemistry are applied to obtain hydrogeological information from the area in spite of lack of basic data on groundwater flow patterns and aquifer characteristics.1-4 In regard to permeability predictions,2,4 that some researchers that modified the Kozeny - Carman equation to better represent sediment mixtures by incorporating their fractional packing model for porosity.3 Measured porosity and permeability on sediment mixtures and then compared these to values predicted by the models mentioned above. These mixtures were model approximations of natural poorly-sorted sands and sandy gravels. The introduction of five possible types of packing that can occur in a sediment mixture accounts for complex packing arrangements that may be present naturally. Therefore5,6 assumed that the expanded fractional packing model is generally representative of poorly-sorted sands and sandy gravels. The present study will evaluate how well the model applies to natural sediment. Taking the results and procedures of7 into account6,7 focused further on the permeability of bimodal sediment mixtures by taking measurements at small support scales.3 Revising the air-based permeability procedures of other experts7 is to reduce displacement of sediment by air slip-flow.3 determined a sufficient depth in the sediment at which a stable representative measurement could be taken, which he termed the tip-seal burial method. He also improved upon the correction needed for the air-based measurements to account for the effects of high-velocity flow. He repeated the permeability measurements taken by7,8 and further confirmed the applicability of the permeability model.3,7,9 it was found that the air-based measurements corresponded well to the water-based measurements for both sand mixtures and sand/pebble mixtures. Thus, the air-based measurements with a small support scale were generally similar to the water based measurements with a larger support scale,5,6 it is concluded that the permeability of bimodal sediment mixtures of poorly-sorted sands can be accurately measured with the air-based permeameter. He found that mixtures dominated by finer grains show only subtle differences between air- and water-based measurements.5,10 determined that the air-based permeameter captures subtle changes in poorly sorted sands better than in pebbly sands. In addition to previous,4,6,7 studies it has been conducted since in the work of some researchers9,10,12 that utilize models for predicting permeability.11-13 presented a permeability model for bimodal sediment mixtures that is based on parameters that separate pore throat porosity from total porosity and the effective radius from the total radius of the grains,2 developed permeability model using representations of the grain size distribution as well as the petrophysical properties of porosity, volume fraction of fines, and bulk density. Other research on the porosity-permeability relationship for porous media involved the modification of previous models.1,3,5,7 These studies all use different models for predicting permeability but none of them utilize a fractional packing model for porosity. Model sediment mixtures and predicted porosity values are useful tools for testing the applicability of a permeability model. Therefore, the research conducted by some researchers11,12 that provides results that can be applied to other permeability models. This study will take the necessary step of testing his model to determine if it is accurate for natural sediment, which will help improve confidence in its applicability.10,13

Governing equation

The Implicit Scheme Numerical Solution

C t = K V C x + D 0 2 C x 2 + q L IN A C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGdbaabaGaeyOaIyRaamiDaaaacqGH9aqpdaWcaaqa aiaadUeaaeaacaWGwbaaamaalaaabaGaeyOaIyRaam4qaaqaaiabgk Gi2kaadIhaaaGaey4kaSIaamiraSWaaSbaaKqbagaajugWaiaaicda aKqbagqaamaalaaabaGaeyOaIy7cdaahaaqcfayabeaajugWaiaaik daaaqcfaOaam4qaaqaaiabgkGi2kaadIhadaahaaqabeaajugWaiaa ikdaaaaaaKqbakabgUcaRmaalaaabaGaamyCaiaadYeadaWgaaqaai aadMeacaWGobaabeaaaeaacaWGbbaaaiaadoeaaaa@57D5@              (1)

But φ V = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHgpGAaeaacaWGwbaaaiabg2da9aaa@3A32@  Velocity, v in meter per second (m/s), and porosity [-].

Thus equation (1) becomes:

C t = K V C x + D 0 2 C x 2 + q L IN A C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGdbaabaGaeyOaIyRaamiDaaaacqGH9aqpdaWcaaqa aiaadUeaaeaacaWGwbaaamaalaaabaGaeyOaIyRaam4qaaqaaiabgk Gi2kaadIhaaaGaey4kaSIaamiramaaBaaabaGaaGimaaqabaWaaSaa aeaacqGHciITdaahaaqabeaajugWaiaaikdaaaqcfaOaam4qaaqaai abgkGi2kaadIhalmaaCaaajuaGbeqaaKqzadGaaGOmaaaaaaqcfaOa ey4kaSYaaSaaaeaacaWGXbGaamitamaaBaaabaGaamysaiaad6eaae qaaaqaaiaadgeaaaGaam4qaaaa@5580@ (2)

Converting the PDE to its algebraic equivalent equation by applying the finite different approximation technique for the implicit scheme, we obtain as follows.

C t = C i j+1 C i j Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGdbaabaGaeyOaIyRaamiDaaaacqGH9aqpdaWcaaqa aiaadoeadaqhaaqaaiaadMgaaeaacaWGQbGaey4kaSIaaGymaaaacq GHsislcaWGdbWaa0baaeaacaWGPbaabaGaamOAaaaaaeaacqqHuoar caWG0baaaaaa@46AE@ (3)

C x = C i+1 j+1 C i1 j+1 2Δx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGdbaabaGaeyOaIyRaamiEaaaacqGH9aqpdaWcaaqa aiaadoeadaqhaaqaaiaadMgacqGHRaWkcaaIXaaabaGaamOAaiabgU caRiaaigdaaaGaeyOeI0Iaam4qamaaDaaabaGaamyAaiabgkHiTiaa igdaaeaacaWGQbGaey4kaSIaaGymaaaaaeaacaaIYaGaeuiLdqKaam iEaaaaaaa@4C54@ (4)

2 C x 2 = C i+1 j+1 2 C i j+1 + C i1 j+1 Δ x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITdaahaaqabeaajugWaiaaikdaaaqcfaOaam4qaaqaaiab gkGi2kaadIhalmaaCaaajuaGbeqaaKqzadGaaGOmaaaaaaqcfaOaey ypa0ZaaSaaaeaacaWGdbWcdaqhaaqcfayaaKqzadGaamyAaiabgUca RiaaigdaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaKqbakabgk HiTiaaikdacaWGdbWcdaqhaaqcfayaaKqzadGaamyAaaqcfayaaKqz adGaamOAaiabgUcaRiaaigdaaaqcfaOaey4kaSIaam4qaSWaa0baaK qbagaajugWaiaadMgacqGHsislcaaIXaaajuaGbaqcLbmacaWGQbGa ey4kaSIaaGymaaaaaKqbagaacqqHuoarcaWG4bWcdaahaaqcfayabe aajugWaiaaikdaaaaaaaaa@663F@ (5)

Substituting equation (3) through (5) into (2) gives:

C i j=1 C i j Δt = K V [ C i+1 j+1 C i1 j+1 2Δx ]+ D 0 [ C i+1 j+1 2 C i j+1 + C i1 j+1 Δ x 2 ]+ q L IN A C i j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGdbWcdaqhaaqcfayaaKqzadGaamyAaaqcfayaaKqzadGaamOA aiabg2da9iaaigdaaaqcfaOaeyOeI0Iaam4qaSWaa0baaKqbagaaju gWaiaadMgaaKqbagaajugWaiaadQgaaaaajuaGbaGaeuiLdqKaamiD aaaacqGH9aqpdaWcaaqaaiaadUeaaeaacaWGwbaaamaadmaabaWaaS aaaeaacaWGdbWcdaqhaaqcfayaaKqzadGaamyAaiabgUcaRiaaigda aKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaKqbakabgkHiTiaado ealmaaDaaajuaGbaqcLbmacaWGPbGaeyOeI0IaaGymaaqcfayaaKqz adGaamOAaiabgUcaRiaaigdaaaaajuaGbaGaaGOmaiabfs5aejaadI haaaaacaGLBbGaayzxaaGaey4kaSIaamiraSWaaSbaaKqbagaajugW aiaaicdaaKqbagqaamaadmaabaWaaSaaaeaacaWGdbWcdaqhaaqcfa yaaKqzadGaamyAaiabgUcaRiaaigdaaKqbagaajugWaiaadQgacqGH RaWkcaaIXaaaaKqbakabgkHiTiaaikdacaWGdbWcdaqhaaqcfayaaK qzadGaamyAaaqcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaqcfaOa ey4kaSIaam4qaSWaa0baaKqbagaajugWaiaadMgacqGHsislcaaIXa aajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaKqbagaacqqHuoar caWG4bWcdaahaaqcfayabeaajugWaiaaikdaaaaaaaqcfaOaay5wai aaw2faaiabgUcaRmaalaaabaGaamyCaiaadYeadaWgaaqaaiaadMea caWGobaabeaaaeaacaWGbbaaaiaadoealmaaDaaajuaGbaqcLbmaca WGPbaajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaaa@9F19@

C i j+1 C i j = Δt 2Δx K V [ C i+1 j+1 C i1 j+1 ]+ Δt D 0 Δ x 2 [ C i+1 j+1 2 C i j+1 + C i1 j+1 ]+ Δtq L IN A C l j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qaS Waa0baaKqbagaajugWaiaadMgaaKqbagaajugWaiaadQgacqGHRaWk caaIXaaaaKqbakabgkHiTiaadoealmaaDaaajuaGbaqcLbmacaWGPb aajuaGbaqcLbmacaWGQbaaaKqbakabg2da9maalaaabaGaeuiLdqKa amiDaaqaaiaaikdacqqHuoarcaWG4baaamaalaaabaGaam4saaqaai aadAfaaaWaamWaaeaacaWGdbWcdaqhaaqcfayaaKqzadGaamyAaiab gUcaRiaaigdaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaKqbak abgkHiTiaadoealmaaDaaajuaGbaqcLbmacaWGPbGaeyOeI0IaaGym aaqcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaaajuaGcaGLBbGaay zxaaGaey4kaSYaaSaaaeaacqqHuoarcaWG0bGaamiramaaBaaabaqc LbmacaaIWaaajuaGbeaaaeaacqqHuoarcaWG4bWcdaahaaqcfayabe aajugWaiaaikdaaaaaaKqbaoaadmaabaGaam4qaSWaa0baaKqbagaa jugWaiaadMgacqGHRaWkcaaIXaaajuaGbaqcLbmacaWGQbGaey4kaS IaaGymaaaajuaGcqGHsislcaaIYaGaam4qaSWaa0baaKqbagaajugW aiaadMgaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaKqbakabgU caRiaadoealmaaDaaajuaGbaqcLbmacaWGPbGaeyOeI0IaaGymaaqc fayaaKqzadGaamOAaiabgUcaRiaaigdaaaaajuaGcaGLBbGaayzxaa Gaey4kaSYaaSaaaeaacqqHuoarcaWG0bGaamyCaiaadYeadaWgaaqa aiaadMeacaWGobaabeaaaeaacaWGbbaaaiaadoealmaaDaaajuaGba qcLbmacaWGSbaajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaaa@A30D@ nu

C i j+1 C i j =λ( C i+1 j+1 C i1 j+1 )+K( C i+1 j+1 2 C i j+1 + C i1 j+1 )+α C i j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qaS Waa0baaKqbagaajugWaiaadMgaaKqbagaajugWaiaadQgacqGHRaWk caaIXaaaaKqbakabgkHiTiaadoealmaaDaaajuaGbaqcLbmacaWGPb aajuaGbaqcLbmacaWGQbaaaKqbakabg2da9iabeU7aSnaabmaabaGa am4qaSWaa0baaKqbagaajugWaiaadMgacqGHRaWkcaaIXaaajuaGba qcLbmacaWGQbGaey4kaSIaaGymaaaajuaGcqGHsislcaWGdbWcdaqh aaqcfayaaKqzadGaamyAaiabgkHiTiaaigdaaKqbagaajugWaiaadQ gacqGHRaWkcaaIXaaaaaqcfaOaayjkaiaawMcaaiabgUcaRiaadUea daqadaqaaiaadoealmaaDaaajuaGbaqcLbmacaWGPbGaey4kaSIaaG ymaaqcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaqcfaOaeyOeI0Ia aGOmaiaadoealmaaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbmaca WGQbGaey4kaSIaaGymaaaajuaGcqGHRaWkcaWGdbWcdaqhaaqcfaya aKqzadGaamyAaiabgkHiTiaaigdaaKqbagaajugWaiaadQgacqGHRa WkcaaIXaaaaaqcfaOaayjkaiaawMcaaiabgUcaRiabeg7aHjaadoea lmaaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbmacaWGQbGaey4kaS IaaGymaaaaaaa@8CEF@

Or

C i j +( αλ2K1 ) C i j+1 +( λ+K ) C i+1 j+1 +K C i1 j+1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qaS Waa0baaKqbagaajugWaiaadMgaaKqbagaajugWaiaadQgaaaqcfaOa ey4kaSYaaeWaaeaacqaHXoqycqGHsislcqaH7oaBcqGHsislcaaIYa Gaam4saiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGdbWcdaqhaaqc fayaaKqzadGaamyAaaqcfayaaKqzadGaamOAaiabgUcaRiaaigdaaa qcfaOaey4kaSYaaeWaaeaacqaH7oaBcqGHRaWkcaWGlbaacaGLOaGa ayzkaaGaam4qaSWaa0baaKqbagaajugWaiaadMgacqGHRaWkcaaIXa aajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaajuaGcqGHRaWkcaWG lbGaam4qaSWaa0baaKqbagaajugWaiaadMgacqGHsislcaaIXaaaju aGbaqcLbmacaWGQbGaey4kaSIaaGymaaaajuaGcqGH9aqpcaaIWaaa aa@6E0F@ (6)

For cases where the initial and final conditions are given, boundary condition at the first node can be expressed as:

C 0 j+1 = f 0 ( t j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIWaaajuaGbaqcLbmacaWGQbGaey4kaSIa aGymaaaajuaGcqGH9aqpcaWGMbWaaSbaaeaajugWaiaaicdaaKqbag qaamaabmaabaGaamiDaSWaaWbaaKqbagqabaqcLbmacaWGQbGaey4k aSIaaGymaaaaaKqbakaawIcacaGLPaaaaaa@4AC7@             (7a)

Hence, first node equation is expressed as:

C i j +( αλ2K1 ) C i j+1 +( λ+K ) C i+1 j+1 =K f 0 ( t j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbmacaWGQbaaaKqbakab gUcaRmaabmaabaGaeqySdeMaeyOeI0Iaeq4UdWMaeyOeI0IaaGOmai aadUeacqGHsislcaaIXaaacaGLOaGaayzkaaGaam4qaSWaa0baaKqb agaajugWaiaadMgaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaK qbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaayjkaiaa wMcaaiaadoealmaaDaaajuaGbaqcLbmacaWGPbGaey4kaSIaaGymaa qcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaqcfaOaeyypa0JaeyOe I0Iaam4saiaadAgadaWgaaqaaKqzadGaaGimaaqcfayabaWaaeWaae aacaWG0bWaaWbaaeqabaqcLbmacaWGQbGaey4kaSIaaGymaaaaaKqb akaawIcacaGLPaaaaaa@6DA6@ (7b)

Similarly, the last node boundary condition is:

C l j+1 = f l+1 ( t j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGSbaajuaGbaqcLbmacaWGQbGaey4kaSIa aGymaaaajuaGcqGH9aqpcaWGMbWcdaWgaaqcfayaaKqzadGaamiBai abgUcaRiaaigdaaKqbagqaamaabmaabaGaamiDamaaCaaabeqaaKqz adGaamOAaiabgUcaRiaaigdaaaaajuaGcaGLOaGaayzkaaaaaa@4CD2@ (8a)

C l j +( αλ2K1 ) C l j+1 +K C l1 j+1 =( λ+K ) f l+1 ( t j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGSbaajuaGbaqcLbmacaWGQbaaaKqbakab gUcaRmaabmaabaGaeqySdeMaeyOeI0Iaeq4UdWMaeyOeI0IaaGOmai aadUeacqGHsislcaaIXaaacaGLOaGaayzkaaGaam4qaSWaa0baaKqb agaajugWaiaadYgaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaK qbakabgUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaamiBaiab gkHiTiaaigdaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaKqbak abg2da9iabgkHiTmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaayjk aiaawMcaaiaadAgalmaaBaaajuaGbaqcLbmacaWGSbGaey4kaSIaaG ymaaqcfayabaWaaeWaaeaacaWG0bWcdaahaaqcfayabeaajugWaiaa dQgacqGHRaWkcaaIXaaaaaqcfaOaayjkaiaawMcaaaaa@70C0@ (8b)

For 1x9 and 0t4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdacq GHKjYOcaWG4bGaeyizImQaaGyoauaabeqabeaaaeaacaWGHbGaamOB aiaadsgaaaqbaeqabeqaaaqaaiaaicdacqGHKjYOcaWG0bGaeyizIm QaaGinaaaaaaa@4511@ ; and for the first instance, we obtain as follows:

At time=0(i.e j=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WG0bqbaeqabeqaaaqaaiaadshacaWGPbGaamyBaiaadwgacqGH9aqp caaIWaGaaiikaiaadMgacaGGUaGaamyzauaabeqabeaaaeaacaWGQb Gaeyypa0JaaGimaiaacMcaaaaaaaaa@4463@ :

i=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaaaaa@3928@ ,

C 1 0 +K C 0 1 +( αλ2K1 ) C 1 1 +( λ+K ) C 2 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGimaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaIYaaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@644B@

C 1 0 +( αλ2K1 ) C 1 1 +( λ+K ) C 2 1 =K f 0 ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRmaabmaabaGaeqySdeMaeyOeI0Iaeq4UdWMaeyOeI0IaaGOmai aadUeacqGHsislcaaIXaaacaGLOaGaayzkaaGaam4qaSWaa0baaKqb agaajugWaiaaigdaaKqbagaajugWaiaaigdaaaqcfaOaey4kaSYaae WaaeaacqaH7oaBcqGHRaWkcaWGlbaacaGLOaGaayzkaaGaam4qaSWa a0baaKqbagaajugWaiaaikdaaKqbagaajugWaiaaigdaaaqcfaOaey ypa0JaeyOeI0Iaam4saiaadAgalmaaBaaajuaGbaqcLbmacaaIWaaa juaGbeaadaqadaqaaiaadshalmaaCaaajuaGbeqaaKqzadGaaGymaa aaaKqbakaawIcacaGLPaaaaaa@66FB@ (9a)

i=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIYaaaaa@3929@ ,

C 2 0 +K C 1 1 +( αλ2K1 ) C 2 1 +( λ+K ) C 3 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIYaaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGymaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaIYaaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaIZaaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@644F@ (9b)

i=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzadGaamyAai abg2da9iaaiodaaaa@39CA@ ,

C 3 0 +K C 2 1 +( αλ2K1 ) C 3 1 +( λ+K ) C 4 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIZaaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGOmaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaIZaaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI0aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@6453@ (9c)

i=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI0aaaaa@392B@ ,

C 4 0 +K C 3 1 +( αλ2K1 ) C 4 1 +( λ+K ) C 5 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI0aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaG4maaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI0aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI1aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@6457@ (9d)

i=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI1aaaaa@392C@ ,

C 5 0 +K C 4 1 +( αλ2K1 ) C 5 1 +( λ+K ) C 6 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI1aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGinaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI1aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI2aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@645B@ (9e)

i=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI2aaaaa@392D@ ,

C 6 0 +K C 5 1 +( αλ2K1 ) C 6 1 +( λ+K ) C 7 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI2aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGynaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI2aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI3aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@645F@ (9f)

i=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI3aaaaa@392E@ ,

C 7 0 +K C 6 1 +( αλ2K1 ) C 7 1 +( λ+K ) C 8 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI3aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGOnaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI3aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI4aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@6463@ (9g)

i=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI4aaaaa@392F@ ,

C 8 0 +K C 7 1 +( αλ2K1 ) C 8 1 +( λ+K ) C 9 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI4aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaG4naaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI4aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI5aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@6467@ (9h)

i=9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI5aaaaa@3930@ ,

C 9 0 +K C 8 1 +( αλ2K1 ) C 9 1 =( λ+K ) f 10 ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI5aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGioaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI5aaajuaGbaqcLbmacaaI XaaaaKqbakabg2da9iabgkHiTmaabmaabaGaeq4UdWMaey4kaSIaam 4saaGaayjkaiaawMcaaiaadAgadaWgaaqaaKqzadGaaGymaiaaicda aKqbagqaamaabmaabaGaamiDaSWaaWbaaKqbagqabaqcLbmacaaIXa aaaaqcfaOaayjkaiaawMcaaaaa@6733@ (9i)

Atime,t=0, C 1 0 = C 2 0 = C 3 0 = C 4 0 = C 5 0 = C 6 0 = C 7 0 = C 8 0 = C 9 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WG0bGaamyAaiaad2gacaWGLbGaaiilaiaadshacqGH9aqpcaaIWaGa aiilaiaadoealmaaDaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmaca aIWaaaaKqbakabg2da9iaadoealmaaDaaajuaGbaqcLbmacaaIYaaa juaGbaqcLbmacaaIWaaaaKqbakabg2da9iaadoealmaaDaaajuaGba qcLbmacaaIZaaajuaGbaqcLbmacaaIWaaaaKqbakabg2da9iaadoea lmaaDaaajuaGbaqcLbmacaaI0aaajuaGbaqcLbmacaaIWaaaaKqbak abg2da9iaadoealmaaDaaajuaGbaqcLbmacaaI1aaajuaGbaqcLbma caaIWaaaaKqbakabg2da9iaadoealmaaDaaajuaGbaqcLbmacaaI2a aajuaGbaqcLbmacaaIWaaaaKqbakabg2da9iaadoealmaaDaaajuaG baqcLbmacaaI3aaajuaGbaqcLbmacaaIWaaaaKqbakabg2da9iaado ealmaaDaaajuaGbaqcLbmacaaI4aaajuaGbaqcLbmacaaIWaaaaKqb akabg2da9iaadoealmaaDaaajuaGbaqcLbmacaaI5aaajuaGbaqcLb macaaIWaaaaKqbakabg2da9iaaicdaaaa@831F@

Arranging equations (6a) through (6i) in vector matrix gives:

[ ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω ]{ C 1 1 C 2 1 C 3 1 C 4 1 C 5 1 C 6 1 C 7 1 C 8 1 C 9 1 }={ K f 0 ( t 1 ) 0 0 0 0 0 0 0 ( λ+K ) f 10 ( t 1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba qbaeqabKqcaaaaaaaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4s aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4U dWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGa eqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey 4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdC habaGaeq4UdWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca WGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIa am4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChaaaGa ay5waiaaw2faamaacmaabaqbaeqabKqaaaaaaeaacaWGdbWcdaqhaa qcfayaaKqzadGaaGymaaqcfayaaKqzadGaaGymaaaaaKqbagaacaWG dbWcdaqhaaqcfayaaKqzadGaaGOmaaqcfayaaKqzadGaaGymaaaaaK qbagaacaWGdbWcdaqhaaqcfayaaKqzadGaaG4maaqcfayaaKqzadGa aGymaaaaaKqbagaacaWGdbWcdaqhaaqcfayaaKqzadGaaGinaaqcfa yaaKqzadGaaGymaaaaaKqbagaacaWGdbWcdaqhaaqcfayaaKqzadGa aGynaaqcfayaaKqzadGaaGymaaaaaKqbagaacaWGdbWcdaqhaaqcfa yaaKqzadGaaGOnaaqcfayaaKqzadGaaGymaaaaaKqbagaacaWGdbWc daqhaaqcfayaaKqzadGaaG4naaqcfayaaKqzadGaaGymaaaaaKqbag aacaWGdbWcdaqhaaqcfayaaKqzadGaaGioaaqcfayaaKqzadGaaGym aaaaaKqbagaacaWGdbWcdaqhaaqcfayaaKqzadGaaGyoaaqcfayaaK qzadGaaGymaaaaaaaajuaGcaGL7bGaayzFaaGaeyypa0ZaaiWaaeaa faqabeqcbaaaaaqaaiabgkHiTiaadUeacaWGMbWcdaWgaaqcfayaaK qzadGaaGimaaqcfayabaWaaeWaaeaacaWG0bWcdaahaaqcfayabeaa jugWaiaaigdaaaaajuaGcaGLOaGaayzkaaaabaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiabgkHiTmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaayjkai aawMcaaiaadAgadaWgaaqaaKqzadGaaGymaiaaicdaaKqbagqaamaa bmaabaGaamiDaSWaaWbaaKqbagqabaqcLbmacaaIXaaaaaqcfaOaay jkaiaawMcaaaaaaiaawUhacaGL9baaaaa@F395@

Where:

ω=( αλ2K1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3j abg2da9maabmaabaGaeqySdeMaeyOeI0Iaeq4UdWMaeyOeI0IaaGOm aiaadUeacqGHsislcaaIXaaacaGLOaGaayzkaaaaaa@4336@

Hence, at any point with time, the general form of the above equation is presented as:

[ ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω ]{ C 1 j+1 C 2 j+1 C 3 j+1 C 4 j+1 C 5 j+1 C 6 j+1 C 7 j+1 C 8 j+1 C 9 j+1 }={ K f 0 ( t j+1 ) 0 0 0 0 0 0 0 ( λ+K ) f l+1 ( t j+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba qbaeqabKqcaaaaaaaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4s aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4U dWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGa eqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey 4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdC habaGaeq4UdWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca WGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIa am4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChaaaGa ay5waiaaw2faamaacmaabaqbaeqabKqaaaaaaeaacaWGdbWcdaqhaa qcfayaaKqzadGaaGymaaqcfayaaKqzadGaamOAaiabgUcaRiaaigda aaaajuaGbaGaam4qaSWaa0baaKqbagaajugWaiaaikdaaKqbagaaju gWaiaadQgacqGHRaWkcaaIXaaaaaqcfayaaiaadoealmaaDaaajuaG baqcLbmacaaIZaaajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaK qbagaacaWGdbWcdaqhaaqcfayaaKqzadGaaGinaaqcfayaaKqzadGa amOAaiabgUcaRiaaigdaaaaajuaGbaGaam4qaSWaa0baaKqbagaaju gWaiaaiwdaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaaqcfaya aiaadoealmaaDaaajuaGbaqcLbmacaaI2aaajuaGbaqcLbmacaWGQb Gaey4kaSIaaGymaaaaaKqbagaacaWGdbWcdaqhaaqcfayaaKqzadGa aG4naaqcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaaajuaGbaGaam 4qaSWaa0baaKqbagaajugWaiaaiIdaaKqbagaajugWaiaadQgacqGH RaWkcaaIXaaaaaqcfayaaiaadoealmaaDaaajuaGbaqcLbmacaaI5a aajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaaaajuaGcaGL7bGa ayzFaaGaeyypa0ZaaiWaaeaafaqabeqcbaaaaaqaaiabgkHiTiaadU eacaWGMbWcdaWgaaqcfayaaKqzadGaaGimaaqcfayabaWaaeWaaeaa caWG0bWcdaahaaqcfayabeaajugWaiaadQgacqGHRaWkcaaIXaaaaa qcfaOaayjkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqGHsislda qadaqaaiabeU7aSjabgUcaRiaadUeaaiaawIcacaGLPaaacaWGMbWc daWgaaqcfayaaKqzadGaamiBaiabgUcaRiaaigdaaKqbagqaamaabm aabaGaamiDaSWaaWbaaKqbagqabaqcLbmacaWGQbGaey4kaSIaaGym aaaaaKqbakaawIcacaGLPaaaaaaacaGL7bGaayzFaaaaaa@0942@

Method of application

numerical Method were applied through the system to generate the governing equations, derived solution generated the derived model solution, this were simulated to monitor the contaminants at different depth, values of contaminant known concentration at different depth were generated, this results are within the values of concentration from other experimental values for the same contaminant by other experts validation of the method application for monitoring such microbes in deltaic environment.

Experimental application

Standard laboratory experiment where performed to monitor the concentration of Chlorobium rate different formation, the soil deposition of the strata were collected in sequences base on the structural deposition at different locations, this samples were collected at different location, these samples generated variation at different depth producing different migration of Chlorobium concentration through pressure flow at lower end of the column, the experimental results are applied to be compared with the theoretical values to determined validation of the model.

Results and discussion

Results and discussion are presented in tables including graphical representation for Halobacterium stated below. The figure shows how the permeation of the formation influences the behaviour of the system in terms of deposition and transport at different strata (Figure 1). developed sudden growth rate in concentration between 5-10M depth and generated fluctuation to where the lowest rate of concentration were observed at 30m, (Figure 2) express exponential phase thus developed fluctuation to the rate were optimum growth was experiences at 30m. Figure 3 in the same vein express its behaved similar to Figure 2, the growth rate rapidly migrate with slight fluctuation to maximum level recorded at 30m. Figure 4 generated sudden growth from five metres at initial concentration and experiences degradation with respect to depth to the lowest level of concentration recorded at 30m. Figure 5-10 observed vacillation while in gradual increase was experiences between 5-10m thus sudden increases were experiences at 25m and decrease to the lowest at 30m. The validation of the model with experimental values developed faviourable fits, these condition shows that the systems were in line with the experimental comparison (Tables 1-10).

Figure 1   Simulation Values from Chlorobium Concentration at Different Depth.

Figure 2   Simulation Values from Chlorobium Concentration at Different Depth.

Figure 3   Simulation Values from Chlorobium Concentration at Different Depth.

Figure 4   Simulation Values from Chlorobium Concentration at Different Depth.

Figure 5  Simulation Values from Chlorobium Concentration at Different Depth.

Figure 6 Predictive and Experimental Values for Chlorobium Concentration at Different Depth.

Figure 7 Predictive and Experimental Values for Chlorobium Concentration at Different Depth.

Figure 8 Predictive and Experimental Values for Chlorobium Concentration at Different Depth.

Figure 9 Predictive and Experimental Values for Chlorobium Concentration at Different Depth.

Figure 10 Predictive and Experimental Values for Chlorobium Concentration at Different Depth.

Depth (m)

Concentration (g/ml)

0

3.5600

3

1.8358

6

1.1475

9

1.1192

12

1.2978

15

1.3512

18

1.1631

21

0.8277

24

0.5407

27

0.3900

30

0.0440

Table 1  Simulation Values from Chlorobium Concentration at Different Depth

Depth (m)

Concentration (g/ml)

0

0

3

0.1520

6

0.1777

9

0.1368

12

0.1230

15

0.1996

18

0.3678

21

0.5654

24

0.6976

27

0.6989

30

0.6270

Table 2  Simulation Values from Chlorobium Concentration at Different Depth

Depth (m)

Concentration (g/ml)

0

0.0945

3

0.0585

6

0.0725

9

0.1257

12

0.2074

15

0.3068

18

0.4133

21

0.5161

24

0.6045

27

0.6677

30

0.6951

Table 3  Simulation Values from Chlorobium Concentration at Different Depth

Depth (m)

Concentration (g/L)

0

0.6587

3

0.8087

6

0.8834

9

0.8931

12

0.8484

15

0.7595

18

0.6368

21

0.4908

24

0.3319

27

0.1704

30

0.0168

Table 4  Simulation Values from Chlorobium Concentration at Different Depth

Depth (m)

Concentration (g/ml)

0

0.0362

3

0.0179

6

0.0140

9

0.0204

12

0.0330

15

0.0477

18

0.0603

21

0.0668

24

0.0631

27

0.0449

30

0.0083

Table 5  Simulation Values from Chlorobium Concentration at Different Depth

Depth (m)

Predictive Values Conc. (g/ml)

Experimental Values Conc. (g/ml)

0

3.56

3.44

3

1.8358

2.8234

6

1.1475

1.1153

9

1.1192

1.0103

12

1.2978

1.2123

15

1.3512

1.2351

18

1.1631

1.1104

21

0.8277

0.92345

24

0.5407

0.62341

27

0.39

0.41222

30

0.044

0.0534

Table 6 Predictive and Experimental Values for Chlorobium Concentration at Different Depth

Depth (m)

Predictive Values Conc. (g/ml)

Experimental Values Conc. (g/ml)

0

0

0

3

0.152

0.1453

6

0.1777

0.1634

9

0.1368

0.12878

12

0.123

0.1434

15

0.1996

0.18795

18

0.3678

0.3245

21

0.5654

0.51234

24

0.6976

0.64352

27

0.6989

0.67821

30

0.627

0.63412

Table 7 Predictive and Experimental Values for Chlorobium Concentration at Different Depth

Depth (m)

Predictive Values Conc. (g/ml)

Experimental Values Conc. (g/ml)

0

0.0945

0.0876

3

0.0585

0.05123

6

0.0725

0.06892

9

0.1257

0.12345

12

0.2074

0.21112

15

0.3068

0.31214

18

0.4133

0.42113

21

0.5161

0.52121

24

0.6045

0.62112

27

0.6677

0.64212

30

0.6951

0.66113

Table 8 Predictive and Experimental Values for Chlorobium Concentration at Different Depth

Depth (M)

Predictive Values Conc. (G/Ml)

Experimental Values Conc. (G/Ml)

0

0.6587

0.61234

3

0.8087

0.78323

6

0.8834

0.85234

9

0.8931

0.87564

12

0.8484

0.81234

15

0.7595

0.74561

18

0.6368

0.62412

21

0.4908

0.48453

24

0.3319

0.31216

27

0.1704

0.17231

30

0.0168

0.01734

Table 9 Predictive and Experimental Values for Chlorobium Concentration at Different Depth

Depth (M)

Predictive Values Conc. (G/Ml)

Experimental Values Conc. (G/Ml)

0

0.0362

0.03211

3

0.0179

0.01687

6

0.014

0.01342

9

0.0204

0.02111

12

0.033

0.03211

15

0.0477

0.04231

18

0.0603

0.06123

21

0.0668

0.06453

24

0.0631

0.06123

27

0.0449

0.04231

30

0.0083

0.00734

Table 10 Predictive and Experimental Values for Chlorobium Concentration at Different Depth

Conclusion

The study has express the permeability influences on Chlorobium deposition in coarse formation, the behaviour were monitored Applying numerical modeling approach, the system experiences other formation characteristics such as soil void ratio as its reflecting in the rate of Chlorobium concentration, the study has express the variation of Chlorobium concentration pressures, application of numerical techniques was to monitor the system thoroughly in other to express the concentration in sequences, this application were base on the type study area, the developed model experienced fluctuation and exponential phase in different condition that the system were monitored. The system with its authenticity expresses it through model validation with experimental validations.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. Barr DW. Coefficient of permeability determined by measurable parameters. Ground Water. 2001;39(3):356‒361.
  2. Boadu FK. Hydraulic conductivity of soils from grain-size distribution: new models. Journal of Geotechnical and Geoenvironmental Engineering. 2000;126(8):739‒746.
  3. Tina H. Environmental Isotopic and Hydrochemical Characteristics of Groundwater from the Cretaceous-Eocene Limestone Aquifer in the Keta Basin. Denmark: Ghana, and the Coastal Sedimentary Basin of Togo Ph.D. Thesis, Geological Institute Faculty of Science, University of Copenhagen. 2006.
  4. Chapuis RP. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Journal of Canadian Geotechnology. 2004;41(5):787‒795.
  5. Chapuis RP, Aubertin M. On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Journal of Canadian Geotechnology. 2003;40(3):616‒628.
  6. Conrad CM. Air-based measurement of permeability in pebbly sands. Ground water. 2006;46(1):103‒112.
  7. Conrad. Air-based measurement of permeability in pebbly sands. (Unpublished). Permeability-porosity relationship: A reexamination of the Kozeny- Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters. 2007;33:1‒5.
  8. Kamann PJ. Porosity and permeability in sediment mixtures. USA: Master’s Thesis, Department of Geological Sciences, Wright State University. 2004. p. 1‒35.
  9. Koltermann CE, Gorelick SM. Fractional packing model for hydraulic conductivity derived from sediment mixtures. Water Resources Research. 1995;31(12):3283‒3297.
  10. Revil A, Cathles LM. Permeability of shaly sands. Water Resources Research. 1999;35(3):651‒662.
  11. Revil A, Grauls D, Brévart O. Mechanical compaction of sand/clay mixtures. Journal of Geophysical Research. 2002;107(11):11‒15.
  12. Peter MP. Porosity and permeability of bimodal sediment mixtures using natural sediment. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, USA; 2005.
  13. Eluozo SN. Model prediction to monitor the influence of porosity effect on Shigella transport to ground water aquifers in Elele rivers states of Nigeria. Scientific Journal of Pure and Applied Sciences. 2013;2(3):151‒160.
Creative Commons Attribution License

©2017 Eluozo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.