Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Review Article Volume 2 Issue 5

On a truncated accelerated plan for two component parallel systems under ramp-stress testing using masked data

Braimah Joseph Odunayo

Department of Mathematics, Ambrose Alli University, Nigeria

Correspondence: Braimah Joseph Odunayo, Department of Mathematics, Faculty of physical Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria

Received: August 14, 2018 | Published: September 24, 2018

Citation: Odunayo BJ. On a truncated accelerated plan for two component parallel systems under ramp-stress testing using masked data. MOJ App Bio Biomech. 2018;2(5):275–278. DOI: 10.15406/mojabb.2018.02.00081

Download PDF

Abstract

Several studies on design of Acceptance Life Test (ALT) focused on a subsystem (single system) totally ignoring its internal design. In most cases, it is not always possible to identify the components that cause the system failure or the cause can only be identified by a subset of its component resulting in a masked observation. This paper therefore investigates into development of ramp-stress accelerated life testing for a high reliability parallel system that consist two dependent components using masked failure data. This type of testing may be very useful in a twin-engine plane or jet. A ramp-stress results when stress applied on the system increases linearly with time. A parallel system with two dependent components is taken with dependency modeled by Gumbel-Hougaard copula. The stress-life relationship is modeled using inverse power law and cumulative exposure model is assumed to model the effect of changing stress. The method of maximum likelihood is thereafter used for estimating design parameters. The optimal plan consists in finding optimal stress rate using D-optimality criterion by minimizing the reciprocal of the determinant of Fisher information matrix. The projected plan is also explained using a numerical example and sensitivity analysis carried out. This formulated model can help control engineers to obtain reliability estimates quickly of high reliability products that are likely to last for several years.

Keywords: accelerate, life test, ramp-stress, gumbel-hougaard copula, masked data, fisher information matrix, d-optimality criterion, dependent components

Introduction

After production process has been carefully controlled up till the finished products, high reliability products of modern times have to be subjected to accelerated life test to detect early failures. This also helps the manufacturer to obtain timely reliability estimates about his products and live on in today’s competitive market. Such products may be subject to different stress loading schemes. Such stress schemes include: constant-stress, step-stress, progressive-stress and their various combinations depending upon how they are to be used in service and other limitations both theoretical and practical.1,2 A ramp-stress results when stress applied linearly increases with time. A stress can be applied under fully accelerated environmental conditions in which all the test specimens are tested under accelerated condition or partially accelerated environmental conditions where they are tested both under normal and accelerated conditions.3,4

Several accelerated life test plans under different stress loading schemes have been devised in several literatures.5,6 Nevertheless, all these plans are meant for a single system (i.e, a sub- system) with its internal configuration totally ignored. In many cases, it is not always probable to identify the component that caused the system failure or the cause of failure can only be identified by a subset of its component.7 An observation is said to be masked when event cause of the system failure is not known except that it is as a result of some subset of the component of the system have used the exact maximum likelihood estimation of life time distribution of the component in the series system using masked data.8–10 have used the Bayes estimation of component reliability from masked system-life data.8,9 have extended the results of11 to a three component series system of exponential distribution. Fan & Hsu12 has used the masked interval data in the series system of exponential components. Formulation of a ramp-stress ALT plan for a parallel system with two dependent components but without masking has been studied by Srivastava & Savita.13 This paper centered on formulation of a ramp-stress ALT plan for a system with parallel configuration in the presence of masked failure data. Such a testing may prove to be useful in a twin-engine plane or jet. A parallel system with two dependent components is taken with dependency modeled by Gumbel-Hougaard copula. The optimal stress rate is obtained using D-optimality criterion. A numerical example has also been used to explain the projected plan and sensitivity analysis has been carried out to examine its robustness.

The model

In this section the model for formulation of a ramp-stress ALT plan for a system with parallel pattern in the presence of masked failure data is developed and its life distribution function and likelihood function are obtained.

Assumptions

  1. Gumbel-Hougaard copula comprising two Weibull reliability marginals is used to model the dependency between two components.
  2. The two components of the system cannot fail simultaneously (at the same time).
  3. Failed parallel systems are not replaced during the test.
  4. The occurrence of masking is independent of the failure cause and time.
  5. The effect of changing stress is modeled by the linear cumulative exposure model (Nelson, 1990).
  6. The stress applied to test units is continuously increased with constant ramp rate k from zero.
  7. The inverse power law holds for stress-life relationship, i.e,

η( s( t ) )= e μ ( S 0 S(t) ) α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aae WaaeaacaWGZbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGa ayzkaaGaeyypa0JaamyzamaaCaaaleqabaGaeqiVd0gaaOWaaeWaae aadaWcaaqaaiaadofadaWgaaWcbaGaaGimaaqabaaakeaacaWGtbGa aiikaiaadshacaGGPaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaeq ySdegaaaaa@4A57@                                                              (1)

Where μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@392A@  is the characteristics of the product and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3913@  is the shape parameter, s(t) is a linear function of time in ramp-stress.

Test procedure

The reliability testing procedure is as follows:

  1. N independent and identical parallel systems are put to test and their failure times along with the cause of failure are recorded. An observation is said to be masked if its corresponding cause of failure cannot be recorded.
  2. The test is terminated when all the systems fail.

Parallel system

A parallel system fails if all the components fail. The configuration of a parallel system with two components is shown in Figure 1.

Figure 1 Parallel System.

Copula function

The dependency existing between the marginal random variables in bivariate and multivariate distributions is described by a copula.1 The copula describes the way in which the marginals are linked together on the basis of their association.

Suppose X1 and X2 are two random variables and let G1(x1) and G2 (x2) be their respective marginal reliability functions. If H(x1,x2) are their joint reliability function. Therefore, according to Sklar’s theorem, there exists a copula reliability function C (x1,x2) such that for all that (x1, x2) in the defined array:

H ¯ ( x 1 , x 2 )=C( G 1 ( x 1 ), G 2 ( x 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGibaaamaabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYca caWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0 Jaam4qamaabmaabaWaaCbiaeaacaWGhbaaleqabaGaey4jIKnaaOWa aSbaaSqaaiaaigdaaeqaaOGaaiikaiaadIhadaWgaaWcbaGaaGymaa qabaGccaGGPaGaaiilamaaxacabaGaam4raaWcbeqaaiabgEIizdaa kmaaBaaaleaacaaIYaaabeaakiaacIcacaWG4bWaaSbaaSqaaiaaik daaeqaaOGaaiykaaGaayjkaiaawMcaaaaa@507B@ (2)

Amongst the Gumbel-Hougaard copula is defined as:

C μ ( a,b )= e ( log e [ a ] ) μ + ( log e [ b ] μ ) 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacqaH8oqBaeqaaOWaaeWaaeaacaWGHbGaaiilaiaadkgaaiaa wIcacaGLPaaacqGH9aqpcaWGLbWaaWbaaSqabeaacqGHsisldaqada qaaiabgkHiTiGacYgacaGGVbGaai4zamaaBaaameaacaWGLbaabeaa lmaadmaabaGaamyyaaGaay5waiaaw2faaaGaayjkaiaawMcaamaaCa aameqabaGaeqiVd0gaaSGaey4kaSYaaeWaaeaacqGHsislciGGSbGa ai4BaiaacEgadaWgaaadbaGaamyzaaqabaWcdaWadaqaaiaadkgaai aawUfacaGLDbaadaahaaadbeqaaiabeY7aTbaaaSGaayjkaiaawMca amaaCaaameqabaWaaSaaaeaacaaIXaaabaGaeqiVd0gaaaaaaaaaaa@5B28@ (3)

Where 1μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGHKj YOcqaH8oqBcqGHKjYOcqGHEisPaaa@3DAA@ characterizes the relationship between the two variables. Gumbel-Hougaard copula is uni-parametric and symmetrical.

Reliability function for bivariate-weibull distribution

The reliability function for Bivariate Weibull distribution is obtained by using Weibull reliability marginals in Gumbel-Hougaard reliability function. Using equation (3) and assumption (i), equation (4) is arrived at:

C( G ¯ 1 ( t i1 ), G ¯ 2 ( t i2 ) )= e ( ( t 1 μ ) β 1 α+( t 2 μ ) β 2 α ) 1 α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaWaa0aaaeaacaWGhbaaamaaBaaaleaacaaIXaaabeaakiaacIca caWG0bWaaSbaaSqaaiaadMgacaaIXaaabeaakiaacMcacaGGSaWaa0 aaaeaacaWGhbaaamaaBaaaleaacaaIYaaabeaakiaacIcacaWG0bWa aSbaaSqaaiaadMgacaaIYaaabeaakiaacMcaaiaawIcacaGLPaaacq GH9aqpcaWGLbWaaWbaaSqabeaacqGHsisldaqadaqaamaabmaabaWa aSaaaeaacaWG0bWaaSbaaWqaaiaaigdaaeqaaaWcbaGaeqiVd0gaaa GaayjkaiaawMcaaiabek7aInaaBaaameaacaaIXaaabeaaliabeg7a HjabgUcaRmaabmaabaWaaSaaaeaacaWG0bWaaSbaaWqaaiaaikdaae qaaaWcbaGaeqiVd0gaaaGaayjkaiaawMcaaiabek7aInaaBaaameaa caaIYaaabeaaliabeg7aHbGaayjkaiaawMcaamaaCaaameqabaWaaS aaaeaacaaIXaaabaGaeqySdegaaaaaaaaaaa@6160@                                                                                              (4)

Where t= testing time, μ=quality parameter, β=risk and α=shape parameter.16

The bivariate weibull reliability function for ramp-stressed data

The Bivariate Weibull reliability function of a parallel system using Gumbel-Hougaard copula (Escobar and Meeker 1995) is given by:

G ( t 1 , t 2 )= e ( ( t 1 μ ) β 1 α+( t 2 μ ) β 2 α ) 1 α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WGhbaaleqabaGaey4jIKnaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaa igdaaeqaaOGaaiilaiaaykW7caWG0bWaaSbaaSqaaiaaikdaaeqaaa GccaGLOaGaayzkaaGaeyypa0JaamyzamaaCaaaleqabaGaeyOeI0Ya aeWaaeaadaqadaqaamaalaaabaGaamiDamaaBaaameaacaaIXaaabe aaaSqaaiabeY7aTbaaaiaawIcacaGLPaaacqaHYoGydaWgaaadbaGa aGymaaqabaWccqaHXoqycqGHRaWkdaqadaqaamaalaaabaGaamiDam aaBaaameaacaaIYaaabeaaaSqaaiabeY7aTbaaaiaawIcacaGLPaaa cqaHYoGydaWgaaadbaGaaGOmaaqabaWccqaHXoqyaiaawIcacaGLPa aadaahaaadbeqaamaalaaabaGaaGymaaqaaiabeg7aHbaaaaaaaOGa aCzcaaaa@5E06@                                                                    (5)

The bivariate joint probability density function is given as:

g( t 1, t 2 )= e ( ( t μ 1 ) β 1 α+( t μ 2 ) β 2α ) 1 α β 1 β 2 ( t 1 μ 1 ) β 1 α+ ( t 2 μ 2 ) β 2α × ( ( t 1 μ 1 ) β 1 α+ ( t μ 2 ) β 2α ) t 1 t 2 2+ 1 α ( ( t 1 μ 1 ) β 1 α+ ( t 2 μ 2 ) β 2α ) 1 α +α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacI cacaGG0bWaaSbaaSqaaiaaigdacaGGSaaabeaakiaacshadaWgaaWc baGaaGOmaaqabaGccaGGPaGaeyypa0JaaiyzamaaCaaaleqabaWaaW baaWqabeaacqGHsislcaGGOaGaaiikamaalaaabaGaamiDaaqaaiab eY7aTnaaBaaabaGaaGymaaqabaaaaiaacMcadaahaaqabeaacqaHYo GydaWgaaqaaiaaigdaaeqaaaaacqaHXoqycqGHRaWkcaGGOaWaaSaa aeaacaWG0baabaGaeqiVd02aaSbaaeaacaaIYaaabeaaaaGaaiykai abek7aInaaBaaabaGaaGOmaiabeg7aHbqabaGaaiykamaaCaaabeqa amaalaaabaGaaGymaaqaaiabeg7aHbaaaaaaaaaakiabek7aInaaBa aaleaacaaIXaaabeaakiabek7aInaaBaaaleaacaaIYaaabeaakiaa cIcadaWcaaqaaiaadshadaWgaaWcbaGaaGymaaqabaaakeaacqaH8o qBdaWgaaWcbaGaaGymaaqabaaaaOGaaiykamaaCaaaleqabaGaeqOS di2aaSbaaWqaaiaaigdaaeqaaaaakiabeg7aHjabgUcaRiaacIcada WcaaqaaiaadshadaWgaaWcbaGaaGOmaaqabaaakeaacqaH8oqBdaWg aaWcbaGaaGOmaaqabaaaaOGaaiykamaaCaaaleqabaGaeqOSdi2aaS baaWqaaiaaikdacqaHXoqyaeqaaaaakiabgEna0oaalaaabaGaaiik aiaacIcadaWcaaqaaiaadshadaWgaaWcbaGaaGymaaqabaaakeaacq aH8oqBdaWgaaWcbaGaaGymaaqabaaaaOGaaiykamaaCaaaleqabaGa eqOSdi2aaSbaaWqaaiaaigdaaeqaaaaakiabeg7aHjabgUcaRiaacI cadaWcaaqaaiaadshaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaa aOGaaiykamaaCaaaleqabaGaeqOSdi2aaSbaaWqaaiaaikdacqaHXo qyaeqaaaaakiaacMcaaeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGa amiDamaaBaaaleaadaWgaaadbaGaaGOmaaqabaaaleqaaaaakmaaCa aaleqabaGaeyOeI0IaaGOmaiabgUcaRmaalaaabaGaaGymaaqaaiab eg7aHbaacaGGOaGaaiikamaalaaabaGaamiDamaaBaaameaacaaIXa aabeaaaSqaaiabeY7aTnaaBaaameaacaaIXaaabeaaaaWccaGGPaWa aWbaaWqabeaacqaHYoGydaWgaaqaaiaaigdaaeqaaaaaliabeg7aHj abgUcaRiaacIcadaWcaaqaaiaadshadaWgaaadbaGaaGOmaaqabaaa leaacqaH8oqBdaWgaaadbaGaaGOmaaqabaaaaSGaaiykamaaCaaame qabaGaeqOSdi2aaSbaaeaacaaIYaGaeqySdegabeaaaaWccaGGPaWa aWbaaWqabeaadaWcaaqaaiaaigdaaeaacqaHXoqyaaGaey4kaSIaeq ySdeMaeyOeI0IaaGymaaaaaaaaaa@B23D@ (6)

Where t 1 0, t 2 0, μ 1 >0, β 1 >0,i=1,2  and  α1, μ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIXaaabeaakiabgwMiZkaaicdacaGGSaGaamiDamaaBaaa leaacaaIYaaabeaakiabgwMiZkaaicdacaGGSaGaeqiVd02aaSbaaS qaaiaaigdaaeqaaOGaeyOpa4JaaGimaiaacYcacqaHYoGydaWgaaWc baGaaGymaaqabaGccqGH+aGpcaaIWaGaaiilaiaadMgacqGH9aqpca aIXaGaaiilaiaaikdaqaaaaaaaaaWdbiaacckacaGGGcWdaiaadgga caWGUbGaamiza8qacaGGGcGaaiiOa8aacqaHXoqycqGHLjYScaaIXa GaaiilaiabeY7aTnaaBaaaleaacaWGPbaabeaaaaa@5F21@ are scale parameters, β i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKgqcfaOaeq OSdi2aaSbaaeaajugWaiaadMgaaKqbagqaaaaa@3C00@ are shape parameters and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKgqcfaOaeq ySdegaaa@3933@ is the association between the two variables. From the linear cumulative model, the joint reliability function of the parallel system under ramp-stress scheme is given as:

F ( t 1 , t 2 )= G ( E( t 1 ),E( t 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WGgbaaleqabaGaey4jIKnaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaa igdaaeqaaOGaaiilaiaadshadaWgaaWcbaGaaGOmaaqabaaakiaawI cacaGLPaaacqGH9aqpdaWfGaqaaiaadEeaaSqabeaacqGHNis2aaGc daqadaqaaiaadweacaGGOaGaamiDamaaBaaaleaacaaIXaaabeaaki aacMcacaGGSaGaamyraiaacIcacaWG0bWaaSbaaSqaaiaaikdaaeqa aOGaaiykaaGaayjkaiaawMcaaaaa@4E75@                                                                      (7)

Where G (.,.) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WGhbaaleqabaGaey4jIKnaaOGaaiikaiaac6cacaGGSaGaaiOlaiaa cMcaaaa@3DAE@  is the underlying bivariate Weibull reliability function with assumed scale parameter taken to be one (1).

E(t)= 0 t 1 μ(S(α)) dα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyraiaacI cacaGG0bGaaiykaiabg2da9maapehabaWaaSaaaeaacaaIXaaabaGa eqiVd0MaaiikaiaacofacaGGOaGaeqySdeMaaiykaiaacMcaaaaale aacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiabeg7aHbaa@49EC@ (8)

Equation above is the cumulative harm (damage) model at t. Therefore, the joint cumulative distribution (reliability) function and joint probability (failure) density function respectively of the system under ramp-stress loading are given as:

F( t 1 , t 2 )= e ( ( 0 t 1 1 μ( S(a) ) da ) β 1 a+( 0 t 2 1 μ( S(a) ) da ) β 2 a ) 1 α                                                    (9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaamiDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG0bWaaSba aSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamyzamaaCa aaleqabaGaeyOeI0YaaeWaaeaadaqadaqaamaapedabaWaaSaaaeaa caaIXaaabaGaeqiVd02aaeWaaeaacaWGtbGaaiikaiaadggacaGGPa aacaGLOaGaayzkaaaaaiaadsgacaWGHbaameaacaaIWaaabaGaamiD amaaBaaabaGaaGymaaqabaaaoiabgUIiYdaaliaawIcacaGLPaaacq aHYoGydaWgaaadbaGaaGymaaqabaWccaWGHbGaey4kaSYaaeWaaeaa daWdXaqaamaalaaabaGaaGymaaqaaiabeY7aTnaabmaabaGaam4uai aacIcacaWGHbGaaiykaaGaayjkaiaawMcaaaaacaWGKbGaamyyaaad baGaaGimaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaGdcqGHRiI8aa WccaGLOaGaayzkaaGaeqOSdi2aaSbaaWqaaiaaikdaaeqaaSGaamyy aaGaayjkaiaawMcaamaaCaaameqabaWaaSaaaeaacaaIXaaabaGaeq ySdegaaaaalabaaaaaaaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckaaaGcpaGaaiikaiaaiMda caGGPaaaaa@A734@

Therefore,

F( t 1 , t 2 )= e ( ( ( t 1 ϕ 1 ) β 11 α+( t 2 ϕ 2 ) β 22 α ) 1 α )                                     (10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaamiDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG0bWaaSba aSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamyzamaaCa aaleqabaGaeyOeI0YaaeWaaeaadaqadaqaamaabmaabaWaaSaaaeaa caWG0bWaaSbaaWqaaiaaigdaaeqaaaWcbaGaeqy1dy2aaSbaaWqaai aaigdaaeqaaaaaaSGaayjkaiaawMcaaiabek7aInaaBaaameaacaaI XaGaaGymaaqabaWccqaHXoqycqGHRaWkdaqadaqaamaalaaabaGaam iDamaaBaaameaacaaIYaaabeaaaSqaaiabew9aMnaaBaaameaacaaI YaaabeaaaaaaliaawIcacaGLPaaacqaHYoGydaWgaaadbaGaaGOmai aaikdaaeqaaSGaeqySdegacaGLOaGaayzkaaWaaWbaaWqabeaadaWc aaqaaiaaigdaaeaacqaHXoqyaaaaaaWccaGLOaGaayzkaaaaaOaeaa aaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckapaGaaiikaiaaigdacaaI WaGaaiykaaaa@8A65@

F( t 1 , t 2 )= e ( ( ( t 1 ϕ 1 ) β 11 α+( t 2 ϕ 2 ) β 22 α ) 1 α ) β 1 β 2 ( t 1 ϕ 1 ) β 11 α( t 2 ϕ 2 ) β 22 α                                     × ( ( t ϕ 1 ) β 1 α+( t ϕ 2 ) β 2 α ) 2+ 1 α ( ( t 1 ϕ 1 ) β 11 α+( t 2 ϕ 2 ) β 22 α ) 1 α +α1 t 1 t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGceaqabeaacaWGgb WaaeWaaeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadsha daWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGLb WaaWbaaSqabeaacqGHsisldaqadaqaamaabmaabaWaaeWaaeaadaWc aaqaaiaadshadaWgaaadbaGaaGymaaqabaaaleaacqaHvpGzdaWgaa adbaGaaGymaaqabaaaaaWccaGLOaGaayzkaaGaeqOSdi2aaSbaaWqa aiaaigdacaaIXaaabeaaliabeg7aHjabgUcaRmaabmaabaWaaSaaae aacaWG0bWaaSbaaWqaaiaaikdaaeqaaaWcbaGaeqy1dy2aaSbaaWqa aiaaikdaaeqaaaaaaSGaayjkaiaawMcaaiabek7aInaaBaaameaaca aIYaGaaGOmaaqabaWccqaHXoqyaiaawIcacaGLPaaadaahaaadbeqa amaalaaabaGaaGymaaqaaiabeg7aHbaaaaaaliaawIcacaGLPaaaaa GccqaHYoGydaWgaaWcbaGaaGymaaqabaGccqaHYoGydaWgaaWcbaGa aGOmaaqabaGcdaqadaqaamaalaaabaGaamiDamaaBaaaleaacaaIXa aabeaaaOqaaiabew9aMnaaBaaaleaacaaIXaaabeaaaaaakiaawIca caGLPaaacqaHYoGydaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeqySde 2aaeWaaeaadaWcaaqaaiaadshadaWgaaWcbaGaaGOmaaqabaaakeaa cqaHvpGzdaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaeq OSdi2aaSbaaSqaaiaaikdacaaIYaaabeaakiabeg7aHbqaaabaaaaa aaaapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcWdaiabgEna0oaalaaabaWaae WaaeaadaqadaqaamaalaaabaGaamiDaaqaaiabew9aMnaaBaaaleaa caaIXaaabeaaaaaakiaawIcacaGLPaaacqaHYoGydaWgaaWcbaGaaG ymaaqabaGccqaHXoqycqGHRaWkdaqadaqaamaalaaabaGaamiDaaqa aiabew9aMnaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaacq aHYoGydaWgaaWcbaGaaGOmaaqabaGccqaHXoqyaiaawIcacaGLPaaa daahaaWcbeqaaiabgkHiTiaaikdacqGHRaWkdaWcaaqaaiaaigdaae aacqaHXoqyaaWaaeWaaeaadaqadaqaamaalaaabaGaamiDamaaBaaa meaacaaIXaaabeaaaSqaaiabew9aMnaaBaaameaacaaIXaaabeaaaa aaliaawIcacaGLPaaacqaHYoGydaWgaaadbaGaaGymaiaaigdaaeqa aSGaeqySdeMaey4kaSYaaeWaaeaadaWcaaqaaiaadshadaWgaaadba GaaGOmaaqabaaaleaacqaHvpGzdaWgaaadbaGaaGOmaaqabaaaaaWc caGLOaGaayzkaaGaeqOSdi2aaSbaaWqaaiaaikdacaaIYaaabeaali abeg7aHbGaayjkaiaawMcaamaaCaaameqabaWaaSaaaeaacaaIXaaa baGaeqySdegaaaaaliabgUcaRiabeg7aHjabgkHiTiaaigdaaaaake aacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaamiDamaaBaaaleaacaaI Yaaabeaaaaaaaaa@E331@  (11)

Where

ϕ i = ( e γ 0 ( S 0 k )  γ i(1 γ i ) ) 1 1+ γ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaWGLbWaaWbaaSqa beaacqaHZoWzdaWgaaadbaGaaGimaaqabaaaaOWaaeWaaeaadaWcaa qaaiaadofadaWgaaWcbaGaaGimaaqabaaakeaacaWGRbaaaaGaayjk aiaawMcaaiaabccacqaHZoWzdaWgaaWcbaGaamyAaiaacIcacaaIXa GaeyOeI0Iaeq4SdC2aaSbaaWqaaiaadMgaaeqaaSGaaiykaaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaig dacqGHRaWkcqaHZoWzdaWgaaadbaGaamyAaaqabaaaaaaaaaa@5382@  is the scale parameter,                                           (12)

β ii = β i ( 1+ γ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadMgacaWGPbaabeaakiabg2da9iabek7aInaaBaaaleaa caWGPbaabeaakmaabmaabaGaaGymaiabgUcaRiabeo7aNnaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@44E3@                                                                         (13)

The D-optimality
The D-optimality criterion is used in minimizing the reciprocal of the determinant of Fisher information matrix, the Fishers smaller value of the determinant corresponds to a higher (joint) precision of the estimators of α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHj aacYcacaaMc8UaeqOSdigaaa@3C67@ .14

Likelihood function

This section deals with the case of the complete system but masked data. Likelihood for a parallel system is developed for two dependent components. Suppose we consider a sample of n-systems each consisting of two dependent components in parallel. Suppose Ti is the life time of system I and Tij is the life time of component j in system i, i=1,2......n and j=1,2, then

T i =max( T i1 , T i2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaakiabg2da9iGac2gacaGGHbGaaiiEaiaacIca caWGubWaaSbaaSqaaiaadMgacaaIXaaabeaakiaacYcacaWGubWaaS baaSqaaiaadMgacaaIYaaabeaakiaacMcaaaa@44C5@ (14)

The probability that the system fails due to component 1, when 0 t 1 < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadshadaWgaaWcbaGaaGymaaqabaGccqGH8aapcqGHEisPaaa@3E42@  is obtained as:

P[ T i2 t i , t i < T i1 t i +Δ t i ]= F T1 ( t i +Δ t i ) F T1,T2 ( t i , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamiuamaadm aabaGaamivamaaBaaaleaacaWGPbGaaGOmaaqabaGccqGHKjYOcaWG 0bWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadshadaWgaaWcbaGaam yAaaqabaGccqGH8aapcaWGubWaaSbaaSqaaiaadMgacaaIXaaabeaa kiabgsMiJkaadshadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqqHuo arcaWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLBbGaayzxaaGaeyyp a0JaamOramaaBaaaleaacaWGubGaaGymaaqabaGcdaqadaqaaiaads hadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqqHuoarcaWG0bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaamOramaaBa aaleaacaWGubGaaGymaiaacYcacaWGubGaaGOmaaqabaGcdaqadaqa aiaadshadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamiDamaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@6766@

= F T1 ( t i ) F T1,T2 ( t i , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam OramaaBaaaleaacaWGubGaaGymaaqabaGcdaqadaqaaiaadshadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHsislcaWGgbWaaS baaSqaaiaadsfacaaIXaGaaiilaiaadsfacaaIYaaabeaakmaabmaa baGaamiDamaaBaaaleaacaWGPbaabeaakiaacYcacaWG0bWaaSbaaS qaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@4AEF@  

As Δ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaey OKH4Qaaeimaaaa@3B7A@ and since F T1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubGaaGymaaqabaaaaa@39FF@  is absolutely differentiable,

=1 F T2 ( t i ) F ¯ T1,T2 ( t i , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaG ymaiabgkHiTiaadAeadaWgaaWcbaGaamivaiaaikdaaeqaaOWaaeWa aeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaey OeI0Yaa0aaaeaacaWGgbaaamaaBaaaleaacaWGubGaaGymaiaacYca caWGubGaaGOmaaqabaGcdaqadaqaaiaadshadaWgaaWcbaGaamyAaa qabaGccaGGSaGaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaa wMcaaaaa@4CA9@

F ¯ T2 ( t i ) F ¯ T1,T2 ( t i , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGgbaaamaaBaaaleaacaWGubGaaGOmaaqabaGcdaqadaqaaiaadsha daWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHsisldaqdaa qaaiaadAeaaaWaaSbaaSqaaiaadsfacaaIXaGaaiilaiaadsfacaaI YaaabeaakmaabmaabaGaamiDamaaBaaaleaacaWGPbaabeaakiaacY cacaWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@4A0C@

Therefore, L t 1 ( F ¯ T1,T2 ( t 1 , t 2 ) )  I t 1 = t i , t 2 = t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaaeivaiaabI gacaqGLbGaaeOCaiaabwgacaqGMbGaae4BaiaabkhacaqGLbGaaeil aiaabccacaWGmbGaeyOhIuQaeyOeI0YaaSaaaeaacqGHciITaeaacq GHciITcaWG0bWaaSbaaSqaaiaaigdaaeqaaaaakmaabmaabaWaa0aa aeaacaWGgbaaamaaBaaaleaacaWGubGaaGymaiaacYcacaWGubGaaG OmaaqabaGcdaqadaqaaiaadshadaWgaaWcbaGaaGymaaqabaGccaGG SaGaamiDamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay jkaiaawMcaaiaabccacaWGjbWaaSbaaSqaaiaadshadaWgaaadbaGa aGymaaqabaWccqGH9aqpcaWG0bWaaSbaaWqaaiaadMgaaeqaaSGaai ilaiaadshadaWgaaadbaGaaGOmaaqabaWccqGH9aqpcaWG0bWaaSba aWqaaiaadMgaaeqaaaWcbeaaaaa@61EC@                                                                       (15)

Also, the probability that the system fails due to component 2, when 0 t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKgqcfaOaaG imaiabgsMiJkaadshadaWgaaqaaiaadMgaaeqaaiabgsMiJkabg6Hi Lcaa@3F31@  is obtained as:

P[ T i1 t i , t i < T i2 t i +Δ t i ]= F T2 ( t i +Δ t i ) F T1,T2 ( t i , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuai aacUfacaGGubWaaSbaaeaajugWaiaacMgacaaIXaaajuaGbeaacqGH KjYOcaGG0bWcdaWgaaadbaqcLbmacaGGPbaameqaaKqbakaacYcaca GG0bWaaSbaaeaajugWaiaacMgaaKqbagqaaiabgYda8iaacsfadaWg aaqaaKqzadGaaiyAaiaaikdaaKqbagqaaiabgsMiJkaadshadaWgaa qaaKqzadGaamyAaaqcfayabaGaey4kaSIaeuiLdqKaamiDamaaBaaa baqcLbmacaWGPbaajuaGbeaacaGGDbGaeyypa0JaaiOraSWaaSbaaW qaaiaacsfacaaIYaaabeaajuaGcaGGOaGaaiiDaSWaaSbaaWqaaiaa cMgaaeqaaKqbakabgUcaRiabfs5aejaacshalmaaBaaameaacaGGPb aabeaajuaGcaGGPaGaeyOeI0IaaiOramaaBaaabaqcLbmacaGGubGa aGymaiaacYcacaWGubGaaGOmaaqcfayabaGaaiikaiaacshalmaaBa aameaajugWaiaacMgaaWqabaqcfaOaaiilaiaacshadaWgaaqaaKqz adGaaiyAaaqcfayabaGaaiykaaaa@76A6@

= F T2 ( t i ) F T1,T2 ( t i , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyypa0 JaaiOraSWaaSbaaWqaaiaacsfacaaIYaaabeaajuaGcaGGOaGaaiiD aSWaaSbaaWqaaiaacMgaaeqaaKqbakaacMcacqGHsislcaGGgbWaaS baaeaajugWaiaacsfacaaIXaGaaiilaiaadsfacaaIYaaajuaGbeaa caGGOaGaaiiDaSWaaSbaaWqaaiaacMgaaeqaaKqbakaacYcacaGG0b WaaSbaaeaajugWaiaacMgaaKqbagqaaiaacMcaaaa@4E94@

As Δ t i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadshadaWgaaqaaKqzadGaamyAaaqcfayabaGaeyOKH4QaaGPaVlaa icdaaaa@4048@ and since F T2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada WgaaqaaKqzadGaamivaiaaikdaaKqbagqaaaaa@3B29@ is absolutely differentiable,

=1 F T1 ( t i ) F ¯ T1,T2 ( t i , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyypa0 JaaGymaiabgkHiTiaacAealmaaBaaameaacaGGubGaaGymaaqabaqc faOaaiikaiaacshalmaaBaaameaacaGGPbaabeaajuaGcaGGPaGaey OeI0IabiOrayaaraWaaSbaaeaajugWaiaacsfacaaIXaGaaiilaiaa dsfacaaIYaaajuaGbeaacaGGOaGaaiiDaSWaaSbaaWqaaiaacMgaae qaaKqbakaacYcacaGG0bWaaSbaaeaajugWaiaacMgaaKqbagqaaiaa cMcaaaa@5053@

F ¯ T1 ( t i ) F ¯ T1,T2 ( t i , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabiOray aaraWcdaWgaaadbaGaaiivaiaaigdaaeqaaKqbakaacIcacaGG0bWc daWgaaadbaGaaiyAaaqabaqcfaOaaiykaiabgkHiTiqacAeagaqeam aaBaaabaqcLbmacaGGubGaaGymaiaacYcacaWGubGaaGOmaaqcfaya baGaaiikaiaacshalmaaBaaameaacaGGPbaabeaajuaGcaGGSaGaai iDamaaBaaabaqcLbmacaGGPbaajuaGbeaacaGGPaaaaa@4DBD@

Therefore, L t 2 ( F ¯ T1,T2 ( t 1 , t 2 )) I t1=ti,t2=ti MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiitai abg6HiLkabgkHiTmaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaSWa aSbaaKqbagaajugWaiaaikdaaKqbagqaaaaacaGGOaGabiOrayaara WcdaWgaaqcfayaaKqzadGaaiivaiaaigdacaGGSaGaamivaiaaikda aKqbagqaaiaacIcacaGG0bWcdaWgaaqcfayaaKqzadGaaGymaaqcfa yabaGaaiilaiaacshalmaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaa caGGPaGaaiykaiaacMealmaaBaaajuaGbaqcLbmacaGG0bGaaGymai abg2da9iaacshacaGGPbGaaiilaiaacshacaaIYaGaeyypa0JaaiiD aiaacMgaaKqbagqaaaaa@60CE@  

The log-likelihood (L)

The log-likelihood of an n parallel system is as given below:

L= S i =1 n 1 ( t 1 ( F ¯ T1,T2 ( t 1 , t 2 ) ) ) × S i =2 n 2 ( t 2 ( F ¯ T1,T2 ( t 1 , t 2 ) ) )                                     × S i =1 n 1 + n 2 ( t 1 ( F ¯ T1,T2 ( t 1 , t 2 ) ) t 2 ( F ¯ T1,T2 ( t 1 , t 2 ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGceaqabeaacaWGmb Gaeyypa0ZaaebCaeaadaqadaqaaiabgkHiTmaalaaabaGaeyOaIyla baGaeyOaIyRaamiDamaaBaaaleaacaaIXaaabeaaaaGcdaqadaqaam aanaaabaGaamOraaaadaWgaaWcbaGaamivaiaaigdacaGGSaGaamiv aiaaikdaaeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaiilaiaadshadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaa aiaawIcacaGLPaaaaiaawIcacaGLPaaaaSqaaiaadofadaWgaaadba GaamyAaaqabaWccqGH9aqpcaaIXaaabaGaamOBamaaBaaameaacaaI Xaaabeaaa0Gaey4dIunakiabgEna0oaarahabaWaaeWaaeaacqGHsi sldaWcaaqaaiabgkGi2cqaaiabgkGi2kaadshadaWgaaWcbaGaaGOm aaqabaaaaOWaaeWaaeaadaqdaaqaaiaadAeaaaWaaSbaaSqaaiaads facaaIXaGaaiilaiaadsfacaaIYaaabeaakmaabmaabaGaamiDamaa BaaaleaacaaIXaaabeaakiaacYcacaWG0bWaaSbaaSqaaiaaikdaae qaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaa leaacaWGtbWaaSbaaWqaaiaadMgaaeqaaSGaeyypa0JaaGOmaaqaai aad6gadaWgaaadbaGaaGOmaaqabaaaniabg+Givdaakeaaqaaaaaaa aaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOa8aacqGHxdaTdaqeWbqaamaabm aabaGaeyOeI0YaaSaaaeaacqGHciITaeaacqGHciITcaWG0bWaaSba aSqaaiaaigdaaeqaaaaakmaabmaabaWaa0aaaeaacaWGgbaaamaaBa aaleaacaWGubGaaGymaiaacYcacaWGubGaaGOmaaqabaGcdaqadaqa aiaadshadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiDamaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgkHi TmaalaaabaGaeyOaIylabaGaeyOaIyRaamiDamaaBaaaleaacaaIYa aabeaaaaGcdaqadaqaamaanaaabaGaamOraaaadaWgaaWcbaGaamiv aiaaigdacaGGSaGaamivaiaaikdaaeqaaOWaaeWaaeaacaWG0bWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadshadaWgaaWcbaGaaGOmaaqa baaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaS qaaiaadofadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaaIXaaabaGa amOBamaaBaaameaacaaIXaaabeaaliabgUcaRiaad6gadaWgaaadba GaaGOmaaqabaaaniabg+Givdaaaaa@CE70@                             (17)

where n is specified by the control engineer (experimenter).

L= S i =1 n 1 log( t 1 ( F ¯ T1,T2 ( t 1 , t 2 ) ) ) × S i =2 n 2 log ( t 2 ( F ¯ T1,T2 ( t 1 , t 2 ) ) )                                     × S i =1 n 12 log( t 1 ( F ¯ T1,T2 ( t 1 , t 2 ) ) t 2 ( F ¯ T1,T2 ( t 1 , t 2 ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGceaqabeaacaWGmb Gaeyypa0ZaaabCaeaaciGGSbGaai4BaiaacEgadaqadaqaaiabgkHi TmaalaaabaGaeyOaIylabaGaeyOaIyRaamiDamaaBaaaleaacaaIXa aabeaaaaGcdaqadaqaamaanaaabaGaamOraaaadaWgaaWcbaGaamiv aiaaigdacaGGSaGaamivaiaaikdaaeqaaOWaaeWaaeaacaWG0bWaaS baaSqaaiaaigdaaeqaaOGaaiilaiaadshadaWgaaWcbaGaaGOmaaqa baaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaS qaaiaadofadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaaIXaaabaGa amOBamaaBaaameaacaaIXaaabeaaa0GaeyyeIuoakiabgEna0oaaqa habaGaciiBaiaac+gacaGGNbaaleaacaWGtbWaaSbaaWqaaiaadMga aeqaaSGaeyypa0JaaGOmaaqaaiaad6gadaWgaaadbaGaaGOmaaqaba aaniabggHiLdGcdaqadaqaaiabgkHiTmaalaaabaGaeyOaIylabaGa eyOaIyRaamiDamaaBaaaleaacaaIYaaabeaaaaGcdaqadaqaamaana aabaGaamOraaaadaWgaaWcbaGaamivaiaaigdacaGGSaGaamivaiaa ikdaaeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaai ilaiaadshadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaeaaqaaaaaaaaaWdbiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOa8aacqGHxdaTdaaeWbqaaiGacYgacaGGVbGaai4z amaabmaabaGaeyOeI0YaaSaaaeaacqGHciITaeaacqGHciITcaWG0b WaaSbaaSqaaiaaigdaaeqaaaaakmaabmaabaWaa0aaaeaacaWGgbaa amaaBaaaleaacaWGubGaaGymaiaacYcacaWGubGaaGOmaaqabaGcda qadaqaaiaadshadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiDamaa BaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaai abgkHiTmaalaaabaGaeyOaIylabaGaeyOaIyRaamiDamaaBaaaleaa caaIYaaabeaaaaGcdaqadaqaamaanaaabaGaamOraaaadaWgaaWcba GaamivaiaaigdacaGGSaGaamivaiaaikdaaeqaaOWaaeWaaeaacaWG 0bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadshadaWgaaWcbaGaaG OmaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawIcacaGL PaaaaSqaaiaadofadaWgaaadbaGaamyAaaqabaWccqGH9aqpcaaIXa aabaGaamOBamaaBaaameaacaaMc8UaaGymaiaaikdaaeqaaaqdcqGH ris5aaaaaa@D691@                           (18)

Simulated of parameter estimation

The Maximum Likelihood Estimates of ρ 1 , ρ 2 , β 1 and β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaeaajugWaiaaigdaaKqbagqaaaqabaGaaiilaiab eg8aYnaaBaaabaWaaSbaaeaajugWaiaaikdaaKqbagqaaaqabaGaai ilaiabek7aInaaBaaabaWaaSbaaeaajugWaiaaigdaaKqbagqaaaqa baGaamyyaiaad6gacaWGKbGaaGPaVlabek7aInaaBaaabaWaaSbaae aajugWaiaaikdaaKqbagqaaaqabaaaaa@4E41@ are obtained using R statistical software.

The simulation is carried out following [15].
The algorithm is given below:

  1. Select n units and put them to test.
  2. Specify the masking level ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYb aa@38AC@ .
  3. Calculate n12 such that n 12 ( ρ n *100 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKvqcfaOaam OBamaaBaaabaWaaSbaaeaajugWaiaaigdacaaIYaaajuaGbeaaaeqa aiabgIKi7oaabmaabaWaaSaaaeaacqaHbpGCaeaacaWGUbaaaiaacQ cacaaIXaGaaGimaiaaicdaaiaawIcacaGLPaaaaaa@449A@ .
  4. Arbitrarily select a random sample of size n from the system life time, and the set of component causing the system failure (t1,s1),…,(tn,sn).

These random samples are generated following the steps below:

  1. Generate n12 observations using the system cumulative (i.e, product’s lifetime) distribution, which is known as time to failure.
  2. Generate n - n12 observations using the system cumulative distribution, and determine Si for each i, (i=1, 2,…,n-n12 ), which gives the set of observations where the cause of system failure is known.

Maximum likelihood estimates (MLE) of the design parameters

The ML estimates of the design parameters obtained using simulated data in table 1 are:

ρ 1 =2.2, ρ 2 =0.5, β 1 =0.35and β 2 =0.24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaeaajugWaiaaigdaaKqbagqaaaqabaGaeyypa0Ja eyOeI0IaaGOmaiaac6cacaaIYaGaaiilaiaaykW7caaMc8UaeqyWdi 3aaSbaaeaadaWgaaqaaKqzadGaaGOmaaqcfayabaaabeaacqGH9aqp caaIWaGaaiOlaiaaiwdacaGGSaGaaGPaVlaaykW7cqaHYoGydaWgaa qaamaaBaaabaqcLbmacaaIXaaajuaGbeaaaeqaaiabg2da9iaaicda caGGUaGaaG4maiaaiwdacaaMc8UaaGPaVlaadggacaWGUbGaamizai aaykW7cqaHYoGydaWgaaqaamaaBaaabaqcLbmacaaIYaaajuaGbeaa aeqaaiabg2da9iaaykW7caaIWaGaaiOlaiaaikdacaaI0aaaaa@6836@

In selecting an optimum test plan, there is a need to estimate the design parameters ρ 01 , ρ 02, β 11 , and β 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaeaadaWgaaqaaKqzadGaaGimaiaaigdaaKqbagqa aiaacYcaaeqaaaqabaGaaGPaVlabeg8aYnaaBaaabaWaaSbaaeaada WgaaqaaKqzadGaaGimaiaaikdacaGGSaaajuaGbeaaaeqaaaqabaGa aGPaVlabek7aInaaBaaabaWaaSbaaeaadaWgaaqaaKqzadGaaGymai aaigdaaKqbagqaaiaacYcaaeqaaaqabaGaaGPaVlaadggacaWGUbGa amizaiaaykW7caaMc8UaeqOSdi2aaSbaaeaadaWgaaqaaKqzadGaaG ymaiaaikdaaKqbagqaaaqabaaaaa@586A@ .These estimates at times may affect the values of the resulting decision variables significantly. Therefore, their incorrect choice may result in poor estimate of the design constant stress. Therefore, it is significant to carry out a sensitivity analysis to evaluate the robustness of the resulting Acceptance Life Test plan.

Sensitivity analysis helps to identify the design parameters ρ 1 , ρ 2 , β 1 and β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaeaajugWaiaaigdaaKqbagqaaaqabaGaaiilaiab eg8aYnaaBaaabaWaaSbaaeaajugWaiaaikdaaKqbagqaaaqabaGaai ilaiabek7aInaaBaaabaWaaSbaaeaajugWaiaaigdaaKqbagqaaaqa baGaamyyaiaad6gacaWGKbGaaGPaVlabek7aInaaBaaabaWaaSbaae aajugWaiaaikdaaKqbagqaaaqabaaaaa@4E41@ which need to be estimated with care to avoid the risk of obtaining wrong solutions. An Acceptance Life Test plan is said to be robust if a small departure in any has no effect in relative change in the optimal plan.

The percentage deviations (PD) of the optimal settings are obtained as PD=( | T ** T * | T * )×100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaads eacqGH9aqpdaqadaqaamaalaaabaWaaqWaaeaacaWGubWaaWbaaSqa beaacaGGQaGaaiOkaaaakiabgkHiTiaadsfadaahaaWcbeqaaiaacQ caaaaakiaawEa7caGLiWoaaeaacaWGubWaaWbaaSqabeaacaGGQaaa aaaaaOGaayjkaiaawMcaaiabgEna0kaaigdacaaIWaGaaGimaaaa@49EE@ , where T* is obtained with the given design parameters and T** is obtained when the parameter is miss-specified.

Table 2 illustrates the optimal test plans for various deviations from the design parameter estimates. The results explain that the optimal setting of T is robust to the small variance from baseline parameter estimates.

System
No.

Time to failure (ti)

Component failure-cause
(Si)

 

 

1.

0.0516

(2)

 

2.

0.1504

(1,2)

 

3.

0.1944

(1,2)

 

4.

1.2604

(1)

 

5.

3.1649

(1,2)

 

6.

5.437

(2)

 

7.

5.5425

(1)

 

8.

8.5725

(2)

 

9.

10.0166

(1)

 

10.

10.9509

(2)

 

Table 1 Simulated data

Parameter

%

K

T**

Percent deviation (%)

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaykW7cq aHYoGydaWgaaqaaKqzadGaaGymaaqcfayabaaaaa@3CB0@

-5%

1.75

0.000574

3.6526

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaykW7cq aHYoGydaWgaaqaaKqzadGaaGymaaqcfayabaaaaa@3CB0@

+5%

1.74

0.000596

7.6891

β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIn aaBaaabiqaaakajugWaiaaikdaaKqbagqaaaaa@3BC9@

-5%

1.78

0.000583

5.3500

β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIn aaBaaabiqaaakajugWaiaaikdaaKqbagqaaaaa@3BC9@

+5%

1.67

0.000587

5.9500

ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaeaajugWaiacaskIWaaajuaGbeaacaaMc8oabeaa aaa@3E1B@

-5%

1.57

0.000585

5.5979

ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaeaajugWaiacaskIWaaajuaGbeaacaaMc8oabeaa aaa@3E1B@

+5%

2.024

0.000585

5.5872

ρ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaeaajugWaiaaigdaaKqbagqaaiaaykW7aeqaaaaa @3CF0@

-5%

1.59

0.000589

4.9225

ρ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaeaajugWaiaaigdaaKqbagqaaiaaykW7aeqaaaaa @3CF0@

+5%

1.81

0.000581

6.2877

Table 2 Sensitivity Analysis for changes in design parameters

ρ 1=3.45, ρ 2=0.65, S 0 =20, β 1 =0.35and β 2 =0.25,n=10, n 12 =3andα=0.8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaqcLbmacaaIXaqcfaOaeyypa0JaeyOeI0IaaG4maiaac6ca caaI0aGaaGynaiaacYcacaaMc8oabeaacqaHbpGCdaWgaaqaaKqzad GaaGOmaKqbakabg2da9iaaicdacaGGUaGaaGOnaiaaiwdacaGGSaGa aGPaVlaadofadaWgaaqcgayaaKqzadGaaGimaaqcfayabaaabeaacq GH9aqpcaaIYaGaaGimaiaacYcacaaMc8UaeqOSdi2aaSbaaeaajugW aiaaigdaaKqbagqaaiabg2da9iaaicdacaGGUaGaaG4maiaaiwdaca aMc8Uaamyyaiaad6gacaWGKbGaaGPaVlabek7aInaaBaaabiqaaaka jugWaiaaikdaaKqbagqaaiabg2da9iaaicdacaGGUaGaaGOmaiaaiw dacaGGSaGaaGPaVlaad6gacqGH9aqpcaaMc8UaaGymaiaaicdacaGG SaGaamOBamaaBaaabaqcLbmacaaIXaGaaGOmaaqcfayabaGaeyypa0 JaaG4maiaaykW7caWGHbGaamOBaiaadsgacaaMc8UaeqySdeMaaGPa Vlabg2da9iaaykW7caaIWaGaaiOlaiaaiIdaaaa@8810@

Conclusion

This paper carefully determines a ramp-stress Acceptance Life Test for accelerated environmental conditions for a high reliability parallel system consisting of two dependent mechanism (components) using masked failure data. Such an experiment (testing) may be very useful in a two-engine plane or jet. Conclusively, a simulation study (using R) is used to illustrate the method developed. The sensitivity analysis results prove that the proposed plan is better for a small departure from baseline parameters.

Acknowledgement

None.

Conflict of interests

Author declares that there is no conflict of interest.

References

  1. Nelson RB. An Introduction to Copulas. Springer Science and Business Media, Inc. New Jersey. 2006.
  2. Elsayed EA. Reliability Engineering Addison-Wesley, Massachusets. 1996.
  3. Bhattacharya GK, Soejoeti ZA. Tampered Failure Rate Model for Step-Stress Accelerated Life Test. Commun, Statist Theor Meth. 1989. p. 1627–1643.
  4. De Groot MH, Goel PK. Bayesian Estimation and Optimal Designs in Partially Accelerated Life Testing.  Naval Res Logist Quart. 1979;26(2):223–235.
  5. Srivastava PW, Shukla R. Optimum log-logistic step-stress model with censoring. International Journal of Quality & Reliability Management. 2008;25(9):968–976.
  6. Srivastava PW, Gupta T. Optimum Time-Censored Modified Ramp-Stress ALT for The Burr Type XII Distribution with Warranty: A Goal   Programming.  International Journal Approach, of Reliability. Quality and Safety Engineering, 2015;22(3):23–25.
  7. Guo H Szidarovszky F, Niu P. Estimating component   reliability data. Reliability and Maintainability Symposium. 2013. p. 312–320.
  8. Usher JS, Hodgson TJ. Maximum likelihood analysis masked system of life data. IEEE Trans. Reliability, 1988;37(5):550-555.
  9. Lin DK, Usher JS, Guess FM. Exact likelihood maximum estimation using masked system-life data. IEEE Trans Reliability. 1993;42(4):631–635.
  10. Lin DK, Usher JS, Guess FM. Bayes estimation of component-life data. IEEE Trans. Reliability. 1996;45(2):233–237.
  11. Miyakawa M. Analysis of incomplete data. IEEE Trans Reliability. 1984;33:293–296.
  12. Fan TH, Hsu TM. Accelerated life tests of a series system with masked interval data under Exponential lifetime Distribution. IEEE Tran Reliability. 2012;45:233–237.
  13. Srivastava PW, Savita. Design-Stress of Accelerated RampLife  Test Plans for a Parallel System with two dependent components. International Journal of Performability Engineering. 2016;12(3):241–248.
  14. Escobar LA, Meeker WQ. Planning accelerated life tests with two or more experimental factors. Technometrics. 1995;37(4):411–427.
  15. Sarhan AM, Usher JS, Guess FM. Estimators for   Reliability   Method Model Using Dependent Masked Data System Life   Test. IEEE Trans. Reliability. 2007;56(2):312–320.
  16. Johnson NL, Kotz S. Continuous Multivariate Distributions. New York: John Wiley & Sons; 1972.
Creative Commons Attribution License

©2018 Odunayo. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.