Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 2 Issue 1

Numerical application to monitor diffusion Pressure on the deposition of fungi in slight heterogeneous phreatic deposition

Eluozo  SN, Afiibor BB, Amagbo LG

Department of Civil Engineering, Gregory University Uturu, Nigeria

Correspondence:  Eluozo SN, Department of Civil Engineering, Gregory University Uturu (GUU)Abia State of Nigeria, Nigeria

Received: July 28, 2017 | Published: January 29, 2018

Citation: Eluozo SN, Afiibor BB, Amagbo L. Numerical application to monitor diffusion pressure on the deposition of fungi in slight heterogeneous phreatic deposition. MOJ App Bio Biomech. 2018;2(1):29–33. DOI: 10.15406/mojabb.2018.02.00041

Download PDF

Abstract

These paper monitors the behaviour of fungi in slight heterogeneous phreatic bed, the study express the rate of pressure from diffusion on fungi deposition in the study environment, the refection of predominant deposition of diffusion were observed from the graphical representation. The simulation values generated the following results that ranged from 0.0024-0.0918, 1.0342-1.1842, 0.9054-0.0945, 1.087-0.02195, 0.0068-0.035, the study express the fluctuation base on the influence from this variables, the study area where there is fluctuation implies that diffusion deposition fluctuate in those strata, the reflection from this pressure were still insignificant as the concentration could not meet the required standard for quality groundwater to be consumed by human.

Keywords: numerical, diffusion fungi heterogeneous, phreatic bed, numerical modeling, concentration.

Introduction

The cost of drinking water treatment and the taste and odor problems have increased significantly in the past decade. While nitrogen is a concern, phosphorous (P) is generally considered the most limiting nutrient. The majority of P loading to the lake in this area comes from surface-applied poultry litter. Of the 48,000kg/yr of phosphorous entering Lake Eucha, 69% is thought to come from poultry litter application as fertilizer to pasture and crops in the cost of drinking water treatment and the taste and odor problems have increased significantly in the past decade. While nitrogen is a concern, phosphorous (P) is generally considered the most limiting nutrient. The majority of P loading to the lake in this area comes from surface-applied poultry litter. Of the 48,000kg/yr of phosphorous entering Lake Eucha, 69% is thought to come from poultry litter application as fertilizer to pasture and crops in Excessive soil P concentrations can increase potential P transport to surface waters or leaching into the subsurface. This can have serious negative implications. Daniel et al. (1998) found that concentrations of P critical for terrestrial plant growth were an order of magnitude larger than concentrations at which lake eutrophication may occur Subsurface P transport is a less studied and understood transport mechanism compared to transport by overland flow, although abundant studies have reported its occurrence.1‒5 For example, Andersen and Krovang (2006) modified a P Index to integrate potential P transport pathways of tile drains and leaching in Denmark. Hively et al.2 considered transport of total dissolved P (TDP) for both base flow and surface runoff. Nelson et al.5 indicated that phosphorus leaching and subsurface transport should be considered when assessing long-term risk of P loss from waste amended soils. Kleinman et al.4 noted that the P leaching is a significant, but temporally and spatially variable transport pathway. From research on four grassland soils, Turner & Hunt et al.6 documented that subsurface P transfer, primarily in the dissolved form, can occur at concentrations that could cause eutrophication. Other researchers are beginning to emphasize colloidal P transport in the subsurface, as P attaches to small size particles capable of being transported through the soil pore spaces.7‒10 The Millennium Declaration in 2000 and the subsequent formulation of targets under the Millennium Development Goals (MDGs) marked a fundamental change. As the official monitoring instrument for progress towards achieving MDG 7 target C, the JMP prepares biennial global updates of this progress. Prior to 2000, JMP assessments had been undertaken in 1991, 1993, 1996 and 2000. The results for the year 2000 survey are presented in Global water supply and sanitation assessment 2000 report (WHO/UNICEF, 2000), which contains data for six global regions: Africa, Asia, Europe, Latin America and the Caribbean, Northern America, and Oceania. This report introduced a monitoring approach based on household surveys and censuses which has subsequently been refined. The methods and procedures lead to an estimate of numbers of people with access to improved water sources and improved sanitation. The Millennium Declaration in 2000 and the subsequent formulation of targets under the Millennium Development Goals (MDGs) marked a fundamental change. As the official monitoring instrument for progress towards achieving MDG 7 target C, the JMP prepares biennial global updates of this progress. Prior to 2000, JMP assessments had been undertaken in 1991, 1993, 1996 and 2000. The results for the year 2000 survey are presented in Global water supply and sanitation assessment 2000 report (WHO/UNICEF, 2000), which contains data for six global regions: Africa, Asia, Europe, Latin America and the Caribbean, Northern America, and Oceania. This report introduced a monitoring approach based on household surveys and censuses which has subsequently been refined. The methods and procedures lead to an estimate of numbers of people with access to improved water sources and improved sanitation. If the current trend continues, the MDG drinking-water target will be exceeded by 2015, but the sanitation target will be missed by about 1 billion people (over and above the 1.7 billion who would not have access even if the target were achieved). In the past, the JMP drew guidance from a technical advisory.

Governing equation

The Implicit Scheme Numerical Solution

C t = Q A C x +D 2 C x 2 + q L IN A C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGdbaabaGaeyOaIyRaamiDaaaacqGH9aqpdaWcaaqa aiaadgfaaeaacaWGbbaaamaalaaabaGaeyOaIyRaam4qaaqaaiabgk Gi2kaadIhaaaGaey4kaSIaamiramaalaaabaGaeyOaIy7aaWbaaeqa baqcLbmacaaIYaaaaKqbakaadoeaaeaacqGHciITcaWG4bWaaWbaae qabaqcLbmacaaIYaaaaaaajuaGcqGHRaWkdaWcaaqaaiaadghacaWG mbWaaSbaaeaacaWGjbGaamOtaaqabaaabaGaamyqaaaacaWGdbaaaa@53FD@ (1)

But Q A = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGrbaabaGaamyqaaaacqGH9aqpaaa@3936@ Velocity, v in meter per second (m/s). Thus equation (1) becomes:

C t =v C x +D 2 C x 2 + q L IN A C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWGdbaabaGaeyOaIyRaamiDaaaacqGH9aqpcaWG2bWa aSaaaeaacqGHciITcaWGdbaabaGaeyOaIyRaamiEaaaacqGHRaWkca WGebWaaSaaaeaacqGHciITdaahaaqabeaajugWaiaaikdaaaqcfaOa am4qaaqaaiabgkGi2kaadIhadaahaaqabeaajugWaiaaikdaaaaaaK qbakabgUcaRmaalaaabaGaamyCaiaadYeadaWgaaqaaiaadMeacaWG obaabeaaaeaacaWGbbaaaiaadoeaaaa@534C@ (2)

Converting the PDE to its algebraic equivalent equation by applying the finite different approximation technique for the implicit scheme, we obtain as follows.

C t = C i j+1 C i j Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRaam4qaaqaaiabgkGi2kaadshaaaGaeyypa0ZaaSaaaeaa caWGdbWcdaqhaaqcfayaaKqzadGaamyAaaqcfayaaKqzadGaamOAai abgUcaRiaaigdaaaqcfaOaeyOeI0Iaam4qaSWaa0baaKqbagaajugW aiaadMgaaKqbagaajugWaiaadQgaaaaajuaGbaGaeuiLdqKaamiDaa aaaaa@4EC5@ (3)

C x = C i+1 j+1 C i1 j+1 2Δx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRaam4qaaqaaiabgkGi2kaadIhaaaGaeyypa0ZaaSaaaeaa caWGdbWcdaqhaaqcfayaaKqzadGaamyAaiabgUcaRiaaigdaaKqbag aajugWaiaadQgacqGHRaWkcaaIXaaaaKqbakabgkHiTiaadoealmaa DaaajuaGbaqcLbmacaWGPbGaeyOeI0IaaGymaaqcfayaaKqzadGaam OAaiabgUcaRiaaigdaaaaajuaGbaGaaGOmaiabfs5aejaadIhaaaaa aa@546B@ (4)

2 C x 2 = C i+1 j+1 2 C i j+1 + C i1 j+1 Δ x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIy7aaWbaaeqabaqcLbmacaaIYaaaaKqbakaadoeaaeaacqGH ciITcaWG4bWcdaahaaqcfayabeaajugWaiaaikdaaaaaaKqbakabg2 da9maalaaabaGaam4qaSWaa0baaKqbagaajugWaiaadMgacqGHRaWk caaIXaaajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaajuaGcqGHsi slcaaIYaGaam4qaSWaa0baaKqbagaajugWaiaadMgaaKqbagaajugW aiaadQgacqGHRaWkcaaIXaaaaKqbakabgUcaRiaadoealmaaDaaaju aGbaqcLbmacaWGPbGaeyOeI0IaaGymaaqcfayaaKqzadGaamOAaiab gUcaRiaaigdaaaaajuaGbaGaeuiLdqKaamiEaSWaaWbaaKqbagqaba qcLbmacaaIYaaaaaaaaaa@6634@ (5)

Substituting equation (3) through (5) into (2) gives:

C i j=1 C i j Δt =v[ C i+1 j+1 C i1 j+1 2Δx ]+D[ C i+1 j+1 2 C i j+1 + C i1 j+1 Δ x 2 ]+ q L IN A C i j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba Gaam4qaSWaa0baaKqbagaajugWaiaadMgaaKqbagaajugWaiaadQga cqGH9aqpcaaIXaaaaKqbakabgkHiTiaadoealmaaDaaajuaGbaqcLb macaWGPbaajuaGbaqcLbmacaWGQbaaaaqcfayaaiabfs5aejaadsha aaGaeyypa0JaamODamaadmaabaWaaSaaaeaacaWGdbWcdaqhaaqcfa yaaKqzadGaamyAaiabgUcaRiaaigdaaKqbagaajugWaiaadQgacqGH RaWkcaaIXaaaaKqbakabgkHiTiaadoealmaaDaaajuaGbaqcLbmaca WGPbGaeyOeI0IaaGymaaqcfayaaKqzadGaamOAaiabgUcaRiaaigda aaaajuaGbaGaaGOmaiabfs5aejaadIhaaaaacaGLBbGaayzxaaGaey 4kaSIaamiramaadmaabaWaaSaaaeaacaWGdbWcdaqhaaqcfayaaKqz adGaamyAaiabgUcaRiaaigdaaKqbagaajugWaiaadQgacqGHRaWkca aIXaaaaKqbakabgkHiTiaaikdacaWGdbWcdaqhaaqcfayaaKqzadGa amyAaaqcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaqcfaOaey4kaS Iaam4qaSWaa0baaKqbagaajugWaiaadMgacqGHsislcaaIXaaajuaG baqcLbmacaWGQbGaey4kaSIaaGymaaaaaKqbagaacqqHuoarcaWG4b WcdaahaaqcfayabeaajugWaiaaikdaaaaaaaqcfaOaay5waiaaw2fa aiabgUcaRmaalaaabaGaamyCaiaadYeadaWgaaqaaiaadMeacaWGob aabeaaaeaacaWGbbaaaiaadoealmaaDaaajuaGbaqcLbmacaWGPbaa juaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaaa@9B1E@

C i j+1 C i j = Δt 2Δx v[ C i+1 j+1 C i1 j+1 ]+ ΔtD Δ x 2 [ C i+1 j+1 2 C i j+1 + C i1 j+1 ]+ Δtq L IN A C l j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbmacaWGQbGaey4kaSIa aGymaaaajuaGcqGHsislcaWGdbWcdaqhaaqcfayaaKqzadGaamyAaa qcfayaaKqzadGaamOAaaaajuaGcqGH9aqpdaWcaaqaaiabfs5aejaa dshaaeaacaaIYaGaeuiLdqKaamiEaaaacaWG2bWaamWaaeaacaWGdb WcdaqhaaqcfayaaKqzadGaamyAaiabgUcaRiaaigdaaKqbagaajugW aiaadQgacqGHRaWkcaaIXaaaaKqbakabgkHiTiaadoealmaaDaaaju aGbaqcLbmacaWGPbGaeyOeI0IaaGymaaqcfayaaKqzadGaamOAaiab gUcaRiaaigdaaaaajuaGcaGLBbGaayzxaaGaey4kaSYaaSaaaeaacq qHuoarcaWG0bGaamiraaqaaiabfs5aejaadIhalmaaCaaajuaGbeqa aKqzadGaaGOmaaaaaaqcfa4aamWaaeaacaWGdbWcdaqhaaqcfayaaK qzadGaamyAaiabgUcaRiaaigdaaKqbagaajugWaiaadQgacqGHRaWk caaIXaaaaKqbakabgkHiTiaaikdacaWGdbWcdaqhaaqcfayaaKqzad GaamyAaaqcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaqcfaOaey4k aSIaam4qaSWaa0baaKqbagaajugWaiaadMgacqGHsislcaaIXaaaju aGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaKqbakaawUfacaGLDbaa cqGHRaWkdaWcaaqaaiabfs5aejaadshacaWGXbGaamitamaaBaaaba Gaamysaiaad6eaaeqaaaqaaiaadgeaaaGaam4qaSWaa0baaKqbagaa jugWaiaadYgaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaaaa@9FAB@

C i j+1 C i j =λ( C i+1 j+1 C i1 j+1 )+K( C i+1 j+1 2 C i j+1 + C i1 j+1 )+α C i j+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbmacaWGQbGaey4kaSIa aGymaaaajuaGcqGHsislcaWGdbWcdaqhaaqcfayaaKqzadGaamyAaa qcfayaaKqzadGaamOAaaaajuaGcqGH9aqpcqaH7oaBdaqadaqaaiaa doealmaaDaaajuaGbaqcLbmacaWGPbGaey4kaSIaaGymaaqcfayaaK qzadGaamOAaiabgUcaRiaaigdaaaqcfaOaeyOeI0Iaam4qaSWaa0ba aKqbagaajugWaiaadMgacqGHsislcaaIXaaajuaGbaqcLbmacaWGQb Gaey4kaSIaaGymaaaaaKqbakaawIcacaGLPaaacqGHRaWkcaWGlbWa aeWaaeaacaWGdbWcdaqhaaqcfayaaKqzadGaamyAaiabgUcaRiaaig daaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaKqbakabgkHiTiaa ikdacaWGdbWcdaqhaaqcfayaaKqzadGaamyAaaqcfayaaKqzadGaam OAaiabgUcaRiaaigdaaaqcfaOaey4kaSIaam4qaSWaa0baaKqbagaa jugWaiaadMgacqGHsislcaaIXaaajuaGbaqcLbmacaWGQbGaey4kaS IaaGymaaaaaKqbakaawIcacaGLPaaacqGHRaWkcqaHXoqycaWGdbWc daqhaaqcfayaaKqzadGaamyAaaqcfayaaKqzadGaamOAaiabgUcaRi aaigdaaaaaaa@8CE4@

Or

C i j +( αλ2K1 ) C i j+1 +( λ+K ) C i+1 j+1 +K C i1 j+1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbmacaWGQbaaaKqbakab gUcaRmaabmaabaGaeqySdeMaeyOeI0Iaeq4UdWMaeyOeI0IaaGOmai aadUeacqGHsislcaaIXaaacaGLOaGaayzkaaGaam4qaSWaa0baaKqb agaajugWaiaadMgaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaK qbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaayjkaiaa wMcaaiaadoealmaaDaaajuaGbaqcLbmacaWGPbGaey4kaSIaaGymaa qcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaqcfaOaey4kaSIaam4s aiaadoealmaaDaaajuaGbaqcLbmacaWGPbGaeyOeI0IaaGymaaqcfa yaaKqzadGaamOAaiabgUcaRiaaigdaaaqcfaOaeyypa0JaaGimaaaa @6E04@ (6)

For cases where the initial and final conditions are given, boundary condition at the first node can be expressed as:

C 0 j+1 = f 0 ( t j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIWaaajuaGbaqcLbmacaWGQbGaey4kaSIa aGymaaaajuaGcqGH9aqpcaWGMbWaaSbaaeaajugWaiaaicdaaKqbag qaamaabmaabaGaamiDaSWaaWbaaKqbagqabaqcLbmacaWGQbGaey4k aSIaaGymaaaaaKqbakaawIcacaGLPaaaaaa@4AC7@ (7a)

Hence, first node equation is expressed as:

C i j +( αλ2K1 ) C i j+1 +( λ+K ) C i+1 j+1 =K f 0 ( t j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGPbaajuaGbaqcLbmacaWGQbaaaKqbakab gUcaRmaabmaabaGaeqySdeMaeyOeI0Iaeq4UdWMaeyOeI0IaaGOmai aadUeacqGHsislcaaIXaaacaGLOaGaayzkaaGaam4qaSWaa0baaKqb agaajugWaiaadMgaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaK qbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaayjkaiaa wMcaaiaadoealmaaDaaajuaGbaqcLbmacaWGPbGaey4kaSIaaGymaa qcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaqcfaOaeyypa0JaeyOe I0Iaam4saiaadAgadaWgaaqaaKqzadGaaGimaaqcfayabaWaaeWaae aacaWG0bWaaWbaaeqabaqcLbmacaWGQbGaey4kaSIaaGymaaaaaKqb akaawIcacaGLPaaaaaa@6DA6@ (7b)

C l j+1 = f l+1 ( t j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGSbaajuaGbaqcLbmacaWGQbGaey4kaSIa aGymaaaajuaGcqGH9aqpcaWGMbWcdaWgaaqcfayaaKqzadGaamiBai abgUcaRiaaigdaaKqbagqaamaabmaabaGaamiDamaaCaaabeqaaKqz adGaamOAaiabgUcaRiaaigdaaaaajuaGcaGLOaGaayzkaaaaaa@4CD2@ (8a)

Similarly, the last node boundary condition is:

C l j +( αλ2K1 ) C l j+1 +K C l1 j+1 =( λ+K ) f l+1 ( t j+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaWGSbaajuaGbaqcLbmacaWGQbaaaKqbakab gUcaRmaabmaabaGaeqySdeMaeyOeI0Iaeq4UdWMaeyOeI0IaaGOmai aadUeacqGHsislcaaIXaaacaGLOaGaayzkaaGaam4qaSWaa0baaKqb agaajugWaiaadYgaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaK qbakabgUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaamiBaiab gkHiTiaaigdaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaKqbak abg2da9iabgkHiTmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaayjk aiaawMcaaiaadAgalmaaBaaajuaGbaqcLbmacaWGSbGaey4kaSIaaG ymaaqcfayabaWaaeWaaeaacaWG0bWcdaahaaqcfayabeaajugWaiaa dQgacqGHRaWkcaaIXaaaaaqcfaOaayjkaiaawMcaaaaa@70C0@ (8b)

For 1 x 9 a n d 0 t 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaigdacq GHKjYOcaWG4bGaeyizImQaaGyoauaabeqabeaaaeaacaWGHbGaamOB aiaadsgaaaqbaeqabeqaaaqaaiaaicdacqGHKjYOcaWG0bGaeyizIm QaaGinaaaaaaa@4511@ ; and for the first instance, we obtain as follows:

At time=0(i.e j=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WG0bqbaeqabeqaaaqaaiaadshacaWGPbGaamyBaiaadwgacqGH9aqp caaIWaGaaiikaiaadMgacaGGUaGaamyzauaabeqabeaaaeaacaWGQb Gaeyypa0JaaGimaiaacMcaaaaaaaaa@4463@ :

i=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIXaaaaa@3928@ ,

C 1 0 +K C 0 1 +( αλ2K1 ) C 1 1 +( λ+K ) C 2 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGimaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaIYaaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@644B@ (9a)

i=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaIYaaaaa@3929@ ,

C 2 0 +K C 1 1 +( αλ2K1 ) C 2 1 +( λ+K ) C 3 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIYaaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGymaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaIYaaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaIZaaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@644F@ (9b)

i=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzadGaamyAai abg2da9iaaiodaaaa@39CA@ ,

C 3 0 +K C 2 1 +( αλ2K1 ) C 3 1 +( λ+K ) C 4 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaIZaaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGOmaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaIZaaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI0aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@6453@ (9c)

i=4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI0aaaaa@392B@ ,

C 4 0 +K C 3 1 +( αλ2K1 ) C 4 1 +( λ+K ) C 5 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI0aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaG4maaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI0aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI1aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@6457@ (9d)

i=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI1aaaaa@392C@ ,

C 5 0 +K C 4 1 +( αλ2K1 ) C 5 1 +( λ+K ) C 6 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI1aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGinaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI1aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI2aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@645B@ (9e)

i=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI2aaaaa@392D@ ,

C 6 0 +K C 5 1 +( αλ2K1 ) C 6 1 +( λ+K ) C 7 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI2aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGynaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI2aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI3aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@645F@ (9f)

i=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI3aaaaa@392E@ ,

C 7 0 +K C 6 1 +( αλ2K1 ) C 7 1 +( λ+K ) C 8 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI3aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGOnaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI3aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI4aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@6463@ (9g)

i=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI4aaaaa@392F@ ,

C 8 0 +K C 7 1 +( αλ2K1 ) C 8 1 +( λ+K ) C 9 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI4aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaG4naaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI4aaajuaGbaqcLbmacaaI XaaaaKqbakabgUcaRmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaay jkaiaawMcaaiaadoealmaaDaaajuaGbaqcLbmacaaI5aaajuaGbaqc LbmacaaIXaaaaKqbakabg2da9iaaicdaaaa@6467@ (9h)

i=9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgacq GH9aqpcaaI5aaaaa@3930@

C 9 0 +K C 8 1 +( αλ2K1 ) C 9 1 =( λ+K ) f 10 ( t 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoealm aaDaaajuaGbaqcLbmacaaI5aaajuaGbaqcLbmacaaIWaaaaKqbakab gUcaRiaadUeacaWGdbWcdaqhaaqcfayaaKqzadGaaGioaaqcfayaaK qzadGaaGymaaaajuaGcqGHRaWkdaqadaqaaiabeg7aHjabgkHiTiab eU7aSjabgkHiTiaaikdacaWGlbGaeyOeI0IaaGymaaGaayjkaiaawM caaiaadoealmaaDaaajuaGbaqcLbmacaaI5aaajuaGbaqcLbmacaaI XaaaaKqbakabg2da9iabgkHiTmaabmaabaGaeq4UdWMaey4kaSIaam 4saaGaayjkaiaawMcaaiaadAgadaWgaaqaaKqzadGaaGymaiaaicda aKqbagqaamaabmaabaGaamiDaSWaaWbaaKqbagqabaqcLbmacaaIXa aaaaqcfaOaayjkaiaawMcaaaaa@6733@ (9i)

Atime,t=0, C 1 0 = C 2 0 = C 3 0 = C 4 0 = C 5 0 = C 6 0 = C 7 0 = C 8 0 = C 9 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WG0bGaamyAaiaad2gacaWGLbGaaiilaiaadshacqGH9aqpcaaIWaGa aiilaiaadoealmaaDaaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmaca aIWaaaaKqbakabg2da9iaadoealmaaDaaajuaGbaqcLbmacaaIYaaa juaGbaqcLbmacaaIWaaaaKqbakabg2da9iaadoealmaaDaaajuaGba qcLbmacaaIZaaajuaGbaqcLbmacaaIWaaaaKqbakabg2da9iaadoea lmaaDaaajuaGbaqcLbmacaaI0aaajuaGbaqcLbmacaaIWaaaaKqbak abg2da9iaadoealmaaDaaajuaGbaqcLbmacaaI1aaajuaGbaqcLbma caaIWaaaaKqbakabg2da9iaadoealmaaDaaajuaGbaqcLbmacaaI2a aajuaGbaqcLbmacaaIWaaaaKqbakabg2da9iaadoealmaaDaaajuaG baqcLbmacaaI3aaajuaGbaqcLbmacaaIWaaaaKqbakabg2da9iaado ealmaaDaaajuaGbaqcLbmacaaI4aaajuaGbaqcLbmacaaIWaaaaKqb akabg2da9iaadoealmaaDaaajuaGbaqcLbmacaaI5aaajuaGbaqcLb macaaIWaaaaKqbakabg2da9iaaicdaaaa@831F@

Arranging equations (6a) through (6i) in vector matrix gives:

[ ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω ]{ C 1 1 C 2 1 C 3 1 C 4 1 C 5 1 C 6 1 C 7 1 C 8 1 C 9 1 }={ K f 0 ( t 1 ) 0 0 0 0 0 0 0 ( λ+K ) f 10 ( t 1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba qbaeqabKqcaaaaaaaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4s aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4U dWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGa eqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey 4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdC habaGaeq4UdWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca WGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIa am4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChaaaGa ay5waiaaw2faamaacmaabaqbaeqabKqaaaaaaeaacaWGdbWcdaqhaa qcfayaaKqzadGaaGymaaqcfayaaKqzadGaaGymaaaaaKqbagaacaWG dbWcdaqhaaqcfayaaKqzadGaaGOmaaqcfayaaKqzadGaaGymaaaaaK qbagaacaWGdbWcdaqhaaqcfayaaKqzadGaaG4maaqcfayaaKqzadGa aGymaaaaaKqbagaacaWGdbWcdaqhaaqcfayaaKqzadGaaGinaaqcfa yaaKqzadGaaGymaaaaaKqbagaacaWGdbWcdaqhaaqcfayaaKqzadGa aGynaaqcfayaaKqzadGaaGymaaaaaKqbagaacaWGdbWcdaqhaaqcfa yaaKqzadGaaGOnaaqcfayaaKqzadGaaGymaaaaaKqbagaacaWGdbWc daqhaaqcfayaaKqzadGaaG4naaqcfayaaKqzadGaaGymaaaaaKqbag aacaWGdbWcdaqhaaqcfayaaKqzadGaaGioaaqcfayaaKqzadGaaGym aaaaaKqbagaacaWGdbWcdaqhaaqcfayaaKqzadGaaGyoaaqcfayaaK qzadGaaGymaaaaaaaajuaGcaGL7bGaayzFaaGaeyypa0ZaaiWaaeaa faqabeqcbaaaaaqaaiabgkHiTiaadUeacaWGMbWcdaWgaaqcfayaaK qzadGaaGimaaqcfayabaWaaeWaaeaacaWG0bWcdaahaaqcfayabeaa jugWaiaaigdaaaaajuaGcaGLOaGaayzkaaaabaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiabgkHiTmaabmaabaGaeq4UdWMaey4kaSIaam4saaGaayjkai aawMcaaiaadAgadaWgaaqaaKqzadGaaGymaiaaicdaaKqbagqaamaa bmaabaGaamiDaSWaaWbaaKqbagqabaqcLbmacaaIXaaaaaqcfaOaay jkaiaawMcaaaaaaiaawUhacaGL9baaaaa@F395@

Where:

ω=( αλ2K1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3j abg2da9maabmaabaGaeqySdeMaeyOeI0Iaeq4UdWMaeyOeI0IaaGOm aiaadUeacqGHsislcaaIXaaacaGLOaGaayzkaaaaaa@4336@

Hence, at any point with time, the general form of the above equation is presented as:

[ ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω λ+K 0 0 0 0 0 0 0 K ω ]{ C 1 j+1 C 2 j+1 C 3 j+1 C 4 j+1 C 5 j+1 C 6 j+1 C 7 j+1 C 8 j+1 C 9 j+1 }={ K f 0 ( t j+1 ) 0 0 0 0 0 0 0 ( λ+K ) f l+1 ( t j+1 ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba qbaeqabKqcaaaaaaaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4s aaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4U dWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGa eqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey 4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdC habaGaeq4UdWMaey4kaSIaam4saaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca WGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIaam4saaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiaaicdaaeaacaWGlbaabaGaeqyYdChabaGaeq4UdWMaey4kaSIa am4saaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaWGlbaabaGaeqyYdChaaaGa ay5waiaaw2faamaacmaabaqbaeqabKqaaaaaaeaacaWGdbWcdaqhaa qcfayaaKqzadGaaGymaaqcfayaaKqzadGaamOAaiabgUcaRiaaigda aaaajuaGbaGaam4qaSWaa0baaKqbagaajugWaiaaikdaaKqbagaaju gWaiaadQgacqGHRaWkcaaIXaaaaaqcfayaaiaadoealmaaDaaajuaG baqcLbmacaaIZaaajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaK qbagaacaWGdbWcdaqhaaqcfayaaKqzadGaaGinaaqcfayaaKqzadGa amOAaiabgUcaRiaaigdaaaaajuaGbaGaam4qaSWaa0baaKqbagaaju gWaiaaiwdaaKqbagaajugWaiaadQgacqGHRaWkcaaIXaaaaaqcfaya aiaadoealmaaDaaajuaGbaqcLbmacaaI2aaajuaGbaqcLbmacaWGQb Gaey4kaSIaaGymaaaaaKqbagaacaWGdbWcdaqhaaqcfayaaKqzadGa aG4naaqcfayaaKqzadGaamOAaiabgUcaRiaaigdaaaaajuaGbaGaam 4qaSWaa0baaKqbagaajugWaiaaiIdaaKqbagaajugWaiaadQgacqGH RaWkcaaIXaaaaaqcfayaaiaadoealmaaDaaajuaGbaqcLbmacaaI5a aajuaGbaqcLbmacaWGQbGaey4kaSIaaGymaaaaaaaajuaGcaGL7bGa ayzFaaGaeyypa0ZaaiWaaeaafaqabeqcbaaaaaqaaiabgkHiTiaadU eacaWGMbWcdaWgaaqcfayaaKqzadGaaGimaaqcfayabaWaaeWaaeaa caWG0bWcdaahaaqcfayabeaajugWaiaadQgacqGHRaWkcaaIXaaaaa qcfaOaayjkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqGHsislda qadaqaaiabeU7aSjabgUcaRiaadUeaaiaawIcacaGLPaaacaWGMbWc daWgaaqcfayaaKqzadGaamiBaiabgUcaRiaaigdaaKqbagqaamaabm aabaGaamiDaSWaaWbaaKqbagqabaqcLbmacaWGQbGaey4kaSIaaGym aaaaaKqbakaawIcacaGLPaaaaaaacaGL7bGaayzFaaaaaa@0942@

Method of application

Numerical Method were applied through the developed system to generate the governing equations, derived solution generated the derived model solution, this were simulated to monitor the contaminants at different depth, values of contaminant known as concentration at different depth were generated, this results are within the values of concentration from other experimental values from the same contaminant by other experts, validation of the developed model is a thorough concept for monitoring such microbes in deltaic environment

Results and discussion

Results and discussion are presented in tables including graphical representation for Fungi stated below. The study show the of fungi deposition and its growth rate between the intercedes of the formation, the contaminant rapidly increase to the optimum rate recorded at 20m, sudden decrease was experienced between 25-30m. (Figure 1) (Figure 2) developed exponential phase of migration with slight fluctuation in where the optimum rate are recorded at 30m, while Figure 3 experiences sudden increase where the optimum are observed at 10m, sudden decrease were experienced to the lowest rate of concentration recorded at 30m. Figure 4 experiences similar condition, maximum concentration was experienced at five metres, while sudden degradation was observed in gradual process to the lowest rate recorded at 30m. Figure 5 maintained exponential phase were the growth rate increase with respect to change in depth to the optimum level recorded at 30m (Tables 1-5).

Figure 1 Simulation Values from Fungi Concentration at Different Depth.

Figure 2 Simulation Values from Fungi Concentration at Different Depth.

Figure 3 Simulation Values from Fungi Concentration at Different Depth.

Figure 4 Simulation Values from Fungi Concentration at Different Depth.

Figure 5 Simulation Values from Fungi Concentration at Different Depth.

Depth (m)

Concentration (g/ml)

0

0.0024

3

0.0257

6

0.0477

9

0.0677

12

0.0850

15

0.0988

18

0.1085

21

0.1133

24

0.1126

27

0.1057

30

0.0918

Table 1 Simulation Values from Fungi Concentration at Different Depth

Depth(m)

Concentration(g/L)

0

1.0342

3

1.0249

6

0.9778

9

0.9091

12

0.835

15

0.7717

18

0.7354

21

0.7423

24

0.8086

27

0.9505

30

1.1842

Table 2 Simulation Values from Fungi Concentration at Different Depth.

Depth(m)

Concentration(g/L)

0

0.9054

3

1.106798

6

1.128391

9

1.033118

12

0.873029

15

0.689288

18

0.512172

21

0.361074

24

0.244498

27

0.160062

30

0.0945

Table 3 Simulation Values from Fungi Concentration at Different Depth

Depth(m)

Concentration(g/L)

0

1.087

3

1.044267

6

0.986386

9

0.913359

12

0.825184

15

0.721863

18

0.603394

21

0.469779

24

0.321016

27

0.157107

30

0.002195

Table 4 Simulation Values from Fungi Concentration at Different Depth

Depth(m)

Concentration(g/L)

0

0.0068

3

0.0071

6

0.0088

9

0.0116

12

0.0151

15

0.0192

18

0.0236

21

0.0279

24

0.0319

27

0.0353

30

0.0379

Table 5 Simulation Values from Fungi Concentration at Different Depth

Conclusion

The study examine the deposition rate of fungi under the influences of predominant diffusion between intercedes of the formation. The depositions of diffusion between the strata express predominant pressure in the migration of fungi in study environment, the heterogeneity in there depositions were also observed to affect the rate of migration, the study experienced fluctuation base on the pressure of predominant diffusion, slight heterogeneous in phreatic bed was found significant on the pressure of the transport system, the study has thoroughly detail the behavior of fungi deposition on an environment where there is significant diffusion in the formation, these condition were observed in the graphical representation of the concentration, it has definitely express the effect from diffusion on the transport process of fungi in slight heterogeneous environment .

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. Heathwaite L, Haygarth P, Matthews R, et al. Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources. Journal of Environmental Quality. 2005;34(1):287‒298.
  2. Hively WD, Gerard-Marchant P, Steenhuis TS. Distributed hydrological modeling of total dissolved phosphorus transport in an agricultural landscape II. Dissolved phosphorus transport. Hydrology and Earth System Sciences. 2006;10(2):263‒276.
  3. Ilg K, Kaupenjohann M. Colloidal and dissolved phosphorus in sandy soils as affected by phosphorus saturation. J Environ Qual. 2005;34(3):926‒935.
  4. Kleinman PJA, Needelman BA, Sharpley AN, et al. Using soil phosphorus profile data to assess phosphorus leaching potential in manured soils. Soil Science Society of America Journal. 2004;67(1):215‒224.
  5. Nelson NO, Parsons JE, Mikkelson RL. Field-scale evaluation of phosphorus leaching in acid sandy soils receiving swine waste. Journal of Environmental Quality. 2005;34(6):2024‒2035.
  6. Hunt B. Dispersive sources in uniform ground-water flow. American Society of Civil Engineering Journal Hydraulics Division. 1978;104(1):75‒85.
  7. Wagner K, Woodruff S. Phase I Clean Lakes Project, Diagnostic and Feasibility Study of Lake Eucha. Oklahoma Conservation Commission, USA; 1997.
  8. Storm DE, White MJ, Smolen MD, et al. Modeling Phosphorus Loading for the Lake Eucha Basin. USA; 2001.
  9. Storm DE, White MJ, Smolen MD. Modeling the Lake Eucha Basin Using SWAT 2000. Oklahoma State University, USA; 2002.
  10. John WF. Subsurface transport of phosphorus in riparian loodplains: tracer and phosphorus transport experiments. University of Mississippi Oxford, USA; 2006.
Creative Commons Attribution License

©2018 Eluozo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.