Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 2 Issue 5

Modeling and simulation to predict variation of void ration and permeability influence on E-coli transport in heterogeneous sand gravel depositions

Eluozo SN,1 Afiibor BB2

1Department of Civil Engineering, Gregory University Uturu (GUU), Nigeria
2Department of Statistics Federal Polytechnic, Nigeria

Correspondence: Eluozo SN, Department of Civil Engineering, Gregory University Uturu (GUU) Abia State of Nigeria, Nigeria

Received: August 31, 2018 | Published: October 8, 2018

Citation: Eluozo SN, Afiibor BB. Modeling and simulation to predict variation of void ration and permeability influence on E-coli transport in heterogeneous sand gravel depositions. MOJ App Bio Biomech. 2018;2(5):295–301. DOI: 10.15406/mojabb.2018.02.00084

Download PDF

Abstract

This study monitored heterogeneous deposition of void ratio in predominant sand gravel depositions, several studies had been done on transport system with relation to depth of the formation, but the study centered more on time of transport in relation to heterogeneous void ratio and permeability of sand gravel formation, the time of transport were subjected to determine the rate of transport to the Phreatic depositions, fluctuation and exponential phase of transport were observed in the study area, depth of transport were slightly evaluated in the study, but the focus of the study is more on time influenced by heterogeneous void ratio on sand gravel depositions, simulation generated predictive values that were validated with experimental values and both parameters express favorable fits for model validation, the study provide platform to monitor time of transport influenced by heterogeneous void ratio in predominant sand grave depositions. Experts will definitely use the concept to monitor time of transport of E-Coli in sand gravel formation.

Keywords: modeling variation void ratio, permeability, E-Coli, transport and sand gravel formation

Introduction

The behaviour of soil base on evaluation tools known as (SWAT)1,2 was effectively applied to simulate river flow micronutrient were found from evaluation of the Rivers,3 and E. coli fluxes.4-6 The integration of this model was done in landscape which also includes in-stream microbial processes, this concept was thoroughly applied in other to simulate management scenarios in degradation of contamination.2,3,7 The programme called SWAT permit modeling of bacteria fate and transport. even though calibration of the model for faecal fluxes seems more difficult compare to flow, it may be due to the paucity of data and inadequate understanding of E. coli biophysical process, this concept has definitely signify most important breakthrough on approximation E. coli fluxes.4,8 The system of developing modeling in regional degree has been an adopted concept in the past years by Lazure and Dumas,9 this concept was to explain currents, dilution and transport im most parts of the French coast. In recent times, it was observed that water quality variations have been realizeed, this was observed in some particular faecal contamination through bathing and shellfish harvesting areas.7-9 These concept currently applied models is to manage the impact of wastewater on the sea water.10 Expressing such knowledge has been applied to monitor the system daily flows that are simulated with a watershed model as an input into another hydrodynamic model to assess daily bacterial concentrations in estuaries.11,12 These the two conceptual model applications are used to monitor microbiological contamination in an estuary, which is crucial for coastal management.

Theoretical background

VΦ c t =K V t 2 c x 2 K d c x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfacq qHMoGrdaWcaaqaaiabgkGi2kaadogaaeaacqGHciITcaWG0baaaiaa ykW7caaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaadUeaca WGwbWaaSbaaeaacaWG0baabeaadaWcaaqaaiabgkGi2oaaCaaabeqa aKqzadGaaGOmaaaajuaGcaWGJbaabaGaeyOaIyRaamiEamaaCaaabe qaaKqzadGaaGOmaaaaaaqcfaOaaGPaVlaaykW7caaMc8UaaGPaVlab gkHiTiaaykW7caaMc8Uaam4samaaBaaabaGaamizaaqabaWaaSaaae aacqGHciITcaWGJbaabaGaeyOaIyRaamiEaaaaaaa@65CA@            (1)

Nomenclature

C=E.Coli Concentration

K             =Permeability

V             =Velocity

F             =Porosity

Kd            =Decay Rate

x              =Depth

T             =Time

Let C =TX

Applying Bernoulli’s method of separation of variables

VΦ T 1 T =K V t X 11 K d X 1 = β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfacq qHMoGrdaWcaaqaaiaadsfadaahaaqabeaajugWaiaaigdaaaaajuaG baGaamivaaaacaaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVl aaykW7caWGlbGaamOvamaaBaaabaGaamiDaaqabaGaamiwamaaCaaa beqaaKqzadGaaGymaiaaigdaaaqcfaOaaGPaVlaaykW7cqGHsislca aMc8UaaGPaVlaadUeadaWgaaqaaiaadsgaaeqaaiaadIfadaahaaqc gayabeaajugWaiaaigdaaaqcfaOaaGPaVlaaykW7caaMc8Uaeyypa0 JaaGPaVlaaykW7caaMc8UaaGPaVlabek7aInaaCaaabeqaaKqzadGa aGOmaaaaaaa@6B52@      (2)

VΦ T 1 T = β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfacq qHMoGrdaWcaaqaaiaadsfadaahaaqabeaajugWaiaaigdaaaaajuaG baGaamivaaaacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVl aaykW7cqaHYoGydaahaaqabeaajugWaiaaikdaaaaaaa@4B91@                                (3)

K V t X 11 K d X 1 β 2 X=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeaca WGwbWaaSbaaeaacaWG0baabeaacaWGybWaaWbaaeqabaqcLbmacaaI XaGaaGymaaaajuaGcaaMc8UaeyOeI0IaaGPaVlaaykW7caWGlbWaaS baaeaacaWGKbaabeaacaWGybWaaWbaaeqabaqcLbmacaaIXaaaaKqb akaaykW7cqGHsislcaaMc8UaaGPaVlabek7aInaaCaaabeqaaKqzad GaaGOmaaaajuaGcaWGybGaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaaGimaaaa@5E68@             (4)

T=a l β 2 K V t t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaaykW7caWGHbGa eS4eHW2aaWbaaeqabaWaaSaaaeaacqaHYoGydaahaaqabeaajugWai aaikdaaaaajuaGbaGaam4saiaadAfadaWgaaqaaiaadshaaeqaaaaa caWG0baaaaaa@4C4F@                   (5)

From (4), the auxiliary equation is

K V t M 2 K d M β 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeaca WGwbWaaSbaaeaacaWG0baabeaacaWGnbWaaWbaaeqabaqcLbmacaaI YaaaaKqbakaaykW7cqGHsislcaaMc8UaaGPaVlaadUeadaWgaaqaai aadsgaaeqaaiaad2eacaaMc8UaeyOeI0IaaGPaVlaaykW7cqaHYoGy daahaaqabeaajugWaiaaikdaaaqcfaOaaGPaVlaaykW7caaMc8Uaey ypa0JaaGPaVlaaykW7caaMc8UaaGimaaaa@5A22@

M= K d ± K d 2 +4K V t β 2 2VΦ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaaykW7daWcaaqa aiaadUeadaWgaaqaaiaadsgaaeqaaiabgglaXoaakaaabaGaam4sam aaBaaabaGaamizaaqabaWaaWbaaeqabaqcLbmacaaIYaaaaiaaykW7 juaGcqGHRaWkcaaMc8UaaGinaiaadUeacaWGwbWaaSbaaeaacaWG0b aabeaacqaHYoGydaahaaqabeaajugWaiaaikdaaaaajuaGbeaaaeaa caaIYaGaamOvaiabfA6agbaaaaa@5929@            (6)

Hence, we have

X=ACosMx+BSinMx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfaca aMc8UaaGPaVlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8Ua amyqaiaadoeacaWGVbGaam4CaiaaykW7caWGnbGaamiEaiaaykW7ca aMc8UaaGPaVlabgUcaRiaaykW7caaMc8UaaGPaVlaadkeacaWGtbGa amyAaiaad6gacaaMc8UaamytaiaadIhaaaa@5B6E@              (7)

Combining (3) and (4), we have: -

C(x,t)=a l β 2 VΦ t [ ACosMx+BSinMx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeaca GGOaGaamiEaiaacYcacaWG0bGaaiykaiaaykW7caaMc8Uaeyypa0Ja aGPaVlaaykW7caaMc8UaamyyaiabloriSnaaCaaabeqaamaalaaaba GaeqOSdi2aaWbaaeqabaqcLbmacaaIYaaaaaqcfayaaiaadAfacqqH MoGraaGaamiDaaaacaaMc8+aamWaaeaacaWGbbGaam4qaiaad+gaca WGZbGaaGPaVlaad2eacaWG4bGaaGPaVlaaykW7caaMc8Uaey4kaSIa aGPaVlaaykW7caaMc8UaamOqaiaadofacaWGPbGaamOBaiaaykW7ca WGnbGaamiEaaGaay5waiaaw2faaaaa@6991@ (8)

Subject equation (8) to boundary condition

atx=0c=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggaca WG0bGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG4bGaaGPaVlaa ykW7cqGH9aqpcaaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7ca aMc8Uaam4yaiaaykW7cqGH9aqpcaaMc8UaaGPaVlaaicdaaaa@56E0@ Yield: -

0=aA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaicdaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8Uaamyyaiaadgeaaaa@4084@

i.e. C(x,t)=a l β 2 VΦ t [ ACosMx+BSinMx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeaca GGOaGaamiEaiaacYcacaWG0bGaaiykaiaaykW7caaMc8Uaeyypa0Ja aGPaVlaaykW7caaMc8UaamyyaiabloriSnaaCaaabeqaamaalaaaba GaeqOSdi2aaWbaaeqabaqcLbmacaaIYaaaaaqcfayaaiaadAfacqqH MoGraaGaamiDaaaacaaMc8+aamWaaeaacaWGbbGaam4qaiaad+gaca WGZbGaaGPaVlaad2eacaWG4bGaaGPaVlaaykW7caaMc8Uaey4kaSIa aGPaVlaaykW7caaMc8UaamOqaiaadofacaWGPbGaamOBaiaaykW7ca WGnbGaamiEaaGaay5waiaaw2faaaaa@6991@  (9)

c x = C o l β 2 VΦ t [ AMSinMx+BMCosMx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRaam4yaaqaaiabgkGi2kaadIhaaaGaaGPaVlaaykW7cqGH 9aqpcaaMc8UaaGPaVlaaykW7caWGdbWaaSbaaeaacaWGVbaabeaacq WItecBdaahaaqabeaadaWcaaqaaiabek7aInaaCaaabeqaaKqzadGa aGOmaaaaaKqbagaacaWGwbGaeuOPdyeaaiaadshaaaGaaGPaVpaadm aabaGaeyOeI0Iaamyqaiaad2eacaWGtbGaamyAaiaad6gacaaMc8Ua amytaiaadIhacaaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVl aaykW7caWGcbGaamytaiaadoeacaWGVbGaam4CaiaaykW7caWGnbGa amiEaaGaay5waiaaw2faaaaa@6D13@

At x=0, c x =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGimaiaacYcacaaMc8Ua aGPaVpaalaaabaGaeyOaIyRaam4yaaqaaiabgkGi2kaadIhaaaGaaG PaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaicdaaaa@5048@

o= C o l β 2 VΦ t (CosMx) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad+gaca aMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Ua am4qamaaBaaabaGaam4BaaqabaGaeS4eHW2aaWbaaeqabaWaaSaaae aacqaHYoGydaahaaqabeaajugWaiaaikdaaaaajuaGbaGaamOvaiab fA6agbaacaWG0baaaiaaykW7caGGOaGaam4qaiaad+gacaWGZbGaaG PaVlaad2eacaWG4bGaaiykaaaa@576E@                 (10)

At x=L, c L =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaamitaiaacYcacaaMc8Ua aGPaVpaalaaabaGaeyOaIyRaam4yaaqaaiabgkGi2kaadYeaaaGaaG PaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaicdaaaa@5033@  yields: -

o= C o l β 2 VΦ t [ AMSinML ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad+gaca aMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Ua am4qamaaBaaabaGaam4BaaqabaGaeS4eHW2aaWbaaeqabaWaaSaaae aacqaHYoGydaahaaqabeaajugWaiaaikdaaaaajuaGbaGaamOvaiab fA6agbaacaWG0baaaiaaykW7daWadaqaaiabgkHiTiaadgeacaWGnb Gaam4uaiaadMgacaWGUbGaaGPaVlaad2eacaWGmbaacaGLBbGaayzx aaaaaa@5A65@             (11)

C o l β 2 VΦ t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada Wgaaqaaiaad+gaaeqaaiabloriSnaaCaaabeqaamaalaaabaGaeqOS di2aaWbaaeqabaqcLbmacaaIYaaaaaqcfayaaiaadAfacqqHMoGraa GaamiDaaaacaaMc8UaaGPaVlabgcMi5kaaykW7caaMc8UaaGimaaaa @4A62@

AMSinL=0=nπ,n=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WGnbGaam4uaiaadMgacaWGUbGaaGPaVlaadYeacaaMc8UaaGPaVlaa ykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaIWaGaaGPaVlaaykW7ca aMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaamOBaiabec8aWjaacYca caaMc8UaaGPaVlaad6gacaaMc8UaaGPaVlaaygW7caaMb8Uaeyypa0 JaaGPaVlaaykW7caaIXaGaaiilaiaaykW7caaIYaGaaiilaiaaykW7 caaIZaaaaa@6B3C@

ML=nπm= nπ L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eaca WGmbGaaGPaVlabg2da9iaaykW7caaMc8UaamOBaiabec8aWjaaykW7 caaMc8UaaGPaVlaaykW7caWGTbGaaGzaVlaaykW7caaMb8Uaeyypa0 JaaGPaVlaaykW7caaMb8UaaGzaVpaalaaabaGaamOBaiabec8aWbqa aiaadYeaaaaaaa@5764@

C(x,t)=Co l β 2 VΦ t [ Cos Mπ L x ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeaca GGOaGaamiEaiaacYcacaWG0bGaaiykaiaaykW7caaMc8Uaeyypa0Ja aGPaVlaaykW7caaMc8Uaam4qaiaad+gacqWItecBdaahaaqabeaada Wcaaqaaiabek7aInaaCaaabeqaaKqzadGaaGOmaaaaaKqbagaacaWG wbGaeuOPdyeaaiaadshaaaGaaGPaVpaadmaabaGaam4qaiaad+gaca WGZbGaaGPaVpaalaaabaGaamytaiabec8aWbqaaiaadYeaaaGaamiE aaGaay5waiaaw2faaaaa@5B41@         (12)

If x=Vt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVlaadAfacqGHflY1 caWG0baaaa@44C4@

C(x,t)=Co l β 2 VΦ t [ Cos Mπ L Vt ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeaca GGOaGaamiEaiaacYcacaWG0bGaaiykaiaaykW7caaMc8Uaeyypa0Ja aGPaVlaaykW7caaMc8Uaam4qaiaad+gacqWItecBdaahaaqabeaada Wcaaqaaiabek7aInaaCaaabeqaaKqzadGaaGOmaaaaaKqbagaacaWG wbGaeuOPdyeaaiaadshaaaGaaGPaVpaadmaabaGaam4qaiaad+gaca WGZbGaaGPaVpaalaaabaGaamytaiabec8aWbqaaiaadYeaaaGaamOv aiabgwSixlaadshaaiaawUfacaGLDbaaaaa@5E62@       (13)

If < t= d v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8+aaSaaaeaacaWGKbaabaGa amODaaaaaaa@410B@

C(x,t)=Co l β 2 VΦ t [ Cos Mπ L d v ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeaca GGOaGaamiEaiaacYcacaWG0bGaaiykaiaaykW7caaMc8Uaeyypa0Ja aGPaVlaaykW7caaMc8Uaam4qaiaad+gacqWItecBdaahaaqabeaada Wcaaqaaiabek7aInaaCaaabeqaaKqzadGaaGOmaaaaaKqbagaacaWG wbGaeuOPdyeaaiaadshaaaGaaGPaVpaadmaabaGaam4qaiaad+gaca WGZbGaaGPaVpaalaaabaGaamytaiabec8aWbqaaiaadYeaaaWaaSaa aeaacaWGKbaabaGaamODaaaaaiaawUfacaGLDbaaaaa@5C38@

Materials and method

Standard laboratory experiment where performed to monitor the concentration of E-Coli transport at different formation. The soil deposition of the strata was collected in sequences based on the structural deposition at different locations. The samples collected at different locations generated variations at different depth producing different migration of E-Coli concentration through pressure flow at the lower end of the column. The experimental result are applied and compared with the theoretical values for model validation.

Results and discussion

Results are presented in tables and figures including graphical representation of E-Coli concentration. Figure 1 express gradual increase of the predictive E-Coli concentration from ten to forty days and suddenly experienced decrease with increase in time to lowest rate concentration recorded at one hundred and twenty days, while the experimental values gradual decrease from the optimum values recorded at ten to the lowest concentration observed at the same period, Figure 2 predictive values experienced fluctuation where the optimum values was observed at ninety day and final decrease down to the lowest rate of concentration recorded at one twenty days, while the experimental values maintained fluctuation but at different time to the lowest concentration recorded at the same time. Figure 3 observed similar condition but at different time, fluctuation were experienced from ten to two hundred days, where the lowest concentration were observed, while that of experimental values maintained similar condition, but experience higher concentration compared to that of the predictive. Figure 4 developed an exponential phase of the system were the optimum values were recorded sixty metres, while the experimental values maintained the same trend to the optimum parameters recorded at the same depth. Figure 5 predictive maintained linear increase with increase in depth to the optimum values observed at sixty metres, while that of the experimental values experienced vacillation from nine to forty days and linearly increase to the optimum at thirty nine days, Figure 6 observed gradual increase and suddenly experience decrease to lowest rate of concentration. While that of the experimental values increase in similar condition to the optimum values at hundred and fifty days, but suddenly experienced slight decrease between hundred and sixty to two hundred days, while Figure 7 gradually increase with depth to the optimum values recorded at thirty six metres and suddenly experiences decrease to the lowest concentration recorded at sixty metres, while that of the experimental values maintained the same trend of concentration to the lowest depth at sixty metres. Figure 8 predictive and experimental values developed fluctuation from twenty four to sixty metres, Figure 9 predictive observed different concentration in migration, and both parameters observed gradual increase to the optimum values recorded at two hundred days (Tables 1-10).

Figure 1 Predictive and experimental values of E-Coli concentration at different depth.

Figure 2 Predictive and experimental values of E-Coli concentration at different time.

Figure 3 Predictive and experimental values of E-Coli concentration at different time.

Figure 4 Predictive and experimental values of E-Coli concentration at different depth.

Figure 5 Predictive and experimental values of E-Coli concentration at different time.

Figure 6 Predictive and experimental values of E-Coli concentration at different time.

Figure 7 Predictive and experimental values of E-Coli concentration at different depth.

Figure 8 Predictive and experimental values of E-Coli Concentration at different depth.

Figure 9 Predictive and experimental values of E-Coli concentration at different depth.

Time [T]

Predictive values of  E-coli conc. [Mg/L]

 Experimental  values of E-Coli  conc.[Mg/L]

10

0.1119

0.16765

20

0.1678

0.1588

30

0.1762

0.15005

40

0.1678

0.1414

50

0.1398

0.13285

60

0.1343

0.1244

70

0.1175

0.11605

80

0.1119

0.1078

90

0.1007

0.09965

100

0.0839

0.0916

110

0.0769

0.08365

120

0.0671

0.0758

130

0.0473

0.06805

140

0.0431

0.0604

150

0.0419

0.05285

160

0.0402

0.0454

170

0.0381

0.03805

180

0.0302

0.0308

190

0.0265

0.02365

200

0.0223

0.0166

Table 1 Predictive and experimental values of E-coli concentration at different time

Time [T]

Predictive values of  E-coli conc. [Mg/L]

 Experimental  values of E-Coli  conc.[Mg/L]

10

2.34E-05

-0.00001148

20

5.63E-05

0.00006232

30

9.86E-05

0.00012912

40

1.50E-04

0.00018712

50

1.87E-04

0.000235

60

2.56E-04

0.00027192

70

3.28E-04

0.00029752

80

4.13E-04

0.00031192

90

5.07E-04

0.00031572

100

6.10E-05

0.00031

110

2.58E-04

0.00029632

120

2.25E-04

0.00027672

130

1.83E-04

0.00025372

140

1.64E-04

0.00023032

150

1.40E-04

0.00021

160

1.13E-04

0.00019672

170

9.58E-05

0.00019492

180

8.45E-05

0.00020952

190

6.25E-05

0.00024592

200

4.70E-05

0.00031

Table 2 Predictive and experimental values of E-coli concentration at different time

Time [T]

Predictive values of  E-coli conc. [Mg/L]

 Experimental  values of E-Coli  conc.[Mg/L]

10

7.54E-02

0.036

20

1.51E-01

0.148

30

2.26E-01

0.248

40

3.02E-01

0.336

50

3.27E-01

0.412

60

4.52E-01

0.476

70

5.28E-01

0.528

80

6.03E-01

0.568

90

6.79E-01

0.596

100

7.54E-01

0.612

110

6.22E-01

0.616

120

5.88E-01

0.608

130

5.39E-01

0.588

140

4.75E-01

0.556

150

3.96E-01

0.512

160

3.02E-01

0.456

170

2.56E-01

0.388

180

2.04E-01

0.308

190

1.43E-01

0.216

200

1.13E-01

0.112

Table 3 Predictive and experimental values of E-coli concentration at different time

Depth [M]

Predictive values conc. [Mg/L]

 Experimental  values conc.[Mg/L]

3

5.59E-03

3.05E-03

6

1.12E-02

6.18E-03

9

1.67E-02

9.36E-03

12

2.23E-02

1.26E-02

15

2.79E-02

1.58E-02

18

3.36E-02

1.91E-02

21

3.92E-02

2.24E-02

24

4.47E-02

2.57E-02

27

5.03E-02

2.90E-02

30

5.59E-02

3.24E-02

33

6.15E-02

3.59E-02

36

6.71E-02

3.95E-02

Table 4 Predictive and experimental values of E-coli concentration at different depth

Time [T]

Predictive values conc. [Mg/L]

 Experimental  values conc.[Mg/L]

10

5.59E-03

1.10E-02

20

1.12E-02

1.15E-02

30

1.67E-02

1.55E-02

40

2.23E-02

2.08E-02

50

2.79E-02

2.54E-02

60

3.36E-02

3.23E-02

70

3.92E-02

3.45E-02

80

4.47E-02

3.88E-02

90

5.03E-02

4.42E-02

100

5.59E-02

4.88E-02

110

6.15E-02

5.33E-02

120

6.71E-02

5.55E-02

Table 5 Predictive and experimental values of E-coli concentration at different depth

Time [T]

Predictive values of  E-coli conc. [Mg/L]

 Experimental  values of E-Coli  conc.[Mg/L]

10

9.39E-05

0.000113

20

1.88E-04

0.000292

30

2.82E-04

0.000457

40

3.76E-04

0.000608

50

4.70E-04

0.000745

60

5.63E-04

0.000868

70

6.57E-04

0.000977

80

7.51E-04

0.001072

90

8.45E-04

0.001153

100

9.39E-04

0.00122

110

7.74E-04

0.001273

120

7.32E-04

0.001312

130

6.10E-04

0.001337

140

5.26E-04

0.001348

150

4.93E-04

0.001345

160

4.51E-04

0.001328

170

3.99E-04

0.001297

180

3.38E-04

0.001252

190

2.68E-04

0.001193

200

1.88E-04

0.00112

Table 6 Predictive and experimental values of e-coli concentration at different depth

Depth [M]

Predictive values of  E-coli conc. [Mg/L]

 Experimental  values of E-Coli  conc.[Mg/L]

3

9.39E-05

6.28E-05

6

1.88E-04

1.91E-04

9

2.82E-04

3.05E-04

12

3.76E-04

4.05E-04

15

4.70E-04

4.90E-04

18

5.63E-04

5.61E-04

21

6.57E-04

6.17E-04

24

7.51E-04

6.59E-04

27

8.45E-04

6.87E-04

30

9.39E-04

7.00E-04

33

7.74E-04

6.99E-04

36

7.32E-04

6.83E-04

39

6.10E-04

6.53E-04

42

5.26E-04

6.09E-04

45

4.93E-04

5.50E-04

48

4.51E-04

4.77E-04

51

3.99E-04

3.89E-04

54

3.38E-04

2.87E-04

57

2.68E-04

1.71E-04

60

1.88E-04

4.00E-05

Table 7 Predictive and Experimental Values of E-Coli Concentration at Different Depth

Depth [M]

Predictive values of  E-coli conc. [Mg/L]

 Experimental  values of E-Coli  conc.[Mg/L]

3

1.99E-03

3.20E-02

6

3.99E-02

5.30E-02

9

5.99E-02

7.40E-02

12

7.99E-02

9.50E-02

15

9.99E-02

1.16E-01

18

1.19E-01

1.37E-01

21

1.39E-01

1.58E-01

24

1.59E-01

1.79E-01

27

1.79E-01

2.00E-01

30

1.99E-01

2.21E-01

33

6.21E-02

2.42E-01

36

6.77E-02

6.77E-02

39

7.34E-02

7.88E-02

42

2.63E-02

3.22E-02

45

2.81E-02

2.55E-02

48

3.01E-02

3.22E-02

51

3.19E-02

3.05E-02

54

1.69E-02

2.11E-02

57

1.79E-02

1.89E-02

60

1.88E-02

1.78E-02

Table 8 Predictive and experimental values of E-Coli concentration at different depth

Time [T]

Predictive values of  E-coli conc. [Mg/L]

 Experimental  values of E-Coli  conc.[Mg/L]

10

2.34E-04

0.0063

20

9.23E-03

0.0116

30

3.17E-02

0.0209

40

5.63E-02

0.0342

50

5.87E-02

0.0515

60

8.46E-02

0.0728

70

1.15E-01

0.0981

80

1.50E-01

0.1274

90

1.90E-01

0.1607

100

2.34E-01

0.198

110

2.84E-01

0.2393

120

3.38E-01

0.2846

130

3.97E-01

0.3339

140

4.60E-01

0.3872

150

5.28E-01

0.4445

160

6.00E-01

0.5058

170

6.79E-01

0.5711

180

7.61E-01

0.6404

190

8.48E-01

0.7137

200

9.39E-01

0.791

Table 9 Predictive and experimental values of E-Coli concentration at different time

Time [T]

Predictive values of  E-coli conc. [Mg/L]

 Experimental  values of E-Coli  conc.[Mg/L]

10

2.34E-04

0.0063

20

9.23E-03

0.0116

30

3.17E-02

0.0209

40

5.63E-02

0.0342

50

5.87E-02

0.0515

60

8.46E-02

0.0728

70

1.15E-01

0.0981

80

1.50E-01

0.1274

90

1.90E-01

0.1607

100

2.34E-01

0.198

110

2.84E-01

0.2393

120

3.38E-01

0.2846

130

3.97E-01

0.3339

140

4.60E-01

0.3872

150

5.28E-01

0.4445

160

6.00E-01

0.5058

170

6.79E-01

0.5711

180

7.61E-01

0.6404

190

8.48E-01

0.7137

200

9.39E-01

0.791

Table 10 Predictive and experimental Values of E-Coli concentration at different depth

Conclusion

The study has express the behavior of the system in terms of deposition under variation of permeability and void ratio in E-coli transport , the litho structure in the study environment express heterogeneous deposition under the influences of heterogeneous void ratio in sand grave formation, such condition were observed to pressure the transport behaviors of E-coli in sand grave depositions, exponential and fluctuation were experienced reflecting the litho structure of the predominant sand gravel deposition, the contaminant were found to pressure in transport process to Phreatic depositions, the study observed variation of micronutrient in different deposition, these are experienced in aquitard and unconfined deposition in Phreatic regions, the study centered more on time of transport under these lithology in the study environment, these condition implies that time and structural setting determined rapid rate of transport to Phreatic beds, these expression detailed the behavior of the transport system in sand gravel region of the study area. Other studies have base more on the depth of the formation, but time in relation to structural depositions has not monitored in detail, this study express the simulation of transport time more than that depth of the transport process, the simulation defined the system process of void ratios in heterogeneous condition, it also express the void ratio heterogeneous setting in sand gravel depositions, simulation developed some high percentage of favorable fits. The study has predicted time relationship with heterogeneous setting of void ratios in sand gravel formation.

Acknowledgement

None.

Conflict of interests

Authors declare there is no conflict of interest in publishing the article.

References

  1. Arnold JG, Fohrer N. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes. 2005;19:563–572.
  2. Arnold JG, Srinivasan R, Muttiah RS, et al. Large area hydrologic modeling and assessment part i: model development. Journal of the American water resources association. 1998;34(10):73–89.
  3. Pohlert T, Huisman JA, Breuer L, et al. Modelling of point and non–point source pollution of nitrate with SWAT in the river Dill, Germany. Advances in Geosciences. 2005;5:7–12.
  4. Baffaut C, Benson VW. A Bacteria TMDL for Shoal Creek Using Swat Modeling and DNA Source Tracking. In: Total Maximum Daily Load (TMDL) Environmental Regulations II. ASAE Conference Proceedings, Albuquerque, New Mexico, editor A Saleh; 2003. p. 35–40
  5. Guber AK, Pachepsky YA, Sadeghi AM. Evaluating uncertainty in coli retention in vegetated filter strips in locations selected with SWAT simulations. in ASABE, editor. Watershed Management to Meet Water Quality and TMDLS. San Antonio, Texas; 2007.p. 286–293.
  6. Parajuli P, Mankin KR, Barnes PL. New methods in modeling source–specific bacteria at watershed scale using SWAT. In: Watershed Management to meet Water Quality Standards and TMDLs (Total Maximum Daily Load) Proceedings. ASABE 830 Publication No. 701P0207. St. Joseph, MI: ASABE; 2007.
  7. Morgane Bougeard, Jean–Claude Le Saux, Nicolas Pérenne Monique Pommepuy. Modeling of Escherichia coli Fluxes on a catchment and the impact on coastal water and shellfish quality. Journal American water resources association. 2011;47(2):P350–366.
  8. Parajuli P. SWAT bacteria sub–model evaluation and application – an abstract of a dissertation. Department of Biological and Agricultural Engineering, College of Engineering, Manhattan, Kansas: Kansas State University; 2007. p. x–212.
  9. Riou P, Le Saux JC, Dumas F, et al. Microbial impact of small tributaries on water and shellfish quality in shallow coastal areas. Water Research. 2007;41(12):2774–2786.
  10. Fiandrino AY, Martin P, Got JL, et al. Bacterial contamination of Mediterranean coastal seawater as affected by riverine inputs: simulation approach applied to a shellfish breeding area (Thau lagoon, France). Water Research. 2003;37(8):1711–1722.
  11. Hooda PS, Edwards AC, Anderson HA, et al. A review of water quality concerns in livestock farming areas. The Science of the Total Environment. 2000;250(1–3):143–167.
  12. Parajuli P, Mankin KR, Barnes PL. Source specific fecal bacteria modeling using soil and water assessment tool model. Bioresource Technology. 2009;100(2):953–963.
Creative Commons Attribution License

©2018 Eluozo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.