Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Short Communication Volume 3 Issue 4

FPGA firmware helps unify the supervised and un-supervised deep learning for BDA

Harold Szu

Department of Biomedical Engineering, The Catholic University, USA

Correspondence: Harold Szu, Department of Biomedical Engineering, The Catholic University, Wash DC, USA

Received: July 10, 2019 | Published: July 16, 2019

Citation: Szu H. FPGA firmware helps unify the supervised and un-supervised deep learning for BDA. MOJ App Bio Biomech. 2019;3(4):82-83. DOI: 10.15406/mojabb.2019.03.00108

Download PDF

Abstract

Gap: Traditional approach requires epidemiologists labor intensively sort the big databases analysis (BDA) into two different batches: one batch for Machine Supervised learning, e.g. for malignant tumors.
Innovation: We estimated the exemplars cases with a factor Alpha  and then focused on a simultaneous implementation of both supervised and unsupervised deep earning in the following simple logic deduction:

unsupervised BDA=( 1α )( supervised+unsupervised )BDA +α supervised BDA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG1bGaamOBaiaadohacaWG1bGaamiCaiaadwgacaWGYbGa amODaiaadMgacaWGZbGaamyzaiaadsgacaGGGcGaamOqaiaadseaca WGbbGaeyypa0JcdaqadaWdaeaajugib8qacaaIXaGaeyOeI0IaeqyS degakiaawIcacaGLPaaadaqadaWdaeaajugib8qacaWGZbGaamyDai aadchacaWGLbGaamOCaiaadAhacaWGPbGaam4CaiaadwgacaWGKbGa ey4kaSIaamyDaiaad6gacaWGZbGaamyDaiaadchacaWGLbGaamOCai aadAhacaWGPbGaam4CaiaadwgacaWGKbaakiaawIcacaGLPaaajugi biaadkeacaWGebGaamyqaiaacckacqGHRaWkcqaHXoqycaGGGcGaam 4CaiaadwhacaWGWbGaamyzaiaadkhacaWG2bGaamyAaiaadohacaWG LbGaamizaiaacckacaWGcbGaamiraiaadgeaaaa@79E5@

Approach:Our methodology implemented in terms of the electric power changes that may be labeled as Artificial General Intelligence to combine both the supervised deep learning and unsupervised deep learning.1,2
Results: All sort big databases analysis (BDA) problems in biomedical wellness (BMW) in cancers prevention, or defense surveillance challenge e.g. the most-wanted face analysis gathered using in-situ legacy, day EO night IR,RF,MF sensor suites, after individual pre-processing feature extraction.

Keywords: methodology, deep learning, sensor, multi layers, arbitrary

Abbreviations

BDA, big databases analysis; BMW, biomedical wellness; AGI, artificial general intelligence; FPGA, field programmer gate array

Introduction

Artificial general intelligence (AGI) has been advocated by both MIT Prof. Lex Friedman, and Stanford CS Prof. Andrew Ng. The deep learning is a recursive multi-layers learning emulating human visual system (V1-V4) which have been campaigned by Prof. Geoffrey Hinton (now at Google) and his protégée Prof. Yann Le Cun (no at NYU Facebook), Prof. Yoshua Bengio (remains at Univ. Toronto)).1 Together they have been demonstrated in recent Nature publication “(Supervised) Deep Learning” circa 2015.

In this proposal, we have extended supervised learning to unsupervised learning2 and implement both supervised and unsupervised learning rules together in a Firmware, “Power Law Learning” under one roof and realized in the Power Circuitry Firmware, defined the following field programmer gate array (FPGA) (Figure 1).3,4

Figure 1 Exemplar FPGA board (e.g. Intel Cyclone10 at the cost $13.2).

In this communication notes we illustrate the math formula for applying both current I/O and Voltage I/O to execute the multiple layer (by recursive) deep learning in the power change defined as follows:

Given the basic physics, we have the Power, P, definition as the product between the Ohms Voltage, V, and the Ampere Current, I,

P=VI MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeaeaa aaaaaaa8qacaWFqbGaeyypa0Jaa8Nvaiaa=Leaaaa@3B42@    (1)

Then the perturbation of power law  in MKS units as Watts as joule per sec:

ΔPPΔP=VIIΔVVΔI+Order( ΔVΔI )=( VΔV )( IΔI )+Order (ΔVΔI) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarieWacaWFqbGaeyyyIORaa8huaiabgkHiTiabfs5a ejaa=bfacqGH9aqpcaWHwbGaaCysaiabgkHiTiaa=LeacqqHuoarca WHwbGaeyOeI0IaaCOvaiabfs5aejaahMeacqGHRaWkcaWFpbGaa8NC aiaa=rgacaWFLbGaa8NCaOWaaeWaa8aabaqcLbsapeGaeuiLdqKaa8 Nvaiabfs5aejaa=LeaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jcdaqa daWdaeaajugib8qacaWFwbGaeyOeI0IaeuiLdqKaa8NvaaGccaGLOa GaayzkaaWaaeWaa8aabaqcLbsapeGaa8xsaiabgkHiTiabfs5aejaa =LeaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaaC4taiaahkhacaWHKb GaaCyzaiaahkhacaGGGcGaaiikaiabfs5aejaa=zfacqqHuoarcaWF jbGaa8xkaaaa@719B@    (2)

Approaches:

Assume an unknown Alpha  factor to all supervised e.g. Epidemiologist supervised learning among BDA those potential malign cancer cases out of BDA.

Then, we can apply to all BDA with the following perturbation formula of equivalent circuitry:

The medical equivalent circuitry  could be the X-ray imaging applied voltage, the total current I as the total patients. We have called physician involvement the current changes as the supervised learning for the sick patients. Thus we have divided the total patients I as the sick supervised patients and not-sick patients as unsupervised patients who may have gone home. We further introduce an arbitrary factor  as the percentage of sick patients, the non-sick patients.

Δ P = ( 1α )Unsupervised ( IΔV  )+ α Supervised ( VΔ I  ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqqHuoarcaGGGcGaamiuaiaacckacqGH9aqpcaGGGcGcdaqa daWdaeaajugib8qacaaIXaGaeyOeI0IaeqySdegakiaawIcacaGLPa aajugibiaadwfacaWGUbGaam4CaiaadwhacaWGWbGaamyzaiaadkha caWG2bGaamyAaiaadohacaWGLbGaamizaiaacckakmaabmaapaqaaK qzGeWdbiaadMeacqqHuoarcaWGwbGaaiiOaaGccaGLOaGaayzkaaqc LbsacqGHRaWkcaGGGcGaeqySdeMaaiiOaiaadofacaWG1bGaamiCai aadwgacaWGYbGaamODaiaadMgacaWGZbGaamyzaiaadsgacaGGGcGc daqadaWdaeaajugib8qacaWGwbGaeuiLdqKaaiiOaiaadMeacaGGGc aakiaawIcacaGLPaaaaaa@6EF1@

We denote P= VI to to be total patients = (1-α) unsupervised BDA + α Supervised BDA.

This concludes our result. In words, we apply Epidemiologists result multiplied the unknown proportional factor of BDA. We then derived the final result BDA in terms of Power P and subtractSupervised Learning of positive cases of selected malign cases VΔI MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGwbGaeuiLdqKaamysaaaa@3ACD@ .

Consequently, we shall integrate a loop in the power firmware design. We can minimize in the pre-launch the current with supervised learningmeasured by known exemplars in the least mean square sense I   actural I   desired 2 ε I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqWILicucaWGjbGaaiiOaOWdamaaBaaaleaajugWa8qacaWG HbGaam4yaiaadshacaWG1bGaamOCaiaadggacaWGSbaal8aabeaaju gib8qacqGHsislcaWGjbGaaiiOaOWdamaaBaaaleaajugWa8qacaWG KbGaamyzaiaadohacaWGPbGaamOCaiaadwgacaWGKbaal8aabeaaju gib8qacqWILicuk8aadaahaaWcbeqaaKqzadWdbiaaikdaaaqcLbsa cqGHKjYOcqaH1oqzk8aadaWgaaWcbaqcLbmapeGaamysaaWcpaqaba aaaa@58FF@ ,

Likewise, the unsupervised learning at the reservoir temperature T so-called the minimum helmholtz free voltage energy

min.[ Total Energy V   temperature  Entropy( unusable energy ) ] ε V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGTbGaamyAaiaad6gacaGGUaGcdaWadaWdaeaajugib8qa caWGubGaam4BaiaadshacaWGHbGaamiBaiaacckacaWGfbGaamOBai aadwgacaWGYbGaam4zaiaadMhacqGHsislcaGGGcGaamOvaiaaccka k8aadaWgaaWcbaqcLbsapeGaamiDaiaadwgacaWGTbGaamiCaiaadw gacaWGYbGaamyyaiaadshacaWG1bGaamOCaiaadwgacaGGGcaal8aa beaajugib8qacaWGfbGaamOBaiaadshacaWGYbGaam4Baiaadchaca WG5bGcdaqadaWdaeaajugib8qacaWG1bGaamOBaiaadwhacaWGZbGa amyyaiaadkgacaWGSbGaamyzaiaacckacaWGLbGaamOBaiaadwgaca WGYbGaam4zaiaadMhaaOGaayjkaiaawMcaaaGaay5waiaaw2faaKqz GeGaeyizImQaeqyTduMcpaWaaSbaaSqaaKqzGeWdbiaadAfaaSWdae qaaaaa@7762@

Anticipated results

  1. Speed up time is estimated to be at least a factor of O(10) plus immeasurable human labor intensive sorting and errors. .
  2. The results will be relevant and useful to BDA (Big Database Analysis).
  3. The know Exemplars will be used for the supervised current learning; the unknown Exemplars will be used for unsupervised voltage learning.
  4. The double loop deep learning will be done recursively with dimension patch as Andrew Ng demonstrated in his “Course Ra” Internet Course.
  5. Gap (nails):
  6. In some data basis apps, human accountants involve in sorting them into the batch mode traditional and novelty modes. We need the speed “time is the money” thus the goal is to increase the throughput rate (time band-width product). It’s desirable to execute both the supervised (with known exemplars) and the unsupervised learning (without exemplars). The question is how we can efficiently integrate both, without labor intensive sorting.
  7. Innovation (Program Manager’s built already his or her Hammer @$13.2).

Acknowledgments

None.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

Creative Commons Attribution License

©2019 Szu. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.