Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 5 Issue 1

Exploring hormone communication and perception of emotion

Jeffrey Jenkins,1 Lin-Ching Chang,1 Binh Q. Tran,2 Harold Szu3

1Department of Electrical Engineering and Computer Science, Catholic University of America, USA
2Department of Biomedical Engineering, Catholic University of America, USA

Correspondence: Jeffrey Jenkins, Department of Electrical Engineering and Computer Science, Catholic University of America, USA, Tel 703-967-0011

Received: December 07, 2020 | Published: March 9, 2021

Citation: Jeffrey J, Lin-Ching C, Binh QT, et al. Exploring hormone communication and perception of emotion. MOJ App Bio Biomech. 2021;5(1):8-17. DOI: 10.15406/mojabb.2021.05.00150

Download PDF

Abstract

Are the biological mechanisms that facilitate perception of external photon stimuli using the sense of sight also responsible for the perception of internal hormone stimuli using the instinctive sense of emotion? Different regions of the body influence one another by communicating on the molecular scale with small electrical ions as well as larger chemical macromolecules such as hormones. For example, the detection of a predator causes hormones to be produced throughout the body, leading to a rapid physical response. To model such a system, we divide biological phenomena into two stages: sensing and communication, where each stage uses electrical ions and various molecules as signals. Designing a biomimetic computer system that can perform such a task is currently a challenge due to the large size of biological macromolecules and the small size of digital electronic components that are suited for electrons. We derive a general molecular communication theory to describe the interaction of molecules on different time and space scales with a thermodynamic model of hormone equilibration based on the Minimization of Helmholtz Free Energy (MFE). Our work paves the way for future cutting-edge AI systems to utilize heterogenous units of information and as a result, more accurately resembles the style of computation performed by biological systems.

Keywords: emotion, artificial intelligence, hormones, computing, thermodynamics

Abbreviations

BHN, biological hormone networks; AI, artificial intelligence; IQ, intelligent quotient; e-IQ, emotional-IQ; BNN, biological neural networks; MFE, minimization of helmholtz minimum free energy; MOAI, molecular AI; ANN, artificial neural network; BHN, biological hormone networks; MRI, magnetic resonance imaging; FA, fractional anisotropy; DEC, directionally encoded color; HVS, human visual system; LGN, lateral geniculate nucleus; IpRGC, intrinsically photo receptive retinal ganglion cells; EEG, electro encephalogram; BOLD, blood oxygen level dependence; TOLD, tissue oxygen level dependence; QM, quantum mechanics; ART, adaptive resonance theory

Introduction

Molecular communication and signaling is the primary catalyst for nearly all phenomena occurring in the body, occurring at different temporal and spatial scales. Microscopically, molecules affect cellular events such as apoptosis, or cell death, using signal molecules such as nitric oxide, and other events like cell growth via the human growth hormone somatomammotropin. Macroscopically, molecules are behind higher-level cognitive abilities such as feeling a particular emotion and perhaps even the feeling of creativity. Five decades ago, Alan Turing's efforts to capture human intelligence were established and became known as Artificial Intelligence (AI). New efforts to redefine the possibility space of AI as we know it have been coined Cutting-Edge AI, of which our contribution here emphasizes the exploration of the biological chemical molecular signal effects to include hormones and their resulting behaviors.

A current shortfall of AI systems is that they do not interact with their human users in an emotionally meaningful way; the AI cannot get to know both your Intelligent Quotient (IQ) and emotional-IQ (e-IQ). Learning a human’s e-IQ would be particularly helpful for the growing elderly population who often require emotionally attentive interactions with others but lack the means to attain this on-demand. Current AI robotic humanoids and AI algorithms assume a single method of wired communication of electrons that can only convey binary information. Biological Neural Networks (BNN) has been emulated in circuitry and have also been modeled mathematically by the computing community. Numerous machine learning techniques are inspired by the fundamental properties by which BNNs naturally behave but are all inherently limited by electron-centric hardware and storage. Different parts of the human body communicate with one another using electrical signals that quickly travel along neurons, as well as chemical signals that travel slower through other pathways such as the circulatory, lymph, enteric, and other systems. We go beyond this limitation with a Cutting-Edge AI approach to more realistically emulate biological capabilities, such as emotion, within future robotic AI systems.

The main objective of this work is to explore a computational framework for unifying electrical ion communication and molecular hormone communication within the brain and other connected systems. This framework will help to establish a biologically faithful computational model for use in Cutting-Edge AI applications such as the perception and expression of emotion. First, we discuss related work in the neuroscience and computer science communities, then provide a biological review of electrical and chemical signaling in the human sensory system and downstream effects in brain structures related to emotion. We discuss an approach for establishing a computational tool for simulating molecular communication networks in the human body which can allow us to study emotion synthesis and how that is impacted by hormone imbalance introduced by various mental disorders. Next, we review the various hormones, emotion and relevant mental health considerations that may be addressed in the future through our approach. We propose general molecular dynamics principles that describe the interaction of molecules on different time and space scales by deriving a thermodynamics model of hormone equilibration based on the Minimization of Helmholtz Minimum Free Energy (MFE). Finally, we discuss the intended approach for establishing our framework as a computational tool for simulating molecular communication networks in the human body that allows us to study emotion generation and variability arising from the biological differences of various mental disorders.

Related work

The first Computer Science AI deep learning algorithm was biologically inspired by the visual cortex (occipital lobe) and its ability to perform multi-layer processing: layer #1 for piecewise edge detection “on-center, off-surround”, layer #2 passing from layer #1 for extrapolating connectivity between close-enough edges, layer #3 for determining the change of change, known as curvature detection, which can determine if a shape is convex or concave, etc. Light sensed by the eyes passes through a series of brain structures such as retinal ganglion cells and the lateral geniculate nucleus, then ultimately converges at the visual cortex, located in the back of the head. The output of the visual cortex provides a state of isolated object recognition and is augmented by the associative hippocampal memory and emotionally encoded amygdala memory. The multiple neural pathways and anatomical structures that facilitate visual perception demonstrate the true complexity of biological Deep Learning. Computers can emulate AI Deep Learning using linear algebra coupled with Boolean logic, but neglect the critical role played by different molecules that facilitate electrical signaling; thus, we hope that Molecular AI (MOAI) can be emulated as well. For example, artificial neural network (ANN) models try to mimic the properties of BNNs, however, Biological Hormone Networks (BHN) have not been mathematically modeled in a systematic way or studied in the context of computation.

It is especially important to consider that the human brain is an imperfect system which is prone to hormonal imbalance, which can lead to mental disorders as well as cause physically debilitating disorders or thought processes that inspire societally damaging behavior. Why do people intentionally take their own lives or the lives of others? Suicidal terrorists have been a long-standing societal issue with many possible underlying causes. The psychology of these individuals requires case studies with a deeper understanding of the biological underpinnings of radicalization. It is possible that individuals who are susceptible to radicalization through brainwashing techniques possess physical differences in their e-IQ center, amygdala, as well as the rational intelligence center, hippocampus. Hormonal imbalances are a likely culprit for individuals that are susceptible to adopting and acting on different ideologies over time. Fluctuations in the emotional demeanor of an individual can be detectable through a timeline of verbal or written communication. An analytical system to determine individuals at risk of an ambiguous personal ideology or memory would be of great use to law enforcement and medical community for performing triage and intervention before it is too late.1

The neuroscience community has made important advances in brain imaging techniques in recent years. Improved precision of Magnetic Resonance Imaging (MRI) that illuminates white matter pathways, DT-MRI, allows medical professionals to non-invasively identify anatomy which requires attention from a surgical or therapeutic standpoint.2 Utilizing advanced registration techniques, high-resolution templates can be created for cohort groups of subjects, such as healthy or individuals affected by a mental condition which causes differences in anatomical sizes for certain regions of the brain.3 Similarity metrics can be used to compare anatomical structures between a set of cohort templates and a DT-MRI scan of unseen subjects. The template creation strategy and analytical tools is a framework which will enable the pre-clinical DT-MRI studies for understanding and treating brain disorders.4

The image processing pipeline of DT-MRI utilizes a T1 weighted MRI image as a registration target for a set of diffusion weighted MRI images obtained by varying the magnetic field direction. The notion behind this novel imaging technique comes from the observation that water molecules will diffuse along the direction of the magnetic field when inside of a fiber traveling in the same direction, producing a high signal. Water molecules will not diffuse outside of a fiber, so a fiber which is perpendicular to the incoming magnetic field will yield a signal of zero. A diffusion tensor is then computed for each voxel that can describe local water diffusion. Sophisticated image pre-processing steps are often required for DT-MRI such as denoising and accounting for other device specific distortions. Each diffusion weighted image is registered to the T1 image, and additional images can be derived from the co-located data such as Fractional Anisotropy (FA), and Directionally Encoded Color (DEC) maps, as shown in Figure 1. The template displayed below was obtained through the Human Connectome Project open dataset and was formed using scans of 842 subjects, 372 of which were male and 470 were female and were between 20-40 years old.5 The FA image shows the major white matter pathways in the brain and can be used along with other derived images such as the DEC map to create other useful data visualizations such as fiber tractography reconstruction. Tractography is an approach to generate 3D models of anatomy out of the major fiber pathways discovered through DT-MRI and can be visualized in a graphics rendering engine. Using a DT-MRI template and derived images from Figure 1, full brain fiber tractography can be generated. Furthermore, fibers emerging from and terminating into specific brain regions, such as the amygdala, can be selected for detailed analysis shown in Figure 2.

Figure 1 Axial representation of the DT MRI processing pipeline. (a) A T1 weighted image is used as a reference image, (b) FA is computed using multiple diffusion weighted images, and (c) a DEC map is created, where colors indicate fiber orientation.

Figure 2 Frontal coronal view of fiber tractography generated using DSI Studio from the Human Connectome project DT MRI data. (a) Full brain fiber tractography with right (green) and left (blue) amygdala shown inside, and (b) Amygdala specific fiber connectivity isolated with FA in the background.

The fiber tractography technique is not yet perfected due to MR scanner limitations as well as a lack of ‘gold standard’ in-vivo fiber tractography ground truth data.6 Although tractography is only an approximation to actual anatomical brain connectivity, when coupled with computational chemistry software, we believe 3D renderings from healthy templates and from templates built from cohort groups of subjects sharing a mental disorder can be utilized in a computational framework for understanding electrical and chemical communication in the brain. The Computational Chemistry and Computer Science fields have developed several open-source tools, such as Avogadro, PyMol, and Ghemical to name a few, for simulating and displaying inter and intra molecular forces on an atomic scale in a 3D rendering engine. Molecule editors like Avogadro offer visualization tools are designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and additional areas. It offers flexible high-quality rendering and a powerful plugin architecture.7 A typical hormone, glutamate is shown in Figure 3 and an exemplar ‘fiber tract’ is shown as a carbon nanotube containing multiple glutamate molecules, simulated with Avogadro.

Figure 3 Molecular dynamics rendering software can realistically simulate molecular interactions from (a) A single glutamate molecule, to (b) a collection of glutamate traveling along a ‘fiber’ (carbon nanotube).

Augmenting a tractography volume with an accurate chemical simulation tool will create a novel testbed for understanding hormone communication in the brain and serve as a synthetic ‘anatomical breadboard’ for prototyping hardware that can utilize electrical and chemical signals in computation to develop cutting-edge AI applications.

Biological review

The interplay of electrical and chemical signaling mechanisms can be seen all throughout the body in virtually every biological structure. Electrical signaling is a mechanism by which molecules are passed as information through a BNN using conduction along neurons. These electrical signals are known as action potentials. Action potentials utilize ions such as larger sodium and smaller potassium cations. The action potential signaling mechanism is initiated by sodium ions flowing into a cell, and potassium ions flowing out of the cell, maintaining equilibrium in the cell. Only a small concentration of ions needs to enter the cell membrane for the voltage to vary significantly. The firing rate of a neuron is the frequency that a neuron sends an action potential. In digital circuitry, an action potential is simply realized as an increase in voltage along the circuit wire that is represented as a 1 (V>50Hz) or 0 (V<50Hz). This voltage passes through logic gates which can alter the output current. Even a unicellular organism such as slime mold uses electrical signaling and possesses some memory.8

It is quite interesting to explore the complex BHN of multicellular human beings which gives rise to emotions. The various emotions we experience are mostly a result of hormone production throughout the body, and perception of those hormones by specific receptors in specific regions the brain, such as in the amygdala. The amygdala can also enhance learning and memory storage media in the adjacent hippocampus through emotionally driven chemical signaling, such as fear-induced visual stimuli as shown in Figure 4.9,10

Figure 4 Fast pathway of information from the eye to the Amygdala in the case of a fear response.10

Chemical signaling occurs in the body mainly using molecules such as hormones and neurotransmitters. There are many types of hormones and neurotransmitters, but they are all larger, more complex molecules than the small molecules used in electrical signaling mechanisms. Instead of passing through the membrane of a cell, they bind to receptors on the outside of a cell and cause a reaction within the cell. Cells have a mechanism to allow smaller ions in and out, known as an ion channel. Ion channels can be classified based on their gating - the type of stimuli responsible for opening and closing the channel. An electrical gradient across the cell membrane is responsible for opening voltage-gated ion channels as well as closing them. However, binding of a ligand (molecule) to a channel is responsible for the activation and deactivation of ligand-gated ion channels.11

A well-studied phenomenon where both types of signaling mechanisms are involved to perform a biological function exists in the human visual system (HVS). At the biological sensor level, the HVS exemplifies a coupled electronic and chemical signaling phenomena beginning in the eyes for tasks such as night vision capabilities, by separating energy from information. Disorders such as focusing for near-sightedness, or photon sensitivity in cataracts are treated separately. In the back of each eye, the retina is composed of hundreds of millions of photon sensors known as photoreceptor cells, which allow us to see the world around us. The retina is composed of a population three main types of cells that form a mosaic surface able to sense light of different wavelengths. Cone (color vision) and rod (shade/intensity) cells are the beginning of an information pathway to the brain through circular neighborhood groups of rod and/or cone cells that collectively synapse with bipolar cells. Bundles of bipolar cells then synapse with ganglion cells, which integrate the collective signal and communicate this information in a wired fashion to the brain using an action potential. The information exits they eye via the optic nerve and feeds into the Lateral Geniculate Nucleus (LGN), the visual cortex (occipital lobe), and other processing centers for understanding the environment. A separate information pathway exists in the retina which is mediated by intrinsically photo Receptive Retinal Ganglion Cells (IpRGC). Unlike the rods and cones, IRPGC cells perform chemical signaling by regulating certain hormones, i.e., melatonin, dopamine, related to our circadian rhythms as well as perform other autonomic functions. The complex ecosystem of retinal cells which use electrical and chemical communication is shown below in Figure 5.12

Figure 5 Diagram of retinal cells and the hormones involved with early vision.12

Academician Chuck Hagins of National Institutes of Health, National Eye Institute resolved the paradox of single photon detection at human body temperature with the notional ‘dark current’. He observed that when a photon is absorbed by a retinol molecule in the dark-adapted rod cell, even such a small change can cause the visual transduction process to occur, whereas this is not possible in the daytime.13 The biological phenomenon of dark current uses ‘negate the converse logic’ - namely a lack of dark current implies the detection of a photon. The energy of the dark current results from a constant leakage of potassium from the rod photoreceptor, and an influx of sodium ions via cGMP-gated channels and calcium ions via voltage gated channels into each rod. Calcium ions force the neurotransmitter glutamate to be constantly released from the base of the rod cell at its synapse, creating a downstream inhibition of ganglion cells. In the presence of light, cGMP production stops, sodium channels and calcium channels close, which reduces the release of glutamate. Without glutamate inhibiting the integrator Ganglion cell, an action potential can fire along the optic nerve via saltatory conduction. The altered chemical composition of the dark-adapted photoreceptors modifies the internal energy of the sensor system to enhance the information, depicted below in Figure 6.14

Figure 6 Rod cell under the influence of dark current (left) and in normal daylight conditions (right). Dark current mechanism constantly releases glutamate, while light conditions inhibit release.14

Biological sensory systems and processing centers of typically involve pairs of sensors; capturing signals from the external world with two eyes, hearing with two ears, smelling with two nostrils and olfactory bulbs, tasting with numerous taste buds, and touch with thousands of tactile receptors distributed over the skin. Paired sensors exist in intermediate relay organs as well, such as the amygdala, which perceives the internal world of hormones and neurotransmitter communication using molecular receptors. The ‘power of sensor pairs’ are enhanced by brain regions downstream from perception such as the hypothalamus to regulate body temperature and pituitary gland in order to promote hormone release throughout the body. A consensus seeking effect seems to exist in the brain that begins with input signals from a pair of sensors that must agree to be a signal, and a disagreement may be noise that requires further paired sampling. If a signal is determined to be noise by the brain’s sensory fusion areas, it is radiated out of the skull as thermal energy, heat, and can be measured by an Electro Encephalogram (EEG) device. Our brain keeps information flowing through the sensory processing pathway but rejects noise in order to keep a constant temperature. Past research has suggested that activity in the amygdala is dependent on visual awareness. However, recent physiological research has provided evidence to a new hypothesis that the amygdala enhances the visual awareness through bidirectional projections with the visual cortex.15 There are several functions performed by the amygdalae, such as encoding stimuli with emotional association for memory, facilitating the decision-making processes and emotional responses, and thus serves as a very interesting structure to understand in the context of cutting-edge AI.

Hormones, emotion, and mental disorders

Physical movement, sensing and thinking in our brain requires communication throughout the body using the central nervous system. The largest neuron in the body extends from the motor cortex to the toe, through the spinal cord. There is an extremely high velocity of electrical signal for this part of our body is due to the large width of the neuron and the anatomical location of toe tactile sensors in the motor cortex. Despite its long distance from the motor cortex, we can sense tactile information on our toe with the same latency as a location much closer to the motor cortex, such as the neck. This survival system is possible due to the electrical signal communication capability of the nervous system, oxygen delivery through blood traveling in the circulatory system, and the lymph system which cleans up cell waste (large unused molecules) from all cells in the body with fluid. The lymph fluid is transported to lymph nodes which are ‘filtering stations’ in the body. Our brain has tens of billions of neurons but also has 100 billion glial cells and Schwann cells which surround the nervous system and perform house-keeping functions. Epithelial cells also play a role in chemical hormone messages throughout our body.

Hormones fill the role of messengers which initiate numerous behaviors in the body. Hormones are responsible for reproduction, growth and development, respiration, metabolism, sensory perception, and many other capabilities. Endocrine hormones are known to modulate emotions, mood and behavior. The hypothalamus in the brain is responsible for maintaining homeostasis and instructs the pituitary gland through messengers to either promote or inhibit production of hormones such as oxytocin for growth, melatonin and dopamine for sleep, serotonin for alertness. The pineal gland produces melatonin to regulate our circadian rhythm (body clock). Our kidneys produce a long-term hormone, cortisol and a short-term hormone, adrenaline. Hormones can either move through a cell membrane or bind to receptors on the cell membrane to cause a change within the cell. In addition to hormone producing centers in the body, there are structures such as the amygdala which process large concentrations of hormones with a dense collection of hormone receptors.

The amygdala is a key structure which mediates emotional processing and appears to be responsive to electrical stimulation in order to elicit changes in emotional physiology without changing the subjective experience. This is important for studying the effects of amygdala-mediated modulatory effects on cognition.16 Each side of the amygdala performs specific functions that influence how we perceive and process emotion. Both sides have specific internal and independent memory architecture but are symbiotic when storing, encoding, and interpreting emotion. Studies have shown that stimulating the right amygdala causes negative emotions to surface, including anger, fear and sadness. However, when the left amygdala is electrically stimulated, either pleasant, happy, or negative emotions emerged.

The left side amygdala has been shown to be involved with the brain’s reward system, while the right side is heavily involved with memory management and creation, the association of ‘when’ and ‘where’ with emotional features.17 The right side also facilitates fear expression, and processing of fear-inducing situations. While it is known that the auditory system communicates with the amygdala in an excitatory capacity, it has recently been discovered that the amygdala also receives inhibitory chemical communication from the auditory system in the same location. It appears that a timing and ratio of excitation and inhibition can dynamically affect the output of the amygdala and can be interpreted as a general mechanism for auditory stimuli to affect emotional behavior.18 Such excitation and inhibition phenomena via auditory pathways in the amygdala may have analogous capability with other sensor systems, such as dark current in the eye, mentioned above.              

Numerous neurological disorders can affect the amygdala, such as depression, anxiety, and Alzheimer’s disease.19 These disorders can manifest themselves in places where the physiology is not adequately equipped to handle the supply and demand of the chemical signaling from other places in the body. A diminished ability to sense and process constant chemical communication via hormones causes imbalances all over the body. Hormone imbalances can disparately affect brain activity. Table 1 in the appendix at the end of this document shows the relationship between several hormone production locations in the body and some disorders and symptoms that can arise from an imbalance of this hormones.20

Anatomy

Hormones

Disorders

Symptoms

Thyroid

Dopamine

Hypothyroidism

Fatigue

     

Difficulty Concentrating/Attention

Memory Problems

Depression

Serotonin

Psychosis

 

Hyperthyroidism

Sleeplessness

 

Anxiety

Irritability

Racing thoughts

GABA

Difficulty Concentrating/Attention

 

Memory problems

Depression

Mania

Psychosis

Ovaries

Estrogen

High Estrogen

Mood swings/Depression

     

Fatigue

Headaches/migraines

Memory Loss

Thyroid dysfunction

Sleep Problems

Low Estrogen

Mood swings/Depression

 

Fatigue

Heart palpitations

Osteoporosis

Memory loss

Sleep problems

Progesterone

Low Progesterone

Anxiety/Depression

   

Sleep Problems

Postpartum depression

Bone loss

Testes

Testosterone

Low Testosterone

Mood swings/Depression

     

Anxiety

Difficulty Concentrating/Attention

Low motivation

Fatigue

Sleep Problems

Low bone density

Adrenal glands

Cortisol/DHEA

Adrenal Fatigue

Low stress tolerance

     

Fatigue

High blood pressure

Memory loss

Dizziness

Premature aging

Low resistance to infection

Poor wound healing

Pancreas

Insulin

Blood Sugar Issues

Anxiety

     

Depression

Schizophrenia

Irritability

Anger

Difficulty Concentrating/Attention

Addiction to sugar

Table 1 Some hormone production sites and disorders that can result due to hormonal imbalance20

Using high resolution DT-MRI, white matter tracts can be visualized within the amygdala, allowing input and output neurons to be traced to neighboring brain regions. The density of hormone receptors in a single amygdala can be estimated by tract count that is revealed using high-resolution in-vivo imaging.21 Additionally, it has been discovered that brain tumors can be detected using oxygen sensitive MRI by combining blood oxygen level dependence (BOLD) and tissue oxygen level dependence (TOLD) to differentiate healthy tissue from the tumor.22 Combining measurements of amygdala tract density as well as tumor likelihood would provide important insight when exploring the physiological characteristics associated with several mental disorders.

The complex interplay between electrical communication and chemical balance of hormones in our body is remarkable, but also difficult to model analytically. Very subtle differences in the properties of biological structures can lead to an imbalance of hormones in the body, resulting in widely different perceptions of the outside world and a different quality of life for individuals. Homeostatic equilibrium within the body requires a delicate balance of hormone production and reception to facilitate effortless chemical and electrical communication. In order to capture a desired internal equilibrium state, we shall derive a set of principles that describe a general model of molecular dynamics for both balanced and imbalanced neurological systems and we then attempt to elucidate how these imbalanced systems are tuned towards normal functioning.

Mathematical model

We wish to state that all molecular signaling follows “Hagins’ principles”16 used to describe the dark current phenomena: Principle #1 Separate material-energy from information, i.e., Energy and Information are two separate entities; Principle #2 The Logic can negate the converse, i.e., if and only if P were true, then Q is true; then, if not Q implies not P. Are Hagins’ principles true for all chemical molecular signals? Perhaps this is consistent under circumstances where a quick reaction time to fear-inducing stimuli affords the same dark-current mechanism to increase the probability of detection while lowering the threshold for electrical and chemical communication in other sensor systems. How could early humans adapt to detect a single photon from a predator’s eye in a dark cave and survive? 

We first conjecture that “nature has limited set tricks that our body can emulate”. All molecular signals, including macro-molecules, i.e., hormones obey this same information-energy separation principle, exemplified by the HVS i.e., sodium (Na+), calcium (Ca+), potassium (K+) ions, and glutamate in the human visual system can demonstrate both principles (1) and (2) for other larger molecules at the constraint of our warm body background temperature (i.e., 300ºK=1/40 eV). This seems to go against the Quantum Mechanics (QM) uncertainty principle. We frame the problem in the context of Thermodynamic equilibrium for the linear approximation of ionic molecular signal and subsequently the Fluctuation-Dissipation Theorem of hormone and ionic molecular communications.

We wish to estimate the human body chemical hormones with a large mass, size, and charge that are floating in thermal equilibrium among a rapid fluctuating medium, i.e., lymph, blood, water, etc., containing molecules that are much smaller in size compared to hormones. First, we assume the standard Brownian motion model, where the larger sized chemical hormones will be considered analogous to a macroscopic pollen particle floating with a slow anisotropic velocity in a water medium that has a much smaller molecular mass  and a fast isotropic fluctuation velocity v w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWG2bWdayaaoaGcdaWgaaWcbaqcLbmapeGaam4DaaWcpaqa baaaaa@3B67@ . Then, we can apply the medium equal-partition law which is derived according to the Canonical Ensemble.

We assume a two time scale perturbation model of which the relaxation time are inversely proportional to the sizes of hormone senders and their receptors. Larger receptors would have an easier ability to capture the hormone messengers. Our model resembles the Adaptive Resonance Theory (ART) unsupervised learning model.23 and facilitates the homeostasis principle among two block networks: (1) the lower block nodes represent a sensory processing ‘committee’, i.e., a sensory decision involving vision and hearing as well as intuition about a predator concealed in the environment and (2) top block nodes serve as the ‘messengers’ i.e., the adrenal gland located above the kidney will secrete the adrenaline hormone which propagates through blood vessels with oxygen other nutrients to limb muscles to be ready for a “fight or flight” response. Together, the decision must operate at the homeostasis Helmholtz Principle at an effortless MFE. Collectively, the bottom block voting represented by the net sensory vector spanned by a ‘committee’ of all sensory input vectors and top block voting presented the total action vector among ‘managers’ decision vectors shown below in Figure 7.

Figure 7 Modified ART structure showing the collective bottom block voting represented by the net sensory vector spanned by ‘committee’ of all sensory input vectors and the top block voting representing the total action vector among ‘managers’ decision.

For small input/output (I/O) interactions, such as hormone I/O from other organs, i.e., Amygdales, we describe an equilibration process to tune hormone ionic flow which can mitigate imbalance at MFE. This can be achieved by approximating the chemical (hormone) signal perturbation balance in a pseudo-closed system as an order of magnitude approximation operating at absolute equilibrium, MFE E H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadIeaa8aabeaaaaa@3920@ . We begin with Ludwig Boltzmann’s definition of entropy  (proportional to the unusable energy at absolute Kelvin temperature), where W is phase space and k B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadkeaa8aabeaaaaa@3940@ is the Boltzmann constant. Given the definitions denoted by :

S k B Log  W phase MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiabggMi6kaadUgapaWaaSbaaSqaa8qacaWGcbaapaqabaGc peGaamitaiaad+gacaWGNbGaaiiOaiaadEfapaWaaSbaaSqaa8qaca WGWbGaamiAaiaadggacaWGZbGaamyzaaWdaeqaaaaa@45B0@ ; β 1 k B  T ; E H H tot. ST MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyyyIO7aaSaaa8aabaWdbiaaigdaa8aabaWdbiaadUga paWaaSbaaSqaa8qacaWGcbGaaiiOaaWdaeqaaOWdbiaadsfaaaGaai 4oaiaadweapaWaaSbaaSqaa8qacaWGibaapaqabaGcpeGaeyyyIORa amisa8aadaWgaaWcbaWdbiaadshacaWGVbGaamiDaiaac6caa8aabe aak8qacqGHsislcaWGtbGaamivaaaa@4BD4@

> W phase exp( S k B )exp( βS T   )=exp( β H tot. )exp(β( H tot. ST ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadchacaWGObGaamyyaiaadohacaWG LbaapaqabaGcpeGaeyyyIORaaeyzaiaabIhacaqGWbWaaeWaa8aaba Wdbmaalaaapaqaa8qacaqGtbaapaqaa8qacaWGRbWdamaaBaaaleaa peGaamOqaaWdaeqaaaaaaOWdbiaawIcacaGLPaaacqGHHjIUciGGLb GaaiiEaiaacchadaqadaWdaeaapeGaeqOSdiMaam4uaiaadsfapaWa aSbaaSqaa8qacaGGGcaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0 JaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabek7aIjaadIeapaWa aSbaaSqaa8qacaWG0bGaam4BaiaadshacaGGUaaapaqabaaak8qaca GLOaGaayzkaaGaaeyzaiaabIhacaqGWbGaaiikaiabgkHiTiabek7a Inaabmaapaqaa8qacaWGibWdamaaBaaaleaapeGaamiDaiaad+gaca WG0bGaaiOlaaWdaeqaaOWdbiabgkHiTiaadofacaWGubaacaGLOaGa ayzkaaaaaa@6D26@

=exp( β H tot. )exp( β E H ) =const.exp( β E H ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabek7aIjaa dIeapaWaaSbaaSqaa8qacaWG0bGaam4BaiaadshacaGGUaaapaqaba aak8qacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWaa8aabaWd biabgkHiTiabek7aIjaadweapaWaaSbaaSqaa8qacaWGibaapaqaba aak8qacaGLOaGaayzkaaGaaiiOaiabg2da9iaadogacaWGVbGaamOB aiaadohacaWG0bGaaiOlaiGacwgacaGG4bGaaiiCamaabmaapaqaa8 qacqGHsislcqaHYoGycaWGfbWdamaaBaaaleaapeGaamisaaWdaeqa aaGcpeGaayjkaiaawMcaaaaa@5D05@

We summarize our intuition by observing that the permutation phase space W of molecular collision probability increases as the MFE decreases, known to Boltzmann as the irreversible thermodynamic phenomena. This is consistent despite the famous Poincare criticism which insinuated that time-reversible Newtonian dynamics do not support irreversibility. Defining the initial boundary conditions allows for the irreversibility constraint to be satisfied.

W phase ( )=const.exp( β( E H )) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadchacaWGObGaamyyaiaadohacaWG LbaapaqabaGcpeWaaeWaa8aabaWdbiabggziTcGaayjkaiaawMcaai abg2da9iaadogacaWGVbGaamOBaiaadohacaWG0bGaaiOlaiaabwga caqG4bGaaeiCamaabmaapaqaa8qacqGHsislcqaHYoGycaGGOaGaam yra8aadaWgaaWcbaWdbiaadIeaa8aabeaak8qacqGHtgYRaiaawIca caGLPaaacaGGPaaaaa@5393@

=const. exp( E H (| H * A | 2 ) k B T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Jaae4yaiaab+gacaqGUbGaae4CaiaabshacaGGUaGaaeiO aiaabwgacaqG4bGaaeiCaiaacIcacqGHsisldaWcaaWdaeaapeGaam yra8aadaWgaaWcbaWdbiaadIeaa8aabeaak8qacaGGOaGaaiiFaiqa dIeapaGba4aapeGaaiOkaiqadgeapaGba4aapeGaaiiFa8aadaahaa Wcbeqaa8qacaaIYaaaaOGaaiykaaWdaeaapeGaam4Aa8aadaWgaaWc baWdbiaadkeaa8aabeaak8qacaWGubaaaaaa@4FA0@

=const. exp( E H (| H * A | 2 ) k B T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Jaae4yaiaab+gacaqGUbGaae4CaiaabshacaGGUaGaaeiO aiaabwgacaqG4bGaaeiCaiaacIcacqGHsisldaWcaaWdaeaapeGaam yra8aadaWgaaWcbaWdbiaadIeaa8aabeaak8qacaGGOaGaaiiFaiqa dIeapaGba4aapeGaaiOkaiqadgeapaGba4aapeGaaiiFa8aadaahaa Wcbeqaa8qacaaIYaaaaOGaaiykaaWdaeaapeGaam4Aa8aadaWgaaWc baWdbiaadkeaa8aabeaak8qacaWGubaaaaaa@4FA0@  Note that the vector, is not the same as the scalar H, and represents the Endocrinal Hormone flow whose vector components are directed towards a collection of receptors. Likewise, the action vector  came from all sensory decision components.

E H ( | H * A | 2 )= | H | 2 + | A | 2 +2| H || A |cos( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadIeaa8aabeaak8qadaqadaWdaeaa peGaaiiFaiqadIeapaGba4aapeGaaiOkaiqadgeapaGba4aapeGaai iFa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaeyyp a0ZaaqWaa8aabaWdbiaadIeaaiaawEa7caGLiWoapaWaaWbaaSqabe aapeGaaGOmaaaakiabgUcaRmaaemaapaqaa8qacaWGbbaacaGLhWUa ayjcSdWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIYaWaaq Waa8aabaWdbiaadIeaaiaawEa7caGLiWoadaabdaWdaeaapeGaamyq aaGaay5bSlaawIa7aiaabogacaqGVbGaae4Camaabmaapaqaa8qacq aH4oqCaiaawIcacaGLPaaaaaa@5C9D@

E H =2| H || A |sin( θ )θ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4bIeTaamyra8aadaWgaaWcbaWdbiaadIeaa8aabeaak8qacqGH 9aqpcqGHsislcaaIYaWaaqWaa8aabaWdbiaadIeaaiaawEa7caGLiW oadaabdaWdaeaapeGaamyqaaGaay5bSlaawIa7aiGacohacaGGPbGa aiOBamaabmaapaqaa8qacqaH4oqCaiaawIcacaGLPaaacqGHhis0cq aH4oqCcqGH9aqpcaaIWaaaaa@50B6@ ; θ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdeNaeyypa0JaaGimaaaa@3AA4@

E H ( | H * A | 2 )= | H | 2 + | A | 2 +2| H || A |= (| H |+| A |) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadIeaa8aabeaak8qadaqadaWdaeaa peGaaiiFaiqadIeapaGba4aapeGaaiOkaiqadgeapaGba4aapeGaai iFa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaeyyp a0ZaaqWaa8aabaWdbiaadIeaaiaawEa7caGLiWoapaWaaWbaaSqabe aapeGaaGOmaaaakiabgUcaRmaaemaapaqaa8qacaWGbbaacaGLhWUa ayjcSdWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIYaWaaq Waa8aabaWdbiaadIeaaiaawEa7caGLiWoadaabdaWdaeaapeGaamyq aaGaay5bSlaawIa7aiabg2da9iaacIcadaabdaWdaeaapeGaamisaa Gaay5bSlaawIa7aiabgUcaRmaaemaapaqaa8qacaWGbbaacaGLhWUa ayjcSdGaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaaaa@62CE@

The action potential exp( | A | 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyzaiaabIhacaqGWbWaaeWaa8aabaWdbmaaemaapaqaa8qacaWG bbaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaaikdaaaaakiaawI cacaGLPaaaaaa@40C5@ can be minimized through the traditional deep learning approach.24 Let v=| v |= v x 2 + v y 2 + v z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabg2da9maaemaapaqaa8qaceWG2bWdayaaoaaapeGaay5b SlaawIa7aiabg2da9maakaaapaqaa8qacaWG2bWdamaaDaaaleaape GaamiEaaWdaeaapeGaaGOmaaaakiabgUcaRiaadAhapaWaa0baaSqa a8qacaWG5baapaqaa8qacaaIYaaaaOGaey4kaSIaamODa8aadaqhaa WcbaWdbiaadQhaa8aabaWdbiaaikdaaaaabeaaaaa@4A0C@ be the fast fluctuation of small ionic particles, and then the Maxwell-Boltzmann equilibrium distribution f( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2baacaGLOaGaayzkaaaaaa@3ABC@ is derived in spherical coordinates of the magnitude of velocity v, known as the equal-partition law among the fast fluctuation of the water medium:

f( v )=4π ( m 2π k B T ) 3 2 v 2 exp( m v 2 2 k B T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG2baacaGLOaGaayzkaaGaeyypa0Ja aGinaiabec8aWjaacIcadaWcaaWdaeaapeGaamyBaaWdaeaapeGaaG Omaiabec8aWjaadUgapaWaaSbaaSqaa8qacaWGcbaapaqabaGcpeGa amivaaaacaGGPaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIZa aapaqaa8qacaaIYaaaaaaakiaadAhapaWaaWbaaSqabeaapeGaaGOm aaaakiaabwgacaqG4bGaaeiCamaabmaapaqaa8qacqGHsisldaWcaa WdaeaapeGaamyBaiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaaaOWd aeaapeGaaGOmaiaadUgapaWaaSbaaSqaa8qacaWGcbaapaqabaGcpe GaamivaaaaaiaawIcacaGLPaaaaaa@56F5@

KE = 1 2 m v 2 = 0   1 2 m v 2 f(v)dv=3 k B T o dξξexp( ξ 2 )= 3 2 k B T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaWaa8aabaWdbiaadUeacaWGfbaacaGLPmIaayPkJaGaeyypa0Za aaWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaai aad2gacaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaakiaawMYicaGL QmcacqGH9aqpdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaeyOhIu kan8aabaWdbiabgUIiYdaakiaacckadaWcaaWdaeaapeGaaGymaaWd aeaapeGaaGOmaaaacaWGTbGaamODa8aadaahaaWcbeqaa8qacaaIYa aaaOGaamOzaiaacIcacaWG2bGaaiykaiaadsgacaWG2bGaeyypa0Ja aG4maiaadUgapaWaaSbaaSqaa8qacaWGcbaapaqabaGcpeGaamivam aawahabeWcpaqaa8qacaWGVbaapaqaa8qacqGHEisPa0WdaeaapeGa ey4kIipaaOGaamizaiabe67a4jabe67a4jaadwgacaWG4bGaamiCam aabmaapaqaa8qacqGHsislcqaH+oaEpaWaaWbaaSqabeaapeGaaGOm aaaaaOGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIZaaapa qaa8qacaaIYaaaaiaadUgapaWaaSbaaSqaa8qacaWGcbaapaqabaGc peGaamivaaaa@700E@

Now we consider the slower time scale decay of chemical hormone molecules having a larger size. Eventually, we can relate both the slow and the fast time scale phenomena with the equal-partition equilibrium law, like large pollen particles being bounced around by small water molecules in thermal equilibrium.

We assume that the fluctuation time scale is inversely related to the size of the molecules, thus for large size hormones, transport will occur slowly through a fast-fluctuating medium pathway toward hormone receptors with a slow current I ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmysa8aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaaaaa@3B9A@  in the time scale, where an ionic molecule of mass  of charge current I ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmysa8aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaaaaa@3B9A@  is communicated by the Brownian diffusion Langevin equation with transport constant  in 3 isotropic dimensions.

I ( τ ) Q s n[ A s ( τ )] v ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmysa8aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaGaeyyyIORaamyua8aadaahaaWcbeqaa8qacaWGZbaaaOGaamOBai aacUfacaWGbbWdamaaCaaaleqabaWdbiaadohaaaGcdaqadaWdaeaa peGaeqiXdqhacaGLOaGaayzkaaGaaiyxaiqadAhapaGbaSaapeWaae Waa8aabaWdbiabes8a0bGaayjkaiaawMcaaaaa@4C54@      (1)

Here, the ion density  of the electric charges  flow through the slow modulating propagation pathway with the time dependent receptor bundle cross-section  [ A s ( τ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOamaadmaapaqaa8qacaWGbbWdamaaCaaaleqabaWdbiaadoha aaGcdaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaacaGLBbGaay zxaaaaaa@3FE4@  and velocity v ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmODa8aagaGda8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaaaaa@3BCA@ . The size of the Einstein-Brownian motion reveals the molecular medium, independent of the Brownian particle and molecular composition.

This observation allows us to model different hormones in an arbitrary media which are found in two different channels of a receptor rich region of the body, for example, the left and right amygdale. In physics, Paul Langevin described that the time evolution of a meaningful two-channel degree of freedom are typically macroscopic variables that collectively change slowly with respect to the quickly changing microscopic system variables, i.e. molecular ions. Fast variables are the cause for the stochastic behavior of the Langevin equation.25 Due to hormone receptors, we do not need to consider the spatial Laplacian diffusion component in this work since the hormone molecule will be collected by a receptor within a bundle of receptors of area size  [ A s ( τ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOamaadmaapaqaa8qacaWGbbWdamaaCaaaleqabaWdbiaadoha aaGcdaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaacaGLBbGaay zxaaaaaa@3FE4@  along the propagation pathway,

m o d I dτ = D o I ( τ )+ F ˜ (τ|t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qadaWcaaWdaeaa peGaamizaiqadMeapaGbaSaaaeaapeGaamizaiabes8a0baacqGH9a qpcqGHsislcaWGebWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbiqa dMeapaGbaSaapeWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaai abgUcaRiqadAeapaGbaGaapeGaaiikaiabes8a0jaacYhacaWG0bGa aiykaaaa@4DCF@    (2)

< F ˜ i ( τ|t ) F ˜ j ( τ| t ' ) > G =β( τ ) δ i,jτ δ( t t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWJabmOra8aagaacamaaBaaaleaapeGaamyAaaWdaeqaaOWd bmaabmaapaqaa8qacqaHepaDcaGG8bGaamiDaaGaayjkaiaawMcaai qadAeapaGbaGaadaWgaaWcbaWdbiaadQgaa8aabeaak8qadaqadaWd aeaapeGaeqiXdqNaaiiFaiqadshapaGbauaapeGaai4jaaGaayjkai aawMcaaiabg6da+8aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacqGH 9aqpcqaHYoGydaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaGaeq iTdq2damaaBaaaleaapeGaamyAaiaacYcacaWGQbGaeqiXdqhapaqa baGcpeGaeqiTdq2aaeWaa8aabaWdbiaadshacqGHsislceWG0bWday aafaaapeGaayjkaiaawMcaaaaa@5D6B@   (3)

β( τ )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGydaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaGaaiiO aaaa@3C49@  is to be self-consistently determined from the thermal equilibrium average of random perturbations due to collisions  from the medium molecules.

. k B T= 1 40 eV; T= 300 o K, or  27 o C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiOlaiaadUgapaWaaSbaaSqaa8qacaWGcbaapaqabaGcpeGaamiv aiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaI0aGaaGimaa aacaWGLbGaamOvaiaacUdacaGGGcGaamivaiabg2da9iaaiodacaaI WaGaaGima8aadaahaaWcbeqaa8qacaWGVbaaaOGaam4saiaacYcaca GGGcGaam4BaiaadkhacaGGGcGaaGOmaiaaiEdapaWaaWbaaSqabeaa peGaam4Baaaakiaadoeaaaa@50AF@     (4)

In the central limiting theorem, these fluctuations have a Gaussian probability distribution , and a damping coefficient  in the correlation function of the random molecular forces. This fact is known as Einstein fluctuation-dissipation relation.21 Molecule receptors overwrite the Laplacian spatial curvature for a molecule on its propagation pathway through either divergence caused by occupancy or by focusing a molecule to bind. This is like the historic Brownian motion, where an arbitrarily sized macroscopic pollen particle, after falling into a pond, seems to be kicked around by water medium molecules in a nonstop zigzag (thermal) motion. Albert Einstein said, “Brownian motion has demonstrated the existence of water molecules visually, without the microscope.” In the same vein, we believe that macroscopic hormone molecules can be characterized by their interaction with medium molecules during their communication charge current, defined as the vector current I:

I ( τ )= Q s v ( τ )[ A s ( τ )] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmysa8aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaGaeyypa0Jaamyua8aadaahaaWcbeqaa8qacaWGZbaaaOGabmODa8 aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaGaai4w aiaadgeapaWaaWbaaSqabeaapeGaam4Caaaakmaabmaapaqaa8qaca qGepaacaGLOaGaayzkaaGaaiyxaaaa@4A24@    (5)

Arbitrary hormone molecules have their own specific charge and flow path cross section that is weakly time dependent, denoted as species Q s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaCaaaleqabaWdbiaadohaaaaaaa@3831@    [ A s ( τ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOamaadmaapaqaa8qacaWGbbWdamaaCaaaleqabaWdbiaadoha aaGcdaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaacaGLBbGaay zxaaaaaa@3FE4@ , where the superscript s for the sth species of molecule. Note that the location parameter of the hormone is no longer needed for our case because of propagation along the physiological pipelines. According to the equal-partition law, the homeostasis property of human beings will have the medium molecules exhibiting constant thermal motions at an absolute Kelvin temperature T.

We define the slow time scale Newton force equation of a large molecule receptor’s ion current:

F ( τ )= m o a ( τ ) m o d v dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaGaeyypa0JaamyBa8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qace WGHbWdayaalaWdbmaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaa cqGHHjIUcaWGTbWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbmaala aapaqaa8qacaWGKbGabmODa8aagaGdaaqaa8qacaWGKbGaeqiXdqha aaaa@4C94@     (6)

Let there be a total force F ( τ ) F ( τ )+ F ˜ ( τ|t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaGaeyyyIORabmOra8aagaWca8qadaqadaWdaeaapeGaeqiXdqhaca GLOaGaayzkaaGaey4kaSYdamaaGaaabaWdbiqadAeapaGbaSaaaiaa woWaa8qadaqadaWdaeaapeGaeqiXdqNaaiiFaiaadshaaiaawIcaca GLPaaaaaa@49EF@  in two different time scales, slow τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hXdaaa@3883@ and fast t. Then, the thermal fluctuations in the fast scale have a zero mean and an arbitrary slow dissipation correlation parameter β( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGydaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaaaa@3B25@  to be self-consistently determined by the fast time sale equal-partition law. We will the drop vector sign along the propagation path:

< F ˜ ( τ|t )>=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaaca8qadaqadaWdaeaapeGaeqiXdqNaaiiFaiaadsha aiaawIcacaGLPaaacqGH+aGpcqGH9aqpcaaIWaaaaa@4056@  ; < F ˜ ( τ|t ) F ˜ ( τ|t' )>=β( τ ) δ τ ( t t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaaca8qadaqadaWdaeaapeGaeqiXdqNaaiiFaiaadsha aiaawIcacaGLPaaaceWGgbWdayaaiaWdbmaabmaapaqaa8qacaqGep GaaiiFaiaadshacaGGNaaacaGLOaGaayzkaaGaeyOpa4Jaeyypa0Ja eqOSdi2aaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaiabes7aK9 aadaWgaaWcbaWdbiabes8a0bWdaeqaaOWdbmaabmaapaqaa8qacaWG 0bGaeyOeI0IabmiDa8aagaqbaaWdbiaawIcacaGLPaaaaaa@53C9@       & (7)

where the unknown slow time scale dissipation β( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaaaa@3C3D@  must be independent from the fast time scale Dirac delta distribution function δ τ ( t t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdq2damaaBaaaleaapeGaeqiXdqhapaqabaGcpeWaaeWaa8aa baWdbiaadshacqGHsislceWG0bWdayaafaaapeGaayjkaiaawMcaaa aa@3FBF@ , parameterized at t=τ=t' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iabes8a0jabg2da9iaadshacaGGNaaaaa@3D9D@ and can therefore be factored.

Proof: Given the 1st order exact differential equation, we multiply the integration factor  exp( D o m o τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadwgacaWG4bGaamiCamaabmaapaqaa8qacqGHsisldaWc aaWdaeaapeGaamira8aadaWgaaWcbaWdbiaad+gaa8aabeaaaOqaa8 qacaWGTbWdamaaBaaaleaapeGaam4BaaWdaeqaaaaak8qacqaHepaD aiaawIcacaGLPaaaaaa@4443@ through the whole equation:

exp ( D o m o τ )  d I dτ D o m o exp ( D o m o τ ) I( τ )=exp ( D o m o τ )  1 m o F ˜ (τ|t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzaiaadIhacaWGWbGaaiiOamaabmaapaqaa8qacqGHsisldaWc aaWdaeaapeGaamira8aadaWgaaWcbaWdbiaad+gaa8aabeaaaOqaa8 qacaWGTbWdamaaBaaaleaapeGaam4BaaWdaeqaaaaak8qacqaHepaD aiaawIcacaGLPaaacaGGGcWaaSaaa8aabaWdbiaadsgaceWGjbWday aalaaabaWdbiaadsgacqaHepaDaaGaeyOeI0YaaSaaa8aabaWdbiaa dseapaWaaSbaaSqaa8qacaWGVbaapaqabaaakeaapeGaamyBa8aada WgaaWcbaWdbiaad+gaa8aabeaaaaGcpeGaamyzaiaadIhacaWGWbGa aiiOamaabmaapaqaa8qacqGHsisldaWcaaWdaeaapeGaamira8aada WgaaWcbaWdbiaad+gaa8aabeaaaOqaa8qacaWGTbWdamaaBaaaleaa peGaam4BaaWdaeqaaaaak8qacqaHepaDaiaawIcacaGLPaaacaGGGc Gaamysamaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacqGH9aqp caWGLbGaamiEaiaadchacaGGGcWaaeWaa8aabaWdbiabgkHiTmaala aapaqaa8qacaWGebWdamaaBaaaleaapeGaam4BaaWdaeqaaaGcbaWd biaad2gapaWaaSbaaSqaa8qacaWGVbaapaqabaaaaOWdbiabes8a0b GaayjkaiaawMcaaiaacckadaWcaaWdaeaapeGaaGymaaWdaeaapeGa amyBa8aadaWgaaWcbaWdbiaad+gaa8aabeaaaaGcpeGabmOra8aaga aca8qacaGGOaGaeqiXdqNaaiiFaiaadshacaGGPaaaaa@7AF7@       (8)

From the differential chain rule of products, we combine the left and right two terms into one inside of square brackets:

d dτ [   I ( τ )exp ( D o m o τ )  ]=exp ( D o m o τ ) 1 m o   F ˜ (τ|t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgaa8aabaWdbiaadsgacqaHepaDaaWaamWa a8aabaWdbiaacckaceWGjbWdayaalaWdbmaabmaapaqaa8qacqaHep aDaiaawIcacaGLPaaacaWGLbGaamiEaiaadchacaGGGcWaaeWaa8aa baWdbiabgkHiTmaalaaapaqaa8qacaWGebWdamaaBaaaleaapeGaam 4BaaWdaeqaaaGcbaWdbiaad2gapaWaaSbaaSqaa8qacaWGVbaapaqa baaaaOWdbiabes8a0bGaayjkaiaawMcaaiaacckaaiaawUfacaGLDb aacqGH9aqpcaWGLbGaamiEaiaadchacaGGGcWaaeWaa8aabaWdbiab gkHiTmaalaaapaqaa8qacaWGebWdamaaBaaaleaapeGaam4BaaWdae qaaaGcbaWdbiaad2gapaWaaSbaaSqaa8qacaWGVbaapaqabaaaaOWd biabes8a0bGaayjkaiaawMcaamaalaaapaqaa8qacaaIXaaapaqaa8 qacaWGTbWdamaaBaaaleaapeGaam4BaaWdaeqaaaaak8qacaGGGcGa bmOra8aagaaca8qacaGGOaGaeqiXdqNaaiiFaiaadshacaGGPaaaaa@699E@

Through integration on both sides, we can solve with arbitrary time constants by the ensemble average of all possibilities.

LHS= d[   I ( τ )exp ( D o m o τ )  ]= I ( τ )exp ( D o m o τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeitaiaabIeacaqGtbGaeyypa0ZdamaavacabeWcbeqaaiaaygW7 a0qaa8qacqGHRiI8aaGccaWGKbWaamWaa8aabaWdbiaacckaceWGjb WdayaalaWdbmaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacaWG LbGaamiEaiaadchacaGGGcWaaeWaa8aabaWdbiabgkHiTmaalaaapa qaa8qacaWGebWdamaaBaaaleaapeGaam4BaaWdaeqaaaGcbaWdbiaa d2gapaWaaSbaaSqaa8qacaWGVbaapaqabaaaaOWdbiabes8a0bGaay jkaiaawMcaaiaacckaaiaawUfacaGLDbaacqGH9aqpceWGjbWdayaa laWdbmaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacaWGLbGaam iEaiaadchacaGGGcWaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qa caWGebWdamaaBaaaleaapeGaam4BaaWdaeqaaaGcbaWdbiaad2gapa WaaSbaaSqaa8qacaWGVbaapaqabaaaaOWdbiabes8a0bGaayjkaiaa wMcaaaaa@67C1@

RHS= exp ( D o m o τ ) 1 m o   F ˜ (τ|t)dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaadIeacaWGtbGaeyypa0ZdamaavacabeWcbeqaaiaaygW7 a0qaa8qacqGHRiI8aaGccaWGLbGaamiEaiaadchacaGGGcWaaeWaa8 aabaWdbiabgkHiTmaalaaapaqaa8qacaWGebWdamaaBaaaleaapeGa am4BaaWdaeqaaaGcbaWdbiaad2gapaWaaSbaaSqaa8qacaWGVbaapa qabaaaaOWdbiabes8a0bGaayjkaiaawMcaamaalaaapaqaa8qacaaI Xaaapaqaa8qacaWGTbWdamaaBaaaleaapeGaam4BaaWdaeqaaaaak8 qacaGGGcGabmOra8aagaaca8qacaGGOaGaeqiXdqNaaiiFaiaadsha caGGPaGaamizaiabes8a0baa@58DE@

To integrate the right-hand side, we multiply F ˜ (τ|t') MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaaca8qacaGGOaGaeqiXdqNaaiiFaiaadshacaGGNaGa aiykaaaa@3DEA@  and take the ensemble average of fast variables denoted with angular brackets first, from ensemble average Eq (7) follows

RHS= 1 m o exp( D o m o τ )  F ˜ ( τ|t ) F ˜ ( τ| t ' ) dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaadIeacaWGtbGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aa baWdbiaad2gapaWaaSbaaSqaa8qacaWGVbaapaqabaaaaOWaaubiae qaleqabaGaaGzaVdqdbaWdbiabgUIiYdaakiaadwgacaWG4bGaamiC amaabmaapaqaa8qacqGHsisldaWcaaWdaeaapeGaamira8aadaWgaa WcbaWdbiaad+gaa8aabeaaaOqaa8qacaWGTbWdamaaBaaaleaapeGa am4BaaWdaeqaaaaak8qacqaHepaDaiaawIcacaGLPaaacaGGGcWaaa Waa8aabaWdbiqadAeapaGbaGaapeWaaeWaa8aabaWdbiabes8a0jaa cYhacaWG0baacaGLOaGaayzkaaGabmOra8aagaaca8qadaqadaWdae aapeGaeqiXdqNaaiiFaiaadshapaWaaWbaaSqabeaapeGaai4jaaaa aOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaadsgacqaHepaDaaa@6139@

= 1 m o exp( D o m o τ ) β( τ )dτ δ τ ( t t ) β( τ ) m o exp ( D o m o τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad2gapaWaaSba aSqaa8qacaWGVbaapaqabaaaaOWdbmaawahabeWcpaqaa8qacqGHsi slcqaHEisPa8aabaWdbiabe6HiLcqdpaqaa8qacqGHRiI8aaGccaWG LbGaamiEaiaadchadaqadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbi aadseapaWaaSbaaSqaa8qacaWGVbaapaqabaaakeaapeGaamyBa8aa daWgaaWcbaWdbiaad+gaa8aabeaaaaGcpeGaeqiXdqhacaGLOaGaay zkaaGaaiiOaiabek7aInaabmaapaqaa8qacqaHepaDaiaawIcacaGL PaaacaWGKbGaeqiXdqNaeqiTdq2damaaBaaaleaapeGaeqiXdqhapa qabaGcpeWaaeWaa8aabaWdbiaadshacqGHsislceWG0bWdayaafaaa peGaayjkaiaawMcaaiabgwKianaalaaapaqaa8qacqaHYoGydaqada WdaeaapeGaeqiXdqhacaGLOaGaayzkaaaapaqaa8qacaWGTbWdamaa BaaaleaapeGaam4BaaWdaeqaaaaak8qacaWGLbGaamiEaiaadchaca GGGcWaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaWGebWdamaa BaaaleaapeGaam4BaaWdaeqaaaGcbaWdbiaad2gapaWaaSbaaSqaa8 qacaWGVbaapaqabaaaaOWdbiabes8a0bGaayjkaiaawMcaaaaa@7598@

If we equate RHS to the LHS, we have derived the slow dissipation value β( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaaaa@3C3D@

β( τ )= m o I ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaiabg2da 9iaad2gapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGabmysa8aaga Wca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaaaa@4409@     (9)

Now, we present the fast molecule fluctuation-dissipation theorem:

< F ˜ ( τ|t ) F ˜ ( τ| t ' )>= m o I ( τ ) δ τ ( t t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaaca8qadaqadaWdaeaapeGaeqiXdqNaaiiFaiaadsha aiaawIcacaGLPaaaceWGgbWdayaaiaWdbmaabmaapaqaa8qacaqGep GaaiiFaiaadshapaWaaWbaaSqabeaapeGaai4jaaaaaOGaayjkaiaa wMcaaiabg6da+iabg2da9iaad2gapaWaaSbaaSqaa8qacaWGVbaapa qabaGcpeGabmysa8aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGL OaGaayzkaaGaeqiTdq2damaaBaaaleaapeGaeqiXdqhapaqabaGcpe WaaeWaa8aabaWdbiaadshacqGHsislceWG0bWdayaafaaapeGaayjk aiaawMcaaaaa@55D7@      Q.E.D. (10)

Now, equating the equal-partition law of kinetic energy at temperature (Kelvin) the large hormone molecule at the homeostasis effect becomes

1 2 m o <| v ( τ ) | 2  = 3 2 k B T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyBa8aadaWg aaWcbaWdbiaad+gaa8aabeaak8qacqGH8aapdaGhcaqab8aabaWdbi qadAhapaGbaSaapeWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawMca aiaacYhapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaay5bSlaawQYiai aacckacqGH9aqpdaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaa caWGRbWdamaaBaaaleaapeGaamOqaaWdaeqaaOWdbiaadsfaaaa@4CA7@     (11)

Since I ( τ )= Q s v ( τ )[ A s ( τ )],  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmysa8aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaGaeyypa0Jaamyua8aadaahaaWcbeqaa8qacaWGZbaaaOGabmODa8 aagaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaGaai4w aiaadgeapaWaaWbaaSqabeaapeGaam4Caaaakmaabmaapaqaa8qacq aHepaDaiaawIcacaGLPaaacaGGDbGaaiilaiaacckaaaa@4C72@ the average bundle cross section [ A s ( τ )] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4waiaabgeapaWaaWbaaSqabeaapeGaae4Caaaakmaabmaapaqa a8qacaqGepaacaGLOaGaayzkaaGaaiyxaaaa@3DF1@  must contract in an inversely proportion fashion in order to reduce the kinetic energy of a large hormone molecule flow.

1 2 m o | I ( τ ) | 2 Q s [ A s ( τ )] = 1 2 m o ( Q s v ( τ )[ A s ( τ )]) 2 Q s [ A s ( τ )] = 1 2 m o Q s [ A s ( τ )]v (τ) 2 = 3 2 k B T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyBa8aadaWg aaWcbaWdbiaad+gaa8aabeaak8qadaWcaaWdaeaapeGaaiiFaiqadM eapaGbaSaapeWaaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaiaa cYhapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaamyua8aada ahaaWcbeqaa8qacaWGZbaaaOGaai4waiaabgeapaWaaWbaaSqabeaa peGaae4Caaaakmaabmaapaqaa8qacaqGepaacaGLOaGaayzkaaGaai yxaaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaa caWGTbWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbmaalaaapaqaa8 qacaGGOaGaamyua8aadaahaaWcbeqaa8qacaWGZbaaaOGabmODa8aa gaWca8qadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaGaai4wai aadgeapaWaaWbaaSqabeaapeGaam4Caaaakmaabmaapaqaa8qacqaH epaDaiaawIcacaGLPaaacaGGDbGaaiyka8aadaahaaWcbeqaa8qaca aIYaaaaaGcpaqaa8qacaWGrbWdamaaCaaaleqabaWdbiaadohaaaGc caGGBbGaaeyqa8aadaahaaWcbeqaa8qacaqGZbaaaOWaaeWaa8aaba Wdbiaabs8aaiaawIcacaGLPaaacaGGDbaaaiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaaIYaaaaiaad2gapaWaaSbaaSqaa8qaca WGVbaapaqabaGcpeGaamyua8aadaahaaWcbeqaa8qacaWGZbaaaOGa ai4waiaabgeapaWaaWbaaSqabeaapeGaae4Caaaakmaabmaapaqaa8 qacaqGepaacaGLOaGaayzkaaGaaiyxaiaabAhacaGGOaGaaeiXdiaa cMcapaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da9maalaaapaqaa8 qacaaIZaaapaqaa8qacaaIYaaaaiaadUgapaWaaSbaaSqaa8qacaWG cbaapaqabaGcpeGaamivaaaa@834C@

K.E.( τ )= 1 2 m o v (τ) 2 1 A s ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4saiaac6cacaqGfbGaaiOlamaabmaapaqaa8qacaqGepaacaGL OaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaGaamyBa8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qacaqG2bGa aiikaiaabs8acaGGPaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHij YUdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaeyqa8aadaahaaWcbeqa a8qacaqGZbaaaOWaaeWaa8aabaWdbiaabs8aaiaawIcacaGLPaaaaa aaaa@4EAA@      (12)

Where the left-hand side receptor bundle cross section area [ A s ( τ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaabgeapaWaaWbaaSqabeaapeGaae4Caaaakmaa bmaapaqaa8qacaqGepaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@3E42@  must be also dependent on the slow time scale  in order to balance the chemical current and maintain a stable equilibrium

k B T hot room = 1 40 eV MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadkeaa8aabeaak8qacaWGubWdamaa BaaaleaapeGaamiAaiaad+gacaWG0bGaaiiOaiaadkhacaWGVbGaam 4Baiaad2gaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWd aeaapeGaaGinaiaaicdaaaGaamyzaiaadAfaaaa@47C2@ , T hot room = 27 o  C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadIgacaWGVbGaamiDaiaacckacaWG YbGaam4Baiaad+gacaWGTbaapaqabaGcpeGaeyypa0JaaGOmaiaaiE dapaWaaWbaaSqabeaapeGaam4BaiaacckaaaGccaWGdbaaaa@4604@ T (homosapiens) = 37 (o) C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaacIcacaWGObGaam4Baiaad2gacaWG VbGaam4CaiaadggacaWGWbGaamyAaiaadwgacaWGUbGaam4CaiaacM caa8aabeaak8qacqGH9aqpcaaIZaGaaG4na8aadaahaaWcbeqaa8qa caGGOaGaam4BaiaacMcaaaGccaWGdbaaaa@4A21@      (13)

The slow variable dissipation β( τ )= m o I( τ )= 3 m o k B TQ s [A ( τ ) s ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2aaeWaa8aabaWdbiabes8a0bGaayjkaiaawMcaaiabg2da 9iaad2gapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpeGaaeysamaabm aapaqaa8qacaqGepaacaGLOaGaayzkaaGaeyypa0ZaaOaaa8aabaWd biaaiodacaqGTbWdamaaBaaaleaapeGaae4BaaWdaeqaaOWdbiaabU gapaWaaSbaaSqaa8qacaqGcbaapaqabaGcpeGaaeivaiaabgfapaWa aWbaaSqabeaapeGaae4CaaaakiaacUfacaqGbbWaaeWaa8aabaWdbi aabs8aaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaae4Caaaakiaa c2faaSqabaaaaa@538E@ turns out to be cross-sectional [A ( τ ) s ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4waiaabgeadaqadaWdaeaapeGaaeiXdaGaayjkaiaawMcaa8aa daahaaWcbeqaa8qacaqGZbaaaOGaaiyxaaaa@3DF1@  varying, as indicated by the line connecting the left-side amygdala to the right-side amygdala in Figure 2 shows a notional relationship for how isothermal equilibrium is maintained in the feed forward and backward interaction between large and small molecules, which is a step towards enhancing AI algorithm formulation and new computing hardware.

Discussion and future work

With knowledge of the homeostasis hormone concentration for an anatomical region such as the amygdala, modulation of the size of the region can lead to hormonal imbalance. High hormone influx into a region with a receptor shortage (the region is smaller than it should be) can affect downstream structures connected with white matter pathways and is the cause of certain mental disorders such as hypersensitivity or physical insulin-secretion timing problems like diabetes. High receptor density with low hormone influx leads to a receptor surplus (the region is larger than it should be) and leads to mental disorders such as depression or physical problems like bone loss. Cataloging the receptor type and density for important neuroanatomical regions of healthy individuals would allow tuning of our mathematical model.

Combining anatomically faithful DT-MRI and tractography data with our generalized molecular communication framework would provide a chemical computation engine the location, quantity and two time scale flow dynamics of heterogenous hormones and ions to produce a simulated electrochemical circuit. The change in concentration of certain hormones in specific anatomical regions may lead to a change in entropy and MFE, and could simulate the sensation of feeling certain emotions, i.e., high serotonin levels are associated with happiness, high cortisol levels are associated with stress. Introducing this chemical signaling information as an additional input to conversation generating AI frameworks such as GPT, Grover, etc. could serve to augment the context of generated text data with emotion. Typically, a question-answer style conversational AI answer questions that a human may ask in a factual manner based on a knowledge base built from training data. It is possible to measure more data points surrounding a user’s query with 5G technology such as facial micro-expressions, tone of voice, body language, etc. Perhaps the next generation of cutting-edge conversational AI can introduce a fusion of electrical communication (ANN) and chemical communication (BHN) that can form a biasing mechanism to augment machine generated content in a more humanistic manner. It is possible that the role could be reversed, and a conversational AI could ask questions of a human. If such an AI could ‘internalize’ and perceive the emotion by simulating hormones to match the collected answer, perhaps we would be able to approximate sympathy and empathy.

Conclusion

In this paper we have described a physics-physiology inspired framework to pave the way for future AI and computer hardware design. Our approach includes both electrical and chemical considerations which together give rise to biological phenomena such as perception of internal emotion and sensing of external light. We derived a general molecular communication framework to facilitate future studies that would enable AI systems to more accurately emulate biology. Modeling BHN’s requires laboratory emulation of gradually bigger molecules for their communication effects and integration with standard digital circuitry.

We seek collaboration with both National Institutes of Health and the National Science Foundation to bring such a laboratory setup to fruition. Additionally, we wish to learn how hormone signaling networks can be adapted to model an AI system and evaluate novel algorithms with such new technology. Utilizing this technology to perform computations with a fully programmable chemical computer could help bridge the gap and enable computational strategies not achievable using strictly electron-based circuity.26 There are additional avenues to apply this framework that would be a disruptive technology in computing, such as simulating the growth hormone to enable dynamic molecular computer memory. Physical or simulated AI systems that are produced to be both structurally similar to certain biological systems and possess the appropriate molecular communication capability may provide an alternative to animal models where live animals are physically altered or sacrificed in order to carry out research in a lab setting. Recent advances in aging research have also shown promise for regenerating retinal tissue in-vivo and could be applied to additional areas affected by neurological disorders such as the amygdala. 27

Acknowledgments

We would like to thank Cibu Thomas and Greg Rainwater for their useful suggestions and the Catholic University of America for sponsoring the Cutting-Edge AI workshop. This work was supported by ONR 321, grant N000142012279.

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. Jenkins J. Detecting Emotional Ambiguity in Text. MOJ App Bio Biomech. 2020;4(3):55‒57.
  2. Basser P, Pierpaoli C, Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tenso MRI. J Mag Res. 1996;111(3):209­–­219.
  3. Irfanoglu M. O, Jenkins J, et al. DR-TAMAS: Diffeomorphic registration for tensor accurate alignment of anatomical structures. Neuroimage. 2016;132:439–454.
  4. Hutchinson E.B, Jenkins J, et al. Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis. Neuroimage. 2017;152:575–589.
  5. Yeh FC, Panesar S, et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage. 2018;178:57–68.
  6. Basser PJ, Pajevic S, Pierpaoli, et al. In vivo fiber tractography using DT‐MRI data. Magn Reson Med. 2000;44:625–632.
  7. Hanwell MD,Curtis DE, et al. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4(1):17
  8. Adamatzky A, Advances in Physarum Machines: Sensing and Computing with Slime Mould. 2016.Springer.
  9. Phelps E, LeDoux J. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48(2):175–187.
  10. Méndez-Bértolo C, Moratti S, Toledano R, et al. A fast pathway for fear in human amygdala. Nat Neurosci. 2016;19:1041–1049
  11. Kaneez, FS, Saad S, et al. Introductory Chapter: Ion Channels, Ion Channels in Health and Sickness, Intech Open. 2018
  12. Ko G. Circadian regulation in the retina: From molecules to network. Eur J Neurosci. 2020;51(1):194–216.
  13. Hagins WA, Penn RD, Yoshikami S. Dark current and photocurrent in retinal rods. Biophys J. 1970;10(5):380–412.
  14. Klapper S, Swiersy A, et al. Biophysical Properties of Optogenetic Tools and Their Application for Vision Restoration Approaches. Frontiers in Systems Neuroscience. 2016;10:74.
  15. Duncan S, Feldman Barrett L. The role of the amygdala in visual awareness. Trends Cogn Sci. 2007;11(5):190–192.
  16. Inman C, Bijanki K, et al. Human amygdala stimulation effects on emotion physiology and emotional experience. Neuropsychologia. 2018;145.
  17. Markowitsch H. Differential contribution of right and left amygdala to affective information processing. Behav Neurol.1998;11(4):233–244.
  18. Bertero A, Feyen P L C, et al. A Non-Canonical Cortico-Amygdala Inhibitory Loop. J. Neuroscience. 2019;39(43):8424–8438
  19. Benarroch E E. The amygdala: Functional organization and involvement in neurologic disorders [Editorial]. Neurology. 2015;84(3): 313–324.
  20. Altemus M. Hormone-specific psychiatric disorders: do they exist? Archives of women's mental health, 2010;13(1):25–26.
  21. Mori S, Kageyama Y, et al. Elucidation of White Matter Tracts of the Human Amygdala by Detailed Comparison between High-Resolution Postmortem Magnetic Resonance Imaging and Histology. Frontiers in Neuroanatomy. 2017;11.
  22. Yang DM, Arai T J, et al. Oxygen-sensitive MRI assessment of tumor response to hypoxic gas breathing challenge. NMR Biomed. 2019;32(7).
  23. Carpenter GA, Grossberg S. Adaptive Resonance Theory, The Handbook of Brain Theory and Neural Networks, MIT Press. 2003. 2nd Ed.,87–90.
  24. LeCun Y, Bengio Y and Hinton G. Deep learning. Nature, 2015;521(7553):436–444.
  25. Langevin P. "Sur la théorie du mouvement brownien [On the Theory of Brownian Motion]". C. R. Acad. Sci. Paris.1908;146:530–533.
  26. Parrilla-Gutierrez JM, Sharma A, Tsuda S, et al. A programmable chemical computer with memory and pattern recognition. Nat Commun. 2020;11:1442.
  27. Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020;588:124–129.
Creative Commons Attribution License

©2021 Jeffrey, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.