Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 7 Issue 1

Exoskeleton For Specially Abled

Vaibhav Anil Wani, Mohd Shahed Shaikh, Yash S Shewale, Sreelakshmi M Nair

Department of Mechanical Engineering, Sinhgad College of Engineering, Savitribai Phule Pune University, India

Correspondence: Vaibhav Anil Wani, Department of Mechanical Engineering, Sinhgad College of Engineering, Savitribai Phule Pune University, Pune, India, Tel +919689277930

Received: May 29, 2023 | Published: June 19, 2023

Citation: Wani VA, Shaikh MS, Shewale YS, et al. Exoskeleton For Specially Abled. MOJ App Bio Biomech. 2023;7(1):72-76. DOI: 10.15406/mojabb.2023.07.00177

Download PDF

Abstract

This is a paper about a wearable exoskeleton that addresses the lack of assistive devices for people with walking difficulties. The research revolves around the major problem in which the inpatient suffer for their dependency on a caretaker for basic tasks such as toiletries and fetching water or food or even for basic cores for themselves. People with disabilities suffer from many social and mental pressures due to exclusion from society just for being different from normal human beings. Hence, the usage and purpose of robotic technology trims down this segregation and promote vocational incorporation.

Keywords: wearable exoskeleton, disabilities

Introduction

Since 1960, robotic exoskeletons have been developed primarily for military applications. As a rehabilitative tool for people with physical limitations, biomedical engineers are increasingly using technology to promote mobility. Exoskeletons are designed primarily to support the limbs of people who are unable to walk on their own. Designed to improve the lower limbs and offer support torque to increase the torque at the knee and hip when walking. An exoskeleton is a user-oriented robotic technology that is worn to support or replace limb function.

With the support of this exoskeleton, users will be able to carry out basic daily tasks independently of caregivers while also resolving several related issues brought on by wheelchair use. The results of the literature survey reveal that wearable exoskeletons have a potential for several applications including early rehabilitation, promoting physical exercise, and carrying out daily living activities both at home and the community.1 Likewise, wearable exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary health conditions related to sedentariness, with all the advantages that this entails.1

About those who have lower limb disabilities, this project tackles the absence of assistive and rehabilitative equipment. Patients' reliance on a caregiver for fundamental duties is a serious issue that causes them harm. These everyday challenges in the workplace or at home will be addressed by this effort. Following are the proposed outcomes of this project: Eliminating the pain statement – The device would assist in gaining independence from caregivers in doing simple daily chores, while various secondary issues resulting from wheelchair use might be resolved. Decrease in the price of medical care Robotic exoskeletons for over-the-ground training reduced hospital expenses related to spinal cord injury and other lower limb problems, as well as the need for physiotherapy assistants (Figure 1).

Figure 1 Various mechanism of lower limbs.7

Present theory and practices

Human gait analysis: Because wearability is one of the most important characteristics of a lower limb exoskeleton for rehabilitation, lower limb anatomy andhuman gait analysis can serve as the foundation for the design and operation of such systems. The complex functions of a person's visual, sensory, and vestibular systems combine to form their gait. Postural and gait irregularities can be caused by issues with these systems as well as issues with the associated joints.

D-H model: Robotics frequently uses Denavit-Hartenberg (DH) parameters to define robot characteristicslike axis orientations and arm lengths.

Actuation design: Lower limb rehabilitation exoskeletons are driven by rigid transmission without compliance in their actuation design. This has a significant vibration impact, makes it challenging to directly manage the force, and results in a complex robot system. To provide force management and improve drive flexibility in the exoskeleton, a series elastic drive must be designed. By varying the stiffness of the elastic parts driven by series elastic, an elastic actuator with variable stiffness may also be designed for lower limb exoskeletons. Kinematics describes the connection between the robot's end effector and the articular space. This method is helpful for creating trajectories and setting control points for joint actuators.

Direct kinematics: Using the values of the articular coordinates, the direct kinematics analysis seeks to determine the position and orientation of the robot's link. Structure often seen as a kinematic chain of rigid bodies interconnected by joints (Table 1).

Joints

DOF

Range of freedom

Driving force needed

Hip

Flexion / extension

−120°≤θ≤65°

80-100 N/m

Hip

Adduction / Abduction

−30°≤θ≤40°

Spring

Rotation

−30°≤θ≤30°

Spring

Knee

Flexion / extension

−120°≤θ≤0°

45-70 N/m

Ankle

Pronation / Rotation

−15°≤θ≤30°

Spring

Table 1 The DOF of a lower limb exoskeleton5

Need

The main worry for government authorities, human resources departments, and labor unions is injuries related to lifting and transporting large loads. Since worker injury still happens, efforts to reduce workload, enhance ergonomics, and shorten the time spent carrying heavy objects have only been seen as temporary fixes. Exoskeletons, however, may provide the disabled a revolutionary new way of life. Assisting those in need of independent movement and removing the primary function of caregivers - Patients with lower extremity mobility loss can use upper-extremity exoskeletons to help their damaged shoulder and arm during rehabilitation. This allows for larger dosages of medication, more rigorous therapy, and a wider active range of motion during rehabilitation sessions.

Problem statement

There were 496,000 paralyzed youngsters in India, and the incidence of stroke and paralysis is rising considerably by over 50% year.2–4 Exoskeleton technology will provide far greater mobility than traditional leg orthotic technology for people who have had partial limb paralysis because of neurological disease.

Another problem is that post-stroke patients and other SCI patients often receive inadequate care and therapy, which leads in them having to pay exorbitant medical costs that most people discontinue after receiving treatment for their problems. This causes people to need more traditional means of support, including a walker and a stick, which raises the difficulty of maintaining adequate balance.

Conventional equipment like Walker and Stick has trouble in keeping balance and require learning and depend on external assistance. The drawbacks of walkers include stigma, musculoskeletal diseases, slower reaction times, fall danger, and technical or practical elements criticized by users.

Methodology

The purpose of this research is to assist the disabled and address their needs for standing, walking, and enhancing the person to reduce their idleness. To execute this project, following tasks are identified: Completed literature review and determined the possible ways of proceeding with the design procedure.

  1. Determine the suitable dimensions for the design available related to it.
  2. Designing and modelling of exoskeleton structure on software initiated.
  3. Analysis, determine its stresses, and point of deformation on its components.

Design approach

Finding DOF

The exoskeleton axis and its pertinent parameters are tried to create in the work using the Denavit-Hartenberg (D-H) technique. The D-H approach is a disciplined way to create complex robotic modelling, even though its mathematical solution is lengthy and complicated.

Study on links

Forces in the links equal and opposite to tension in the shaft resulting in zero net force on the exoskeleton. The three unknowns—heel rope tension, ground response force, and ground reaction force direction—can then be determined using this joint force. To find the answers to our three unknowns, we can use three static balance equations (the sum of the forces acting in the x and y directions plus a moment balance).

Study on forces

Simply said, a force diagram is a diagram that shows all the forces that are acting on an item, together with their direction and magnitude. It is a streamlined representation of the scene that only depicts the forces. Given is the typical diagram of active three-dimensional forces.

If r is the displacement vector, F is the force vector is the torque, and can get from the definition of torque.

τ=r×F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a0jabg2da9iaadkhacqGHxdaTcaWGgbaaaa@3E87@   (4.1)

The unbalanced torque on a body along axis of rotation determines the rate of change of the body’s angular momentum,

τ= dl dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdqNaeyypa0ZaaSaaa8aabaWdbiaabsgacaqGSbaapaqaa8qa caqGKbGaaeiDaaaaaaa@3E2B@   (4.2)

Equating equations (1) and (2),

X 2 + Y 2 = l 1 2 +2 l 1 l 2 cos θ 2 +  l 2 2   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaamyw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaWGSbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaa kiabgUcaRiaaikdacaWGSbWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiaadYgapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4yaiaa d+gacaWGZbGaeqiUde3damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbi abgUcaRiaabccacaWGSbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWa aWbaaSqabeaapeGaaGOmaaaakiaacckaaaa@524F@   (4.6)

Where,

  θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieaacaWF4oaaaa@3908@ = Angle subtended by link from vertical reference axis

Parts Calculations:-

Leg Segments

Specifications and Calculations of Segments:

Thickness = 6mm

Length = 655mm

Width = 60mm

Hole Diameter = 6.35mm

Now,

Yc = 30mm ----------------- (By Symmetry)

X c =   655×60× 655 2   [ x( 6.35 2 )( 6.35 )x( 6.35 2 )( 650 ) ] ( 650 )( 50 )[ ( 3x )( 6.35 2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeiwaOWdamaaBaaajeaWbaWdbiaabogaa8aabeaajaaWpeGa eyypa0JaaiiOaiaacckakmaalaaajaaWpaqaa8qacaaI2aGaaGynai aaiwdacqGHxdaTcaaI2aGaaGimaiabgEna0QWaaSaaaKaaa=aabaWd biaaiAdacaaI1aGaaGynaaWdaeaapeGaaGOmaaaacqGHsislcaGGGc GaaiiOaOWaamWaaKaaa=aabaWdbiaabIhakmaabmaajaaWpaqaa8qa caaI2aGaaiOlaiaaiodacaaI1aGcpaWaaWbaaKqaahqajeaqbaWdbi aaikdaaaaajaaWcaGLOaGaayzkaaGcdaqadaqcaa8daeaapeGaaGOn aiaac6cacaaIZaGaaGynaaGaayjkaiaawMcaaiabgkHiTiaabIhakm aabmaajaaWpaqaa8qacaaI2aGaaiOlaiaaiodacaaI1aGcpaWaaWba aKqaahqajeaqbaWdbiaaikdaaaaajaaWcaGLOaGaayzkaaGcdaqada qcaa8daeaapeGaaGOnaiaaiwdacaaIWaaacaGLOaGaayzkaaaacaGL BbGaayzxaaaapaqaaOWdbmaabmaajaaWpaqaa8qacaaI2aGaaGynai aaicdaaiaawIcacaGLPaaakmaabmaajaaWpaqaa8qacaaI1aGaaGim aaGaayjkaiaawMcaaiabgkHiTOWaamWaaKaaa=aabaGcpeWaaeWaaK aaa=aabaWdbiaaiodacaqG4baacaGLOaGaayzkaaGcdaqadaqcaa8d aeaapeGaaGOnaiaac6cacaaIZaGaaGynaOWdamaaCaaajeaWbeqcba uaa8qacaaIYaaaaaqcaaSaayjkaiaawMcaaaGaay5waiaaw2faaaaa aaa@8900@

Xc = 336.86mm

Now,

Centroid (336.86mm, 30mm)

Moment of Inertia,

I x = bh 3 12 [ x 64 ( d 4 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeysaOWdamaaBaaajeaqbaWdbiaabIhaaKqaa=aabeaajaaW peGaeyypa0JcdaWcaaqcaa8daeaapeGaaeOyaiaabIgak8aadaahaa qcbaCabKqaafaapeGaaG4maaaaaKaaa=aabaWdbiaaigdacaaIYaaa aiabgkHiTOWaamWaaKaaa=aabaGcpeWaaSaaaKaaa=aabaWdbiaabI haa8aabaWdbiaaiAdacaaI0aaaaiabgwSixRWaaeWaaKaaa=aabaWd biaabsgak8aadaahaaqcbaCabKqaafaapeGaaGinaaaaaKaaalaawI cacaGLPaaaaiaawUfacaGLDbaaaaa@5484@   (4.7)

I x = ( 60 ) ( 655 ) 3 12 [ x 64 ( 12.7 4 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeysaOWdamaaBaaajeaqbaWdbiaabIhaaKqaa=aabeaajaaW peGaeyypa0JcdaWcaaqcaa8daeaak8qadaqadaqcaa8daeaapeGaaG OnaiaaicdaaiaawIcacaGLPaaakmaabmaajaaWpaqaa8qacaaI2aGa aGynaiaaiwdaaiaawIcacaGLPaaak8aadaahaaqcbaCabKqaafaape GaaG4maaaaaKaaa=aabaWdbiaaigdacaaIYaaaaiabgkHiTOWaamWa aKaaa=aabaGcpeWaaSaaaKaaa=aabaWdbiaabIhaa8aabaWdbiaaiA dacaaI0aaaaiabgwSixRWaaeWaaKaaa=aabaWdbiaaigdacaaIYaGa aiOlaiaaiEdak8aadaahaaqcbaCabKqaafaapeGaaGinaaaaaKaaal aawIcacaGLPaaaaiaawUfacaGLDbaaaaa@5D65@

I x =1405053046 mm 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeysaOWdamaaBaaajeaqbaWdbiaabIhaaKqaa=aabeaajaaW peGaeyypa0JaaGymaiaaisdacaaIWaGaaGynaiaaicdacaaI1aGaaG 4maiaaicdacaaI0aGaaGOnaiaab2gacaqGTbGcpaWaaWbaaKqaahqa jeaqbaWdbiaaisdaaaaaaa@4897@

Load Acting on link,

Assuming weight of rod 1.5kg = 15N on the basis of overall weight of exoskeleton

Load due to human body = UDL

Weight of human on an average = 50kg (Figure 1.1)

Figure 1.1 FBD of leg segment..

MA 600x =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyeIu+aaSaaaKaaa=aabaWdbiaab2eacaqGbbaapaqaa8qacaqG 2aGaaeimaiaabcdacaqG4baaaiaab2dacaqGWaaaaa@403A@

( RA )y+ ( RB )y = 500 × 655+ 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaajaaWba aeaaaaaaaaa8qacaqGsbGaaeyqaaWdaiaawIcacaGLPaaapeGaaeyE aiaabUcacaqGGaGcpaWaaeWaaKaaahaapeGaaeOuaiaabkeaa8aaca GLOaGaayzkaaWdbiaabMhacaGGGcGaaeypaiaacckacaqG1aGaaeim aiaabcdacaGGGcGaae41aiaacckacaqG2aGaaeynaiaabwdacaqGRa GaaeiiaiaabgdacaqG1aaaaa@5093@   (1)

MA=500× 655 2 +( 15× 655 2 )= RA y ×655 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavacajaaWbe qcbaCabeaacaaMb8oajmaWbaaeaaaaaaaaa8qacqGHris5aaqcaaSa aeytaiaabgeacqGH9aqpcaaI1aGaaGimaiaaicdacqGHxdaTkmaala aajaaWpaqaa8qacaaI2aGaaGynaiaaiwdaa8aabaWdbiaaikdaaaGa ey4kaSIcdaqadaqcaa8daeaapeGaaGymaiaaiwdacqGHxdaTkmaala aajaaWpaqaa8qacaaI2aGaaGynaiaaiwdaa8aabaWdbiaaikdaaaaa caGLOaGaayzkaaGaeyypa0JaaeOuaiaabgeak8aadaWgaaqcbauaa8 qacaqG5baajeaWpaqabaqcaa8dbiabgEna0kaaiAdacaaI1aGaaGyn aaaa@5E30@

(RB) y = 163757.5N

(RA) y = 163757.5N

σ= M I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeo8aZjabg2da9maalaaapaqaa8qacaWGnbaapaqaa8qacaWGjbaa aaaa@3C9A@

σ= 26814.06×336.86×1000 1405053046 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeo8aZjabg2da9maalaaapaqaa8qacaaIYaGaaGOnaiaaiIdacaaI XaGaaGinaiaac6cacaaIWaGaaGOnaiabgEna0kaaiodacaaIZaGaaG Onaiaac6cacaaI4aGaaGOnaiabgEna0kaaigdacaaIWaGaaGimaiaa icdaa8aabaWdbiaaigdacaaI0aGaaGimaiaaiwdacaaIWaGaaGynai aaiodacaaIWaGaaGinaiaaiAdaaaaaaa@53C2@

  = 6.42 N/mm2

Motor

Name – Wiper Motor N = 30rpm

Torque = 1000N-cm

P= 2πNC 60 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadcfacqGH9aqpdaWcaaWdaeaapeGaaGOmaiabec8aWjaad6eacaWG dbaapaqaa8qacaaI2aGaaGimaaaaaaa@3F9A@

P= 2NC 60×1000 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeiuaiabg2da9OWaaSaaaKaaa=aabaWdbiaaikdacaqGobGa ae4qaaWdaeaapeGaaGOnaiaaicdacqGHxdaTcaaIXaGaaGimaiaaic dacaaIWaaaaaaa@43EE@

P= 2×π×30×1000× 10 2 60×100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadcfacqGH9aqpdaWcaaWdaeaapeGaaGOmaiabgEna0kabec8aWjab gEna0kaaiodacaaIWaGaey41aqRaaGymaiaaicdacaaIWaGaaGimai abgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiaaiAdacaaIWaGaey41aqRaaGymaiaaicdacaaIWaaaaaaa@5188@

P=10466kW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeiuaiabg2da9iaaigdacaaIWaGaaGinaiabgwSixlaaiAda caaI2aGaae4AaiaabEfaaaa@41C5@

Connecting Rod

r = 1000 Nmm

Force acting on y axis.

r=f×d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaamOCaiabg2da9iaadAgacqGHxdaTcaWGKbaaaa@3E0F@

1000 N-mm = f × ( 298.34 + 187.63 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeymaiaabcdacaqGWaGaaeimaiaabccacaqGobGaaeylaiaa b2gacaqGTbGaaeiiaiaab2dacaqGGaGaaeOzaiaabccacaqGxdGaae iiaOWdamaabmaajaaWbaWdbiaabkdacaqG5aGaaeioaiaab6cacaqG ZaGaaeinaiaabccacaqGRaGaaeiiaiaabgdacaqG4aGaae4naiaab6 cacaqG2aGaae4maaWdaiaawIcacaGLPaaaaaa@5198@

F = 2.05N (Figure 1.2)

Figure 1.2 Schematic diagram of Connecting Rod.

Using fx=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaeyyeIuUaamOzaiaadIhacqGH9aqpcaaIWaaaaa@3D73@

As the unit are placed approx. same angle initially ,

2.65 (Cosθ)= f( x )×Cosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaGOmaiaac6cacaaI2aGaaGynaiaacckapaGaaiika8qacaWG dbGaam4BaiaadohacqaH4oqCpaGaaiyka8qacqGH9aqpcaqGGaGaam OzaOWdamaabmaajaaWbaWdbiaadIhaa8aacaGLOaGaayzkaaWdbiab gEna0kaadoeacaWGVbGaam4CaiabeI7aXbaa@4EE5@

F x =2.65N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeOraOWdamaaBaaajeaWbaWdbiaabIhaa8aabeaajaaWpeGa eyypa0JaaeOmaiaab6cacaqG2aGaaeynaiaab6eaaaa@4095@

Now, Same applicable to lower segments by the equilibrium

 Hence, Moment at joint is

= F×d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeytaiaabccacqGH9aqpcaqGGaGaaeOraiabgEna0kaadsga aaa@3F0C@

= 2.65 ×531.42 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeytaiaabccacqGH9aqpcaqGGaGaaGOmaiaac6cacaaI2aGa aGynaiaabccacqGHxdaTcaaI1aGaaG4maiaaigdacaGGUaGaaGinai aaikdaaaa@454D@

M =1408.20N-mm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaadbaaaaaaa aapeGaaeytaiaabccacaqG9aGaaeymaiaabsdacaqGWaGaaeioaiaa b6cacaqGYaGaaeimaiaab6eacaqGTaGaaeyBaiaab2gaaaa@42AD@

Foot base

Neglecting small parts, neglecting dimension is negligible.

Total weight of skeleton = 8~9 kg approx.

                                      = 85N (Figure 1.3)

Figure 1.3 Schematic diagram of foot rest.

Weight of human = 600N

Total load acting on footrace= 685N

A = two footrace hence load will be halved = 685 2 =3425N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaKaaa=aabaWdbiaaiAdacaaI4aGaaGynaaWdaeaapeGaaGOm aaaacqGH9aqpcaaIZaGaaGinaiaaikdacqGHflY1caaI1aGaaeOtaa aa@4289@

Design

As the model is created in SolidWorks, the assembly is shown in the above Figures 25. The final assembly that is depicted in SolidWorks refers to the complete exoskeleton that has been put together from all of its individual parts. This includes any frame, joints, motors, sensors, and other components that make up the exoskeleton. Creating a digital model in any designing and modelling workspace can be a crucial step in the development process of an exoskeleton for the specially-abled. The device would assist in gaining independence from caregivers in doing simple daily chores, while various secondary issues resulting from wheelchair use might be resolved.6–10

Figure 2 Above left knee segment.

Figure 3 Connection element block.

Figure 4 Below left knee segment.

Figure 5 Assembly of Exoskeleton.

Analysis

(Figure 69).

Figure 6 Force applied on Motor Casing.

Figure 7 Moment of Motor Casing.

Figure 8 Force applied on Foot Rest.

Figure 9 Force analyses on Linkages.

Conclusion

The development of an exoskeleton with reduced weight and cost has the potential to make this technology more accessible to individuals with disabilities, who may currently be priced out of the market for existing devices.

By using lightweight materials and cost-effective manufacturing processes, your team is working to create an exoskeleton that can provide similar levels of support and assistance to users as existing products, but at a lower cost.

The success of our project will be determined not only by the effectiveness of the exoskeleton itself, but also by its affordability and accessibility to a wider range of individuals with disabilities.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

We take this opportunity to express our sincere appreciation to everyone who has contributed to the success of our initiative. It gives us great pleasure to thank our project guide in the sincerest manner possible to Dr. J. L. Minase and Head of Department Dr. A. P. Pandhare for their support and help from time to time during the project work.

Author statement

Vaibhav Anil Wani: Data curation, Reviewing, Original draft preparation

Mohd Shahed Shaikh: Visualization, Investigation, Supervision

Yash S Shewale: Methodology, Design calculations and Analysis

Sreelakshmi M Nair: Design calculations, Software

Funding

None.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

References

  1. Ruiz-Olaya AF, Lopez-Delis A, da Rocha AF. Upper and lower extremity exoskeletons. Handbook of Biomechatronics. 2019:283–317.
  2. Bruce WM. Characterizing optimal performance of a passive elastic ankle exoskeleton during human locomotion. (Under the direction of Gregory S. Sawicki). 2014.
  3. Erdmann WS. Equipment and facilities adapted for disabled people in recreation and sport. MOJ App Bio Biomech. 2018;2(1):9–13.
  4. Alshatti AK. design and control of lower limb assistive exoskeleton for hemiplegia mobility. The University of Sheffield. 2019.
  5. Wiggin B, Collins SH, Sawick GS. Characterizing optimal performance of a passive elastic ankle exoskeleton during human locomotion. 2014.
  6. Mooney LM, Rouse EJ, Herr HM. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. Journal of Neuro Engineering and Rehabilitation. 2014;11:80.
  7. Shi D, Zhang W, Ding X, et al. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering. 2019;32(74).
  8. Latt MD, Menz HB, Fung VS, et al. Acceleration patterns of the head and pelvis during gait in older people with Parkinson’s disease: a comparison of fallers and non-fallers. J Gerontol A Biol Sci Med Sci. 2009;64(6):700–706.
  9. Huang G, Ceccarelli M, Huang Q, et al. Design and feasibility study of a leg-exoskeleton assistive wheelchair robot with tests on gluteus medius muscles. Sensors (Basel). 2019;19(3):548.
  10. Shaari NLA, Isa ISM, Jun TC. Torque analysis of the lower limb exoskeleton robot design. ARPN Journal of Engineering and Applied Sciences. 2015;10(19):9140–9149.
Creative Commons Attribution License

©2023 Wani, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.