Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Short Communication Volume 7 Issue 1

Energy structure perspective as an innovative approach to basic study of different analysis of complex robotic systems

Saeed Shahsavari,1 Parya Torkaman,2 Pooya Torkaman1

1School of Materials Science and Engineering, Iran University of Science and Technology, Iran
2Department of Chemical Engineering, Tarbiat Modares University, Iran

Correspondence: Saeed Shahsavari, School of Metallurgy and Material Engineering, Iran University of Science and Technology, Tehran, Iran, Tel 00989376081167

Received: August 18, 2023 | Published: September 13, 2023

Citation: Shahsavari S, Torkaman P, Torkaman P. Energy structure perspective as an innovative approach to basic study of different analysis of complex robotic systems. MOJ App Bio Biomech. 2023;7(1):163-165. DOI: 10.15406/mojabb.2023.07.00189

Download PDF

Abstract

In this paper, the idea of using the energy structure perspective for application in the study of complex robotic systems is presented and expanded. The perspective of energy structure can provide a powerful solution for analyzing robotic systems. In fact, among the special capabilities of this approach, it can apply the energy conservation principle simultaneously by considering the effects of related energy wastes during system operation, the possibility of considering movement restrictions in the equation of the energy structure and applying it in the equation explained the movement of the system simultaneously with the first and second laws of thermodynamics, the calculation of the dynamic energy of the system using its movement restrictions, as well as how to apply energy directly, etc. Based on this, the perspective of energy structure can be helpful in studies related to robotic systems, especially systems with specific complexities and different behavioral and movement aspects. This paper develops the fundamental aspects of this issue.

Keywords: robotic systems, energy structure, energy components, dynamic energy, energy wasted, energy stored

Introduction

The energy structure theory is proposed as a thermodynamic coupled theory.1–7 The relevant equations are expanded based on the energy components of the system and in an innovative space called energy space. Various functional capabilities from the perspective of energy structure have been presented and expanded in various references. These applications include different fields of classical mechanics to advanced mechanics as well as classical physics to modern physics. The special highlights of this approach can make it a valuable and practical solution in the study of robotic systems from various aspects. Systems with different behavioral aspects, systems with advanced movement restrictions, as well as a high number of members and movement restrictions between them, systems with couples mechanical and thermodynamic behaviors, etc. are in this category. In this paper, while reviewing the basis of energy structure theory, expandable applications of the energy structure perspective for the study of robotic systems as a general, practical and advanced solution are discussed.

Energy structure perspective

Scientific laws are sometimes expressed in new ways or generalized different viewpoints as science advances. At this stage, the importance and application of certain concepts have advanced, and some of them may have a limited scope of application. Meanwhile, considering the importance of the energy conservation principle and its universality, the energy structure theory has sought a new expression for the energy conservation principle. In this new expression, more features of the system, environment, and energy exchange between them can be respected. Therefore, a new concept is proposed to express energy in physical systems, which could be utilized to state the desired equations. In fact, in this approach, energy in physical systems could be stated from a new perspective.8–15

The theory of energy structure is related to the expression of the structure of non-dynamic energies and to their precise definition. The corresponding structure and equations are created depending on the energy exchange between the system and the environment. Additionally, the required conditions for the investigation and feasibility of a physical process are obtained. Also, the energy structure of the desired process and its energy exchange with the environment are achieved. This condition is used to check the feasibility of a hypothetical process and in fact, it brings valuable results.12–15

According to the definition of the non-dynamic energies of the system, the conservation of energy in the system is defined. From the point of view of the energy structure, dynamic energy is defined by applying the conservation of energy in the system. Dynamic energy depends on the internal structure of the system as well as the way of energy exchange between the system and the environment. The relevant process extracts the system compatibility equations based on the relationship between the dynamic energy and the independent components of the energy. These equations express the process performed on the corresponding system in the energy space.

Based on the principles of Energy structure theory,15 it is assumed that the total energy can be shown by equation (1):

U T = U ND + U D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwfapaWaaSbaaSqaa8qacaqGubaapaqa baGccqGH9aqppeGaaeyva8aadaWgaaWcbaWdbiaab6eacaqGebaapa qabaGcpeGaey4kaSIaaeyva8aadaWgaaWcbaWdbiaabseaa8aabeaa aaa@454A@   (1)

That U T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwfapaWaaSbaaSqaa8qacaqGubaapaqa baaaaa@3E6B@  is the total energy, U D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwfapaWaaSbaaSqaa8qacaqGebaapaqa baaaaa@3E5B@ is the dynamic energy and U ND MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwfapaWaaSbaaSqaa8qacaqGobGaaeir aaWdaeqaaaaa@3F2C@  is the sum of all other types of energy. Figures 1 and 2 take two scheme of the energy space approach:

Figure 1 Scheme of a physical system with energy distribution.1

Figure 2 Energy component’s approach.2

Where u i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwhapaWaaSbaaSqaa8qacaqGPbaapaqa baaaaa@3EA0@  is the system's energy component, and U T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwfapaWaaSbaaSqaa8qacaqGubaapaqa baaaaa@3E6B@  is energy exchange between system and its surrounding. Also, non-dynamic energy equation is derived as follows15:

U ND =( u 1 + u 2 ++ u m )+[ g 1 ++ g k ]+[ h 1 ++ h n ]+ U T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwfapaWaaSbaaSqaa8qacaqGobGaaeir aaWdaeqaaOWdbiabg2da9maabmaapaqaa8qacaqG1bWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiabgUcaRiaabwhapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaey4kaSIaeyOjGWRaey4kaSIaaeyDa8aada WgaaWcbaWdbiaab2gaa8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWk daWadaWdaeaapeGaae4za8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGHRaWkcqGHMacVcqGHRaWkcaqGNbWdamaaBaaaleaapeGaae4A aaWdaeqaaaGcpeGaay5waiaaw2faaiabgUcaRmaadmaapaqaa8qaca qGObWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRiabgAci 8kabgUcaRiaabIgapaWaaSbaaSqaa8qacaqGUbaapaqabaaak8qaca GLBbGaayzxaaGaey4kaSIaaeyva8aadaWgaaWcbaWdbiaabsfapaWa aSbaaKGaafaapeGaaGimaaadpaqabaaaleqaaaaa@6673@   (2)

Where:

g j = g j ( u 1 , u 2 ,, u m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabEgapaWaaSbaaSqaa8qacaqGQbaapaqa baGcpeGaeyypa0Jaae4za8aadaWgaaWcbaWdbiaabQgaa8aabeaak8 qadaqadaWdaeaapeGaaeyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaa k8qacaGGSaGaaeyDa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qaca GGSaGaeyOjGWRaaiilaiaabwhapaWaaSbaaSqaa8qacaqGTbaapaqa baaak8qacaGLOaGaayzkaaaaaa@4DEF@   (3)

h p = h p ( u ˙ 1 ,, u ˙ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadIgapaWaaSbaaSqaa8qacaWGWbaapaqa baGcpeGaeyypa0JaamiAa8aadaWgaaWcbaWdbiaadchaa8aabeaak8 qadaqadaWdaeaapeGabmyDa8aagaGaamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaacYcacqGHMacVcaGGSaGabmyDa8aagaGaamaaBaaale aapeGaamyBaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4B45@   (4)

That u i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwhapaWaaSbaaSqaa8qacaqGPbaapaqa baaaaa@3EA0@ , 1im MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaigdacqGHKjYOcaqGPbGaeyizImQaaeyB aaaa@4263@  are independent activated energy components. Finally, it is concluded that according to the fundamentals of the energy structure perspective, this perspective can be a valuable solution for studying the mechanical and thermodynamic aspects of robotic systems.

Finally, the following variations will occur in the independent:

δ u 1 = α 1 δ U T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjaadwhapaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaeyypa0JaeqySde2damaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabes7aKjaadwfapaWaaSbaaSqaa8qacaWGubaapaqa baaaaa@47B6@

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabl6Uinbaa@3E50@

δ u m = α m δ U T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjaadwhapaWaaSbaaSqaa8qacaWG TbaapaqabaGcpeGaeyypa0JaeqySde2damaaBaaaleaapeGaamyBaa WdaeqaaOWdbiabes7aKjaadwfapaWaaSbaaSqaa8qacaWGubaapaqa baaaaa@4824@   (5)

That α i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabg7apaWaaSbaaSqaa8qacaqGPbaapaqa baaaaa@3EDF@  is known as loading coefficients. More details can be seen in reference.15 So, by assuming that:

α=  [   i=1 m   α i   (  1+ j=1 k     g j   u i   ) ]  + [    i=1 m   α ˙ i   (   p=1 n   h p u ˙ i   )  ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeg7aHjabg2da9iaacckacaGGGcWaamWa a8aabaWdbmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdae aapeGaamyBaaqdpaqaa8qacqGHris5caGGGcaaaOGaaiiOaiabeg7a H9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGGcGaaiiOamaabm aapaqaa8qacaGGGcGaaGymaiabgUcaRmaawahabeWcpaqaa8qacaWG QbGaeyypa0JaaGymaaWdaeaapeGaam4Aaaqdpaqaa8qacqGHris5aa GccaGGGcWaaSaaa8aabaWdbiabgkGi2kaacckacaWGNbWdamaaBaaa leaapeGaamOAaaWdaeqaaaGcbaWdbiabgkGi2kaacckacaWG1bWdam aaBaaaleaapeGaamyAaaWdaeqaaaaak8qacaGGGcaacaGLOaGaayzk aaaacaGLBbGaayzxaaGaaiiOaiaacckacqGHRaWkcaGGGcWaamWaa8 aabaWdbmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaa peGaamyBaaqdpaqaa8qacaGGGcGaeyyeIuUaaiiOaaaakiaacckacu aHXoqypaGbaiaadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGGcGa aiiOamaabmaapaqaa8qadaGfWbqabSWdaeaapeGaamiCaiabg2da9i aaigdaa8aabaWdbiaad6gaa0WdaeaapeGaaiiOaiabggHiLdaakiaa cckadaWcaaWdaeaapeGaeyOaIyRaamiAa8aadaWgaaWcbaWdbiaadc haa8aabeaaaOqaa8qacqGHciITceWG1bWdayaacaWaaSbaaSqaa8qa caWGPbaapaqabaaaaOWdbiaacckaaiaawIcacaGLPaaacaGGGcaaca GLBbGaayzxaaaaaa@91EA@   (6)

β=     i=1 m α  i  (    p=1 n (      h p   u ˙ i   )  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabek7aIjabg2da9iaacckacaGGGcWaaybC aeqal8aabaWdbiaabMgacqGH9aqpcaaIXaaapaqaa8qacaqGTbaan8 aabaWdbiabggHiLlaacckaaaGccqaHXoqypaWaaSbaaSqaa8qacaGG GcGaaeyAaaWdaeqaaOWdbiaacckadaqadaWdaeaapeWaaybCaeqal8 aabaWdbiaabchacqGH9aqpcaaIXaaapaqaa8qacaqGUbaan8aabaWd biaacckacqGHris5caGGGcaaaOWaaeWaa8aabaWdbiaabckacaGGGc WaaSaaa8aabaWdbiabgkGi2kaacckacaqGObWdamaaBaaaleaapeGa aeiCaaWdaeqaaaGcbaWdbiabgkGi2kaacckaceqG1bWdayaacaWaaS baaSqaa8qacaqGPbaapaqabaaaaOWdbiaacckaaiaawIcacaGLPaaa caGGGcaacaGLOaGaayzkaaaaaa@687D@   (7)

So, equation (2) can be rewritten as follows:

δ U  ND =  αδ U  T +  βδ U ˙  T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjaadwfapaWaaSbaaSqaa8qacaGG GcGaamOtaiaadseaa8aabeaak8qacqGH9aqpcaGGGcGaaiiOaiabeg 7aHjabes7aKjaadwfapaWaaSbaaSqaa8qacaGGGcGaamivaaWdaeqa aOWdbiabgUcaRiaacckacaGGGcGaeqOSdiMaeqiTdqMabmyva8aaga GaamaaBaaaleaapeGaaiiOaiaadsfaa8aabeaaaaa@559C@   (8)

Also, equation (8) can also be expressed as:

U ˙ ND  = α U ˙  T  + β U ¨  T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaceWGvbGbaiaadaWgaaWcbaGaamOtaiaadseaaeqaaOaeaaaa aaaaa8qacaGGGcWdaiabg2da98qacaGGGcWdaiabeg7aHjqadwfaga GaamaaBaaaleaapeGaaiiOa8aacaWGubaabeaak8qacaGGGcWdaiab gUcaR8qacaGGGcWdaiabek7aIjqadwfagaWaamaaBaaaleaapeGaai iOa8aacaWGubaabeaaaaa@4F9C@   (9)

More details have been provided in reference.15 Considering equation (1), dynamic energy is calculated as follows:

δ U  D =  δ U  T   δ U  ND MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjaadwfapaWaaSbaaSqaa8qacaGG GcGaamiraaWdaeqaaOWdbiabg2da9iaacckacaGGGcGaeqiTdqMaam yva8aadaWgaaWcbaWdbiaacckacaWGubaapaqabaGcpeGaeyOeI0Ia aiiOaiaacckacqaH0oazcaWGvbWdamaaBaaaleaapeGaaiiOaiaad6 eacaWGebaapaqabaaaaa@524E@   (10)

 

By placing the equation (8) in (10):

δ U  D =(  1α  )  δ U  T   β δ  U ˙  T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjaadwfapaWaaSbaaSqaa8qacaGG GcGaamiraaWdaeqaaOWdbiabg2da9maabmaapaqaa8qacaGGGcGaaG ymaiabgkHiTiabeg7aHjaacckaaiaawIcacaGLPaaacaGGGcGaaiiO aiabes7aKjaadwfapaWaaSbaaSqaa8qacaGGGcGaamivaaWdaeqaaO WdbiabgkHiTiaacckacaGGGcGaeqOSdiMaaiiOaiabes7aKjaaccka ceWGvbWdayaacaWaaSbaaSqaa8qacaGGGcGaamivaaWdaeqaaaaa@5CB4@   (11)

Equation (11) takes the basic dependence of the variation of the dynamic energy to the amount and rate of energy applied to the system as well as α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeg7aHbaa@3E01@ and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabek7aIbaa@3E03@ .

Equation (11) can rewritten as follows:

U ˙ D  = (  1-α  )  U ˙ T   β U ¨  T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaceWGvbGbaiaadaWgaaWcbaGaamiraaqabaGcqaaaaaaaaaWd biaacckapaGaeyypa0ZdbiaacckadaqadaWdaeaapeGaaiiOaiaaig dacaGGTaGaeqySdeMaaiiOaaGaayjkaiaawMcaaiaacckaceWGvbWd ayaacaWaaSbaaSqaa8qacaWGubaapaqabaGcpeGaaiiOaiabgkHiTi aacckapaGaeqOSdiMabmyvayaadaWaaSbaaSqaa8qacaGGGcWdaiaa dsfaaeqaaaaa@5411@   (12)

That takes the rate of dynamic energy.

The main challenges of complex robotic systems analysis

Complete and accurate analysis of robotic systems has particular importance in the field of dynamic fundamentals. Furthermore, the practical aspects of the subject are highly substantial. Therefore, various methods have been presented to analyze the performance of a robotic system. Currently, robotic systems have complex applications and require elevated flexibility. Therefore, there is a need to develop practicable and accurate methods to identify the main and effective aspects of system performance.16

Among the most important challenges related to advanced robotic systems, which are either not considered in the classical equations or create a very high computational complexity, it is possible to consider the flexibility of the system components, the analysis of the system with the high number components include the mutual effects of the system components on each other from the viewpoints of stored and wasted energy, the effects of the dynamics of the components on each other, which can significantly reduce the required calculations, dynamic energy, etc. The mentioned challenges can provide a wider scope of concern with the shrinking of the size of the components and in applications with high precision required.17

Advanced robotic systems deal with the many challenges that are not considered in classical equations or create very high computational complexity, such as the flexibility of system components and the analysis of systems with a large number of components. Challenges such as mutual effects of system components on each other in terms of stored and wasted energy, and dynamic effects of components on each other, will significantly reduce the required calculations, dynamic energy, etc. The mentioned challenges could provide a broad scope of concern with the shrinking of the size of the components and applications with the high precision required. Therefore, we need a more comprehensive view than what is proposed in classical mechanics. In this case, the effects of different parameters can be taken into account and a comprehensive study can be carried out on the desired system. The perspective of the energy structure will be a suitable solution for this challenge, considering its basis and also the basis of the energy space of the system.

According to the mentioned materials, the energy structure equations obtain the necessary capabilities for the advanced study of robotic systems. In fact, each member of the system is placed with a component in the energy space and the equation of the energy structure of the system is formed. It is in this situation that the dynamic and non-dynamic energies of the system can be calculated and the governing equations in the energy space of the system are extracted. More information can be found in reference.15

Conclusion

The perspective of energy structure, the effects of the second law of thermodynamics on the principle of energy conservation and the development of energy space are considered. In this view, the collection of governing equations and the necessary conditions for transferring from the Cartesian coordinate system to the energy space are provided. In this system, it is possible to consider the mutual effects of energy between components and the energy behavior of each component of the system. In fact, the energy space and considering each of the energy components for each of the system components makes this possible. In fact, according to the energy applied to the system, the changes in each energy component can be directly calculated based on the behavioral coefficients of the system. By applying the mutual effects of the components on each other, the independent components are determined and calculations are made for the independent number of energy components.

In addition to the mentioned cases, it is possible to consider the size effects in the same primary equations, which is a very important feature as the independence of the governing equations from the side effects. In fact, this issue takes one of the new and important aspects of using the energy structure perspective in the study of advanced robotic systems.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare that they there are no conflicts of interest.

References

  1. Shahsavari S, Moradi M, Torkaman P. A Quasi-statistical approach to the Boltzmann entropy equation based on a novel energy conservation principle. J Adv Res Fluid Mech Therm Sci. 2023;101(2):99–110.
  2. Shahsavari S, Moradi M. A general solution to the different formulations of the second law of thermodynamics. J Adv Res Fluid Mech Therm Sci. 2021;82(2):61–71.
  3. Talman R. Geometric mechanics: Toward a unification of classical physics. John Wiley & Sons. Classical Fluid Mech. 2007.
  4. Arora, Rajat, and Amit Acharya. A unification of finite deformation J2 Von-Mises plasticity and quantitative dislocation mechanics. J Mech Phys Solids. 2020;143:104050.
  5. Espen H. Rethinking the foundation of physics and its relation to quantum gravity and quantum probabilities: Unification of gravity and quantum mechanics. 2020.
  6. Anthony K H. Unification of continuum-mechanics and thermodynamics by means of lagrange-formalism—present status of the theory and presumable applications. Arch Mech. 1989;41(4):511–534.
  7. Neff Patrizio, Ghiba I-D, Madeo A, et al. A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech Thermodynamics. 2014;26:639–681.
  8. Shahsavari S, Moradi M, Sayyar N, et al. A note on the energy structure theory and development for 2D viscoelasticity. Asia J Appl Sci. 2021;9(1).
  9. Shahsavari S. Possibility unique combination for first and second law of thermodynamics. Quantum J Eng Sci Technol. 2021;2(5):51–52.
  10. Shahsavari S, Moradi M. A study of the entropy production in physical processes from a new perspective of the energy structure. Asia J App Sci. 2020;8(6).
  11. Shahsavari S, Moradi M, Esmaeilpour M. On the irreversibility in mechanical systems using a new macroscopic energy structure modeling. Asia J Appl Sci. 2020;8(6).
  12. Shahsavari S, Moradi M, Esmaeilpour M. On the available work limits at constant heat and entropy production. Asian journal of applied sciences. 2020;8(6).
  13. Shahsavari S, Moradi M. An applied component modeling to the irreversibility from a new configurationally perspective of the statistical physics. Asian J  Fuzzy Appl Math. 2020;8(3).
  14. Shahsavari S, Moradi M. Application of an innovate energy balance to investigate viscoelastic problems. Asia J Eng Technol. 2020;8(4).
  15. Shahsavari S, Boutorabi S M A. Energy structure theory: A general unified thermodynamics theory. Int J Therm. 2023;26(3):47–62.
  16. Tsuji T, Shibanoki T, Nakamura G, et al. Development of myoelectric robotic/prosthetic hands with cybernetic control at the biological systems engineering laboratory, Hiroshima university. J Robo Mech. 2019;31(1):27–34.
  17. Cruz-Martín A, Fernández-Madrigal JA, Galindo C, et al. A LEGO Mindstorms NXT approach for teaching at data acquisition, control systems engineering and real-time systems undergraduate courses. Comp Edu. 2012;59(3):974–988.
Creative Commons Attribution License

©2023 Shahsavari, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.