Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 7 Issue 1

Effect of structure and mechanics on left ventricular aneurysm: A theoretical study

JC Misra,1 S Dandapat,2 B Mallick3

1Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, India
2Indian Institute of Technology, India
3Division of Mathematics, School of Advanced Sciences, VIT University, India

Correspondence: Dr. J C Misra, Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah-711103, India, Tel +91-8373843896

Received: January 06, 2023 | Published: January 27, 2023

Citation: Misra JC, Dandapat S, Mallick B. Effect of structure and mechanics on left ventricular aneurysm: A theoretical study. MOJ App Bio Biomech. 2023;7(1):1-6. DOI: 10.15406/mojabb.2023.07.00166

Download PDF

Abstract

Of concern in the paper is a theoretical study of the effect of ventricular structure and mechanics on left ventricular aneurysm. A mathematical model has been developed by considering the left ventricle as an ellipsoidal shell. The structural non-homogeneity of the ventricle has been taken into account by considering the three distinct layers that exist in the left ventricle. The study pertains to an early stage of formation of the aneurysm (bulging), when the damage area is not too large. In view of this,it is assumed that the ellipsoidal geometry of the left ventricle is preserved, even after the formation of the aneurysm and also that the volumes of the three individual muscle layers after infarction remain equal to the respective volumes before infarction. The theoretical study has been performed by employing suitable analytical methods. The derived analytical expressions have been computed, by taking appropriate values of different parameters involved in the study. The results have been validated in a proper way.

Keywords: ventricular aneurysm, myocardial infarction, ellipsoidal shell, bulge factors, tensile stresses

Introduction

Left ventricular aneurysm (LVA) is known to be a serious health disorder. It has been the observation of clinicians that in most cases, aneurysms develop in the apex wall of left ventricle. The aneurysm can absorb a portion of left ventricular ejection,which may lead to heart failure. Formation of an aneurysm on a ventricular wall,as observed by clinicians,complicates the pathological state of transmural myocardial infarction . However, the hemodynamic factors that are responsible for aneurysmal bulging are not completely known. Bartel et al.1 conducted a study by using a biomechanical model with a motivation of exploring the said factors.They concluded that heart rate, contractility and afterload are the principal factors that cause aneurysm and aneurysmal bulging.The study suggests that in a clinical setting, it should be possible to control the size of bulging through hemodynamic management.

Nomenclature

 

A i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@393C@  

Semi-major axes of infarcted ventricle

a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@395C@  

Semi-major axes of pre-infarcted ventricle

a i0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaadMgacaaIWaaapaqabaaaaa@3A16@  

Semi-major axes of pre-stressed ventricle

B i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@393D@  

Semi-minor axes of infarcted ventricle

b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOya8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@395D@  

Semi-minor axes of pre-infarcted ventricle

E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweaaaa@37D8@  

Eccentricity of pre-infarcted ventricle

e 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@392D@  

Eccentricity of infarcted ventricle

H β 2 ,H β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisaiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaacYca peGaamisaiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3F00@

The bulge factors of the inner and outer bulge

P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfaaaa@37E3@  

The left ventricular pressure on the innermost surface

p f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaa@3969@  

The pressure due to infarcted liquid phase

T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfaaaa@37E7@  

The uniform circumferential stress in all layers of the pre-infarcted ventricle

T β 2 , T β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaGccaGGSaWdbiaadsfapaWaaSbaaSqaa8qacqaHYo GypaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaa@3FC6@

The tensile stresses in the inner and the outer layers of the middle segment of the infarcted ventricle

V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaaaa@3809@  

Volume of the muscle layers of the pre-infarcted ventricle

V I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaabccacaWGjbaaaa@397A@  

Volume of the muscle layers of the infarcted ventricle

2 β i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aI9aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3AD3@  

The angle subtended by the boundaries of the different layers of the infarcted ventricle at their centers

2ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabeI8a5baa@3908@  

The angle of damage

Studies on the mechanical behaviour and mechanism of myocardial infarction are quite useful for analysing the genesis of aneurysms. Deformation of the ventricular wall after infarction involves different mechanical factors; the infarcted myocardium supports the intra ventricular pressure and the incompressibility of the muscle wall. The selection of candidates for coronary bypass surgery depends on the following factors:

  1. Estimation of the infarct size and location as well as the effect of the intensity of the chamber pressure to continue the circulation during systole, and
  2. Whether the size of the infarct is enough to cause an eventual aneurysm.

This information is quite useful for having an idea as to how the deformation changes the intra ventricular haemodynamic. They are also helpful for the proper treatment of aneurysmectomy.

The model offers the opportunity to study in a fairly simple way the influence of a number of relevant features connected to ventricular geometry and muscle contraction based as much as possible on current physiological knowledge. Such studies also make it possible to estimate the diastolic and systolic properties of the heart, the ventricles and muscle before and after interventions. Of course, this approach leads, in general, to relatively complex models with a number of parameters.

According to Huxley’s theory,2 force generation by the sarcomeres in response to activations results from chemical interactions, which can be demonstrated by electron microscopy in skeletal

muscle. But structure of sarcomere in cardiac muscle is the same as the striated muscle. The sliding filament model of Huxley2 has been extensively applied to muscle mechanics, since it satisfies the thermodynamic data of striated muscle reported by Hill.3 Van Den Broek and Van Den Broek4 improved the model of heart as a nested set of thick-walled truncated ellipsoid of revolution with nonuniform wall thickness. The shells contain muscle fibres which generate wall tension, from which ventricular pressure results. Fiber length and orientation per shell were taken to have different values.

The geometry of the left ventricle was idealized as a thick-walled circular cylinder and the myocardium was assumed to be composed of an incompressible homogeneous and isotropic material in an investigation undertaken by Moskowitz5 to explain the physiology underlying left ventricular diastolic phenomena. Different mathematical models for left ventricle were also tried in the past by several researchers to estimate the stresses in the left ventricular wall. Misra and Singh6–10 carried out several studies relevant to the mechanics of the left ventricle in normal and pathological states. Some recent investigations of aneurysms in the left ventricle are given by.11–13

The mechanical behaviour of aneurysm formed in an arterial wall was studied by Ren and Yuan.14 They predicted that the aneurysm may rupture if the stress at the arterial wall is greater than its strength. A theoretical study was performed by Misra and his collaborators15 for the study of the mechanics of carcinogenic human arteries. The study was motivated towards finding theoretical estimates of hemodynamic flow during electromagnetic hyperthermia. Misra et al.16,17 also reported their results for two separate studies on blood flow in the micro-circulatory system, which bear the promise of important applications in the treatment of cardiovascular diseases.

In 2019, Sui et al.18 carried out a statistical analysis for 183 patients with left ventricular aneurysm (LVA). Based on their observations, they discussed the efficacy of three different clinical treatment methods, out of which they suggested that surgery is the best treatment option for the treatment of LVA. Based on another statistical study, Ohlow19 made some important observations on the characteristics of congenital left ventricular aneurysms. Discussion on different aspects of surgical treatment of left ventricular aneurysm was made in,20–22 while impact of surgery on patients with LVA was discussed in.23–25 It is important to note that Pasque26 and Kramer et al.27 while discussing about left ventricular aneurysm repair stressed upon the importance of application of mathematical modelling theory to validate the observations of clinical investigations in cardiac mechanics and cardiac surgery.

A finite element model was employed by Guccione et al.28 to study the mechanism behind the mechanical dysfunction in the border zone of left ventricular aneurysm. The study shows that myocardial contractile dysfunction is more responsible for mechanical dysfunction in the said region of the aneurysm than the intensified wall stress developed there. The left ventricle with an infarcted wall was modelled as a spherical shell by Radhakrishnan et al.29 to perform a mathematical analysis of ventricular aneurysm that develops due to infarcts of different sizes. Based on this analysis ventricular wall deformation and stress were calculated. The study shows that the innermost layer is affected most severely, where the stress developed is maximum. The extent of wall damage was obtained in terms of the angle of damage and percentage of damage of the ventricular wall.

However, in the studies mentioned above, for the sake of simplification, the left ventricle was modelled as a spherical shell and so the eccentricity of the left ventricle was not taken into account. However, it is well-known that the eccentricity of the left ventricle is non-zero. In order to account for the effect of eccentricity and structural non-homogeneity on left ventricular aneurysm, the present study has been carried out by developing a mathematical model, in which the left ventricle is considered as an ellipsoidal shell, consisting of three distinct layers. The mathematical analysis has been performed by employing suitable analytical techniques. The model and the results obtained therefrom have been duly validated by comparing the results of this investigation with those of previous studies available in the existing literature.

The Model

On the basis of the assumption of muscle incompressibility, the volumes of the three muscle layers may be taken to be the same before and after infarction. If the area of damage is not too large, the infarcted segments preserve the ellipsoidal form, of course, with different eccentricity after the development of the aneurysm.

As already mentioned, the left ventricle is modelled as a three layered ellipsoidal shell of revolution; the major and the minor semi-axes of the non-infarcted muscle layers are denoted by ( a1,b1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaWGaaGymaOGaaiilaiaadkgamiaaigdaaOGaayjkaiaawMcaaaaa @3C06@  (at the inner boundary of superficial bulbospiral muscle), ( a2,b2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaWGaaGOmaOGaaiilaiaadkgamiaaikdaaOGaayjkaiaawMcaaaaa @3C08@ (at the inner boundary of deep bulbospiral muscle), ( a3,b3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaWGaaG4maOGaaiilaiaadkgamiaaiodaaOGaayjkaiaawMcaaaaa @3C0A@ (at the outer boundary of deep sinospiral muscle) and ( a4,b4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaWGaaGinaOGaaiilaiaadkgamiaaisdaaOGaayjkaiaawMcaaaaa @3C0C@ (at the outer boundary of superficial sinospiral muscle). A schematic diagram has been presented in Figure 1. The corresponding values for the infarcted layers are denoted by ( A1,B1 )( A2,B2 )( A3,B3 ) and ( A4,B4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yqaWGaaGymaOGaaiilaiaadkeamiaaigdaaOGaayjkaiaawMcaamaa bmaabaGaamyqaWGaaGOmaOGaaiilaiaadkeamiaaikdaaOGaayjkai aawMcaamaabmaabaGaamyqaWGaaG4maOGaaiilaiaadkeamiaaioda aOGaayjkaiaawMcaaabaaaaaaaaapeGaaiiOa8aacaWGHbGaamOBai aadsgapeGaaiiOa8aadaqadaqaaiaadgeamiaaisdakiaacYcacaWG cbadcaaI0aaakiaawIcacaGLPaaaaaa@5162@  respectively. Observations of previous investigators indicate that the set of ellipsoidal shells before infarction are concentric and further that the ratio between the minor and major axes is approximetly 0.87 for all the layers. The non-uniform thickness varies according to the law of incompressibility. The infarcted layers have the same eccentricity but differ from non-infarcted layers. Let e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyzaaaa@3819@  and e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@392E@ are respectively the eccentricities of the non-infarcted and infarcted layers. The major and minor semi-axes of the three different infarcted layers are assumed to be ( A1,B1 )( A2,B2 )( A3,B3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yqaWGaaGymaOGaaiilaiaadkeamiaaigdaaOGaayjkaiaawMcaamaa bmaabaGaamyqaWGaaGOmaOGaaiilaiaadkeamiaaikdaaOGaayjkai aawMcaamaabmaabaGaamyqaWGaaG4maOGaaiilaiaadkeamiaaioda aOGaayjkaiaawMcaaaaa@469C@  and ( A4,B4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yqaWGaaGinaOGaaiilaiaadkeamiaaisdaaOGaayjkaiaawMcaaaaa @3BCC@ respectively.

Figure 1 Schematic Representation of the Layered Ellipsoidal Structure of Left Ventricular Aneurysm.

Let 2ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabeI8a5baa@3908@ be the angle of damage; this is the angle made by the three concentric layers initially at their center and let the bulged segments subtend the angles 2 β 1 2 β 2 2 β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aIXWdamaaBaaabaWdbiaaigdaa8aabeaak8qacaaI YaGaeqOSdigdpaWaaSbaaeaapeGaaGOmaaWdaeqaaOWdbiaaikdacq aHYoGym8aadaWgaaqaa8qacaaIZaaapaqabaaaaa@410E@ and 2 β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aIXWdamaaBaaabaWdbiaaisdaa8aabeaaaaa@39F4@ respectively at their centers.

The following assumptions will be made here.

  1. The myocardial wall is composed of three layers viz. (i) superficial sinospiral muscle, (ii) deep sinospiral muscle and deep bulbospiral muscle and (iii) superficial bulbospiral muscle. The muscles are treated as incompressible material.
  2. The two superficial layers remain unaffected but damaged deep layers are assumed to be replaced by an equivalent amount of fluid. This infarcted zone deforms into ellipsoidal caps, the outer and inner superficial layers are similar in all respects. Also the undamaged portion preserves the same shape.
  3. The left ventricle is treated as a closed pressurized chamber loaded by intraventicular pressures at the instant prior to the opening of the aortic valve. The segment of the middle layer of the wall becomes infarcted at the apex. Thus the inner bulge of the infarcted zone is caused due to the resultant of intraventicular and fluid pressures, while the outer bulge supports the fluid pressure.
  4. Mechanical behaviour of aneurysm is considered only at the instant prior to the opening of the aortic valve.
  5. The length-tension relationship used as the contractile tension is a linear function of contracted length.
  6. Necking is neglected near the edges of infarct.

Assuming that innermost segment of the pre-infarcted left ventricle is bounded by the part of the ellipsoidal shell whose major and minor semi-axes of the inner and outer boundaries are ( a1,b1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaWGaaGymaOGaaiilaiaadkgamiaaigdaaOGaayjkaiaawMcaaaaa @3C06@  and ( a2,b2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyaWGaaGOmaOGaaiilaiaadkgamiaaikdaaOGaayjkaiaawMcaaaaa @3C08@  respectively, as in,30 calculations necessary for the present study have been performed. They are presented below.

Volumes before and after infarction

The predeformation volume of the innermost infarcted wall segment is given by

V( inner layer )=π{( a 2 b 2 3 )[ 1 b 2 1 3 b 2 cosψ ( a 2 2 si n 2 ψ+ b 2 2 co s 2 ψ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaWGPbGaamOBaiaad6gacaWGLbGaamOC aiaabckacaWGSbGaamyyaiaadMhacaWGLbGaamOCaaGaayjkaiaawM caaiabg2da9iabec8aWjaacUhadaqadaWdaeaapeGaamyya8aadaWg aaWcbaWdbiaaikdaa8aabeaak8qacaWGIbWdamaaDaaaleaapeGaaG OmaaWdaeaapeGaaG4maaaaaOGaayjkaiaawMcaaiaacUfadaWcaaWd aeaapeGaaGymaaWdaeaapeGaamOya8aadaWgaaWcbaWdbiaaikdaa8 aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa iodacaWGIbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qacqGHsi sldaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqiYdKhapaqaa8qa caGGOaGaamyyamaaDaaaleaacaaIYaaabaGaaGOmaaaakiaadohaca WGPbGaamOBamaaCaaaleqabaWdamaaCaaameqabaWdbiaaikdaaaaa aOGaeqiYdKNaey4kaSIaamOya8aadaqhaaWcbaWdbiaaikdaa8aaba WdbiaaikdaaaGccaWGJbGaam4BaiaadohadaahaaWcbeqaa8aadaah aaadbeqaa8qacaaIYaaaaaaakiabeI8a5jaacMcadaahaaWcbeqaa8 aadaahaaadbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOm aaaaaaaaaaaaaaa@72E6@

+ b 2 2 12 cos3ψ+3cosψ ( a 2 2 si n 2 ψ+ b 2 2 co s 2 ψ) 3 2 ] ( a 1 b 1 3 ) [ 1 b 1 1 3 b 1 cosψ ( a 1 2 si n 2 ψ+ b 1 2 co s 2 ψ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkgapaWaa0baaSqaa8qacaaIYaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabeI8a5jabgUcaRiaaioda caWGJbGaam4BaiaadohacqaHipqEa8aabaWdbiaacIcacaWGHbWdam aaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiaadohacaWGPbGa amOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaam Oya8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacM capaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaa ikdaaaaaaaaakmaajmcapaqaa8qacqGHsisldaqadaWdaeaapeGaam yya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGIbWdamaaDaaa leaapeGaaGymaaWdaeaapeGaaG4maaaaaOGaayjkaiaawMcaaaGaay zxaiaawUfaamaalaaapaqaa8qacaaIXaaapaqaa8qacaWGIbWdamaa BaaaleaapeGaaGymaaWdaeqaaaaak8qacqGHsisldaWcaaWdaeaape GaaGymaaWdaeaapeGaaG4maiaadkgapaWaaSbaaSqaa8qacaaIXaaa paqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacaWGJbGaam4Baiaado hacqaHipqEa8aabaWdbiaacIcacaWGHbWdamaaDaaaleaapeGaaGym aaWdaeaapeGaaGOmaaaakiaadohacaWGPbGaamOBa8aadaahaaWcbe qaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaamOya8aadaqhaaWcbaWd biaaigdaa8aabaWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaWaaW baaSqabeaapeGaaGOmaaaakiabeI8a5jaacMcapaWaaWbaaSqabeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaaaaa@8ADB@

+ b 1 2 12 cos3ψ+3cosψ ( a 1 2 si n 2 ψ+ b 1 2 co s 2 ψ) 3 2 ] + 1 3 [ a 2 3 b 2 3 si n 2 ψcosψ ( a 2 2 si n 2 ψ+ b 2 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkgapaWaa0baaSqaa8qacaaIXaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabeI8a5jabgUcaRiaaioda caWGJbGaam4BaiaadohacqaHipqEa8aabaWdbiaacIcacaWGHbWdam aaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiaadohacaWGPbGa amOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaam Oya8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacM capaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaa ikdaaaaaaaaakmaajmcapaqaa8qacqGHRaWkdaWcaaWdaeaapeGaaG ymaaWdaeaapeGaaG4maaaaaiaaw2facaGLBbaadaWcaaWdaeaapeGa amyya8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaiodaaaGccaWGIb WdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maaaakiaadohacaWG PbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaam4yai aad+gacaWGZbGaeqiYdKhapaqaa8qacaGGOaGaamyya8aadaqhaaWc baWdbiaaikdaa8aabaWdbiaaikdaaaGccaWGZbGaamyAaiaad6gapa WaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jabgUcaRiaadkgapaWa a0baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gaca WGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHipqEcaGGPaWdamaa CaaaleqabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8qacaaIYaaaaa aaaaaaaa@8893@

a 1 3 b 1 3 si n 2 ψcosψ ( a 1 2 si n 2 ψ+ b 1 2 co s 2 ψ) 3 2 ]}, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadggapaWaa0baaSqaa8qacaaIXaaa paqaa8qacaaIZaaaaOGaamOya8aadaqhaaWcbaWdbiaaigdaa8aaba WdbiaaiodaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGa aGOmaaaakiabeI8a5jaadogacaWGVbGaam4CaiabeI8a5bWdaeaape GaaiikaiaadggapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaa aOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGccq aHipqEcqGHRaWkcaWGIbWdamaaDaaaleaapeGaaGymaaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqiYdKNaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGa aG4maaWdaeaapeGaaGOmaaaaaaaaaOGaaiyxaiaac2hacaGGSaaaaa@6067@   (1)

V( Middle )=π{( a 3 b 3 3 )[ 1 b 2 1 3 b 3 cosψ ( a 3 2 si n 2 ψ+ b 3 2 co s 2 ψ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaWGnbGaamyAaiaadsgacaWGKbGaamiB aiaadwgaaiaawIcacaGLPaaacqGH9aqpcqaHapaCcaGG7bWaaeWaa8 aabaWdbiaadggapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaamOy a8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaiodaaaaakiaawIcaca GLPaaacaGGBbWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkgapaWa aSbaaSqaa8qacaaIYaaapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8 qacaaIXaaapaqaa8qacaaIZaGaamOya8aadaWgaaWcbaWdbiaaioda a8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaadogacaWGVbGaam 4CaiabeI8a5bWdaeaapeGaaiikaiaadggapaWaa0baaSqaa8qacaaI Zaaapaqaa8qacaaIYaaaaOGaam4CaiaadMgacaWGUbWdamaaCaaale qabaWdbiaaikdaaaGccqaHipqEcqGHRaWkcaWGIbWdamaaDaaaleaa peGaaG4maaWdaeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aada ahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaaiyka8aadaahaaWcbeqa a8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaaaaaaaa@6D7E@

+ b 3 2 12 cos3ψ+3cosψ ( a 3 2 si n 2 ψ+ b 3 2 co s 2 ψ) 3 2 ] ( a 2 b 2 3 ) [ 1 b 2 1 3 b 2 cosψ ( a 2 2 si n 2 ψ+ b 2 2 co s 2 ψ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkgapaWaa0baaSqaa8qacaaIZaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabeI8a5jabgUcaRiaaioda caWGJbGaam4BaiaadohacqaHipqEa8aabaWdbiaacIcacaWGHbWdam aaDaaaleaapeGaaG4maaWdaeaapeGaaGOmaaaakiaadohacaWGPbGa amOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaam Oya8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacM capaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaa ikdaaaaaaaaakmaajmcapaqaa8qacqGHsisldaqadaWdaeaapeGaam yya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGIbWdamaaDaaa leaapeGaaGOmaaWdaeaapeGaaG4maaaaaOGaayjkaiaawMcaaaGaay zxaiaawUfaamaalaaapaqaa8qacaaIXaaapaqaa8qacaWGIbWdamaa BaaaleaapeGaaGOmaaWdaeqaaaaak8qacqGHsisldaWcaaWdaeaape GaaGymaaWdaeaapeGaaG4maiaadkgapaWaaSbaaSqaa8qacaaIYaaa paqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacaWGJbGaam4Baiaado hacqaHipqEa8aabaWdbiaacIcacaWGHbWdamaaDaaaleaapeGaaGOm aaWdaeaapeGaaGOmaaaakiaadohacaWGPbGaamOBa8aadaahaaWcbe qaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaamOya8aadaqhaaWcbaWd biaaikdaa8aabaWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaWaaW baaSqabeaapeGaaGOmaaaakiabeI8a5jaacMcapaWaaWbaaSqabeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaaaaa@8AE4@

+ b 2 2 12 cos3ψ+3cosψ ( a 2 2 si n 2 ψ+ b 2 2 co s 2 ψ) 3 2 ] + 1 3 [ a 3 3 b 3 3 si n 2 ψcosψ ( a 3 2 si n 2 ψ+ b 3 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkgapaWaa0baaSqaa8qacaaIYaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabeI8a5jabgUcaRiaaioda caWGJbGaam4BaiaadohacqaHipqEa8aabaWdbiaacIcacaWGHbWdam aaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiaadohacaWGPbGa amOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaam Oya8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacM capaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaa ikdaaaaaaaaakmaajmcapaqaa8qacqGHRaWkdaWcaaWdaeaapeGaaG ymaaWdaeaapeGaaG4maaaaaiaaw2facaGLBbaadaWcaaWdaeaapeGa amyya8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaiodaaaGccaWGIb WdamaaDaaaleaapeGaaG4maaWdaeaapeGaaG4maaaakiaadohacaWG PbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaam4yai aad+gacaWGZbGaeqiYdKhapaqaa8qacaGGOaGaamyya8aadaqhaaWc baWdbiaaiodaa8aabaWdbiaaikdaaaGccaWGZbGaamyAaiaad6gapa WaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jabgUcaRiaadkgapaWa a0baaSqaa8qacaaIZaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gaca WGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHipqEcaGGPaWdamaa CaaaleqabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8qacaaIYaaaaa aaaaaaaa@889A@

a 2 3 b 2 3 si n 2 ψcosψ ( a 2 2 si n 2 ψ+ b 2 2 co s 2 ψ) 3 2 ]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadggapaWaa0baaSqaa8qacaaIYaaa paqaa8qacaaIZaaaaOGaamOya8aadaqhaaWcbaWdbiaaikdaa8aaba WdbiaaiodaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGa aGOmaaaakiabeI8a5jaadogacaWGVbGaam4CaiabeI8a5bWdaeaape GaaiikaiaadggapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIYaaa aOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGccq aHipqEcqGHRaWkcaWGIbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqiYdKNaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGa aG4maaWdaeaapeGaaGOmaaaaaaaaaOGaaiyxaiaac2haaaa@5FBB@   (2)

 and

V( Outer )=π{( a 4 b 4 3 )[ 1 b 4 1 3 b 4 cosψ ( a 4 2 si n 2 ψ+ b 4 2 co s 2 ψ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaWGpbGaamyDaiaadshacaWGLbGaamOC aaGaayjkaiaawMcaaiabg2da9iabec8aWjaacUhadaqadaWdaeaape Gaamyya8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacaWGIbWdamaa DaaaleaapeGaaGinaaWdaeaapeGaaG4maaaaaOGaayjkaiaawMcaai aacUfadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOya8aadaWgaaWc baWdbiaaisdaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaaig daa8aabaWdbiaaiodacaWGIbWdamaaBaaaleaapeGaaGinaaWdaeqa aaaak8qacqGHsisldaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeq iYdKhapaqaa8qacaGGOaGaamyya8aadaqhaaWcbaWdbiaaisdaa8aa baWdbiaaikdaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaape GaaGOmaaaakiabeI8a5jabgUcaRiaadkgapaWaa0baaSqaa8qacaaI 0aaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaale qabaWdbiaaikdaaaGccqaHipqEcaGGPaWdamaaCaaaleqabaWdbmaa laaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaaaaaaaa@6CC1@

+ b 4 2 12 cos3ψ+3cosψ ( a 4 2 si n 2 ψ+ b 4 2 co s 2 ψ) 3 2 ] ( a 3 b 3 3 ) [ 1 b 3 1 3 b 3 cosψ ( a 3 2 si n 2 ψ+ b 3 2 co s 2 ψ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkgapaWaa0baaSqaa8qacaaI0aaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabeI8a5jabgUcaRiaaioda caWGJbGaam4BaiaadohacqaHipqEa8aabaWdbiaacIcacaWGHbWdam aaDaaaleaapeGaaGinaaWdaeaapeGaaGOmaaaakiaadohacaWGPbGa amOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaam Oya8aadaqhaaWcbaWdbiaaisdaa8aabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacM capaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaa ikdaaaaaaaaakmaajmcapaqaa8qacqGHsisldaqadaWdaeaapeGaam yya8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaWGIbWdamaaDaaa leaapeGaaG4maaWdaeaapeGaaG4maaaaaOGaayjkaiaawMcaaaGaay zxaiaawUfaamaalaaapaqaa8qacaaIXaaapaqaa8qacaWGIbWdamaa BaaaleaapeGaaG4maaWdaeqaaaaak8qacqGHsisldaWcaaWdaeaape GaaGymaaWdaeaapeGaaG4maiaadkgapaWaaSbaaSqaa8qacaaIZaaa paqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacaWGJbGaam4Baiaado hacqaHipqEa8aabaWdbiaacIcacaWGHbWdamaaDaaaleaapeGaaG4m aaWdaeaapeGaaGOmaaaakiaadohacaWGPbGaamOBa8aadaahaaWcbe qaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaamOya8aadaqhaaWcbaWd biaaiodaa8aabaWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaWaaW baaSqabeaapeGaaGOmaaaakiabeI8a5jaacMcapaWaaWbaaSqabeaa peWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaaaaa@8AEE@

+ b 3 2 12 cos3ψ+3cosψ ( a 3 2 si n 2 ψ+ b 3 2 co s 2 ψ) 3 2 ] + 1 3 [ a 4 3 b 4 3 si n 2 ψcosψ ( a 4 2 si n 2 ψ+ b 4 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkgapaWaa0baaSqaa8qacaaIZaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabeI8a5jabgUcaRiaaioda caWGJbGaam4BaiaadohacqaHipqEa8aabaWdbiaacIcacaWGHbWdam aaDaaaleaapeGaaG4maaWdaeaapeGaaGOmaaaakiaadohacaWGPbGa amOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaey4kaSIaam Oya8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacM capaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaa ikdaaaaaaaaakmaajmcapaqaa8qacqGHRaWkdaWcaaWdaeaapeGaaG ymaaWdaeaapeGaaG4maaaaaiaaw2facaGLBbaadaWcaaWdaeaapeGa amyya8aadaqhaaWcbaWdbiaaisdaa8aabaWdbiaaiodaaaGccaWGIb WdamaaDaaaleaapeGaaGinaaWdaeaapeGaaG4maaaakiaadohacaWG PbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaam4yai aad+gacaWGZbGaeqiYdKhapaqaa8qacaGGOaGaamyya8aadaqhaaWc baWdbiaaisdaa8aabaWdbiaaikdaaaGccaWGZbGaamyAaiaad6gapa WaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jabgUcaRiaadkgapaWa a0baaSqaa8qacaaI0aaapaqaa8qacaaIYaaaaOGaam4yaiaad+gaca WGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHipqEcaGGPaWdamaa CaaaleqabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8qacaaIYaaaaa aaaaaaaa@88A2@

a 3 3 b 3 3 si n 2 ψcosψ ( a 3 2 si n 2 ψ+ b 3 2 co s 2 ψ) 3 2 ]}. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadggapaWaa0baaSqaa8qacaaIZaaa paqaa8qacaaIZaaaaOGaamOya8aadaqhaaWcbaWdbiaaiodaa8aaba WdbiaaiodaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGa aGOmaaaakiabeI8a5jaadogacaWGVbGaam4CaiabeI8a5bWdaeaape GaaiikaiaadggapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIYaaa aOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGccq aHipqEcqGHRaWkcaWGIbWdamaaDaaaleaapeGaaG4maaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqiYdKNaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGa aG4maaWdaeaapeGaaGOmaaaaaaaaaOGaaiyxaiaac2hacaGGUaaaaa@6072@   (3)

After infarction, the ellipsoidal segment is bulged out to a different ellipsoidal segment. For the innermost layer, the inner and the outer surfaces of the segments whose major and minor semi-axes are ( A1,B1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yqaWGaaGymaOGaaiilaiaadkeamiaaigdaaOGaayjkaiaawMcaaaaa @3BC6@ and ( A2,B2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yqaWGaaGOmaOGaaiilaiaadkeamiaaikdaaOGaayjkaiaawMcaaaaa @3BC8@  subtend the angles 2 β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aIXWdamaaBaaabaWdbiaaigdaa8aabeaaaaa@39F1@ and 2 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aIXWdamaaBaaabaWdbiaaikdaa8aabeaaaaa@39F2@ at their centers. Similarly, for the middle and outer bulged segments having ( A2,B2 ),( A3,B3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yqaWGaaGOmaOGaaiilaiaadkeamiaaikdaaOGaayjkaiaawMcaaiaa cYcadaqadaqaaiaadgeamiaaiodakiaacYcacaWGcbadcaaIZaaaki aawIcacaGLPaaaaaa@41E4@ and ( A3,B3 ),( A4,B4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yqaWGaaG4maOGaaiilaiaadkeamiaaiodaaOGaayjkaiaawMcaaiaa cYcadaqadaqaaiaadgeamiaaisdakiaacYcacaWGcbadcaaI0aaaki aawIcacaGLPaaaaaa@41E8@ as the semi-axes, angles subtended at the centre are 2 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aIXWdamaaBaaabaWdbiaaikdaa8aabeaaaaa@39F2@ and 2 β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aIXWdamaaBaaabaWdbiaaiodaa8aabeaaaaa@39F3@  and 2 β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aIXWdamaaBaaabaWdbiaaiodaa8aabeaaaaa@39F3@ and 2 β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabek7aIXWdamaaBaaabaWdbiaaisdaa8aabeaaaaa@39F4@ respectively.

Now the volumes of different bulged out segments are

VI( inner )=π{( A 2 B 2 3 )[ 1 B 2 1 3 B 2 cos β 2 ( A 2 2 si n 2 β 2 + B 2 2 co s 2 β 2 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaadMeadaqadaWdaeaapeGaamyAaiaad6gacaWGUbGaamyz aiaadkhaaiaawIcacaGLPaaacqGH9aqpcqaHapaCcaGG7bWaaeWaa8 aabaWdbiaadgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamOq a8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaiodaaaaakiaawIcaca GLPaaacaGGBbWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkeapaWa aSbaaSqaa8qacaaIYaaapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8 qacaaIXaaapaqaa8qacaaIZaGaamOqa8aadaWgaaWcbaWdbiaaikda a8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaadogacaWGVbGaam 4Caiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacaGG OaGaamyqa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaikdaaaGcca WGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGaaGOmaaaakiabek7a I9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaWGcbWdam aaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiaadogacaWGVbGa am4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2damaaBaaale aapeGaaGOmaaWdaeqaaOWdbiaacMcapaWaaWbaaSqabeaapeWaaSaa a8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaaaaa@6FBA@

+ B 2 2 12 cos3 β 2 +3cos β 2 ( A 2 2 si n 2 β 2 + B 2 2 co s 2 β 2 ) 3 2 ] ( A 1 B 1 3 ) [ 1 B 1 1 3 B 1 cos β 1 ( A 1 2 si n 2 β 1 + B 1 2 co s 2 β 1 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkeapaWaa0baaSqaa8qacaaIYaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabek7aI9aadaWgaaWcbaWd biaaikdaa8aabeaak8qacqGHRaWkcaaIZaGaam4yaiaad+gacaWGZb GaeqOSdi2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaacIca caWGbbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiaado hacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2d amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaadkeapaWaa0 baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWG ZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWd aeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOWaaKWia8aabaWdbi abgkHiTmaabmaapaqaa8qacaWGbbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiaadkeapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIZa aaaaGccaGLOaGaayzkaaaacaGLDbGaay5waaWaaSaaa8aabaWdbiaa igdaa8aabaWdbiaadkeapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaO WdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaGaamOq a8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8 aabaWdbiaadogacaWGVbGaam4Caiabek7aI9aadaWgaaWcbaWdbiaa igdaa8aabeaaaOqaa8qacaGGOaGaamyqa8aadaqhaaWcbaWdbiaaig daa8aabaWdbiaaikdaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqa beaapeGaaGOmaaaakiabek7aI9aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacqGHRaWkcaWGcbWdamaaDaaaleaapeGaaGymaaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacMca paWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaaaaaaaaaa@9090@

+ B 1 2 12 cos3 β 1 +3cos β 1 ( A 1 2 si n 2 β 1 + B 1 2 co s 2 β 1 ) 3 2 ] + 1 3 [ a 2 3 b 2 3 si n 2 ψcosψ ( a 2 2 si n 2 ψ+ b 2 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkeapaWaa0baaSqaa8qacaaIXaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabek7aI9aadaWgaaWcbaWd biaaigdaa8aabeaak8qacqGHRaWkcaaIZaGaam4yaiaad+gacaWGZb GaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiaacIca caWGbbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiaado hacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2d amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaadkeapaWaa0 baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWG ZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWd aeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOWaaKWia8aabaWdbi abgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaaaaaGaayzx aiaawUfaamaalaaapaqaa8qacaWGHbWdamaaDaaaleaapeGaaGOmaa WdaeaapeGaaG4maaaakiaadkgapaWaa0baaSqaa8qacaaIYaaapaqa a8qacaaIZaaaaOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbi aaikdaaaGccqaHipqEcaWGJbGaam4BaiaadohacqaHipqEa8aabaWd biaacIcacaWGHbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaa aakiaadohacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGa eqiYdKNaey4kaSIaamOya8aadaqhaaWcbaWdbiaaikdaa8aabaWdbi aaikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaGOm aaaakiabeI8a5jaacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbi aaiodaa8aabaWdbiaaikdaaaaaaaaaaaa@8C1D@

a 1 3 b 1 3 si n 2 ψcosψ ( a 1 2 si n 2 ψ+ b 1 2 co s 2 ψ) 3 2 ]}, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadggapaWaa0baaSqaa8qacaaIXaaa paqaa8qacaaIZaaaaOGaamOya8aadaqhaaWcbaWdbiaaigdaa8aaba WdbiaaiodaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGa aGOmaaaakiabeI8a5jaadogacaWGVbGaam4CaiabeI8a5bWdaeaape GaaiikaiaadggapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaa aOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGccq aHipqEcqGHRaWkcaWGIbWdamaaDaaaleaapeGaaGymaaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqiYdKNaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGa aG4maaWdaeaapeGaaGOmaaaaaaaaaOGaaiyxaiaac2hacaGGSaaaaa@6068@   (4)

VI( Middle )=π{( A 3 B 3 3 )[ 1 B 3 1 3 B 3 cos β 3 ( A 3 2 si n 2 β 3 + B 3 2 co s 2 β 3 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaadMeadaqadaWdaeaapeGaamytaiaadMgacaWGKbGaamiz aiaadYgacaWGLbaacaGLOaGaayzkaaGaeyypa0JaeqiWdaNaai4Eam aabmaapaqaa8qacaWGbbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWd biaadkeapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIZaaaaaGcca GLOaGaayzkaaGaai4wamaalaaapaqaa8qacaaIXaaapaqaa8qacaWG cbWdamaaBaaaleaapeGaaG4maaWdaeqaaaaak8qacqGHsisldaWcaa WdaeaapeGaaGymaaWdaeaapeGaaG4maiaadkeapaWaaSbaaSqaa8qa caaIZaaapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8qacaWGJbGaam 4BaiaadohacqaHYoGypaWaaSbaaSqaa8qacaaIZaaapaqabaaakeaa peGaaiikaiaadgeapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIYa aaaOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGc cqaHYoGypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaam Oqa8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabek7aI9aada WgaaWcbaWdbiaaiodaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWd bmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaaaaaaaa@707B@

+ B 3 2 12 cos3 β 3 +3cos β 3 ( A 3 2 si n 2 β 3 + B 3 2 co s 2 β 3 ) 3 2 ] ( A 2 B 2 3 ) [ 1 B 2 1 3 B 2 cos β 2 ( A 2 2 si n 2 β 2 + B 2 2 co s 2 β 2 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkeapaWaa0baaSqaa8qacaaIZaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabek7aI9aadaWgaaWcbaWd biaaiodaa8aabeaak8qacqGHRaWkcaaIZaGaam4yaiaad+gacaWGZb GaeqOSdi2damaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbiaacIca caWGbbWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaGOmaaaakiaado hacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2d amaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaadkeapaWaa0 baaSqaa8qacaaIZaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWG ZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWd aeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOWaaKWia8aabaWdbi abgkHiTmaabmaapaqaa8qacaWGbbWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWdbiaadkeapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIZa aaaaGccaGLOaGaayzkaaaacaGLDbGaay5waaWaaSaaa8aabaWdbiaa igdaa8aabaWdbiaadkeapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaO WdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaGaamOq a8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8 aabaWdbiaadogacaWGVbGaam4Caiabek7aI9aadaWgaaWcbaWdbiaa ikdaa8aabeaaaOqaa8qacaGGOaGaamyqa8aadaqhaaWcbaWdbiaaik daa8aabaWdbiaaikdaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqa beaapeGaaGOmaaaakiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabe aak8qacqGHRaWkcaWGcbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqOSdi2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacMca paWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaaaaaaaaaa@90A0@

+ B 2 2 12 cos3 β 2 +3cos β 2 ( A 2 2 si n 2 β 2 + B 2 2 co s 2 β 2 ) 3 2 ] + 1 3 [ a 3 3 b 3 3 si n 2 ψcosψ ( a 3 2 si n 2 ψ+ b 3 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkeapaWaa0baaSqaa8qacaaIYaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabek7aI9aadaWgaaWcbaWd biaaikdaa8aabeaak8qacqGHRaWkcaaIZaGaam4yaiaad+gacaWGZb GaeqOSdi2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaacIca caWGbbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiaado hacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2d amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaadkeapaWaa0 baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWG ZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWd aeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOWaaKWia8aabaWdbi abgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaaaaaGaayzx aiaawUfaamaalaaapaqaa8qacaWGHbWdamaaDaaaleaapeGaaG4maa WdaeaapeGaaG4maaaakiaadkgapaWaa0baaSqaa8qacaaIZaaapaqa a8qacaaIZaaaaOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbi aaikdaaaGccqaHipqEcaWGJbGaam4BaiaadohacqaHipqEa8aabaWd biaacIcacaWGHbWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaGOmaa aakiaadohacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGa eqiYdKNaey4kaSIaamOya8aadaqhaaWcbaWdbiaaiodaa8aabaWdbi aaikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaGOm aaaakiabeI8a5jaacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbi aaiodaa8aabaWdbiaaikdaaaaaaaaaaaa@8C28@

a 2 3 b 2 3 si n 2 ψcosψ ( a 2 2 si n 2 ψ+ b 2 2 co s 2 ψ) 3 2 ]} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadggapaWaa0baaSqaa8qacaaIYaaa paqaa8qacaaIZaaaaOGaamOya8aadaqhaaWcbaWdbiaaikdaa8aaba WdbiaaiodaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGa aGOmaaaakiabeI8a5jaadogacaWGVbGaam4CaiabeI8a5bWdaeaape GaaiikaiaadggapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIYaaa aOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGccq aHipqEcqGHRaWkcaWGIbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqiYdKNaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGa aG4maaWdaeaapeGaaGOmaaaaaaaaaOGaaiyxaiaac2haaaa@5FBC@   (5)

 and

VI( outer )=π{( A 4 B 4 3 )[ 1 B 4 1 3 B 4 cos β 4 ( A 4 2 si n 2 β 4 + B 4 2 co s 2 β 4 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiaadMeadaqadaWdaeaapeGaam4BaiaadwhacaWG0bGaamyz aiaadkhaaiaawIcacaGLPaaacqGH9aqpcqaHapaCcaGG7bWaaeWaa8 aabaWdbiaadgeapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaamOq a8aadaqhaaWcbaWdbiaaisdaa8aabaWdbiaaiodaaaaakiaawIcaca GLPaaacaGGBbWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkeapaWa aSbaaSqaa8qacaaI0aaapaqabaaaaOWdbiabgkHiTmaalaaapaqaa8 qacaaIXaaapaqaa8qacaaIZaGaamOqa8aadaWgaaWcbaWdbiaaisda a8aabeaaaaGcpeGaeyOeI0YaaSaaa8aabaWdbiaadogacaWGVbGaam 4Caiabek7aI9aadaWgaaWcbaWdbiaaisdaa8aabeaaaOqaa8qacaGG OaGaamyqa8aadaqhaaWcbaWdbiaaisdaa8aabaWdbiaaikdaaaGcca WGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGaaGOmaaaakiabek7a I9aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGHRaWkcaWGcbWdam aaDaaaleaapeGaaGinaaWdaeaapeGaaGOmaaaakiaadogacaWGVbGa am4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2damaaBaaale aapeGaaGinaaWdaeqaaOWdbiaacMcapaWaaWbaaSqabeaapeWaaSaa a8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaaaaa@6FDF@

+ B 4 2 12 cos3 β 4 +3cos β 4 ( A 4 2 si n 2 β 4 + B 4 2 co s 2 β 4 ) 3 2 ] ( A 3 B 3 3 ) [ 1 B 3 1 3 B 3 cos β 3 ( A 3 2 si n 2 β 3 + B 3 2 co s 2 β 3 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkeapaWaa0baaSqaa8qacaaI0aaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabek7aI9aadaWgaaWcbaWd biaaisdaa8aabeaak8qacqGHRaWkcaaIZaGaam4yaiaad+gacaWGZb GaeqOSdi2damaaBaaaleaapeGaaGinaaWdaeqaaaGcbaWdbiaacIca caWGbbWdamaaDaaaleaapeGaaGinaaWdaeaapeGaaGOmaaaakiaado hacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2d amaaBaaaleaapeGaaGinaaWdaeqaaOWdbiabgUcaRiaadkeapaWaa0 baaSqaa8qacaaI0aaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWG ZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8 qacaaI0aaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWd aeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOWaaKWia8aabaWdbi abgkHiTmaabmaapaqaa8qacaWGbbWdamaaBaaaleaapeGaaG4maaWd aeqaaOWdbiaadkeapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIZa aaaaGccaGLOaGaayzkaaaacaGLDbGaay5waaWaaSaaa8aabaWdbiaa igdaa8aabaWdbiaadkeapaWaaSbaaSqaa8qacaaIZaaapaqabaaaaO WdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaGaamOq a8aadaWgaaWcbaWdbiaaiodaa8aabeaaaaGcpeGaeyOeI0YaaSaaa8 aabaWdbiaadogacaWGVbGaam4Caiabek7aI9aadaWgaaWcbaWdbiaa iodaa8aabeaaaOqaa8qacaGGOaGaamyqa8aadaqhaaWcbaWdbiaaio daa8aabaWdbiaaikdaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqa beaapeGaaGOmaaaakiabek7aI9aadaWgaaWcbaWdbiaaiodaa8aabe aak8qacqGHRaWkcaWGcbWdamaaDaaaleaapeGaaG4maaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqOSdi2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiaacMca paWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaik daaaaaaaaaaaa@90B0@

+ B 3 2 12 cos3 β 3 +3cos β 3 ( A 3 2 si n 2 β 3 + B 3 2 co s 2 β 3 ) 3 2 ] + 1 3 [ a 4 3 b 4 3 si n 2 ψcosψ ( a 4 2 si n 2 ψ+ b 4 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaadkeapaWaa0baaSqaa8qacaaIZaaa paqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaaGOmaaaadaWcaaWdae aapeGaam4yaiaad+gacaWGZbGaaG4maiabek7aI9aadaWgaaWcbaWd biaaiodaa8aabeaak8qacqGHRaWkcaaIZaGaam4yaiaad+gacaWGZb GaeqOSdi2damaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbiaacIca caWGbbWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaGOmaaaakiaado hacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2d amaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaadkeapaWaa0 baaSqaa8qacaaIZaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWG ZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWd aeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOWaaKWia8aabaWdbi abgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaaaaaGaayzx aiaawUfaamaalaaapaqaa8qacaWGHbWdamaaDaaaleaapeGaaGinaa WdaeaapeGaaG4maaaakiaadkgapaWaa0baaSqaa8qacaaI0aaapaqa a8qacaaIZaaaaOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbi aaikdaaaGccqaHipqEcaWGJbGaam4BaiaadohacqaHipqEa8aabaWd biaacIcacaWGHbWdamaaDaaaleaapeGaaGinaaWdaeaapeGaaGOmaa aakiaadohacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaOGa eqiYdKNaey4kaSIaamOya8aadaqhaaWcbaWdbiaaisdaa8aabaWdbi aaikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaGOm aaaakiabeI8a5jaacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbi aaiodaa8aabaWdbiaaikdaaaaaaaaaaaa@8C33@

a 3 3 b 3 3 si n 2 ψcosψ ( a 3 2 si n 2 ψ+ b 3 2 co s 2 ψ) 3 2 ]}. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadggapaWaa0baaSqaa8qacaaIZaaa paqaa8qacaaIZaaaaOGaamOya8aadaqhaaWcbaWdbiaaiodaa8aaba WdbiaaiodaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGa aGOmaaaakiabeI8a5jaadogacaWGVbGaam4CaiabeI8a5bWdaeaape GaaiikaiaadggapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIYaaa aOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGccq aHipqEcqGHRaWkcaWGIbWdamaaDaaaleaapeGaaG4maaWdaeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqiYdKNaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGa aG4maaWdaeaapeGaaGOmaaaaaaaaaOGaaiyxaiaac2hacaGGUaaaaa@6072@   (6)

Using Figure 1 and considering the incompressibility conditions, we get the following geometrical relations:

A 1 = a 1 sinψ sin β 1 [ ( 1 e 2 )( 1 e 1 2 co s 2 β 1 ) ( 1 e 1 2 )( 1 e 2 co s 2 ψ ) ] 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qaca WGZbGaamyAaiaad6gacqaHipqEa8aabaWdbiaadohacaWGPbGaamOB aiabek7aI9aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaai4wam aalaaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWa aWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8 qacaaIXaGaeyOeI0Iaamyza8aadaqhaaWcbaWdbiaaigdaa8aabaWd biaaikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaG Omaaaakiabek7aI9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaa wIcacaGLPaaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam yza8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawIca caGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqa a8qacaaIYaaaaOGaeqiYdKhacaGLOaGaayzkaaaaaiaac2fapaWaaW baaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaa aOGaaiilaaaa@6F04@   (7)

A 2 = a 2 sinψ sin β 2 [ ( 1 e 2 )( 1 e 1 2 co s 2 β 2 ) ( 1 e 1 2 )( 1 e 2 co s 2 ψ ) ] 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qaca WGZbGaamyAaiaad6gacqaHipqEa8aabaWdbiaadohacaWGPbGaamOB aiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeGaai4wam aalaaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWa aWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8 qacaaIXaGaeyOeI0Iaamyza8aadaqhaaWcbaWdbiaaigdaa8aabaWd biaaikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaG Omaaaakiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaa wIcacaGLPaaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam yza8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawIca caGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqa a8qacaaIYaaaaOGaeqiYdKhacaGLOaGaayzkaaaaaiaac2fapaWaaW baaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaa aOGaaiilaaaa@6F08@   (8)

A 3 = a 3 sinψ sin β 3 [ ( 1 e 2 )( 1 e 1 2 co s 2 β 3 ) ( 1 e 1 2 )( 1 e 2 co s 2 ψ ) ] 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qaca WGZbGaamyAaiaad6gacqaHipqEa8aabaWdbiaadohacaWGPbGaamOB aiabek7aI9aadaWgaaWcbaWdbiaaiodaa8aabeaaaaGcpeGaai4wam aalaaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWa aWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8 qacaaIXaGaeyOeI0Iaamyza8aadaqhaaWcbaWdbiaaigdaa8aabaWd biaaikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaG Omaaaakiabek7aI9aadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaa wIcacaGLPaaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam yza8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawIca caGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqa a8qacaaIYaaaaOGaeqiYdKhacaGLOaGaayzkaaaaaiaac2fapaWaaW baaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaa aaaa@6E52@   (9)

 and

A 4 = a 4 sinψ sin β 4 [ ( 1 e 2 )( 1 e 1 2 co s 2 β 4 ) ( 1 e 1 2 )( 1 e 2 co s 2 ψ ) ] 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qaca WGZbGaamyAaiaad6gacqaHipqEa8aabaWdbiaadohacaWGPbGaamOB aiabek7aI9aadaWgaaWcbaWdbiaaisdaa8aabeaaaaGcpeGaai4wam aalaaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWa aWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8 qacaaIXaGaeyOeI0Iaamyza8aadaqhaaWcbaWdbiaaigdaa8aabaWd biaaikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaG Omaaaakiabek7aI9aadaWgaaWcbaWdbiaaisdaa8aabeaaaOWdbiaa wIcacaGLPaaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam yza8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawIca caGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqa a8qacaaIYaaaaOGaeqiYdKhacaGLOaGaayzkaaaaaiaac2fapaWaaW baaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaa aOGaaiOlaaaa@6F12@   (10)

Making use of the relations (1)-(6) together with (7)-(10), the differences in the volumes before and after the formation of the aneurysm of the inner, middle and outer portions are found as

VVI( inner )= π 12 { 2 3 [( 1 e 2 )( a 2 3 a 1 3 ) (1 e 2 ) 3 2 si n 3 ψ (1 e 1 2 ) 1 2 (1 e 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabgkHiTiaadAfacaWGjbWaaeWaa8aabaWdbiaadMgacaWG UbGaamOBaiaadwgacaWGYbaacaGLOaGaayzkaaGaeyypa0ZaaSaaa8 aabaWdbiabec8aWbWdaeaapeGaaGymaiaaikdaaaGaai4Eamaalaaa paqaa8qacaaIYaaapaqaa8qacaaIZaaaaiaacUfadaqadaWdaeaape GaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGa ayjkaiaawMcaamaabmaapaqaa8qacaWGHbWdamaaDaaaleaapeGaaG OmaaWdaeaapeGaaG4maaaakiabgkHiTiaadggapaWaa0baaSqaa8qa caaIXaaapaqaa8qacaaIZaaaaaGccaGLOaGaayzkaaGaeyOeI0YaaS aaa8aabaWdbiaacIcacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqa a8qacaaIYaaaaOGaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaape GaaG4maaWdaeaapeGaaGOmaaaaaaGccaWGZbGaamyAaiaad6gapaWa aWbaaSqabeaapeGaaG4maaaakiabeI8a5bWdaeaapeGaaiikaiaaig dacqGHsislcaWGLbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaGOm aaaakiaacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8 aabaWdbiaaikdaaaaaaOGaaiikaiaaigdacqGHsislcaWGLbWdamaa CaaaleqabaWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaS qabeaapeGaaGOmaaaakiabeI8a5jaacMcapaWaaWbaaSqabeaapeWa aSaaa8aabaWdbiaaiodaa8aabaWdbiaaikdaaaaaaaaaaaa@7977@

( (1 e 1 2 co s 2 β 2 ) 3 2 a 2 3 si n 3 β 2 (1 e 1 2 co s 2 β 1 ) 3 2 a 1 3 si n 3 β 1 )] [ cosψ (1 e 2 ) 3 2 (1 e 2 co s 2 ψ) 1 2 ( a 2 3 a 1 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaalaaapaqaa8qacaGGOaGaaGymaiabgkHiTiaa dwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam4yai aad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8 qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaGccaWGHbWd amaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maaaaaOWdaeaapeGaam 4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaiodaaaGccqaHYoGy paWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbiabgkHiTmaalaaapa qaa8qacaGGOaGaaGymaiabgkHiTiaadwgapaWaa0baaSqaa8qacaaI Xaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaale qabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaG4maa WdaeaapeGaaGOmaaaaaaGccaWGHbWdamaaDaaaleaapeGaaGymaaWd aeaapeGaaG4maaaaaOWdaeaapeGaam4CaiaadMgacaWGUbWdamaaCa aaleqabaWdbiaaiodaaaGccqaHYoGypaWaaSbaaSqaa8qacaaIXaaa paqabaaaaaGcpeGaayjkaiaawMcaamaajmcapaqaa8qacqGHsislai aaw2facaGLBbaadaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqiY dKNaaiikaiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaik daaaGccaGGPaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIZaaa paqaa8qacaaIYaaaaaaaaOWdaeaapeGaaiikaiaaigdacqGHsislca WGLbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4Baiaadoha paWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacMcapaWaaWbaaS qabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaa kmaabmaapaqaa8qacaWGHbWdamaaDaaaleaapeGaaGOmaaWdaeaape GaaG4maaaakiabgkHiTiaadggapaWaa0baaSqaa8qacaaIXaaapaqa a8qacaaIZaaaaaGccaGLOaGaayzkaaaaaa@8F0B@

( 1 e 2 1 e 2 co s 2 ψ ) 3 2 si n 3 ψ( cos β 2 si n 3 β 2 ( 1 e 1 2 co s 2 β 2 ) a 2 3 cos β 1 si n 3 β 1 ( 1 e 1 2 co s 2 β 1 ) a 1 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaKama8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0Ia amyza8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaey OeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+ga caWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHipqEaaGaaiyka8 aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOm aaaaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGaaG4maa aakiabeI8a5naabmaapaqaa8qadaWcaaWdaeaapeGaam4yaiaad+ga caWGZbGaeqOSdi2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbi aadohacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqOS di2damaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qadaqadaWdaeaape GaaGymaiabgkHiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qa caaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaik daaaGccqaHYoGypaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaGaamyya8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaio daaaGccqGHsisldaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqOS di2damaaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiaadohacaWGPb GaamOBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqOSdi2damaaBaaa leaapeGaaGymaaWdaeqaaaaak8qadaqadaWdaeaapeGaaGymaiabgk HiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGa am4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYo GypaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGa amyya8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaiodaaaaakiaawI cacaGLPaaaaiaawIcacaGLDbaaaaa@8B10@

+ 1 12 [ (1 e 2 ) 5 2 ( cos3ψ+3cosψ )( a 2 3 a 1 3 ) (1 e 2 co s 2 ψ) 3 2 ( 1 e 1 2 ) (1 e 2 ) 3 2 (1 e 2 co s 2 ψ) 3 2 si n 3 ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacaaIYaaa aiaacUfadaWcaaWdaeaapeGaaiikaiaaigdacqGHsislcaWGLbWdam aaCaaaleqabaWdbiaaikdaaaGccaGGPaWdamaaCaaaleqabaWdbmaa laaapaqaa8qacaaI1aaapaqaa8qacaaIYaaaaaaakmaabmaapaqaa8 qacaWGJbGaam4BaiaadohacaaIZaGaeqiYdKNaey4kaSIaaG4maiaa dogacaWGVbGaam4CaiabeI8a5bGaayjkaiaawMcaamaabmaapaqaa8 qacaWGHbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maaaakiab gkHiTiaadggapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIZaaaaa GccaGLOaGaayzkaaaapaqaa8qacaGGOaGaaGymaiabgkHiTiaadwga paWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aada ahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaaiyka8aadaahaaWcbeqa a8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOGaey OeI0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyz a8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawIcaca GLPaaacaGGOaGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGa aGOmaaaakiaacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaio daa8aabaWdbiaaikdaaaaaaaGcpaqaa8qacaGGOaGaaGymaiabgkHi TiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam 4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaaiyka8aadaah aaWcbeqaa8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaa aaaOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaiodaaaGc cqaHipqEaaa@862F@

( cos3 β 2 +3cos β 2 si n 3 β 2 a 2 3 cos3 β 1 +3cos β 1 si n 3 β 1 a 1 3 )]}, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaalaaapaqaa8qacaWGJbGaam4BaiaadohacaaI ZaGaeqOSdi2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRi aaiodacaWGJbGaam4BaiaadohacqaHYoGypaWaaSbaaSqaa8qacaaI YaaapaqabaaakeaapeGaam4CaiaadMgacaWGUbWdamaaCaaaleqaba WdbiaaiodaaaGccqaHYoGypaWaaSbaaSqaa8qacaaIYaaapaqabaaa aOWdbiaadggapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIZaaaaO GaeyOeI0YaaSaaa8aabaWdbiaadogacaWGVbGaam4CaiaaiodacqaH YoGypaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaG4mai aadogacaWGVbGaam4Caiabek7aI9aadaWgaaWcbaWdbiaaigdaa8aa beaaaOqaa8qacaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGaaG 4maaaakiabek7aI9aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGa amyya8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaiodaaaaakiaawI cacaGLPaaacaGGDbGaaiyFaiaacYcaaaa@6B1E@   (11)

VVI( middle )=π{ 2 3 [( 1 e 2 )( a 3 3 a 2 3 ) (1 e 2 ) 3 2 si n 3 ψ (1 e 1 2 ) 1 2 (1 e 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabgkHiTiaadAfacaWGjbWaaeWaa8aabaWdbiaad2gacaWG PbGaamizaiaadsgacaWGSbGaamyzaaGaayjkaiaawMcaaiabg2da9i abec8aWjaacUhadaWcaaWdaeaapeGaaGOmaaWdaeaapeGaaG4maaaa caGGBbWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaale qabaWdbiaaikdaaaaakiaawIcacaGLPaaadaqadaWdaeaapeGaamyy a8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaiodaaaGccqGHsislca WGHbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maaaaaOGaayjk aiaawMcaaiabgkHiTmaalaaapaqaa8qacaGGOaGaaGymaiabgkHiTi aadwgapaWaaWbaaSqabeaapeGaaGOmaaaakiaacMcapaWaaWbaaSqa beaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaikdaaaaaaOGaam 4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaiodaaaGccqaHipqE a8aabaWdbiaacIcacaaIXaGaeyOeI0Iaamyza8aadaqhaaWcbaWdbi aaigdaa8aabaWdbiaaikdaaaGccaGGPaWdamaaCaaaleqabaWdbmaa laaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaakiaacIcacaaIXa GaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaa d+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHipqEcaGGPa WdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8qacaaI Yaaaaaaaaaaaaa@788C@

( (1 e 1 2 co s 2 β 3 ) 3 2 a 3 3 si n 3 β 3 (1 e 1 2 co s 2 β 2 ) 3 2 a 2 3 si n 3 β 2 )] [ cosψ (1 e 2 ) 3 2 (1 e 2 co s 2 ψ) 1 2 ( a 3 3 a 2 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaalaaapaqaa8qacaGGOaGaaGymaiabgkHiTiaa dwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam4yai aad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWa aSbaaSqaa8qacaaIZaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8 qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaGccaWGHbWd amaaDaaaleaapeGaaG4maaWdaeaapeGaaG4maaaaaOWdaeaapeGaam 4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaiodaaaGccqaHYoGy paWaaSbaaSqaa8qacaaIZaaapaqabaaaaOWdbiabgkHiTmaalaaapa qaa8qacaGGOaGaaGymaiabgkHiTiaadwgapaWaa0baaSqaa8qacaaI Xaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaale qabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaG4maa WdaeaapeGaaGOmaaaaaaGccaWGHbWdamaaDaaaleaapeGaaGOmaaWd aeaapeGaaG4maaaaaOWdaeaapeGaam4CaiaadMgacaWGUbWdamaaCa aaleqabaWdbiaaiodaaaGccqaHYoGypaWaaSbaaSqaa8qacaaIYaaa paqabaaaaaGcpeGaayjkaiaawMcaamaajmcapaqaa8qacqGHsislai aaw2facaGLBbaadaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqiY dKNaaiikaiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaik daaaGccaGGPaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIZaaa paqaa8qacaaIYaaaaaaaaOWdaeaapeGaaiikaiaaigdacqGHsislca WGLbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4Baiaadoha paWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacMcapaWaaWbaaS qabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaa kmaabmaapaqaa8qacaWGHbWdamaaDaaaleaapeGaaG4maaWdaeaape GaaG4maaaakiabgkHiTiaadggapaWaa0baaSqaa8qacaaIYaaapaqa a8qacaaIZaaaaaGccaGLOaGaayzkaaaaaa@8F13@

( 1 e 2 1 e 2 co s 2 ψ ) 3 2 si n 3 ψ( cos β 3 si n 3 β 3 ( 1 e 1 2 co s 2 β 3 ) a 3 3 cos β 2 si n 3 β 2 ( 1 e 1 2 co s 2 β 2 ) a 2 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaKama8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0Ia amyza8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaey OeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+ga caWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHipqEaaGaaiyka8 aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOm aaaaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGaaG4maa aakiabeI8a5naabmaapaqaa8qadaWcaaWdaeaapeGaam4yaiaad+ga caWGZbGaeqOSdi2damaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbi aadohacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqOS di2damaaBaaaleaapeGaaG4maaWdaeqaaaaak8qadaqadaWdaeaape GaaGymaiabgkHiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qa caaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaik daaaGccqaHYoGypaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaamyya8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaio daaaGccqGHsisldaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqOS di2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaadohacaWGPb GaamOBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqOSdi2damaaBaaa leaapeGaaGOmaaWdaeqaaaaak8qadaqadaWdaeaapeGaaGymaiabgk HiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGa am4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYo GypaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGa amyya8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaiodaaaaakiaawI cacaGLPaaaaiaawIcacaGLDbaaaaa@8B18@

+ 1 12 [ (1 e 2 ) 5 2 ( cos3ψ+3cosψ )( a 3 3 a 2 3 ) (1 e 2 co s 2 ψ) 3 2 ( 1 e 1 2 ) (1 e 2 ) 3 2 (1 e 2 co s 2 ψ) 3 2 si n 3 ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacaaIYaaa aiaacUfadaWcaaWdaeaapeGaaiikaiaaigdacqGHsislcaWGLbWdam aaCaaaleqabaWdbiaaikdaaaGccaGGPaWdamaaCaaaleqabaWdbmaa laaapaqaa8qacaaI1aaapaqaa8qacaaIYaaaaaaakmaabmaapaqaa8 qacaWGJbGaam4BaiaadohacaaIZaGaeqiYdKNaey4kaSIaaG4maiaa dogacaWGVbGaam4CaiabeI8a5bGaayjkaiaawMcaamaabmaapaqaa8 qacaWGHbWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaG4maaaakiab gkHiTiaadggapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIZaaaaa GccaGLOaGaayzkaaaapaqaa8qacaGGOaGaaGymaiabgkHiTiaadwga paWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aada ahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaaiyka8aadaahaaWcbeqa a8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOGaey OeI0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyz a8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawIcaca GLPaaacaGGOaGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGa aGOmaaaakiaacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaio daa8aabaWdbiaaikdaaaaaaaGcpaqaa8qacaGGOaGaaGymaiabgkHi TiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam 4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaaiyka8aadaah aaWcbeqaa8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaa aaaOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaiodaaaGc cqaHipqEaaa@8631@

( cos3 β 3 +3cos β 3 si n 3 β 3 a 3 3 cos3 β 2 +3cos β 2 si n 3 β 2 a 2 3 )]} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaalaaapaqaa8qacaWGJbGaam4BaiaadohacaaI ZaGaeqOSdi2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRi aaiodacaWGJbGaam4BaiaadohacqaHYoGypaWaaSbaaSqaa8qacaaI ZaaapaqabaaakeaapeGaam4CaiaadMgacaWGUbWdamaaCaaaleqaba WdbiaaiodaaaGccqaHYoGypaWaaSbaaSqaa8qacaaIZaaapaqabaaa aOWdbiaadggapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIZaaaaO GaeyOeI0YaaSaaa8aabaWdbiaadogacaWGVbGaam4CaiaaiodacqaH YoGypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaaG4mai aadogacaWGVbGaam4Caiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aa beaaaOqaa8qacaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGaaG 4maaaakiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeGa amyya8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaiodaaaaakiaawI cacaGLPaaacaGGDbGaaiyFaaaa@6A76@   (12)

 and

VVI( outer )=π{ 2 3 [( 1 e 2 )( a 4 3 a 3 3 ) (1 e 2 ) 3 2 si n 3 ψ (1 e 1 2 ) 1 2 (1 e 2 co s 2 ψ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabgkHiTiaadAfacaWGjbWaaeWaa8aabaWdbiaad+gacaWG 1bGaamiDaiaadwgacaWGYbaacaGLOaGaayzkaaGaeyypa0JaeqiWda Naai4Eamaalaaapaqaa8qacaaIYaaapaqaa8qacaaIZaaaaiaacUfa daqadaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaape GaaGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaa8qacaWGHbWdamaa DaaaleaapeGaaGinaaWdaeaapeGaaG4maaaakiabgkHiTiaadggapa Waa0baaSqaa8qacaaIZaaapaqaa8qacaaIZaaaaaGccaGLOaGaayzk aaGaeyOeI0YaaSaaa8aabaWdbiaacIcacaaIXaGaeyOeI0Iaamyza8 aadaahaaWcbeqaa8qacaaIYaaaaOGaaiyka8aadaahaaWcbeqaa8qa daWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaGccaWGZbGaam yAaiaad6gapaWaaWbaaSqabeaapeGaaG4maaaakiabeI8a5bWdaeaa peGaaiikaiaaigdacqGHsislcaWGLbWdamaaDaaaleaapeGaaGymaa WdaeaapeGaaGOmaaaakiaacMcapaWaaWbaaSqabeaapeWaaSaaa8aa baWdbiaaigdaa8aabaWdbiaaikdaaaaaaOGaaiikaiaaigdacqGHsi slcaWGLbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4Baiaa dohapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacMcapaWaaW baaSqabeaapeWaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaikdaaaaa aaaaaaa@77C9@

( (1 e 1 2 co s 2 β 4 ) 3 2 a 4 3 si n 3 β 4 (1 e 1 2 co s 2 β 3 ) 3 2 a 3 3 si n 3 β 3 )] [ cosψ (1 e 2 ) 3 2 (1 e 2 co s 2 ψ) 1 2 ( a 4 3 a 3 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaalaaapaqaa8qacaGGOaGaaGymaiabgkHiTiaa dwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam4yai aad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWa aSbaaSqaa8qacaaI0aaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8 qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaGccaWGHbWd amaaDaaaleaapeGaaGinaaWdaeaapeGaaG4maaaaaOWdaeaapeGaam 4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaiodaaaGccqaHYoGy paWaaSbaaSqaa8qacaaI0aaapaqabaaaaOWdbiabgkHiTmaalaaapa qaa8qacaGGOaGaaGymaiabgkHiTiaadwgapaWaa0baaSqaa8qacaaI Xaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaale qabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8qacaaIZaaapaqa baGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaG4maa WdaeaapeGaaGOmaaaaaaGccaWGHbWdamaaDaaaleaapeGaaG4maaWd aeaapeGaaG4maaaaaOWdaeaapeGaam4CaiaadMgacaWGUbWdamaaCa aaleqabaWdbiaaiodaaaGccqaHYoGypaWaaSbaaSqaa8qacaaIZaaa paqabaaaaaGcpeGaayjkaiaawMcaamaajmcapaqaa8qacqGHsislai aaw2facaGLBbaadaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqiY dKNaaiikaiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaik daaaGccaGGPaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIZaaa paqaa8qacaaIYaaaaaaaaOWdaeaapeGaaiikaiaaigdacqGHsislca WGLbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4Baiaadoha paWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5jaacMcapaWaaWbaaS qabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaaaa kmaabmaapaqaa8qacaWGHbWdamaaDaaaleaapeGaaGinaaWdaeaape GaaG4maaaakiabgkHiTiaadggapaWaa0baaSqaa8qacaaIZaaapaqa a8qacaaIZaaaaaGccaGLOaGaayzkaaaaaa@8F1A@

( 1 e 2 1 e 2 co s 2 ψ ) 3 2 si n 3 ψ( cos β 4 si n 3 β 4 ( 1 e 1 2 co s 2 β 4 ) a 4 3 cos β 3 si n 3 β 3 ( 1 e 1 2 co s 2 β 3 ) a 3 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaKama8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0Ia amyza8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIXaGaey OeI0Iaamyza8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+ga caWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHipqEaaGaaiyka8 aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOm aaaaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGaaG4maa aakiabeI8a5naabmaapaqaa8qadaWcaaWdaeaapeGaam4yaiaad+ga caWGZbGaeqOSdi2damaaBaaaleaapeGaaGinaaWdaeqaaaGcbaWdbi aadohacaWGPbGaamOBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqOS di2damaaBaaaleaapeGaaGinaaWdaeqaaaaak8qadaqadaWdaeaape GaaGymaiabgkHiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qa caaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaik daaaGccqaHYoGypaWaaSbaaSqaa8qacaaI0aaapaqabaaak8qacaGL OaGaayzkaaGaamyya8aadaqhaaWcbaWdbiaaisdaa8aabaWdbiaaio daaaGccqGHsisldaWcaaWdaeaapeGaam4yaiaad+gacaWGZbGaeqOS di2damaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbiaadohacaWGPb GaamOBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqOSdi2damaaBaaa leaapeGaaG4maaWdaeqaaaaak8qadaqadaWdaeaapeGaaGymaiabgk HiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGa am4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYo GypaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGLOaGaayzkaaGa amyya8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaiodaaaaakiaawI cacaGLPaaaaiaawIcacaGLDbaaaaa@8B1F@

+ 1 12 [ (1 e 2 ) 5 2 ( cos3ψ+3cosψ )( a 4 3 a 3 3 ) (1 e 2 co s 2 ψ) 3 2 ( 1 e 1 2 ) (1 e 2 ) 3 2 (1 e 2 co s 2 ψ) 3 2 si n 3 ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacaaIYaaa aiaacUfadaWcaaWdaeaapeGaaiikaiaaigdacqGHsislcaWGLbWdam aaCaaaleqabaWdbiaaikdaaaGccaGGPaWdamaaCaaaleqabaWdbmaa laaapaqaa8qacaaI1aaapaqaa8qacaaIYaaaaaaakmaabmaapaqaa8 qacaWGJbGaam4BaiaadohacaaIZaGaeqiYdKNaey4kaSIaaG4maiaa dogacaWGVbGaam4CaiabeI8a5bGaayjkaiaawMcaamaabmaapaqaa8 qacaWGHbWdamaaDaaaleaapeGaaGinaaWdaeaapeGaaG4maaaakiab gkHiTiaadggapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIZaaaaa GccaGLOaGaayzkaaaapaqaa8qacaGGOaGaaGymaiabgkHiTiaadwga paWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aada ahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaaiyka8aadaahaaWcbeqa a8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaaaaaOGaey OeI0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyz a8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawIcaca GLPaaacaGGOaGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabeaapeGa aGOmaaaakiaacMcapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaio daa8aabaWdbiaaikdaaaaaaaGcpaqaa8qacaGGOaGaaGymaiabgkHi TiaadwgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam 4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqiYdKNaaiyka8aadaah aaWcbeqaa8qadaWcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaa aaaOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaiodaaaGc cqaHipqEaaa@8632@

( cos3 β 4 +3cos β 4 si n 3 β 4 a 4 3 cos3 β 3 +3cos β 3 si n 3 β 3 a 3 3 )]}. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaalaaapaqaa8qacaWGJbGaam4BaiaadohacaaI ZaGaeqOSdi2damaaBaaaleaapeGaaGinaaWdaeqaaOWdbiabgUcaRi aaiodacaWGJbGaam4BaiaadohacqaHYoGypaWaaSbaaSqaa8qacaaI 0aaapaqabaaakeaapeGaam4CaiaadMgacaWGUbWdamaaCaaaleqaba WdbiaaiodaaaGccqaHYoGypaWaaSbaaSqaa8qacaaI0aaapaqabaaa aOWdbiaadggapaWaa0baaSqaa8qacaaI0aaapaqaa8qacaaIZaaaaO GaeyOeI0YaaSaaa8aabaWdbiaadogacaWGVbGaam4CaiaaiodacqaH YoGypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaaG4mai aadogacaWGVbGaam4Caiabek7aI9aadaWgaaWcbaWdbiaaiodaa8aa beaaaOqaa8qacaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaapeGaaG 4maaaakiabek7aI9aadaWgaaWcbaWdbiaaiodaa8aabeaaaaGcpeGa amyya8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaiodaaaaakiaawI cacaGLPaaacaGGDbGaaiyFaiaac6caaaa@6B2F@   (13)

The expressions (11)-(13) should be equal to zero on account of the incompressibility condition.

Stress equations of equilibrium and length-tension relationship of the muscle layers for the inner and outer bulges of the aneurysm

Let p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@3823@ be the left ventricular pressure of the undamaged portion of the ventricle, T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaaaa@3807@ the uniform circumferential stress in all layers of the undamaged ventricle and T β 2 , T β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaGccaGGSaWdbiaadsfapaWaaSbaaSqaa8qacqaHYo GypaWaaSbaaWqaa8qacaaIZaaapaqabaaaleqaaaaa@3FC7@  the tensile stresses on the inner and outer surfaces of middle segment of the bulged portion. For the equilibrium of the undamaged ventricle, we have

p b 1 2 =T( b 4 2 b 1 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaadkgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaa aOGaeyypa0Jaamivamaabmaapaqaa8qacaWGIbWdamaaDaaaleaape GaaGinaaWdaeaapeGaaGOmaaaakiabgkHiTiaadkgapaWaa0baaSqa a8qacaaIXaaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaaiOlaa aa@45C5@   (14)

Considering a segment of the innermost layer of the undamaged left ventricle, we find that it is in equilibrium under the action of the ventricular pressure on its inner surface and a pressure p f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaa@3969@ exerted by the liquid phase of the infarcted region. Thus we can write

p B 1 2 p f B 2 2 =( B 2 2 B 1 2 ) T β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaadkeapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaa aOGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qaca WGcbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiabg2da 9maabmaapaqaa8qacaWGcbWdamaaDaaaleaapeGaaGOmaaWdaeaape GaaGOmaaaakiabgkHiTiaadkeapaWaa0baaSqaa8qacaaIXaaapaqa a8qacaaIYaaaaaGccaGLOaGaayzkaaGaamiva8aadaWgaaWcbaWdbi abek7aI9aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaaiOl aaaa@4E80@    (15)

Similarly, if we consider a segment of the outermost layer, we may observe that the pressure p f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadAgaa8aabeaaaaa@3969@ is exerted on its inner surface, while the outer surface is free of tractions. Thus in order that the equilibrium of this segment is maintained, we must have

p f B 3 2 =( B 4 2 B 3 2 ) T β 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacaWGcbWdamaa DaaaleaapeGaaG4maaWdaeaapeGaaGOmaaaakiabg2da9maabmaapa qaa8qacaWGcbWdamaaDaaaleaapeGaaGinaaWdaeaapeGaaGOmaaaa kiabgkHiTiaadkeapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIYa aaaaGccaGLOaGaayzkaaGaamiva8aadaWgaaWcbaWdbiabek7aI9aa daWgaaadbaWdbiaaiodaa8aabeaaaSqabaGcpeGaaiOlaaaa@49F1@   (16)

Elimination of the quantities p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbaaaa@370C@ and p f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbWdamaaBaaaleaapeGaamOzaaWdaeqaaaaa@3851@  from the equations (14)-(16) yields

B 1 2 ( B 4 2 B 1 2 B 1 2 )T B 2 2 B 3 2 ( B 4 2 B 3 2 ) T β 3 =( B 2 2 B 1 2 ) T β 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaGcdaqa daWdaeaapeWaaSaaa8aabaWdbiaadkeapaWaa0baaSqaa8qacaaI0a aapaqaa8qacaaIYaaaaOGaeyOeI0IaamOqa8aadaqhaaWcbaWdbiaa igdaa8aabaWdbiaaikdaaaaak8aabaWdbiaadkeapaWaa0baaSqaa8 qacaaIXaaapaqaa8qacaaIYaaaaaaaaOGaayjkaiaawMcaaiaadsfa cqGHsisldaWcaaWdaeaapeGaamOqa8aadaqhaaWcbaWdbiaaikdaa8 aabaWdbiaaikdaaaaak8aabaWdbiaadkeapaWaa0baaSqaa8qacaaI Zaaapaqaa8qacaaIYaaaaaaakmaabmaapaqaa8qacaWGcbWdamaaDa aaleaapeGaaGinaaWdaeaapeGaaGOmaaaakiabgkHiTiaadkeapaWa a0baaSqaa8qacaaIZaaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaa Gaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaioda a8aabeaaaSqabaGcpeGaeyypa0ZaaeWaa8aabaWdbiaadkeapaWaa0 baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaOGaeyOeI0IaamOqa8aa daqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawIcacaGLPa aacaWGubWdamaaBaaaleaapeGaeqOSdi2damaaBaaameaapeGaaGOm aaWdaeqaaaWcbeaak8qacaGGUaaaaa@6614@   (17)

 This equation may be written in the form

B 1 b 1 B 1 [ 1( 1 B 3 B 4 )( T β 3 T 1 ) ]= B 4 b 4 B 3 [ 1+ b 1 2 b 4 2 ( B 2 B 1 1 )( T β 2 T 1 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadkeapaWaaSbaaSqaa8qacaaIXaaapaqabaaa keaapeGaamOya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGcb WdamaaBaaaleaapeGaaGymaaWdaeqaaaaak8qadaWadaWdaeaapeGa aGymaiabgkHiTmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aaba WdbiaadkeapaWaaSbaaSqaa8qacaaIZaaapaqabaaakeaapeGaamOq a8aadaWgaaWcbaWdbiaaisdaa8aabeaaaaaak8qacaGLOaGaayzkaa WaaeWaa8aabaWdbmaalaaapaqaa8qacaWGubWdamaaBaaaleaapeGa eqOSdi2damaaBaaameaapeGaaG4maaWdaeqaaaWcbeaaaOqaa8qaca WGubaaaiabgkHiTiaaigdaaiaawIcacaGLPaaaaiaawUfacaGLDbaa cqGH9aqpdaWcaaWdaeaapeGaamOqa8aadaWgaaWcbaWdbiaaisdaa8 aabeaaaOqaa8qacaWGIbWdamaaBaaaleaapeGaaGinaaWdaeqaaOWd biaadkeapaWaaSbaaSqaa8qacaaIZaaapaqabaaaaOWdbmaadmaapa qaa8qacaaIXaGaey4kaSYaaSaaa8aabaWdbiaadkgapaWaa0baaSqa a8qacaaIXaaapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGIbWdamaaDa aaleaapeGaaGinaaWdaeaapeGaaGOmaaaaaaGcdaqadaWdaeaapeWa aSaaa8aabaWdbiaadkeapaWaaSbaaSqaa8qacaaIYaaapaqabaaake aapeGaamOqa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaeyOe I0IaaGymaaGaayjkaiaawMcaamaabmaapaqaa8qadaWcaaWdaeaape Gaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaaakeaapeGaamivaaaacqGHsislcaaIXaaacaGLOa GaayzkaaaacaGLBbGaayzxaaGaaiOlaaaa@723D@   (18)

In the sequel, we shall make use of the following approximations:

B 3 B 4 , 1+ B 3 B 4 2. B 1 B 2 , 1+ B 2 B 1 2. and B 1 B 3 B 2 B 4 b 1 b 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGcbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgIKi 7kaadkeapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaaiilaiaabc kacaaIXaGaey4kaSYaaSaaa8aabaWdbiaadkeapaWaaSbaaSqaa8qa caaIZaaapaqabaaakeaapeGaamOqa8aadaWgaaWcbaWdbiaaisdaa8 aabeaaaaGcpeGaeyisISRaaGOmaiaac6caaeaacaWGcbWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbiabgIKi7kaadkeapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaaiilaiaabckacaaIXaGaey4kaSYaaSaa a8aabaWdbiaadkeapaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaape GaamOqa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaeyisISRa aGOmaiaac6caaeaacaWGHbGaamOBaiaadsgadaWcaaWdaeaapeGaam Oqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGcbWdamaaBaaa leaapeGaaG4maaWdaeqaaaGcbaWdbiaadkeapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaamOqa8aadaWgaaWcbaWdbiaaisdaa8aabeaa aaGcpeGaeyisIS7aaSaaa8aabaWdbiaadkgapaWaaSbaaSqaa8qaca aIXaaapaqabaaakeaapeGaamOya8aadaWgaaWcbaWdbiaaisdaa8aa beaaaaGcpeGaaiOlaaaaaa@6960@

These approximations are valid for the case when the innermost and the outermost layers of the infarcted region of the left ventricle under consideration are sufficiently thin.

Now using the geometric relations (7)-(10) , we have from (18):

1 a 2 ( 1 e 1 2 co s 2 β 1 1 e 1 2 co s 2 β 2 ) 1 2 sin β 2 sin β 1 {1[1 a 3 (1 e 1 2 co s 2 β 3 ) 1 2 sin β 4 a 4 (1 e 1 2 co s 2 β 4 ) 1 2 sin β 3 ]( T β 3 T 1 )} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadggapaWaaSbaaSqaa8qa caaIYaaapaqabaaaaOWdbiaacIcadaWcaaWdaeaapeGaaGymaiabgk HiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGa am4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYo GypaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaaGymaiabgkHi TiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam 4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGy paWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbiaacMcapaWaaWbaaS qabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaOWa aSaaa8aabaWdbiaadohacaWGPbGaamOBaiabek7aI9aadaWgaaWcba Wdbiaaikdaa8aabeaaaOqaa8qacaWGZbGaamyAaiaad6gacqaHYoGy paWaaSbaaSqaa8qacaaIXaaapaqabaaaaOWdbiaacUhacaaIXaGaey OeI0Iaai4waiaaigdacqGHsisldaWcaaWdaeaapeGaamyya8aadaWg aaWcbaWdbiaaiodaa8aabeaak8qacaGGOaGaaGymaiabgkHiTiaadw gapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam4yaiaa d+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaS baaSqaa8qacaaIZaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qa daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaaGccaWGZbGaam yAaiaad6gacqaHYoGypaWaaSbaaSqaa8qacaaI0aaapaqabaaakeaa peGaamyya8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacaGGOaGaaG ymaiabgkHiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaI YaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHYoGypaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaaiyka8aa daahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaa aaaaGccaWGZbGaamyAaiaad6gacqaHYoGypaWaaSbaaSqaa8qacaaI ZaaapaqabaaaaOWdbiaac2fadaqadaWdaeaapeWaaSaaa8aabaWdbi aadsfapaWaaSbaaSqaa8qacqaHYoGypaWaaSbaaWqaa8qacaaIZaaa paqabaaaleqaaaGcbaWdbiaadsfaaaGaeyOeI0IaaGymaaGaayjkai aawMcaaiaac2haaaa@9C4F@

= 1 a3 ( 1 e 1 2 co s 2 β4 1 e 1 2 co s 2 β 2 ) 1 2 sin β 3 sinβ4 {1+ a 1 2 a 4 2 [ a 2 (1 e 1 2 co s 2 β 2 ) 1 2 sin β 1 a 1 (1 e 1 2 co s 2 β 1 ) 1 2 sin β 2 ]( T β 2 T 1 )}. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadggaliaaioda aaGccaGGOaWaaSaaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaDa aaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiaadogacaWGVbGaam4C a8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqOSdi2ccaaI0aaak8aaba WdbiaaigdacqGHsislcaWGLbWdamaaDaaaleaapeGaaGymaaWdaeaa peGaaGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqaa8qaca aIYaaaaOGaeqOSdi2damaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qa caGGPaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8 qacaaIYaaaaaaakmaalaaapaqaa8qacaWGZbGaamyAaiaad6gacqaH YoGypaWaaSbaaSqaa8qacaaIZaaapaqabaaakeaapeGaam4CaiaadM gacaWGUbGaeqOSdi2ccaaI0aaaaOGaai4EaiaaigdacqGHRaWkdaWc aaWdaeaapeGaamyya8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaik daaaaak8aabaWdbiaadggapaWaa0baaSqaa8qacaaI0aaapaqaa8qa caaIYaaaaaaakiaacUfadaWcaaWdaeaapeGaamyya8aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacaGGOaGaaGymaiabgkHiTiaadwgapaWa a0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gaca WGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8qadaWcaa WdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaaGccaWGZbGaamyAaiaa d6gacqaHYoGypaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaam yya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaaGymaiab gkHiTiaadwgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaO Gaam4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaaikdaaaGccqaH YoGypaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiyka8aadaahaa Wcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaaGc caWGZbGaamyAaiaad6gacqaHYoGypaWaaSbaaSqaa8qacaaIYaaapa qabaaaaOWdbiaac2fadaqadaWdaeaapeWaaSaaa8aabaWdbiaadsfa paWaaSbaaSqaa8qacqaHYoGypaWaaSbaaWqaa8qacaaIYaaapaqaba aaleqaaaGcbaWdbiaadsfaaaGaeyOeI0IaaGymaaGaayjkaiaawMca aiaac2hacaGGUaaaaa@A146@   (19)

The bulge factor defined as the ratio of the height of the bulge above the centre of curvature to the pre-infarct height is given by

H β 2 = A 2 ( 1cos β 2 )/[ a 2 ( 1cosψ ) ] ( for the inner bulge ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaGcpeGaeyypa0Jaamyqa8aadaWgaaWcbaWdbiaaik daa8aabeaak8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadogacaWG VbGaam4Caiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbi aawIcacaGLPaaacaGGVaWaamWaa8aabaWdbiaadggapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaaigdacqGHsislca WGJbGaam4BaiaadohacqaHipqEaiaawIcacaGLPaaaaiaawUfacaGL DbaacaqGGcWaaeWaa8aabaWdbiaadAgacaWGVbGaamOCaiaabckaca WG0bGaamiAaiaadwgacaqGGcGaamyAaiaad6gacaWGUbGaamyzaiaa dkhacaqGGcGaamOyaiaadwhacaWGSbGaam4zaiaadwgaaiaawIcaca GLPaaaaaa@6917@   (20)

 and

H β 3 = A 3 ( 1cos β 3 )/[ a 3 ( 1cosψ ) ] ( for the outer bulge ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaioda a8aabeaaaSqabaGcpeGaeyypa0Jaamyqa8aadaWgaaWcbaWdbiaaio daa8aabeaak8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadogacaWG VbGaam4Caiabek7aI9aadaWgaaWcbaWdbiaaiodaa8aabeaaaOWdbi aawIcacaGLPaaacaGGVaWaamWaa8aabaWdbiaadggapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeWaaeWaa8aabaWdbiaaigdacqGHsislca WGJbGaam4BaiaadohacqaHipqEaiaawIcacaGLPaaaaiaawUfacaGL DbaacaqGGcWaaeWaa8aabaWdbiaadAgacaWGVbGaamOCaiaabckaca WG0bGaamiAaiaadwgacaqGGcGaam4BaiaadwhacaWG0bGaamyzaiaa dkhacaqGGcGaamOyaiaadwhacaWGSbGaam4zaiaadwgaaiaawIcaca GLPaaacaGGUaaaaa@69E0@   (21)

The contractile muscle stress ratios T β 2 /T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaeqOSdi2damaaBaaameaapeGaaGOm aaWdaeqaaaWcbeaak8qacaGGVaGaamivaaaa@3BA4@  and   T β 3 /T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWd biaaiodaa8aabeaaaSqabaGcpeGaai4laiaadsfaaaa@3CC8@  are defined as the ratio of the average stresses in the infarcted region to the stresses in the corresponding non-infarcted zone. For cardiac muscle, the contractile tension is a linear function of the contracted length. Thus the tension factor may be expressed as

T β 2 T = A 2 0 β 2   1 e 1 2 co s 2 β 2 d β 2 a 20 0 ψ   1 e 2 co s 2 ψ dψ a 2 0 ψ   1 e 2 co s 2 ψ dψ a 20 0 ψ   1 e 2 co s 2 ψ dψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsfapaWaaSbaaSqaa8qacqaHYoGypaWaaSba aWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaadsfaaaGaeyypa0 ZaaSaaa8aabaWdbiaadgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peWaaubmaeqal8aabaWdbiaaicdaa8aabaWdbiabek7aI9aadaWgaa adbaWdbiaaikdaa8aabeaaa0qaa8qacqGHRiI8aaGccaqGnaYaaOaa a8aabaWdbiaabckacaqGGaGaaGymaiabgkHiTiaadwgapaWaa0baaS qaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWd amaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8qaca aIYaaapaqabaaapeqabaGccaWGKbGaeqOSdi2damaaBaaaleaapeGa aGOmaaWdaeqaaOWdbiabgkHiTiaadggapaWaaSbaaSqaa8qacaaIYa GaaGimaaWdaeqaaOWdbmaavadabeWcpaqaa8qacaaIWaaapaqaa8qa cqaHipqEa0WdaeaapeGaey4kIipaaOGaaeydGmaakaaapaqaa8qaca qGGcGaaeiiaiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiaa ikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaa aakiabeI8a5bWcbeaakiaadsgacqaHipqEa8aabaWdbiaadggapaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeWaaubmaeqal8aabaWdbiaaic daa8aabaWdbiabeI8a5bqdpaqaa8qacqGHRiI8aaGccaqGnaYaaOaa a8aabaWdbiaabckacaqGGaGaaGymaiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aadaahaaWcbeqa a8qacaaIYaaaaOGaeqiYdKhaleqaaOGaamizaiabeI8a5jabgkHiTi aadggapaWaaSbaaSqaa8qacaaIYaGaaGimaaWdaeqaaOWdbmaavada beWcpaqaa8qacaaIWaaapaqaa8qacqaHipqEa0WdaeaapeGaey4kIi paaOGaaeydGmaakaaapaqaa8qacaqGGaGaaeiOaiaaigdacqGHsisl caWGLbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4Baiaado hapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI8a5bWcbeaakiaadsga cqaHipqEaaaaaa@9C57@   (22)

 = ratio of tensile stresses in the strained outer bulged layer to the tensile stresses in the unstrained normal layer,

T β 3 T = A 3 0 β 3    1 e 1 2 co s 2 β 3 d β 3 a 30 0 ψ    1 e 2 co s 2 ψ dψ a 3 0 ψ   1 e 2 co s 2 ψ dψ a 30 0 ψ   1 e 2 co s 2 ψ dψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsfapaWaaSbaaSqaa8qacqaHYoGypaWaaSba aWqaa8qacaaIZaaapaqabaaaleqaaaGcbaWdbiaadsfaaaGaeyypa0 ZaaSaaa8aabaWdbiaadgeapaWaaSbaaSqaa8qacaaIZaaapaqabaGc peWaaubmaeqal8aabaWdbiaaicdaa8aabaWdbiabek7aI9aadaWgaa adbaWdbiaaiodaa8aabeaaa0qaa8qacqGHRiI8aaGccaqGnaIaaeii aiaabccadaGcaaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaa0baaS qaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWd amaaCaaaleqabaWdbiaaikdaaaGccqaHYoGypaWaaSbaaSqaa8qaca aIZaaapaqabaaapeqabaGccaWGKbGaeqOSdi2damaaBaaaleaapeGa aG4maaWdaeqaaOWdbiabgkHiTiaadggapaWaaSbaaSqaa8qacaaIZa GaaGimaaWdaeqaaOWdbmaavadabeWcpaqaa8qacaaIWaaapaqaa8qa cqaHipqEa0WdaeaapeGaey4kIipaaOGaaeydGiaabccacaqGGaWaaO aaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiaa ikdaaaGccaWGJbGaam4BaiaadohapaWaaWbaaSqabeaapeGaaGOmaa aakiabeI8a5bWcbeaakiaadsgacqaHipqEa8aabaWdbiaadggapaWa aSbaaSqaa8qacaaIZaaapaqabaGcpeWaaubmaeqal8aabaWdbiaaic daa8aabaWdbiabeI8a5bqdpaqaa8qacqGHRiI8aaGccaqGnaIaaeii amaakaaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8 qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaaleqabaWdbiaa ikdaaaGccqaHipqEaSqabaGccaWGKbGaeqiYdKNaeyOeI0Iaamyya8 aadaWgaaWcbaWdbiaaiodacaaIWaaapaqabaGcpeWaaubmaeqal8aa baWdbiaaicdaa8aabaWdbiabeI8a5bqdpaqaa8qacqGHRiI8aaGcca qGnaIaaeiiamaakaaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaah aaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdamaaCaaale qabaWdbiaaikdaaaGccqaHipqEaSqabaGccaWGKbGaeqiYdKhaaaaa @9919@   (23)

 =ratio of tensile stresses in the strained inner bulged layer to the tensile stresses in the unstrained normal layer.

In the above expressions, a 20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaikdacaaIWaaapaqabaaaaa@39E4@ and a 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaiodacaaIWaaapaqabaaaaa@39E5@ represent the semi major axes of the inner and outer bulged layers in the state of zero stresses; their values are nearly 0.75 of their corresponding values in the deformed state.

Numerical results

The expressions (11)-(13) when equated to zero(due to incompressibility condition) yield three equations involving the parameters β 1 ,β2,β3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaiila8qacqaH YoGyl8aacaaIYaGaaiilaOWdbiabek7aITWdaiaaiodaaaa@4067@ and β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGinaaWdaeqaaaaa@39E7@ . The same parameters are also involved in the equation (19). This set of four equations was solved by employing the Newton-Raphson method. The values of β 1 ,β2,β3 and  β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaiila8qacqaH YoGyl8aacaaIYaGaaiilaOWdbiabek7aITWdaiaaiodak8qacaGGGc Gaamyyaiaad6gacaWGKbGaaiiOaiabek7aI9aadaWgaaWcbaWdbiaa isdaa8aabeaaaaa@4844@ thus obtained were used while computing the values of the tension factors as well as the bulge heights. For computational work, the cavity volume was taken to be 135 ml; also the following values of the parameters were used:

e=0.4931,  e 1 =0.435,  a 1 =3.4874 a 2 =3.5971,  a 3 =4.5847, and  a 4 =4.6944. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGLbGaeyypa0JaaGimaiaac6cacaaI0aGaaGyoaiaaioda caaIXaGaaiilaiaabckacaWGLbWdamaaBaaaleaapeGaaGymaaWdae qaaOWdbiabg2da9iaaicdacaGGUaGaaGinaiaaiodacaaI1aGaaiil aiaabckacaWGHbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2 da9iaaiodacaGGUaGaaGinaiaaiIdacaaI3aGaaGinaaqaaiaadgga paWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaG4maiaac6 cacaaI1aGaaGyoaiaaiEdacaaIXaGaaiilaiaabckacaWGHbWdamaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iaaisdacaGGUaGaaG ynaiaaiIdacaaI0aGaaG4naiaacYcacaqGGcGaamyyaiaad6gacaWG KbGaaeiOaiaadggapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaey ypa0JaaGinaiaac6cacaaI2aGaaGyoaiaaisdacaaI0aGaaiOlaaaa aa@6E5F@

Four values of ψ (half the angle of damage) viz. 10 o ,  20 o ,  30 o  and  40 o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdapaWaaWbaaSqabeaapeGaam4BaaaakiaacYcacaqG GcGaaGOmaiaaicdapaWaaWbaaSqabeaapeGaam4BaaaakiaacYcaca qGGcGaaG4maiaaicdapaWaaWbaaSqabeaapeGaam4Baaaakiaabcka caWGHbGaamOBaiaadsgacaqGGcGaaGinaiaaicdapaWaaWbaaSqabe aapeGaam4Baaaaaaa@4AD5@ were examined.

Numerical results of the computational work carried out on the basis of the present analytical study are shown in Table 1.

2ψ 

T β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaaaaa@3B15@   

T β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaioda a8aabeaaaSqabaaaaa@3B16@  

H β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaaaaa@3B09@  

H β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisa8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaioda a8aabeaaaSqabaaaaa@3B0A@

20o 

 0.65

 0.66

 0.61

 0.81

40o 

 4.00

 4.10

 0.30

 0.66

60o

 6.90

 7.20

 0.20

 0.61

80o

 9.10

 9.90

 0.14

 0.60

Table 1 Computed values of the tension factors and the bulge factors

The order of magnitude of the above values agrees with the corresponding values of Radhakrishnan et al.29 who considered a spherical shell model for the left ventricular geometry by taking help of different approximations. For the sake of a comparison of the results of the present study with the those of,29 the results corresponding to 2ψ =  40 o  and  60 o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabeI8a5jaabckacqGH9aqpcaqGGcGaaGinaiaaicdapaWa aWbaaSqabeaapeGaam4BaaaakiaabckacaWGHbGaamOBaiaadsgaca qGGcGaaGOnaiaaicdapaWaaWbaaSqabeaapeGaam4Baaaaaaa@4789@ are shown in Table 2.

Angle of damage

40o

60o

Present study

4.0

6.90

Study of Radhakrishnan et al.29

5.20

6.6

Table 2 Tension factor for the inner bulge

The line T β 2 =5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaGccqGH9aqpcaaI1aaaaa@3CE5@  is found to intersect the plot for T β 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiabek7aI9aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaaaaa@3B16@ of our present study (Figure 2) at a point whose abscissa is 47 o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGinaiaaiEdapaWaaWbaaSqabeaapeGaam4Baaaaaaa@39EE@ while this value was found to be 35 o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaG4maiaaiwdapaWaaWbaaSqabeaapeGaam4Baaaaaaa@39EB@ by Radhakrishnan et al.29 This difference may be attributed to the combined effect of eccentricity and layered structure of the left ventricle, considered in our study.

Figure 2 Tension factor for the inner bulge vs. angle of damage.

Discussion

On the basis of a previous analytical study, Misra et al.30 made an important conjecture that a larger amount of blood is likely to be ejected, whenever there is an increase in the diastolic filling, owing to a forceful contraction of the left ventricle of the heart. The present study is aimed at an analytical investigation of the effects of structural geometry of the left ventricle in a specific pathological state. The non-homogeneity of the ventricular tissues has also been incorporated in the mathematical analysis. Since observed data from experiments with sub-human primates cannot be readily applied to humans, theoretical models studied by means of mathematical analyses play very important roles in exploring a variety of information on the anatomy and physiology of human bodies. This is why the present study is of immense help in the studies pertaining to the infarcted state of the human left ventricle. The present study is particularly useful to validate the results of relevant experimental investigations with animals e.g. rhesus monkeys, and also those of finite element studies on left ventricular aneurysms. Regarding the scope for further studies, it is suggested that the analytical expressions presented here may be computed numerically in a more exhaustive manner, so as to derive further information on the pathological state of the left ventricle by using more advanced computational techniques. One can also use softwares like mathematica to derive numerical results for the variation of a number of parameters involved in the present study.

Summary and conclusion

A theoretical study on the effect of structure and mechanics on ventricular aneurysms has been presented in the paper. For this purpose, a mathematical model has been developed, by considering the layered structure of the left ventricle and treating it as an ellipsoidal shell The merit of the model is that unlike most other models considered by previous investigators, our model enables us to take into account the heterogeneous structure and the eccentricity of the left ventricle. Based on the study, it may be concluded that both the layered structure of the left ventricular aneurysm and its geometrical configuration have important bearings on formation of the aneurysm structure.

Acknowledgments

The authors wish to express their deep sense of gratitude to the reviewers for their kind words of appreciation of the scientific content of the work and also for their esteemed comments based on which the revised manuscript has been prepared.

Funding

None.

Conflicts of interest

None.

References

  1. Bartel T, Vanheiden H, Schaar J, et al. Biomechanical Modeling of Hemodynamic Factors Determining Bulging of Ventricular Aneurysms. Ann of Thorac Surg. 2002;74(5):1581–1587.
  2. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318.
  3. Hill AV. Muscular Activity. Williams and Wilkins, Battimore. 1956.
  4. Van Den Broek JHJM, Van Den Broek MHLM. Application of an ellipsoidal heart model in studying left ventricular contractions. J Biomech. 1980;13(6):493–503.
  5. Moskowitz SE. On the mechanics of left ventricular diastole. Journal of Biomechanics. 1980;13(3):301–311.
  6. Misra JC, Singh SI. Distribution of the stress in the left ventricular wall of impact heart. Bulletin of Mathematical Biology. 1985;47(1):53–71.
  7. Misra JC, Singh SI. A Model for Studying the Stability of Thoracic aorta. Mathematical Modelling. 1985;6(4):295–306.
  8. Misra JC, Singh SI. Pulse wave velocities in the aorta. Bulletin of Mathematical Biology. 1984;46(1):103–114.
  9. Misra JC, Singh SI. A large deformation analysis for aortic wall under a physiological loading. International Journal of Engineering Science. 1983;21(10):1193–1202.
  10. Misra JC, Singh SI. Study on the mechanics of aneurysms in the left ventricle of the heart. Computers and Mathematics with Applications. 1988;15(1):17–27.
  11. Taber LA, Podszus WW. A laminated shell model for the infarcted left ventricle. International Journal of Solids and Structures. 1997;34(2):223–241.
  12. Holmes JW, Borg TK, Covell JW. Structure and mechanics of healing myocardial infarcts. Annual Review of Biomedical Engineering. 2005;7:223–253.
  13. Cheng TO. History of coronary artery bypass surgery - half of a century of progress. International Journal of Cardiology. 2012;157(1):1–2.
  14. Ren J, Yuan X. Mechanics of formation and rupture of human aneurysm. Applied Mathematics and Mechanics. 2010;31:593–604.
  15. Misra JC, Sinha A, Shit GC. Flow of a Biomagnetic Viscoelastic Fluid: Application to Estimation of Blood Flow in arteries during Electromagnetic Hyperthermia, a Therapeutic Procedure for Cancer Treatment. Applied Mathematics and Mechanics. 2010;31(11):1405–1420.
  16. Mallick B, Misra JC, Chowdhury AR. Influence of Hall current and Joule heating on entropy generation during electrokinetically induced thermoradiative transport of nanofluids in a porous microchannel. Applied Mathematics and Mechanics. 2019;40(10):1509–1530.
  17. Misra JC, Chandra S, Shit GC, et al. Electroosmotic Oscillatory Flow of Micropolar Fluid in Microchannels: Application to dynamics of blood flow in Microfluidic Devices. Applied Mathematics and Mechanics. 2014;35(6):749–766.
  18. Sui Y, Teng S, Qian J, et al. Treatment outcomes and therapeutic evaluations of patients with left ventricular aneurysms. Journal of International Medical Research. 2019;47(1):244–251.
  19. Ohlow MA. Congenital left ventricular aneurysms and diverticula: an entity in search of an identity. Journal of Geriatric Cardiology. 2017;14(12):750–762.
  20. Coskun KO, Popov AF, Coskun ST, et al. Surgical treatment of left ventricular aneurysm. Asian Cardiovascular and Thoracic Annals. 2009;17(5):490–493.
  21. Mujanovic E, Bergslan J, Avdic S, et al. Surgical treatment of left ventricular pseudoaneurysm. Medical Archives. 2014;68(3):215–217.
  22. Mukaddirov M, Demaria RG, Perrault LP, et al. Reconstructive surgery of postinfarction left ventricular aneurysms: techniques and unsolved problems. European Journal of Cardio-Thoracic Surgery. 2008;34(2):256–261.
  23. Yan J, Jiang SL. Impact of surgical ventricular restoration on early and long-term outcomes of patients with left ventricular aneurysms. Medicine. 2018;97(41):e12773.
  24. Antunes PE, Silva R, Oliveira JF, et al. Left ventricular aneurysms: early and long-term results of two types of repair. European Journal of Cardio-Thoracic Surgery. 2005;27(2):210–215.
  25. Wang X, He X, Mei Y, et al. Early results after surgical treatment of left Ventricular Aneurysm. Journal of Cardiothoracic Surgery. 2012;7:126.
  26. Pasque MK. Mathematic modeling and cariac sugery. The Journal of Thoracic and Cardiovascular Surgery. 2002;123(4):617–620.
  27. Kramer CM, Magovern JA, Rogers WJ, et al. Reverse remodeling and improved regional function after repair of left ventricular aneurysm. The Journal of Thoracic and Cardiovascular Surgery. 2002;123(4):700–706.
  28. Guccionne JM, Moonly SM, Moustakidis P, et al. Mechanism underlying mechanical dysfunction in the border zone of of left ventricular aneurysm: a finite element study. The Annals of Thoracic Surgery. 2001;71(2):654–662.
  29. Radhakrishnan S, Ghista DN, Jayaraman G. Mechanical analysis of the development of left ventricular aneurysms. Journal of Biomechanics. 1980;13(12):1031–1039.
  30. Misra JC, Dandapat S, Adhikary SD. Stress distribution in the left ventricular wall during cardiac contraction: study of a mathematical model. J Mechs Medicine and Biology. 2021;21:2150015.
Creative Commons Attribution License

©2023 Misra, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.