Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Review Article Volume 8 Issue 1

Determining the long run behaviour of the exchange rate of Libyan Dinar using Markov chain

Mahdi Abuaqila Massoud Khalid, Husna Hasan

School of Mathematical Sciences, Universiti Sains Malaysia, Malaysia

Correspondence: Mahdi Abuaqila Massoud Khalid, School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia

Received: February 02, 2024 | Published: February 29, 2024

Citation: Khalid MAM, Hasan H. Determining the long run behaviour of the exchange rate of Libyan Dinar using Markov chain. MOJ App Bio Biomech. 2024;8(1):19-25. DOI: 10.15406/mojabb.2024.08.00201

Download PDF

Abstract

The study of foreign exchange (FOREX) markets is known as foreign currency exchange. These rates provide crucial data to international monetary exchange markets. Using a Markov chain model, this study attempts to determine the behaviour of the Libyan (LYD) currency rate against the US Dollar (USD). Three states are observed. The transition probability matrix and starting state vector are calculated. The result shows that, the probability of being in one of three states, namely, increases, remain the same or decreases are 0.3614, 0.3268 and 0.3118, respectively. The expected number of visits and return time are also obtained.

 Keywords: Libyan Dinar, markov chain, forex

Introduction

The FOREX market is where exchange rates are determined and traded. The prices of one currency expressed in terms of another currency are defined as exchange rates. This market has been investigated for many years because price fluctuations can have an impact on economic development and international trade. As a result, it is closely monitored by governments, central banks, multinational corporations, and financial traders. One of the most important topics in international finance and policy making is the exchange rate, which measures the price of one currency in terms of others. Exchange rate fluctuations can affect the prices of a variety of assets both directly and indirectly. Investors consider the impact of currency fluctuations on their international portfolios. Governments are concerned about export and import prices, as well as the domestic currency value of debt payments, as evidenced by the heated debate over the Chinese Yuan's value in recent years. Central banks are concerned about the value of their international reserves as well as the impact of exchange rate fluctuations on domestic inflation. The majority of Libya's economic woes have manifested themselves in the form of exchange rate instability, which has hampered export efforts significantly. Resources such as oil, gypsum, and natural gas have a high export potential, but manufactured goods are also exported to other countries. The oil industry, on the other hand, continues to be the largest source of revenue in Libya, accounting for 95 percent of total revenue. Despite a series of challenges such as inflation and economic collapse threatening the economy, the chances of the Libyan economy rebounding to success are very high. Restructuring plans in trade, finance, and production are needed, according to the IMF's proposed economic plans released in 2014, as is possibly easing government participation in private sector operations.1

Since the first issuance of the LYD in 1952, Libya has followed the system of linking the value of the LYD to foreign of currency, initially to the pound sterling, then to the USD, and finally to the Special Drawing Rights (SDR), the currency that the International Monetary Fund began issuing since 1970, where the value of LYD in March 1986 was equivalent to 2.8 Special Drawing Rights. The LYD was devalued to 2.60645 Special Drawing Rights in May of that year. In 2003, the LYD was devalued by 15%, reducing the value of the currency down to 0.5175 SDR. The most recent devaluation of the LYD occurred on January 3, 2021, when the official value of the LYD was cut to 0.1555 SDR. The par value of the LYD was reasonably stable throughout the first decade of this century, not as a consequence of the government's good economic policies, but as a result of the growth in crude oil prices on international markets, where the price of a barrel of oil topped $100 at times. When oil prices collapsed in 2013, the central bank's and government's arbitrary policies were exposed jointly, exposing more issues and complications in the Libyan economy.2 The significant split on the political and economic levels, in addition to the reduction in oil prices. The government was split into two in late 2014, one in the west and one in the east; the Central Bank was also split into two central banks with the same name, the "Central Bank of Libya," but two different governors and departments. The new division in the country has led to new problems, perhaps the most important of which is the depreciation of the LYD against the USD and other foreign currencies, as well as the inability of banks to provide cash to cover their current accounts, and the growth of the black market for foreign currencies, as the price of the USD in this market rose by more than five times its official price, increase public spending, and raise the level of inflation to unprecedented rates that in some years exceeded 28%. The Central Bank took a random step on January 3, 2021, to cut the official value of the LYD by 70%, from 0.15175 SDR units per LYD to 0.1555 units, resulting in a 220 percent increase in the value of one USD from 1.4 LYD to 4.48 Dinars. This measure will lead to the provision of cash in the short term, and to the availability of abundant funds in the public treasury as a result of the rise in the value of the USD that the government obtains from oil exports. Perhaps this is the real and undeclared reason behind the devaluation of the LYD. However, this step has not been well studied at other levels. For citizens with fixed incomes, who receive wages and salaries, their real incomes will decrease at the same rate as the value of the LYD. As for the market for goods, this will lead to an increase in smuggling, especially gasoline smuggling. What the government and the Central Bank failed to consider is that the depreciation of the LYD must be accompanied by a comprehensive transformation plan, which includes using monetary and financial policy tools to control spending in local and foreign currencies, control the money supply, combat corruption in state agencies, avoid monopoly, and encourage local investment. The International privatization, the public sector, and other needed reforms, all of which lead to income diversification, without focusing entirely on crude oil export revenues, price stability, and lowering the high unemployment rate. The par value of the LYD will then be fixed, and the parallel market and economic distortions will be removed. All of this necessitates an effective administration to manage the country's economy, which Libya now lacks.2 The FOREX market is the largest financial market in the world, with more than $5 trillion traded on average every day. However, while there are many FOREX investors, few are truly successful. Many traders fail for the same reasons that investors fail in other asset classes. In addition, the extreme amount of leverage—the use of borrowed capital to increase the potential return of investments—provided by the market, and the relatively small amounts of margin required when trading currencies, deny traders the opportunity to make numerous low-risk mistakes. Certain factors to currency trading may lead some traders to expect higher investment returns than the market can regularly provide, or accept more risk than they would in other markets.3 This study aims to analyze the exchange rate of Libyan Dinar against US Dollar by using Markov chain model. The specific objectives of the study are to study the long run behaviour of exchange rate, to estimate the expected number of visits to particular states and also to estimate the expected first return time to these three states.

Literature review

Hamza et al.,4 worked on the exchange rate of the Iraqi dinar by using Markov chains. In their research, the exchange rate of the Iraqi dinar against the US dollar using Markov chains and predicting the exchange rate in the future have been investigated. The results of the analysis showed an important conclusion that the exchange rate will remain stable for the upcoming period and then begin to rise as a result of the impact of the global crisis in Iraq.

Christy et al.,5 examined the convergence Nigerian exchange rate in the long run by looking at the exchange rate switches or transition from a particular state to another. Through the iterations of the Chapman-Kolmogorov equations of the Markov model. It was discovered that convergence occurred in the long run as shown by the Markov model. The result of the analysis suggests that appreciation and depreciation of the Nigerian currency against dollar rate would be stable as indicated by the probability values.

Quadry et al.,6 in their study, based on the theory of exchange rate determination by using Autoregressive Distributive Lag (ARDL) model, they tested for a long run relationship between both Malaysian Ringgit (MYR) and USD and also GBP against the differential interest rate, differential money supply, price of world crude oil and Goods and Services Tax, as a dummy variable. They found a negative long run relationship between MYR and GBP and differential money supply and a positive long run relationship against the world crude oil price. As the MYR supply increased relative to the GBP, the MYR depreciated, and as the crude oil price strengthened, the MYR appreciated. A high dependency of the MYR on world crude oil implies a bad sign. In their view, Malaysia needs to work harder to attract foreign direct investment to maintain the value of the Ringgit at a healthy level.

Oduselu-Hassan7 applied the Markov chain prediction model to predict the price action using to the difference in the typical price and closing price of the daily exchange rates. The models applied to the EUR and USD currency pair in the currency market. The model works well with the EUR and USD.

Khemiri and Ben Ali8 used a Markov-switching approach, where the authors identified two main regimes for inflation in Tunisia during this period: a low and stable inflation regime associated with a low pass-through level and a high inflation regime associated with a high pass-through level. The results show that the price level decreases in response to an increase in interest rates. Along with this, the empirical results provide strong evidence that the industrial production index has a negative and significant effect, as it increases the probability to stay in an inflationary regime and remain at a high pass-through level. The results also show robust support for the hypothesis that the imports increase the probability to stay in a high-inflation regime and maintain a high pass-through level. However, exports increase the probability of staying in a low-inflation regime and maintaining a low pass-through level.

Onwukwe and Samson9 examined the long run behaviour of the closing were prices recorded of the Nigerian bank stocks using Markov Chain. A total of eight Nigerian bank stocks were randomly selected and data on their daily closing prices. Finding suggested that despite the current situation in the market, there was still hope for Nigerian bank stocks as some of these bank stocks tend to experience an increase in price in the long run as shown by the results of the steady state probability. Although, this finding was very informative and crucial to investors, stock brokers and other regulator in this sector, this finding was subject to unforeseen circumstances such as change in government policy, among many other factors. it was hope that the results of this study would be very useful to investors, potential investors and other relevant stakeholders who were involve in stock trading.

Choji et al.,10 applied Markov chain model to predict the possible states by illustrating the performance of the top two banks. Guarantee Trust Bank of Nigeria and First Bank of Nigeria. They used six years data from 2005 to 2010. By obtaining the transition probability matrix, power of the transition matrix and probability vector, they obtained the long run prediction of the share price of these banks whether they appreciated, depreciated or remained unchanged regardless of current share price of the banks. They also estimated the probability of transition between the states by taking the performance of two banks together.

Zhang and Zhang11 implemented a Markov chain model to forecast the stock market trend in China. This study explored that the Markov chain has no after effect and this model was more appropriate to analyze and predicted the stock market index and closing stock price was more effective under the market mechanism. By applying the Markov chain model in the stock market, the researcher achieved relatively good result. They recommended that this model could be used in other fields like future market and bond market. They also suggested that the result obtained from Markov chain model for prediction should be combine with other factors having significant influence in stock market variations and the method should be used as a basis for decision making.

Otieno et al.,12 utilized Markov chain model to forecast stock market trend of Safari com share in Nairobi Securities Exchange in Kenya. They used Markov chain model to predict the Safari com share prices using the data collected over The first of April 2008 to 30th April 2012. In this study the Markov chain prediction has been applied for a specific purpose to forecast the probability and this forecasted value indicate the probability of certain state of stock or shares prices in future rather than be in absolute state. This study also revealed that the memory less property and random walk capability of Markov chain model facilitates to the best fit the data and to predict the trend. By using the Markov chain model, they observed the good results of predicting the probability of each state of the shares of Safari com.

Mettle et al.,13 used Markov chain model to analyze the share price changes for five different randomly selected equities on the Ghana Stock Exchange. This study concluded that the application of Markov chain model as a stochastic analysis method in equity price studies improved the portfolio decisions. They have suggested that Markov chain model could be apply as a tool for improving the stock trading decisions. Application of this method in stock analysis improves both the investor knowledge and chances of higher returns.

Bairagi and Kakaty1 applied Markov Chain model in the study, where attempts have been made to predict the arrival market price interval of potatoes of Lanka Regulated market of Nagaon District. The forecasting was done for the short period of consecutive 15 days. The prediction made for the price interval by the model was identical to real situations. The forecasting made for the future price by any one method may not be adequate, but the result obtained by Markov Chain model was quite encouraging.

Agbam and Samuel,14 practiced Markov chain for forecasting Dangote cement share prices in the Nigerian Stock Exchange. It was concluded that the derived initial state vectors and the transition matrices could be used to predict the state of Dangote Cement prices accurately. Additionally, the convergence of transition matrices to a steady state implying ergodicity that is a characteristic of stock market makes the model applicable.

Methodology

Markov chains

Markov chains have a wide range of interesting applications in academic and industrial fields. It has been used in various fields such as chemistry, statistics, operations research, economics, finance, music and other disciplines too. In this study the exchange rate analysis are focused.

Markov chain is a stochastic process with the property where the probabilities of in the future depends only on the present state, are independently of the event in the past.

Let { X t  ,t=0, 1, 2, . . . ., } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaacmaapaqaa8qacaqGybWdamaaBaaaleaa peGaamiDaaWdaeqaaOWdbiaabckacaGGSaGaamiDaiabg2da9iaabc dacaqGSaGaaeiOaiaabgdacaqGSaGaaeiOaiaabkdacaGGSaGaaeiO aiaac6cacaqGGcGaaiOlaiaabckacaGGUaGaaeiOaiaac6cacaGGSa aacaGL7bGaayzFaaaaaa@5341@  be a stochastic process that takes on a finite or countable number of possible values, the set of possible values of the process is denoted by the set of nonnegative integers { 0, 1, 2, . . . . } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaacmaapaqaa8qacaqGWaGaaeilaiaabcka caqGXaGaaeilaiaabckacaqGYaGaaiilaiaabckacaGGUaGaaeiOai aac6cacaqGGcGaaiOlaiaabckacaGGUaaacaGL7bGaayzFaaaaaa@4C77@ . If X t  =i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabIfapaWaaSbaaSqaa8qacaWG0baapaqa baGcpeGaaeiOaiabg2da9iaadMgaaaa@41C2@ , i0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHLjYScaqGWaaaaa@3FCA@ then the process is said to be in state i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgaaaa@3D51@  at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadshaaaa@3D5C@ . A Markov chain gives us that whenever the process is in state i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgaaaa@3D51@ , there is a fixed probability p ij   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaOWdbiaabckaaaa@40CC@ that it will next be in state j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadQgaaaa@3D52@ , that is,

P{ X t+1 =j| X t =i,  X t1 = i t1 , . . .. , X 1 = i 1 ,  X 0 = i 0 }=P{ X t+1 =j| X t =i}= p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadcfadaGadaWdaeaapeGaamiwa8aadaWg aaWcbaWdbiaadshacqGHRaWkcaaIXaaapaqabaGcpeGaeyypa0Jaam OAaiaacYhacaWGybWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiab g2da9iaadMgacaGGSaGaaiiOaiaadIfapaWaaSbaaSqaa8qacaWG0b GaeyOeI0IaaGymaaWdaeqaaOWdbiabg2da9iaadMgapaWaaSbaaSqa a8qacaWG0bGaeyOeI0IaaGymaaWdaeqaaOWdbiaacYcacaGGGcGaai OlaiaacckacaGGUaGaaiiOaiaac6cacaGGUaGaaiiOaiaacYcacaWG ybWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaadMgapa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaacckacaWGybWd amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaadMgapaWaaS baaSqaa8qacaaIWaaapaqabaaak8qacaGL7bGaayzFaaGaeyypa0Ja amiuaiaacUhacaWGybWdamaaBaaaleaapeGaamiDaiabgUcaRiaaig daa8aabeaak8qacqGH9aqpcaWGQbGaaiiFaiaadIfapaWaaSbaaSqa a8qacaWG0baapaqabaGcpeGaeyypa0JaamyAaiaac2hacqGH9aqpca WGWbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaaa@7D7F@

Transition count and transition probability matrices

The one-step transition frequency matrix can be constructed as:

F=[ f 00 f 0k f k0 f kk ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=zeacqGH9aqpdaWadaWdaeaafaqa beWadaaabaWdbiaadAgapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdae qaaaGcbaWdbiabl+UimbWdaeaapeGaamOza8aadaWgaaWcbaWdbiaa icdacaWGRbaapaqabaaakeaapeGaeSO7I0eapaqaa8qacqWIXlYta8 aabaWdbiabl6UinbWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadUga caaIWaaapaqabaaakeaapeGaeS47IWeapaqaa8qacaWGMbWdamaaBa aaleaapeGaam4AaiaadUgaa8aabeaaaaaak8qacaGLBbGaayzxaaaa aa@56CB@

where f ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaaaa@3F84@  is the number of the price of transitions from state i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgaaaa@3D50@ to state j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadQgaaaa@3D51@ in one step.

The transition count matrix then p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaaaa@3F8E@ can be estimated by:

p ij = f ij j=1 k f ij , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaOWdbiabg2da9maalaaapaqaa8qacaWGMbWdamaaBaaale aapeGaamyAaiaadQgaa8aabeaaaOqaa8qadaqfWaqabSWdaeaapeGa amOAaiabg2da9iaaigdaa8aabaWdbiaadUgaa0WdaeaapeGaeyyeIu oaaOGaaGPaVlaadAgapaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqa aaaak8qacaGGSaaaaa@4FA0@ j=1 k f ij >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQbGaeyypa0Ja aGymaaWdaeaapeGaam4Aaaqdpaqaa8qacqGHris5aaGccaaMc8Uaam Oza8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeyOpa4Ja aGimaaaa@493C@   (1)

The transition probability p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaaaa@3F8E@  can be constructed into matrix,

P=[ p 00 p 0k p k0 p kk ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfacqGH9aqpdaWadaWdaeaafaqa beWadaaabaWdbiaadchapaWaaSbaaSqaa8qacaaIWaGaaGimaaWdae qaaaGcbaWdbiabl+UimbWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaa icdacaWGRbaapaqabaaakeaapeGaeSO7I0eapaqaa8qacqWIXlYta8 aabaWdbiabl6UinbWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaadUga caaIWaaapaqabaaakeaapeGaeS47IWeapaqaa8qacaWGWbWdamaaBa aaleaapeGaam4AaiaadUgaa8aabeaaaaaak8qacaGLBbGaayzxaaaa aa@56FD@ .

This matrix P is known as the Markov chain transition probability matrix, with the element p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaaaa@3F8E@  denoting the conditional probability that an element in state i at the current time will be in state j at the next time. It is also referred to as a one-step transition probability matrix. The elements in the main diagonal of the transition probability matrix represent the likelihood that a given probability element will remain in the same state in the future. The probabilities of movements among the given states are represented by elements outside the main diagonal. Matrix P's elements are probabilities with a sum of one by rows.15

A Markov chain has an initial state vector, represented as ( 1×k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacaaIXaGaey41aqRaam4A aaGaayjkaiaawMcaaaaa@41CC@  vector that describes the probability distribution of starting at each of the k possible states. Entry of the vector describes the probability of the chain beginning at state i, that is

P( X 0 =i)=P( 0 )=[ p 0 ( 0 )  p 1 ( 0 )  p 2 ( 0 ) . . . . . . . .  p k ( 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadcfacaGGOaGaaeiwa8aadaWgaaWcbaWd biaaicdaa8aabeaak8qacqGH9aqpcaWGPbGaaiykaiabg2da9Gqabi aa=bfadaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9maa dmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbm aabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaaiiOaiaadchapaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaaicdaai aawIcacaGLPaaacaGGGcGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aa beaak8qadaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiaacckaca GGUaGaaiiOaiaac6cacaGGGcGaaiOlaiaacckacaGGUaGaaiiOaiaa c6cacaGGGcGaaiOlaiaacckacaGGUaGaaiiOaiaac6cacaGGGcGaam iCa8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qadaqadaWdaeaapeGa aGimaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@6E50@ , 0 p i ( 0 )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaicdacqGHKjYOcaWGWbWdamaaBaaaleaa peGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qacaaIWaaacaGLOaGaay zkaaGaeyizImQaaGymaaaa@45FA@

where,

p i ( 0 )= j=1 k f ij j=1 k i=1 k f ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbaapaqa baGcpeWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH9aqpda WcaaWdaeaapeWaaubmaeqal8aabaWdbiaadQgacqGH9aqpcaaIXaaa paqaa8qacaWGRbaan8aabaWdbiabggHiLdaakiaaykW7caWGMbWdam aaBaaaleaapeGaamyAaiaadQgaa8aabeaaaOqaa8qadaqfWaqabSWd aeaapeGaamOAaiabg2da9iaaigdaa8aabaWdbiaadUgaa0Wdaeaape GaeyyeIuoaaOWaaubmaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaa paqaa8qacaWGRbaan8aabaWdbiabggHiLdaakiaaykW7caWGMbWdam aaBaaaleaapeGaamyAaiaadQgaa8aabeaaaaaaaa@5DF3@ , and i=0 k P i ( 0 )=1 for all states. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPbGaeyypa0Ja aGimaaWdaeaapeGaam4Aaaqdpaqaa8qacqGHris5aaGccaWGqbWdam aaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qacaaIWaaa caGLOaGaayzkaaGaeyypa0JaaGymaiaacckacaaMc8UaamOzaiaad+ gacaWGYbGaaiiOaiaadggacaWGSbGaamiBaiaacckacaWGZbGaamiD aiaadggacaWG0bGaamyzaiaadohacaGGUaaaaa@5A04@

P( X t =i )=P( t )= i P( X t =j| X 0 =i )P( X 0 =i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadcfadaqadaWdaeaapeGaamiwa8aadaWg aaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpcaWGPbaacaGLOaGaay zkaaGaeyypa0Jaamiuamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaGaeyypa0Zaaybuaeqal8aabaWdbiaadMgaaeqan8aabaWdbiabgg HiLdaakiaadcfadaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaa dshaa8aabeaak8qacqGH9aqpcaWGQbGaaiiFaiaadIfapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaamyAaaGaayjkaiaawMca aiaadcfadaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaicdaa8 aabeaak8qacqGH9aqpcaWGPbaacaGLOaGaayzkaaaaaa@5E37@

i P i ( 0 ) P ij ( t ), t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaawafabeWcpaqaa8qacaWGPbaabeqdpaqa a8qacqGHris5aaGccaWGqbWdamaaBaaaleaapeGaamyAaaWdaeqaaO Wdbmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaamiua8aadaWg aaWcbaWdbiaadMgacaWGQbaapaqabaGcpeWaaeWaa8aabaWdbiaads haaiaawIcacaGLPaaacaGGSaGaaiiOaiaadshacqGH+aGpcaaIWaaa aa@4EB2@

Knowing the system's initial state and the transition matrix after t steps gives,

P( l+1 )=P( l )×P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaeS4eHWMa ey4kaSIaaGymaaGaayjkaiaawMcaaiabg2da9iaa=bfadaqadaWdae aapeGaeS4eHWgacaGLOaGaayzkaaGaey41aqRaa8huaaaa@494B@

which lead to:

P( 1 )=P( 0 )×P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaaGymaaGa ayjkaiaawMcaaiabg2da9iaa=bfadaqadaWdaeaapeGaaGimaaGaay jkaiaawMcaaiabgEna0kaa=bfaaaa@46C1@ ,

P( 2 )=P( 1 )×P = P( 0 )× P 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaaGOmaaGa ayjkaiaawMcaaiabg2da9iaa=bfadaqadaWdaeaapeGaaGymaaGaay jkaiaawMcaaiabgEna0kaa=bfacaqGGcGaeyypa0JaaeiOaiaa=bfa daqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabgEna0kaa=bfapa WaaWbaaSqabeaapeGaaGOmaaaaaaa@5132@ .

Thus,

P( l )=P( l1 )×P=P( l2 )× P 2 ==P( 0 )× P l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaeS4eHWga caGLOaGaayzkaaGaeyypa0Jaa8huamaabmaapaqaa8qacqWItecBcq GHsislcaaIXaaacaGLOaGaayzkaaGaey41aqRaa8huaiabg2da9iaa =bfadaqadaWdaeaapeGaeS4eHWMaeyOeI0IaaGOmaaGaayjkaiaawM caaiabgEna0kaa=bfapaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da 9iabgAci8kabg2da9iaa=bfadaqadaWdaeaapeGaaGimaaGaayjkai aawMcaaiabgEna0kaa=bfapaWaaWbaaSqabeaapeGaeS4eHWgaaaaa @5EDB@ .

Hence,

P( l+1 ) =P( 0 ) P l+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaeS4eHWMa ey4kaSIaaGymaaGaayjkaiaawMcaaiaabckacqGH9aqpcaWFqbWaae Waa8aabaWdbiaaicdaaiaawIcacaGLPaaacaqGQaGaaeiOaiaa=bfa paWaaWbaaSqabeaapeGaeS4eHWMaey4kaSIaaGymaaaaaaa@4CCA@ , for l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabloriSbaa@3D93@ ≥ 0.

The product of the initial probability vector and the ( l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabloriSbaa@3D93@ +1) power of the one-step transition probability matrix is the probability vector after ( l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabloriSbaa@3D93@ +1) step.

The ( l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabloriSbaa@3D93@ +1) step probability matrix

Let { X 0 ,  X 1 ,  } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaacmaapaqaa8qacaqGybWdamaaBaaaleaa peGaaGimaaWdaeqaaOWdbiaacYcacaqGGcGaaeiwa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacaGGSaGaaeiOaiabgAci8cGaay5Eaiaa w2haaaaa@47F9@  be a Markov chain with state space { 1, 2, 3., t } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaacmaapaqaa8qacaaIXaGaaiilaiaabcka caaIYaGaaiilaiaabckacaaIZaGaaiOlaiabgAci8kaacYcacaqGGc GaamiDaaGaay5Eaiaaw2haaaaa@4998@ . Recall that the elements of the transition matrix P are defined as.

P ij =P( X 1 =j| X 0 =i)=P( X t+1 =j| X t =i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadcfapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaOWdbiabg2da9iaabcfacaGGOaGaaeiwa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacqGH9aqpcaWGQbGaaiiFaiaabIfapaWa aSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyypa0JaamyAaiaacMcacq GH9aqpcaqGqbGaaiikaiaabIfapaWaaSbaaSqaa8qacaWG0bGaey4k aSIaaGymaaWdaeqaaOWdbiabg2da9iaadQgacaGG8bGaaeiwa8aada WgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpcaWGPbGaaiykaaaa @59FE@ , for any t.

p ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaaaa@3F8E@ is the probability of making a transition from state i to state j in a single step.

The ( l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabloriSbaa@3D93@ +1) step transition matrix are given by the matrix P l+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfapaWaaWbaaSqabeaapeGaeS4e HWMaey4kaSIaaGymaaaaaaa@4057@  for any l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabloriSbaa@3D93@  

P( X l+1 =j| X 0 =i)=P( X t+l+1 =j| X t =i)= ( P ij ) l+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabcfacaGGOaGaaeiwa8aadaWgaaWcbaWd biabloriSjabgUcaRiaaigdaa8aabeaak8qacqGH9aqpcaWGQbGaai iFaiaabIfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyypa0Ja amyAaiaacMcacqGH9aqpcaqGqbGaaiikaiaabIfapaWaaSbaaSqaa8 qacaWG0bGaey4kaSIaeS4eHWMaey4kaSIaaGymaaWdaeqaaOWdbiab g2da9iaadQgacaGG8bGaaeiwa8aadaWgaaWcbaWdbiaadshaa8aabe aak8qacqGH9aqpcaWGPbGaaiykaiabg2da9maabmaapaqaa8qacaqG qbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaOWdbiaawIcaca GLPaaapaWaaWbaaSqabeaapeGaeS4eHWMaey4kaSIaaGymaaaaaaa@62E4@

Classification of states

We can say the accessibility of states from each other. If it is possible to go from state i to state j, it is said that the state j is accessible from state i and can be written as ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHsgIRcaWGQbaaaa@402C@ . If p ij >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbGaamOA aaWdaeqaaOWdbiabg6da+iaaicdaaaa@416A@ .

Two states i and j are said to communicate, written as ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHugYQcaWGQbaaaa@402B@ , if they are accessible from each other. In other words ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHugYQcaWGQbaaaa@402B@ means ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHsgIRcaWGQbaaaa@402C@ and ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadQgacqGHsgIRcaWGPbaaaa@402C@ communication is an equivalence relation. That means that every state communicates with itself, ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHugYQcaWGQbaaaa@402B@ ; Further if ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHugYQcaWGQbaaaa@402B@ and jk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadQgacqGHugYQcaWGRbaaaa@402D@ , then ik MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHugYQcaWGRbaaaa@402C@ . Therefore, the states of a Markov chain can be partitioned into communicating classes such that only members of some class communicate with each other. That is, two states i and j belong to the same class if and only if ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGHugYQcaWGQbaaaa@402B@ .

A Markov chain is said to be irreducible if it has only one communicating class. In the other words the Markov chain is irreducible if all states communicate with each other.

The long run behavior of Markov chains

Suppose that a transition probability matrix P on a finite number of states labelled 0,1, , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUgaaaa@3D52@  has the property that when raised to some power t, the matrix P t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeGabaaxqGqababaaaaaaaaapeGaa8hua8aadaahaaWcbeqaa8qa caWG0baaaaaa@3EF1@  has all of its elements strictly positive. Such a transition probability matrix, or the corresponding Markov chain, is called regular. The most important fact concerning a regular Markov chain is the existence of a limiting probability distribution

P=[ p 0 p 1   p k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfacqGH9aqpdaWadaWdaeaafaqa beqacaaabaWdbiaadchapaWaaSbaaSqaa8qacaaIWaaapaqabaaake aapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaaeiO a8aafaqabeqacaaabaWdbiabl+UimbWdaeaapeGaamiCa8aadaWgaa WcbaWdbiaadUgaa8aabeaaaaaak8qacaGLBbGaayzxaaaaaa@4A5D@ , where p j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGQbaapaqa baaaaa@3EA0@  > 0 for j = 0,1, , k and j p j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaawafabeWcpaqaa8qacaWGQbaabeqdpaqa a8qacqGHris5aaGccaWGWbWdamaaBaaaleaapeGaamOAaaWdaeqaaa aa@4202@  = 1, and this distribution is independent of the initial state. Formally, for a regular transition probability matrix P, we have the convergence, that is:

lim t P ij ( t ) =  p j >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWfqaqaaabaaaaaaaaapeGaciiBaiaacMgacaGGTbaal8aa baWdbiaadshacqGHsgIRcqaHEisPa8aabeaaieqak8qacaWFqbWdam aaDaaaleaapeGaamyAaiaadQgaa8aabaWdbmaabmaapaqaa8qacaWG 0baacaGLOaGaayzkaaaaaOWdaiaaykW7cqGH9aqpcaaMc8+dbiaacc kacaWGWbWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabg6da+iaa icdaaaa@534F@ , for j = 0,1,  ,k

For the Markov chain { X t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabIfapaWaaSbaaSqaa8qacaWG0baapaqa baaaaa@3E90@ }, it can be written as

lim t P{ X t =j| X 0 =i}= p j >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWfqaqaaabaaaaaaaaapeGaciiBaiaacMgacaGGTbaal8aa baWdbiaadshacqGHsgIRcqaHEisPa8aabeaak8qacaqGqbGaai4Eai aabIfapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyypa0JaamOA aiaacYhacaqGybWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2 da9iaadMgacaGG9bGaeyypa0JaamiCa8aadaWgaaWcbaWdbiaadQga a8aabeaak8qacqGH+aGpcaaIWaaaaa@5535@ , for j = 0,1, ,k

This convergence means that, in the long run (t→∞), the probability of finding the Markov chain in state j is approximately p j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGQbaapaqa baaaaa@3EA0@  no matter in which state the chain began at time 0.16

Expected number of visits

Here consider the important quantity for finite state chains that have transient states. The expected number of visits of the chain to a transient state. If the states are recurrent, they are visited over and over, always returned to again, an infinite number of times.

Let μ ij ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaadMgacaWG QbaapaqabaGcpeWaaeWaa8aabaWdbiabloriSbGaayjkaiaawMcaaa aa@4342@ = the expected number of visits in l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabloriSbaa@3D93@ steps that chain visits state j given X 0 =i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadIfapaWaaSbaaSqaa8qacaaIWaaapaqa baGcpeGaeyypa0JaamyAaaaa@4061@

μ ij ( l )=E w=0 l P{ X w =j| X 0 =i}= w=0 l P w , w=1, 2, , l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaiiqaqaaaaaaaaaWdbiab=X7aT9aadaWgaaWcbaWdbiaadMga caWGQbaapaqabaGcpeWaaeWaa8aabaWdbiabloriSbGaayjkaiaawM caaiabg2da9iaaykW7caqGfbGaaGPaVpaawahabeWcpaqaa8qacaWG 3bGaeyypa0JaaGimaaWdaeaapeGaeS4eHWgan8aabaWdbiabggHiLd aakiaabcfacaGG7bGaaeiwa8aadaWgaaWcbaWdbiaadEhaa8aabeaa k8qacqGH9aqpcaWGQbGaaiiFaiaabIfapaWaaSbaaSqaa8qacaaIWa aapaqabaGcpeGaeyypa0JaamyAaiaac2hacqGH9aqpdaGfWbqabSWd aeaapeGaam4Daiabg2da9iaaicdaa8aabaWdbiabloriSbqdpaqaa8 qacqGHris5aaacbeGccaGFqbWdamaaCaaaleqabaWdbiaadEhaaaGc caGGSaGaaeiOaiaadEhacqGH9aqpcaqGXaGaaeilaiaabckacaqGYa GaaiilaiaabckacqGHMacVcaGGSaGaaeiOaiabloriSbaa@721F@  (2)

 Expected return time

For a finite irreducible Markov chain the expected number of revisits to state j is precisely n visits at time t n = Y 1 ++ Y n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabshapaWaaSbaaSqaa8qacaWGUbaapaqa baGcpeGaeyypa0Jaaeywa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGHRaWkcqGHMacVcqGHRaWkcaqGzbWdamaaBaaaleaapeGaamOB aaWdaeqaaaaa@474C@ , let Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabMfapaWaaSbaaSqaa8qacaWGPbaapaqa baaaaa@3E86@  is be the random variable that counts the total number of visits to state i, and thus the long run proportion of visits to state j per unit time can be obtain by taking the reciprocal of limiting probability   p j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaacckacaWGWbWdamaaBaaaleaapeGaamOA aaWdaeqaaaaa@3FC4@ .17

In the case where  i=j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgacqGH9aqpcaWGQbaaaa@3F45@ , we say that  E( Y i | x 0 =i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabweacaaMc8UaaiikaiaabMfapaWaaSba aSqaa8qacaWGPbaapaqabaGcpeGaaiiFaiaabIhapaWaaSbaaSqaa8 qacaaIWaaapaqabaGcpeGaeyypa0JaamyAaiaacMcaaaa@4769@  is the expected return time to i given that the chain started at  i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadMgaaaa@3D50@ . That is because the definition of  Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabMfapaWaaSbaaSqaa8qacaWGPbaapaqa baaaaa@3E86@  only involves times that are at least 1. It turns out that there is a simple relation between  p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbaapaqa baaaaa@3E9F@  and the expected return time to i.

lim t E( Y i | X 0 =i )= 1 p i ,i=0, 1, 2, , k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWfqaqaaabaaaaaaaaapeGaciiBaiaacMgacaGGTbaal8aa baWdbiaadshacqGHsgIRcqGHEisPa8aabeaak8qacaWGfbWaaeWaa8 aabaWdbiaadMfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiiF aiaadIfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyypa0Jaam yAaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqa a8qacaWGWbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaak8qacaGGSa GaaGPaVlaadMgacqGH9aqpcaqGWaGaaeilaiaabckacaqGXaGaaeil aiaabckacaqGYaGaaiilaiaacckacqGHMacVcaGGSaGaaiiOaiaadU gaaaa@6236@

Since  p i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbaapaqa baGcpeGaeyyzImRaaGimaaaa@4139@  for all states i, the expected return time to each state is finite when p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGPbaapaqa baaaaa@3E9F@  is a steady probability of state i.

Results and discussion

Derivation of three states

It is noticed to see that the exchange rate of the Libyan dinar con be categorized into one of three states at the end of each day during the study period. In case the exchange rate of Libyan dinar goes up against US dollar compared to the day before, then it is categorized as “increase” (U). If it goes down then it is categorized as “decreases” (D). Furthermore, if it does not change is categorized as “remain the same” (S). These are observed from daily states of the LYD exchange rate to the USD. Thus, we have the as “increases” (U), “remain the same” (S) or “decreases” (D). These three different movements are treated as three different states in the Markov chain for the purposes of developing the transition probability matrix. The transition probability gives the information about the Markov chain's transition behaviour. The elements of the transition probability matrix show the possibility of transitions from one state to another.

With LYD 3650 trading days, the transition probability matrix shows that the exchange rate increases for 1320 days, remained the same for 1193 days, and decreases for 1137 days.

The transition count and transition probability matrices

The LYD exchange rate demonstrates three different states ( i,j=0, 1, 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacaWGPbGaaiilaiaadQga cqGH9aqpcaqGWaGaaeilaiaabckacaqGXaGaaeilaiaabckacaqGYa aacaGLOaGaayzkaaaaaa@475D@  in this study. Table 1 shows the number of exchange rate of LYD price classified between “increases”, “remain the same” and “decreases”. The f 00 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaaIWaGaaGim aaWdaeqaaaaa@3F1B@ = 451 denotes the number of instances in which the LYD price increases despite the fact that it was already increased against the USD the day before. The number of times the LYD price has remained steady despite the fact that it was increased against the USD before is f 12 =289 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaaIXaGaaGOm aaWdaeqaaOWdbiabg2da9iaabkdacaqG4aGaaeyoaaaa@426A@  and so on for the rest of the elements.

 

Increases (U)

Remain the same (S)

Decreases (D)

Increases (U)

451

289

580

Remains the same (S)

269

684

240

Decreases (D)

599

220

318

Table 1 The transition count matrix of exchange rate of Libyan dinar against US dollar

The transition probability matrix of exchange rate of LYD can then be constructed using the equation (1), which give

P=( 0.3417 0.2189 0.4394 0.2255 0.5733 0.2012 0.5268 0.1935 0.2797 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfacqGH9aqpdaqadaWdaeaafaqa beWadaaabaWdbiaabcdacaqGUaGaae4maiaabsdacaqGXaGaae4naa WdaeaapeGaaeimaiaab6cacaqGYaGaaeymaiaabIdacaqG5aaapaqa a8qacaqGWaGaaeOlaiaabsdacaqGZaGaaeyoaiaabsdaa8aabaWdbi aabcdacaqGUaGaaeOmaiaabkdacaqG1aGaaeynaaWdaeaapeGaaeim aiaab6cacaqG1aGaae4naiaabodacaqGZaaapaqaa8qacaqGWaGaae OlaiaabkdacaqGWaGaaeymaiaabkdaa8aabaWdbiaabcdacaqGUaGa aeynaiaabkdacaqG2aGaaeioaaWdaeaapeGaaeimaiaab6cacaqGXa GaaeyoaiaabodacaqG1aaapaqaa8qacaqGWaGaaeOlaiaabkdacaqG 3aGaaeyoaiaabEdaaaaacaGLOaGaayzkaaaaaa@6746@

From the matrix P above the transition diagram for the explicit presentation of transition probability of exchange rate of LYD is shown below.(Figure 1)

Figure 1 N=57; Epidemiological distribution of the pathological fractures, traumatic fractures, and nonunion.

It can be seen from the diagram that the price of exchange rate moving from the “increases” state (U) to the state of “remain the same” (S) with a probability of 0.2189 and moving from the state of “remain the same” (S) to the state of “increases” (U) with a probability of 0.2255. As a result, the states U and S communicate with each other.

It is also possible to go from the state of “increases” (U) to the state of “decrease” (D) with a probability 0.4394. It is also possible to go from the state of “decreases” (D) in the exchange rate to the state of “increases” (U) in the exchange rate with probability 0.5268. As a result, the two states communicate.

Furthermore, it is possible to go from a condition of exchange rate of “remain the same” (S) to a state “decreases” (D), with a probability of 0.2012, while, the price of exchange rate can go from “decreases” state to the state of “remain the same” with probability of 0.1935. As a result, the two states can communicate with each other.

All states communicate. As a result, there is only one class. Thus, the Markov chain is irreducible.

Determination of initial state vector

As the LYD exchange rate demonstrates three different states, the starting state vector can also be calculated. The initial state vector P(0) is given by

P( 0 )=[ p U ( 0 ) p S ( 0 ) p D ( 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaaeimaaGa ayjkaiaawMcaaiabg2da9maadmaapaqaauaabeqabmaaaeaapeGaam iCa8aadaWgaaWcbaWdbiaabwfaa8aabeaak8qadaqadaWdaeaapeGa aeimaaGaayjkaiaawMcaaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbi aabofaa8aabeaak8qadaqadaWdaeaapeGaaeimaaGaayjkaiaawMca aaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaabseaa8aabeaak8qada qadaWdaeaapeGaaeimaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaa aaa@50BD@

where, p U ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaqGvbaapaqa baGcpeWaaeWaa8aabaWdbiaabcdaaiaawIcacaGLPaaaaaa@40FE@ , p S ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaqGtbaapaqa baGcpeWaaeWaa8aabaWdbiaabcdaaiaawIcacaGLPaaaaaa@40FC@  and p D ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaqGebaapaqa baGcpeWaaeWaa8aabaWdbiaabcdaaiaawIcacaGLPaaaaaa@40ED@  provide the probability that the LYD exchange rate increases, stay the same or decreases, at the beginning of period. The computation gives,

p U ( 0 )=1320/3650=0.3616 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaqGvbaapaqa baGcpeWaaeWaa8aabaWdbiaabcdaaiaawIcacaGLPaaacqGH9aqpca qGXaGaae4maiaabkdacaqGWaGaai4laiaabodacaqG2aGaaeynaiaa bcdacqGH9aqpcaqGWaGaaeOlaiaabodacaqG2aGaaeymaiaabAdaaa a@4DA9@

p S ( 0 )=1193/3650=0.3269 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaqGtbaapaqa baGcpeWaaeWaa8aabaWdbiaabcdaaiaawIcacaGLPaaacqGH9aqpca qGXaGaaeymaiaabMdacaqGZaGaai4laiaabodacaqG2aGaaeynaiaa bcdacqGH9aqpcaqGWaGaaeOlaiaabodacaqGYaGaaeOnaiaabMdaaa a@4DB3@

  p D ( 0 )=1137/3650=0.3115 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabckacaWGWbWdamaaBaaaleaapeGaaeir aaWdaeqaaOWdbmaabmaapaqaa8qacaqGWaaacaGLOaGaayzkaaGaey ypa0JaaeymaiaabgdacaqGZaGaae4naiaac+cacaqGZaGaaeOnaiaa bwdacaqGWaGaeyypa0Jaaeimaiaab6cacaqGZaGaaeymaiaabgdaca qG1aaaaa@4EBB@

Hence, the initial state vector for exchange rate of LYD is

P( 0 )=[ 0.3616 0.3269 0.3115 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaaeimaaGa ayjkaiaawMcaaiabg2da9maadmaapaqaauaabeqabmaaaeaapeGaae imaiaab6cacaqGZaGaaeOnaiaabgdacaqG2aaapaqaa8qacaqGWaGa aeOlaiaabodacaqGYaGaaeOnaiaabMdaa8aabaWdbiaabcdacaqGUa Gaae4maiaabgdacaqGXaGaaeynaaaaaiaawUfacaGLDbaaaaa@4FBA@ .

State probabilities for prediction and long run behaviour exchange rate

According to the Markov chain model, the state probability for different periods can be calculated by multiplying the transition probability matrix with the initial state vector P l+1 = P l *P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfapaWaaSbaaSqaa8qacqWItecB cqGHRaWkcaaIXaaapaqabaGcpeGaeyypa0Jaa8hua8aadaWgaaWcba WdbiabloriSbWdaeqaaOWdbiaabQcacaWFqbaaaa@4579@ . Where, P l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfapaWaaSbaaSqaa8qacqWItecB a8aabeaaaaa@3EC8@ is the state vector for l th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabloriS9aadaahaaWcbeqaa8qacaqG0bGa aeiAaaaaaaa@3FC1@  state and P is the transition probability matrix. The state probability for the exchange rate of LYD at the end of 3650 day will be

P( 1 )=P( 0 )×P=[ 0.3616 0.3269 0.3115 ][ 0.3417 0.2189 0.4394 0.2255 0.5733 0.2012 0.5268 0.1935 0.2797 ]=[ 0.3614 0.3268 0.3118 ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaaeymaaGa ayjkaiaawMcaaiabg2da9iaa=bfadaqadaWdaeaapeGaaeimaaGaay jkaiaawMcaaiabgEna0kaa=bfacqGH9aqpdaWadaWdaeaafaqabeqa daaabaWdbiaabcdacaqGUaGaae4maiaabAdacaqGXaGaaeOnaaWdae aapeGaaeimaiaab6cacaqGZaGaaeOmaiaabAdacaqG5aaapaqaa8qa caqGWaGaaeOlaiaabodacaqGXaGaaeymaiaabwdaaaaacaGLBbGaay zxaaWaamWaa8aabaqbaeqabmWaaaqaa8qacaqGWaGaaeOlaiaaboda caqG0aGaaeymaiaabEdaa8aabaWdbiaabcdacaqGUaGaaeOmaiaabg dacaqG4aGaaeyoaaWdaeaapeGaaeimaiaab6cacaqG0aGaae4maiaa bMdacaqG0aaapaqaa8qacaqGWaGaaeOlaiaabkdacaqGYaGaaeynai aabwdaa8aabaWdbiaabcdacaqGUaGaaeynaiaabEdacaqGZaGaae4m aaWdaeaapeGaaeimaiaab6cacaqGYaGaaeimaiaabgdacaqGYaaapa qaa8qacaqGWaGaaeOlaiaabwdacaqGYaGaaeOnaiaabIdaa8aabaWd biaabcdacaqGUaGaaeymaiaabMdacaqGZaGaaeynaaWdaeaapeGaae imaiaab6cacaqGYaGaae4naiaabMdacaqG3aaaaaGaay5waiaaw2fa aiabg2da9maadmaapaqaauaabeqabmaaaeaapeGaaeimaiaab6caca qGZaGaaeOnaiaabgdacaqG0aaapaqaa8qacaqGWaGaaeOlaiaaboda caqGYaGaaeOnaiaabIdaa8aabaWdbiaabcdacaqGUaGaae4maiaabg dacaqGXaGaaeioaaaaaiaawUfacaGLDbaacaGGUaaaaa@9116@

The aforementioned conclusion indicates that at the end of the 3650 st MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabodacaqG2aGaaeynaiaabcdapaWaaWba aSqabeaapeGaam4Caiaadshaaaaaaa@417A@  day, the exchange rate will most likely decrease with a probability of 0.3118. The LYD exchange rate increases with a probability of 0.3614 and remain the same with a probability of 0.3268.

This limiting transition probability matrix provides the steady state probability of exchange rate in states of increases, remains same or decreases in the future. The long run behaviour of the LYD exchange rate is obtained by calculating the higher order transition probability matrix of the exchange rate using. The results are obtained as below:

P 2 =[ 0.3976 0.2853 0.3171 0.3123 0.4170 0.2707 0.3710 0.2804 0.3486 ] P 3 =[ 0.3672 0.3120 0.3208 0.3434 0.3598 0.2968 0.3737 0.3094 0.3169 ] P 4 =[ 0.3648 0.3213 0.3139 0.3548 0.3389 0.3063 0.3644 0.3205 0.3151 ] P 5 =[ 0.3625 0.3248 0.3127 0.3590 0.3312 0.3098 0.3628 0.3245 0.3127 ] P 20 =[ 0.3614 0.3268 0.3118 0.3614 0.3268 0.3118 0.3614 0.3268 0.3118 ] = P 21 = P 22 = and so on. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakqaabeqaaGqababaaaaaaaaapeGaa8hua8aadaahaaWcbeqaa8qa caqGYaaaaOGaeyypa0ZaamWaa8aabaqbaeqabmWaaaqaa8qacaqGWa GaaeOlaiaabodacaqG5aGaae4naiaabAdaa8aabaWdbiaabcdacaqG UaGaaeOmaiaabIdacaqG1aGaae4maaWdaeaapeGaaeimaiaab6caca qGZaGaaeymaiaabEdacaqGXaaapaqaa8qacaqGWaGaaeOlaiaaboda caqGXaGaaeOmaiaabodaa8aabaWdbiaabcdacaqGUaGaaeinaiaabg dacaqG3aGaaeimaaWdaeaapeGaaeimaiaab6cacaqGYaGaae4naiaa bcdacaqG3aaapaqaa8qacaqGWaGaaeOlaiaabodacaqG3aGaaeymai aabcdaa8aabaWdbiaabcdacaqGUaGaaeOmaiaabIdacaqGWaGaaein aaWdaeaapeGaaeimaiaab6cacaqGZaGaaeinaiaabIdacaqG2aaaaa Gaay5waiaaw2faaaqaaiaa=bfapaWaaWbaaSqabeaapeGaae4maaaa kiabg2da9maadmaapaqaauaabeqadmaaaeaapeGaaeimaiaab6caca qGZaGaaeOnaiaabEdacaqGYaaapaqaa8qacaqGWaGaaeOlaiaaboda caqGXaGaaeOmaiaabcdaa8aabaWdbiaabcdacaqGUaGaae4maiaabk dacaqGWaGaaeioaaWdaeaapeGaaeimaiaab6cacaqGZaGaaeinaiaa bodacaqG0aaapaqaa8qacaqGWaGaaeOlaiaabodacaqG1aGaaeyoai aabIdaa8aabaWdbiaabcdacaqGUaGaaeOmaiaabMdacaqG2aGaaeio aaWdaeaapeGaaeimaiaab6cacaqGZaGaae4naiaabodacaqG3aaapa qaa8qacaqGWaGaaeOlaiaabodacaqGWaGaaeyoaiaabsdaa8aabaWd biaabcdacaqGUaGaae4maiaabgdacaqG2aGaaeyoaaaaaiaawUfaca GLDbaaaeaacaWFqbWdamaaCaaaleqabaWdbiaabsdaaaGccqGH9aqp daWadaWdaeaafaqabeWadaaabaWdbiaabcdacaqGUaGaae4maiaabA dacaqG0aGaaeioaaWdaeaapeGaaeimaiaab6cacaqGZaGaaeOmaiaa bgdacaqGZaaapaqaa8qacaqGWaGaaeOlaiaabodacaqGXaGaae4mai aabMdaa8aabaWdbiaabcdacaqGUaGaae4maiaabwdacaqG0aGaaeio aaWdaeaapeGaaeimaiaab6cacaqGZaGaae4maiaabIdacaqG5aaapa qaa8qacaqGWaGaaeOlaiaabodacaqGWaGaaeOnaiaabodaa8aabaWd biaabcdacaqGUaGaae4maiaabAdacaqG0aGaaeinaaWdaeaapeGaae imaiaab6cacaqGZaGaaeOmaiaabcdacaqG1aaapaqaa8qacaqGWaGa aeOlaiaabodacaqGXaGaaeynaiaabgdaaaaacaGLBbGaayzxaaaaba Gaa8hua8aadaahaaWcbeqaa8qacaqG1aaaaOGaeyypa0ZaamWaa8aa baqbaeqabmWaaaqaa8qacaqGWaGaaeOlaiaabodacaqG2aGaaeOmai aabwdaa8aabaWdbiaabcdacaqGUaGaae4maiaabkdacaqG0aGaaeio aaWdaeaapeGaaeimaiaab6cacaqGZaGaaeymaiaabkdacaqG3aaapa qaa8qacaqGWaGaaeOlaiaabodacaqG1aGaaeyoaiaabcdaa8aabaWd biaabcdacaqGUaGaae4maiaabodacaqGXaGaaeOmaaWdaeaapeGaae imaiaab6cacaqGZaGaaeimaiaabMdacaqG4aaapaqaa8qacaqGWaGa aeOlaiaabodacaqG2aGaaeOmaiaabIdaa8aabaWdbiaabcdacaqGUa Gaae4maiaabkdacaqG0aGaaeynaaWdaeaapeGaaeimaiaab6cacaqG ZaGaaeymaiaabkdacaqG3aaaaaGaay5waiaaw2faaaqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7cqWIUlstaeaacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaeSO7I0eabaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlabl6Uinbqaaiaa=bfapaWaaWbaaSqabeaape GaaeOmaiaabcdaaaGccqGH9aqpdaWadaWdaeaafaqabeWadaaabaWd biaabcdacaqGUaGaae4maiaabAdacaqGXaGaaeinaaWdaeaapeGaae imaiaab6cacaqGZaGaaeOmaiaabAdacaqG4aaapaqaa8qacaqGWaGa aeOlaiaabodacaqGXaGaaeymaiaabIdaa8aabaWdbiaabcdacaqGUa Gaae4maiaabAdacaqGXaGaaeinaaWdaeaapeGaaeimaiaab6cacaqG ZaGaaeOmaiaabAdacaqG4aaapaqaa8qacaqGWaGaaeOlaiaabodaca qGXaGaaeymaiaabIdaa8aabaWdbiaabcdacaqGUaGaae4maiaabAda caqGXaGaaeinaaWdaeaapeGaaeimaiaab6cacaqGZaGaaeOmaiaabA dacaqG4aaapaqaa8qacaqGWaGaaeOlaiaabodacaqGXaGaaeymaiaa bIdaaaaacaGLBbGaayzxaaaabaGaeyypa0Jaa8hua8aadaahaaWcbe qaa8qacaqGYaGaaeymaaaakiabg2da9iaa=bfapaWaaWbaaSqabeaa peGaaeOmaiaabkdaaaGccqGH9aqpcqWIVlctcaqGGcGaaeyyaiaab6 gacaqGKbGaaeiOaiaabohacaqGVbGaaeiOaiaab+gacaqGUbGaaiOl aaaaaa@09ED@

Since 3650 trading days, the higher order transition probability matrix for the LYD exchange rate computed above shows that the transition probability matrix tends to the steady state or state of equilibrium after the 20th trading day.

The likelihood of the LYD exchange rate descending in the near future is 0.3118, regardless of whether it increases, stays the same or decreases at the beginning. There is a 0.3614 chance that the LYD exchange rate will increase in the long run, regardless of whether it increases, stays the same or decreases. Regardless of whether the exchange rate initially increases, remain the same or decreases, the probability of it to remain the same in the long run is 0.3268.If the LYD exchange rate opens in a particular state with an initial state vector, P( 0 )=[ 0.3616 0.3269 0.3115 ],  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bfadaqadaWdaeaapeGaaeimaaGa ayjkaiaawMcaaiabg2da9maadmaapaqaauaabeqabmaaaeaapeGaae imaiaab6cacaqGZaGaaeOnaiaabgdacaqG2aaapaqaa8qacaqGWaGa aeOlaiaabodacaqGYaGaaeOnaiaabMdaa8aabaWdbiaabcdacaqGUa Gaae4maiaabgdacaqGXaGaaeynaaaaaiaawUfacaGLDbaacaGGSaGa aiiOaaaa@518F@ then in a steady state condition, the probability of the LYD exchange rate increases, remain the same or decreases on a given trading day can be calculated by multiplying the initial state vector by the higher order transition probability matrix obtained at state of equilibrium. Then,

  P 0 ×  P 20 =[ 0.3616 0.3269 0.3115 ][ 0.3614 0.3268 0.3118 0.3614 0.3268 0.3118 0.3614 0.3268 0.3118 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaieqaqaaaaaaaaaWdbiaa=bkacaWFqbWdamaaBaaaleaapeGa aeimaaWdaeqaaOWdbiabgEna0kaabckacaWFqbWdamaaCaaaleqaba WdbiaabkdacaqGWaaaaOGaeyypa0ZaamWaa8aabaqbaeqabeWaaaqa a8qacaqGWaGaaeOlaiaabodacaqG2aGaaeymaiaabAdaa8aabaWdbi aabcdacaqGUaGaae4maiaabkdacaqG2aGaaeyoaaWdaeaapeGaaeim aiaab6cacaqGZaGaaeymaiaabgdacaqG1aaaaaGaay5waiaaw2faam aadmaapaqaauaabeqadmaaaeaapeGaaeimaiaab6cacaqGZaGaaeOn aiaabgdacaqG0aaapaqaa8qacaqGWaGaaeOlaiaabodacaqGYaGaae OnaiaabIdaa8aabaWdbiaabcdacaqGUaGaae4maiaabgdacaqGXaGa aeioaaWdaeaapeGaaeimaiaab6cacaqGZaGaaeOnaiaabgdacaqG0a aapaqaa8qacaqGWaGaaeOlaiaabodacaqGYaGaaeOnaiaabIdaa8aa baWdbiaabcdacaqGUaGaae4maiaabgdacaqGXaGaaeioaaWdaeaape Gaaeimaiaab6cacaqGZaGaaeOnaiaabgdacaqG0aaapaqaa8qacaqG WaGaaeOlaiaabodacaqGYaGaaeOnaiaabIdaa8aabaWdbiaabcdaca qGUaGaae4maiaabgdacaqGXaGaaeioaaaaaiaawUfacaGLDbaaaaa@7ECB@
=[ 0.3616 0.3269 0.3115 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8Uaeyypa0ZaamWaa8aabaWdbiaabcdacaqGUaGaae4mai aabAdacaqGXaGaaeOnaiaabckacaqGWaGaaeOlaiaabodacaqGYaGa aeOnaiaabMdacaqGGcGaaeimaiaab6cacaqGZaGaaeymaiaabgdaca qG1aaacaGLBbGaayzxaaaaaa@71FB@

Expected numbers of visits

The expected number of visits to any state from another state in different steps can be determined. Using (2), the following exchange rate matrix shows the number of visits to each state for seven trading days, that is

μ ij ( 7 )=P+ P 2 + P 3 + P 4 + P 5 + P 6 + P 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaiiqaqaaaaaaaaaWdbiab=X7aT9aadaWgaaWcbaWdbiaadMga caWGQbaapaqabaGcpeWaaeWaa8aabaWdbiaabEdaaiaawIcacaGLPa aacqGH9aqpieqacaGFqbGaey4kaSIaa4hua8aadaahaaWcbeqaa8qa caqGYaaaaOGaey4kaSIaa4hua8aadaahaaWcbeqaa8qacaqGZaaaaO Gaey4kaSIaa4hua8aadaahaaWcbeqaa8qacaqG0aaaaOGaey4kaSIa a4hua8aadaahaaWcbeqaa8qacaqG1aaaaOGaey4kaSIaa4hua8aada ahaaWcbeqaa8qacaqG2aaaaOGaey4kaSIaa4hua8aadaahaaWcbeqa a8qacaqG3aaaaaaa@5524@
=[ 2.5572 2.1149 2.3279 2.3167 2.6760 2.0073 2.7221 2.0807 2.1972 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlabg2da9maadmaapaqaauaabeqadmaaaeaapeGaaeOm aiaab6cacaqG1aGaaeynaiaabEdacaqGYaaapaqaa8qacaqGYaGaae OlaiaabgdacaqGXaGaaeinaiaabMdaa8aabaWdbiaabkdacaqGUaGa ae4maiaabkdacaqG3aGaaeyoaaWdaeaapeGaaeOmaiaab6cacaqGZa GaaeymaiaabAdacaqG3aaapaqaa8qacaqGYaGaaeOlaiaabAdacaqG 3aGaaeOnaiaabcdaa8aabaWdbiaabkdacaqGUaGaaeimaiaabcdaca qG3aGaae4maaWdaeaapeGaaeOmaiaab6cacaqG3aGaaeOmaiaabkda caqGXaaapaqaa8qacaqGYaGaaeOlaiaabcdacaqG4aGaaeimaiaabE daa8aabaWdbiaabkdacaqGUaGaaeymaiaabMdacaqG3aGaaeOmaaaa aiaawUfacaGLDbaaaaa@7E02@

If the LYD exchange rate begins at the increases state, the expected number of visits the chain for exchange rate makes to the increases state out of seven trading days is μ UU ( 7 )=2.5572 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabwfacaqG vbaapaqabaGcpeWaaeWaa8aabaWdbiaabEdaaiaawIcacaGLPaaacq GH9aqpcaqGYaGaaeOlaiaabwdacaqG1aGaae4naiaabkdaaaa@47E9@  (3 days), to the same state is μ US ( 7 )=2.1149 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabwfacaqG tbaapaqabaGcpeWaaeWaa8aabaWdbiaabEdaaiaawIcacaGLPaaacq GH9aqpcaqGYaGaaeOlaiaabgdacaqGXaGaaeinaiaabMdaaaa@47E3@  (2 days), and to the state decrease is μ UD ( 7 )=2.3279 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabwfacaqG ebaapaqabaGcpeWaaeWaa8aabaWdbiaabEdaaiaawIcacaGLPaaacq GH9aqpcaqGYaGaaeOlaiaabodacaqGYaGaae4naiaabMdaaaa@47DA@  (2 days).

Similarly, if the LYD exchange rate starts as decreases, the predicted number of visits the chain will make to the state that increases is μ DU ( 7 )=2.7221 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabseacaqG vbaapaqabaGcpeWaaeWaa8aabaWdbiaabEdaaiaawIcacaGLPaaacq GH9aqpcaqGYaGaaeOlaiaabEdacaqGYaGaaeOmaiaabgdaaaa@47D1@  (3 days), to the state that remains the same is μ DS ( 7 )=2.0807 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabseacaqG tbaapaqabaGcpeWaaeWaa8aabaWdbiaabEdaaiaawIcacaGLPaaacq GH9aqpcaqGYaGaaeOlaiaabcdacaqG4aGaaeimaiaabEdaaaa@47D2@  (2 days), and to the state that decreases is μ DD ( 7 )=2.1972 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabseacaqG ebaapaqabaGcpeWaaeWaa8aabaWdbiaabEdaaiaawIcacaGLPaaacq GH9aqpcaqGYaGaaeOlaiaabgdacaqG5aGaae4naiaabkdaaaa@47C7@  (2 days).

Expected return time

It will be helpful to know whether the LYD exchange rate will continue to increase, stay the same or decreases in the near future. Using steady state transition probabilities, the expected return time to a state starting from the same state is computed. The expected return time to the increases state for the LYD exchange rate, starting from the same increases state is μ U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabwfaa8aa beaaaaa@3F4A@  = 1/ 0.3614 = 2.6760 (3 days). This result indicates that, on average, the chain for the LYD exchange rate shoulder visits the state of increases in three days. Similarly, μ S = 3.05998 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabofaa8aa beaak8qacqGH9aqpcaqGGcGaae4maiaab6cacaqGWaGaaeynaiaabM dacaqG5aGaaeioaaaa@4690@ (3 days) is the expected return time to the state of remain the same, starting from the same state S. This means the chain for exchange rate of LYD should visits the state of remains same on an average of three days. The expected return time to the decreases state, starting from the decreases state is μ D = 3.2072 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaabseaa8aa beaak8qacqGH9aqpcaqGGcGaae4maiaab6cacaqGYaGaaeimaiaabE dacaqGYaaaaa@45BA@ . This result helps to conclude that the chain will visits the decreases state (D) on an average of three days.

Conclusion and further work

It is concluded that based on daily moving prices, the daily closing Libyan dinar price against USD had generally a trend, though with an initial side way trend, indicating volatility of price. It was to determine the Markov model for forecasting exchange rate of Libyan Dinar against USD, it is count that the derived initial state vector and the transition matrix could be used to predict the states of Libyan dinar price as confirmed by the prediction of the 3650 trading days. Additionally, the convergence of transition matrix to a steady state implying ergodicity that is a characteristic of the foreign exchange market makes the model applicable. In the long run, irrespective of the initial condition of the Libyan dinar price, the LYD will decrease, remain the same or decrease with probability of 0.3614 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabcdacaqGUaGaae4maiaabAdacaqGXaGa aeinaaaa@40A0@ , 0.3268 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabcdacaqGUaGaae4maiaabkdacaqG2aGa aeioaaaa@40A5@  and 0.3118 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabcdacaqGUaGaae4maiaabgdacaqGXaGa aeioaaaa@409F@ , respectively.

Out of seven trading days, the expected number of visits to the increases state starting from the state of decreases is 2.7221, and the expected number of visits to the decreases state starting from the state of remain the same is 2.0073. Unfortunately, for all states, the expected return time of the LYD against USD was the same that is three days.

The Markov Chain estimation technique is purely a probability forecasting method, as the predicted results have been simply expressed probability of a certain state of exchange rate price in the future rather than being in absolute state, but because it has no after-effects, it is relatively more effective under the price system for forecasting foreign exchange daily closing prices. Due to its memoryless property and random walk capability, in which each state may be reached directly by every other state in the transition matrix, the Markov model fits the data and is able to predict trend, this study shows how the Markov model fits the data and is able to predict trend. As a result, this model will aid both researchers and investors in identifying in general, thereby allowing them to make informed investment decisions in the foreign exchange market, which is influenced by a variety of market factors ranging from multiple market forces to psychological factors affecting investors. Therefore, no single method can accurately predict change in the foreign exchange market. Markov Chain prediction method is no exception and therefore, a combination of results from using Markov Chain to predict with other factors can be more useful as a basis for decision making. The current study was a case study on only the price of Libyan Dinar compare with US Dollar. In addition, the study was based on first-order Markov Chains just with three potential states (increases, remain the same and decreases). As a result of this research, it is suggested that more research be done on numerous exchange rates listed against the Libyan Dinar exchange rate, employing a higher order Markov chain to acquire a better understanding of the foreign currency market’s behaviour.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

  1. Bairagi A, Kakaty, SC. A stochastic process approach to analyse students’ performance in higher education institutions. Int J Stat Syst. 2017;12:323–342.
  2. Bhattarai K, Ben-Naser A. Real exchange rate misalignments of Libyan dinar: fundamentals and markov switching regimes. 2021;1(1):151–162.
  3. Bazina A. Determinants of exchange rate in Libya. Near East University Institute of Social Science. 2017.
  4. Hamza SK, Ahmed AD, Hussein SA. Forecasting the exchange rate of the Iraqi dinar against the US dollar using Markov chains. Period Eng Nat Sci. 2020;8(2):626–631.
  5. Christy I, Emmanuel M, Chiekwe IM, et al. Would exchange rate converge in nigeria? a stochastic-markov transition process analysis. J Econ Sustain Develop. 2013;4(16):191–196.
  6. Quadry MO, Mohamad A, Yusof Y. On Malaysian ringgit exchange rate determination and recent depreciation. Int J Econom Manage Account. 2017;25(1):1–26.
  7. Oduselu-Hassan EO. A Markov chain prediction model on a major pair in the currency market. Nigeria J Math Appl. 2018;27:149–156.
  8. Khemiri R, Ben MS. Exchange rate pass-through and inflation dynamics in Tunisia: A Markov-switching approach. Economics. 2013;7(2012).
  9. Elendu Onwukwe C, Kayode Samson T. On predicting the long run behaviour of Nigerian bank stocks prices: a markov chain approach. Am J Appl Math Stat. 2014;2(4):212–215.
  10. Choji DN, Eduno SN, Kassem GT. Markov chain model application on share price movement in stock market. Comp Eng Intelligent Syst. 2013;4(10):84–95.
  11. Zhang D, Zhang X. Study on forecasting the stock market trend based on stochastic analysis method. Int J Business Manag. 2009;4(6):163–170.
  12. Otieno S, Otumba EO, Nyabwanga RN. Aplication of markov chain to model and forecast stock market trend: A study of Safaricom shares in Nairobi securities excgange, Kenya. Int J Curr Res. 2015;7(4):14712–14721.
  13. Mettle FO, Quaye ENB, Laryea RA. A methodology for stochastic analysis of share prices as Markov chains with finite states. SpringerPlus. 2014;3(1):657.
  14. Agbam AS, Samuel A. Application of markov chain (MC) model to the stochastic forecasting of stocks prices in Nigeria: the case study of dangote cement. 2020;6(1):14–33.
  15. Guha D, Banerji A. Testing for regional cycles: a markov-switching approach. J Econom Social Measure. 1999;25(34):163–182.
  16. Pinsky MA, Karlin S. An introduction to stochastic modeling fourth edition. Burlington, USA, Elsevier. 2011.
  17. Martin, I. What is the expected return on the market? Quarter J Econom. 2017;132(1):367–433.
Creative Commons Attribution License

©2024 Khalid, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.