Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Mini Review Volume 8 Issue 1

Cutting-edge AI apply un-supervised learning to BDA

Harold H Szu

Res. Ord. Professor, Bio-Med. Engineering, Visiting Scholar at CUA, Catholic University of America, USA

Correspondence: Harold H. Szu, Research Ordinary Professor, BME, CUA, Wash DC, Fellows of IEEE, INNS, OCA, SPIE Life Fellow of IEEE, Foreign Academician of RAS, Wash D.C, USA

Received: May 13, 2024 | Published: May 27, 2024

Citation: Szu HH. Cutting-edge AI apply un-supervised learning to BDA. MOJ App Bio Biomech. 2024;8(2):59-60. DOI: 10.15406/mojabb.2024.08.00209

Download PDF

Preface

In order to take advantage of modern computing power, we shall apply AI to Big Data Analysis (BDA) partially from the so-called Art, Culture, Science, and Technology (ACST) --- “experience of Homosapien”, recorded at the 20 Smithsonian Museums and at the National Library of Medicine affiliated with dozens National Institutes of Medicine as well as non-profit Max-Planck ResearchGate.net. We furthermore define unsupervised learning capability that is innate to the Homosapien based on (1) ionic current responsible for Rational IQ and (2) chemical signals supporting Emotional IQ. Thus, we assume that AI computing tools must incorporate thermal temperature to the computer machine, but not operate at low temperature Electromagnetic physics. We begin by reviewing Homosapien intrinsic characteristics: (1) warm blooded brains that provide steady kinetic transport for efficient cellular operations, and (2) the ‘power of paired sensors’ (pops) which gather vector time series order set data Xp(t) for self-referenced unsupervised learning. Likewise, Homosapien have pair time series sensors (ears, eyes, nostrils, olfactory bulbs, taste buds, limbs extremities) which communicate with each other through the nervous system. The nervous system of human brain must be kept in reference at thermodynamics equilibrium, known in biology as homosapiens= . These are necessary but not sufficient conditions for intelligent beings. A higher temperature does not necessarily imply smarter or quicker learning. For example, the chicken’s brain is in equilibrium at  but they lack hands, tools and past experience keeping through evolution to be our growth human beings. 

Introduction

The short history Big Data Analyses (BDA) we introduce Cande, Rambo and Tao, Tao, Donoho, Szu and his associates Hsu Lidan, Qi, Cha, Willey, Jenkins, et al. that has led to decade applications of AI. Cutting-Edge of Artificial Intelligence indicates further the future frontier direction of AI. We discuss both the quantity (law of large numbers) and quality (law of small exceptions) two reasons directions with unsupervised learning as follows without slow down by supervision, (2) if we can further minimize false negative rate for the quality reasons, given the advantage of fast speed of massive parallel computational power, including recently Mr. Elon Musk and industries have advocated quantum computing (QC) with Multi-Billion Dollars using both momentum and coordinate amplitude and phase to computing, as well as without dense VLSI heat loss using the room temperature superconductor (CuO25P6Pb9 Lee-Kim 1999 of Korean University) remained to be verified in 2024 (cf. Wikipedia LK-99) [compared with early attempt of ceramic material Yttrium barium copper oxide YBCO 123 Paul C.W. Chu et. al. under at liquid Nitrogen temperature 77ok & high pressure]. Meanwhile, CEO of Nvidia, Mr. Jensen Huang from Taiwan, Thailand to EE of Stanford Univ., provided few hundred Billion dollars assets to the this Massively Parallel Accelerated computing for Matrix Multiplication as follows.

Big data analysis: AI has Intelligent IQ and Emotion EQ; both are difficult to define or to quantify. One is ‘homoserinely driven ion current’ modulated synaptic gap resistance, the other is measured by source and collector through large chemical molecule signal through diffusion.

Given every data points we artificially assign a small Gaussian envelope over each data set,

  1. Given data set G( μ, g ) x i } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadEeacaWGPbGaamODaiaadwgacaWGUbGa aiiOaiaadsgacaWGHbGaamiDaiaadggacaGGGcGaam4Caiaadwgaca WG0bGaaiiOaiaadEeadaqadaWdaeaapeGaeqiVd0Maaiilaiaaccka caWGNbaacaGLOaGaayzkaaGaeyOKH4QaamiEa8aadaWgaaWcbaWdbi aadMgaa8aabeaak8qacaGG9baaaa@5721@    (1)
  2. Assign Gaussian Group to each data { x i  |( μ i ,  g i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadgeacaWGZbGaam4CaiaadMgacaWGNbGa amOBaiaacckacaWGhbGaamyyaiaadwhacaWGZbGaam4CaiaadMgaca WGHbGaamOBaiaacckacaWGhbGaamOCaiaad+gacaWG1bGaamiCaiaa cckacaWG0bGaam4BaiaacckacaWGLbGaamyyaiaadogacaWGObGaai iOaiaadsgacaWGHbGaamiDaiaadggacaGGGcGaae4EaiaadIhapaWa aSbaaSqaa8qacaWGPbGaaiiOaaWdaeqaaOWdbiaabYhacqGHijYUca GGOaGaeqiVd02damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYca caGGGcGaam4za8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaqGPa aaaa@6DCA@    (2)
  3. Two Major Groups{ G ( min. False Neg. Rate.  );G ( Positive. Rate ) }  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadsfacaWG3bGaam4BaiaacckacaWGnbGa amyyaiaadQgacaWGVbGaamOCaiaacckacaWGhbGaamOCaiaad+gaca WG1bGaamiCaiaadohadaGadaWdaeaapeGaam4raiaacckadaqadaWd aeaapeGaciyBaiaacMgacaGGUbGaaiOlaiaacckacaWGgbGaamyyai aadYgacaWGZbGaamyzaiaacckacaWGobGaamyzaiaadEgacaGGUaGa aiiOaiaadkfacaWGHbGaamiDaiaadwgacaGGUaGaaiiOaaGaayjkai aawMcaaiaacUdacaWGhbGaaiiOamaabmaapaqaa8qacaWGqbGaam4B aiaadohacaWGPbGaamiDaiaadMgacaWG2bGaamyzaiaac6cacaGGGc GaamOuaiaadggacaWG0bGaamyzaaGaayjkaiaawMcaaaGaay5Eaiaa w2haaiaacckaaaa@783D@    (3)

Improved by mans of unsupervised learning; The major groups are done by unsupervised learning reviewed based on Boltzmann as follows.

A well-known short history of unsupervised learning as follows based on Ludwig Boltzmann Concept of Uniformity Called the Entropy as follows

S=  K B  Log W;W=exp( S K B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofacqGH9aqpcaGGGcGaam4sa8aadaWg aaWcbaWdbiaadkeaa8aabeaak8qacaGGGcGaamitaiaad+gacaWGNb GaaiiOaiaadEfacaGG7aGaam4vaiabg2da9iGacwgacaGG4bGaaiiC amaabmaapaqaa8qadaWcaaWdaeaapeGaam4uaaWdaeaapeGaam4sa8 aadaWgaaWcbaWdbiaadkeaa8aabeaaaaaak8qacaGLOaGaayzkaaaa aa@519A@    (4)

Learning is a hallmark of Natural Intelligence (NI), among which the understanding of unsupervised learning help increase the speed without checking for Labels, which is a key breakthrough. 2nd Law info energy said: “as energy diffuses, the entropy increases” helping reach the equilibrium– Hubel-Wiesel edges map.

2nd Law info energy said: “as energy diffuses, the entropy”

(MHF) that has an internal energy E, and entropy S, which operates at the equilibrium temperature To MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGubadcaWGVbaaaa@3E1C@ .

min.   HE T o S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadIeacqGHHjIUcaWGfbGaeyOeI0Iaamiv a8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qacaWGtbaaaa@43C9@     (5)

Thermodynamic learning rule 

Lemma: Due to unsupervised learning, the energy cost function is unknown for image processing at remote sensing. The first order Taylor series becomes 2nd order in the smallness, requiring the second order Taylor series expansion, curvature Ck, to determine the Lagrange error slope vector together with the estimation error which converge self-consistently

S=Sin + Sout MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofacqGH9aqpcaWGtbWccaWGPbGaamOB aOGaaeiiaiabgUcaRiaabccacaWGtbWccaWGVbGaamyDaiaadshaaa a@4700@ ;   (6)

Let us define what do we mean by Big Data Analysis (BDA). There are much more order of magnitude of data set than algebra operation in matrix sensed such as Clinical trial by Kubick WR; Nada Elgendy & Abarerk Eliagal Glen Univ in Cairo Egypt.

ΔH   object  Δ E object    T 0 Δ S object 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadIeacaGGGcWdamaaBaaaleaa peGaam4BaiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqabaGcpe GaeyyyIORaaiiOaiabfs5aejaadweapaWaaSbaaSqaa8qacaWGVbGa amOyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaak8qacaGGGcGaey OeI0IaaiiOaiaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGa euiLdqKaam4ua8aadaWgaaWcbaWdbiaad+gacaWGIbGaamOAaiaadw gacaWGJbGaamiDaaWdaeqaaOWdbiabgsMiJkaabcdacaGGGcGaai4o aaaa@62B7@    (7)

Proof:

Let S Total MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacaWGubGaam4B aiaadshacaWGHbGaamiBaaWdaeqaaaaa@4232@  denote the total entropy of a closed system. Then S Total MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacaWGubGaam4B aiaadshacaWGHbGaamiBaaWdaeqaaaaa@4232@  is the sum of entropy of reservoir and object, S Total  =  S Reservoir  +  S object MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacaWGubGaam4B aiaadshacaWGHbGaamiBaaWdaeqaaOWdbiaacckacqGH9aqpcaGGGc Gaam4ua8aadaWgaaWcbaWdbiaadkfacaWGLbGaam4CaiaadwgacaWG YbGaamODaiaad+gacaWGPbGaamOCaaWdaeqaaOWdbiaacckacqGHRa WkcaGGGcGaam4ua8aadaWgaaWcbaWdbiaad+gacaWGIbGaamOAaiaa dwgacaWGJbGaamiDaaWdaeqaaaaa@5944@

If the object takes Δ E object MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadweapaWaaSbaaSqaa8qacaWG VbGaamOyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaaaaa@4481@ energy from its surroundings, the entropy change of S Reservoir MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWdamaaBaaaleaapeGaamOuaiaadwgacaWGZbGaamyzaiaa dkhacaWG2bGaam4BaiaadMgacaWGYbaapaqabaaaaa@3FB7@ will be   Δ S Reservoir =Δ E object / T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadofapaWaaSbaaSqaa8qacaWG sbGaamyzaiaadohacaWGLbGaamOCaiaadAhacaWGVbGaamyAaiaadk haa8aabeaak8qacqGH9aqpcqGHsislcqqHuoarcaWGfbWdamaaBaaa leaapeGaam4BaiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqaba GcpeGaai4laiaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@544E@ , and the total entropy change is

Δ S Total  = Δ S Reservoir  +Δ S object  = Δ E object T 0  +Δ S object =  Δ E object    T 0 Δ S object T 0 =  Δ H object  T 0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadofapaWaaSbaaSqaa8qacaWG ubGaam4BaiaadshacaWGHbGaamiBaaWdaeqaaOWdbiaacckacqGH9a qpcaGGGcGaeuiLdqKaam4ua8aadaWgaaWcbaWdbiaadkfacaWGLbGa am4CaiaadwgacaWGYbGaamODaiaad+gacaWGPbGaamOCaaWdaeqaaO WdbiaacckacqGHRaWkcqqHuoarcaWGtbWdamaaBaaaleaapeGaam4B aiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqabaGcpeGaaiiOai abg2da9iabgkHiTmaalaaapaqaa8qacqqHuoarcaWGfbWdamaaBaaa leaapeGaam4BaiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqaba aakeaapeGaamiva8aadaWgaaWcbaWdbiaabcdaa8aabeaaaaGcpeGa aiiOaiabgUcaRiabfs5aejaadofapaWaaSbaaSqaa8qacaWGVbGaam OyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaak8qacqGH9aqpcaGG GcGaeyOeI0YaaSaaa8aabaWdbiabfs5aejaadweapaWaaSbaaSqaa8 qacaWGVbGaamOyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaak8qa caGGGcGaeyOeI0IaaiiOaiaadsfapaWaaSbaaSqaa8qacaqGWaaapa qabaGcpeGaeuiLdqKaam4ua8aadaWgaaWcbaWdbiaad+gacaWGIbGa amOAaiaadwgacaWGJbGaamiDaaWdaeqaaaGcbaWdbiaadsfapaWaaS baaSqaa8qacaqGWaaapaqabaaaaOWdbiabg2da9iaacckacqGHsisl daWcaaWdaeaapeGaeuiLdqKaamisa8aadaWgaaWcbaWdbiaad+gaca WGIbGaamOAaiaadwgacaWGJbGaamiDaiaacckaa8aabeaaaOqaa8qa caqGubWdamaaBaaaleaapeGaaeimaaWdaeqaaaaak8qacaGGGcaaaa@9EFB@    (8)

where Δ H object  Δ E object    T 0 Δ S object MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadIeapaWaaSbaaSqaa8qacaWG VbGaamOyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaak8qacqGHHj IUcaGGGcGaeuiLdqKaamyra8aadaWgaaWcbaWdbiaad+gacaWGIbGa amOAaiaadwgacaWGJbGaamiDaaWdaeqaaOWdbiaacckacqGHsislca GGGcGaamiva8aadaWgaaWcbaWdbiaabcdaa8aabeaak8qacqqHuoar caWGtbWdamaaBaaaleaapeGaam4BaiaadkgacaWGQbGaamyzaiaado gacaWG0baapaqabaaaaa@5D26@   is the change of the object’s Helmholtz free energy which is an analytic state function defined by  H=E   T o S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaacckacaWGibGaeyypa0Jaamyraiaaccka caGGtaIaaiiOaiaadsfapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpe Gaam4uaaaa@463B@ . Note that Δ S Total >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadofapaWaaSbaaSqaa8qacaWG ubGaam4BaiaadshacaWGHbGaamiBaaWdaeqaaOWdbiabg6da+iaabc daaaa@456C@  since the total entropy of a closed system is always increasing, and  Δ H object 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaacckacqqHuoarcaWGibWdamaaBaaaleaa peGaam4BaiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqabaGcpe GaeyizImQaaeimaaaa@482A@  given a positive T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qacaqGWaaapaqa baaaaa@3E48@ Q.E.D.

Remarks: In this brief review we shall consider 1) Hebb Product Rule; 2) Helmholtz Ffree Endrgy; 3) Boltzmann Entropy

Hebb learning product rule

Donald Hebb discovered that the neuro-biological synaptic junction learning rule is similar to a pipeline flow, that is proportional to how much goes in and how much comes out the. The Hebb product learning rule between input X i  and output  Y j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadIfapaWaaSbaaSqaa8qacaWGPbGaaiiO aaWdaeqaaOWdbiaadggacaWGUbGaamizaiaacckacaWGVbGaamyDai aadshacaWGWbGaamyDaiaadshacaGGGcGaamywa8aadaWgaaWcbaWd biaadQgaa8aabeaaaaa@4CC5@ .

W i,j = X i Y j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadEfapaWaaSbaaSqaa8qacaWGPbGaaiil aiaadQgaa8aabeaak8qacqGH9aqpcaaMc8Uaamiwa8aadaWgaaWcba WdbiaadMgaa8aabeaak8qacaWGzbWdamaaBaaaleaapeGaamOAaaWd aeqaaaaa@4736@

What is the unsupervised thermodynamic learning is based on the equilibrium at maximum entropy, or equivalently at the minimum free energy.

It’s a systematic way to guess the most probable inverse source solution by directly computing the maximum probability.

Note that by systematic trial and errors, we can de-mix the local mixtures by the MFE principle. There is a finite number of ways that the positive sum of a photon counts can be. Among them, we choose the lowest energy cases: e.g. giving Ludwig Beethoven first 3 notes: “ 5, 5, 1….” : We split the sum 5 = (0+5; 1+4; 2+3; 3+2; 4+1; 5+0) in the unit of energy at temperature KBT=1/40eV for T=300o; and find hidden sources tones 2=3 and 3+2 occurring twice that have the highest canonical probability 2 exp(-2/KBT) exp(-3/KBT). In MFE, we might wish to rule out the rare high energy cases: 0+5 and 1+4, in favor with lower energy but higher chances in equilibrium: twice 2+3; unless other summations involve also these specific pixels.

Helmholtz MFE

Helmholtz assumed such an open dynamic sub-system within the heat reservoir closed system where Boltzmann heat death at maximum entropy was assumed.

ΔH   object  Δ E object    T 0 Δ S object 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadIeacaGGGcWdamaaBaaaleaa peGaam4BaiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqabaGcpe GaeyyyIORaaiiOaiabfs5aejaadweapaWaaSbaaSqaa8qacaWGVbGa amOyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaak8qacaGGGcGaey OeI0IaaiiOaiaadsfapaWaaSbaaSqaa8qacaqGWaaapaqabaGcpeGa euiLdqKaam4ua8aadaWgaaWcbaWdbiaad+gacaWGIbGaamOAaiaadw gacaWGJbGaamiDaaWdaeqaaOWdbiabgsMiJkaabcdacaGGGcGaai4o aaaa@62AF@   min.   HE T o S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadIeacqGHHjIUcaWGfbGaeyOeI0Iaamiv a8aadaWgaaWcbaWdbiaad+gaa8aabeaak8qacaWGtbaaaa@43C8@

Proof:

Let S Total MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacaWGubGaam4B aiaadshacaWGHbGaamiBaaWdaeqaaaaa@4232@  denote the total entropy of a closed system. Then S Total MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacaWGubGaam4B aiaadshacaWGHbGaamiBaaWdaeqaaaaa@4232@  is the sum of entropy of reservoir and object,

S Total  =  S Reservoir  +  S object MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacaWGubGaam4B aiaadshacaWGHbGaamiBaaWdaeqaaOWdbiaacckacqGH9aqpcaGGGc Gaam4ua8aadaWgaaWcbaWdbiaadkfacaWGLbGaam4CaiaadwgacaWG YbGaamODaiaad+gacaWGPbGaamOCaaWdaeqaaOWdbiaacckacqGHRa WkcaGGGcGaam4ua8aadaWgaaWcbaWdbiaad+gacaWGIbGaamOAaiaa dwgacaWGJbGaamiDaaWdaeqaaaaa@5944@

If the object takes Δ E object MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadweapaWaaSbaaSqaa8qacaWG VbGaamOyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaaaaa@4481@ energy from its surroundings, the entropy change of S Reservoir MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadofapaWaaSbaaSqaa8qacaWGsbGaamyz aiaadohacaWGLbGaamOCaiaadAhacaWGVbGaamyAaiaadkhaa8aabe aaaaa@4602@   will be   Δ S Reservoir =Δ E object / T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadofapaWaaSbaaSqaa8qacaWG sbGaamyzaiaadohacaWGLbGaamOCaiaadAhacaWGVbGaamyAaiaadk haa8aabeaak8qacqGH9aqpcqGHsislcqqHuoarcaWGfbWdamaaBaaa leaapeGaam4BaiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqaba GcpeGaai4laiaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaa@544E@ , and the total entropy change is

Δ S Total  = Δ S Reservoir  +Δ S object  = Δ E object T 0  +Δ S object =  Δ E object    T 0 Δ S object T 0 =  Δ H object  T 0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadofapaWaaSbaaSqaa8qacaWG ubGaam4BaiaadshacaWGHbGaamiBaaWdaeqaaOWdbiaacckacqGH9a qpcaGGGcGaeuiLdqKaam4ua8aadaWgaaWcbaWdbiaadkfacaWGLbGa am4CaiaadwgacaWGYbGaamODaiaad+gacaWGPbGaamOCaaWdaeqaaO WdbiaacckacqGHRaWkcqqHuoarcaWGtbWdamaaBaaaleaapeGaam4B aiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqabaGcpeGaaiiOai abg2da9iabgkHiTmaalaaapaqaa8qacqqHuoarcaWGfbWdamaaBaaa leaapeGaam4BaiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqaba aakeaapeGaamiva8aadaWgaaWcbaWdbiaabcdaa8aabeaaaaGcpeGa aiiOaiabgUcaRiabfs5aejaadofapaWaaSbaaSqaa8qacaWGVbGaam OyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaak8qacqGH9aqpcaGG GcGaeyOeI0YaaSaaa8aabaWdbiabfs5aejaadweapaWaaSbaaSqaa8 qacaWGVbGaamOyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaak8qa caGGGcGaeyOeI0IaaiiOaiaadsfapaWaaSbaaSqaa8qacaqGWaaapa qabaGcpeGaeuiLdqKaam4ua8aadaWgaaWcbaWdbiaad+gacaWGIbGa amOAaiaadwgacaWGJbGaamiDaaWdaeqaaaGcbaWdbiaadsfapaWaaS baaSqaa8qacaqGWaaapaqabaaaaOWdbiabg2da9iaacckacqGHsisl daWcaaWdaeaapeGaeuiLdqKaamisa8aadaWgaaWcbaWdbiaad+gaca WGIbGaamOAaiaadwgacaWGJbGaamiDaiaacckaa8aabeaaaOqaa8qa caqGubWdamaaBaaaleaapeGaaeimaaWdaeqaaaaak8qacaGGGcaaaa@9EFB@    (9)

where Δ H object  Δ E object    T 0 Δ S object MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadIeapaWaaSbaaSqaa8qacaWG VbGaamOyaiaadQgacaWGLbGaam4yaiaadshaa8aabeaak8qacqGHHj IUcaGGGcGaeuiLdqKaamyra8aadaWgaaWcbaWdbiaad+gacaWGIbGa amOAaiaadwgacaWGJbGaamiDaaWdaeqaaOWdbiaacckacqGHsislca GGGcGaamiva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqqHuoar caWGtbWdamaaBaaaleaapeGaam4BaiaadkgacaWGQbGaamyzaiaado gacaWG0baapaqabaaaaa@5D2D@  is the change of the object’s Helmholtz free energy which is an analytic state function defined by  H=E   T o S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaacckacaWGibGaeyypa0Jaamyraiaaccka caGGtaIaaiiOaiaadsfapaWaaSbaaSqaa8qacaWGVbaapaqabaGcpe Gaam4uaaaa@463B@ . Note that Δ S Total >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadofapaWaaSbaaSqaa8qacaWG ubGaam4BaiaadshacaWGHbGaamiBaaWdaeqaaOWdbiabg6da+iaabc daaaa@456C@  since the total entropy of a closed system is always increasing, and  Δ H object 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaacckacqqHuoarcaWGibWdamaaBaaaleaa peGaam4BaiaadkgacaWGQbGaamyzaiaadogacaWG0baapaqabaGcpe GaeyizImQaaeimaaaa@482A@  given a positive T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qacaqGWaaapaqa baaaaa@3E48@ Q.E.D.

Conclusion

This thermodynamics learning rule has a long history proposed Candes Romberg and Tao,1 and Tao2 Domoho,3 Miao, Qai, HsuJenkins, Cha Landa as well as Szu et al,4–6 may be a paradigm shift for dealing with spectral image processing with thermodynamics. Various applications have been developed and reported in different journals. It might allow us to consider virtually crossing the full electromagnetic spectrum. Compressive modeling and simulation based on NL LCNN will be published in Optical Engineering (Krapels, Cha, Espinola, Szu). IR triplets for seeing through hot fire and cold dust will be published in IEEE Tran IT (Cha, Abbott, Szu). Thermodynamics physics laws and modern applications will be published in Journal of Modern Physics (Szu, Willey, Cha, Espinola, Krapels). Lots more can happen with your participation in Appendix A BSS by Engineering Filter Approach pixel parallelism. MATLAB pseudo source code is given in Appendix B BSS by Physics Source Approach pixel sequentially, a benchmarked result showed there.7–13

Acknowledgments

Cutting AI applications must minimize the detrimental False Negative Rate (FNR) by means of unsupervise learning Artificial Neural Networks operated at the minimum of Helmhotz free energy, introduced early by INNS scientists Szu et. al.

Funding

None.

Conflicts of interest

Author declares that there are no conflicts of interest.

References

  1. Candes EJ, Romberg J, Tao T. Robust uncertainty principle: exact signal reconstruction from highly incomplete frequency information. IEEE Trans IT. 2006;52(2):489–509.
  2. Candes EJ, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans IT. 2006;52(12):5406–5425.
  3. Donoho D. Compressive sensing. IEEE Trans IT. 2006;52(4):1289–1306.
  4. Szu H, Hsu C, Moon G, et al. Smartphone household wireless electroencephalogram hat. Appl Comp Intel Soft Comp. 2012;2013:1–8.
  5. Szu H, Miao L, Qi H. Unsupervised learning with minimum free energy. SPIE Proc 6576. IN: Independent component analysis, wavelets, unsupervised Nano-biomimetic sensors, and neural networks V (edited by Harold H. Szu, Jack Agee). 2007:657605.
  6. Szu H, Hsu C. Landsat spectral unmixing a la super resolution of blind matrix inversion by constraint maxent neural nets. SPIE Proc. 1997;3078:147–160.
  7. USPTO Patent. Szu H. 7355182 Infrared multispectral camera and process of using infrared multispectral camera. 2008; US PTO 7366564. Szu HH, et al. Nonlinear blind demixing of single pixel underlying radiation sources and digital spectrum local thermometer. 2008.
  8. Szu H, Hsu C, Jenkins J, et al. Capture significant events with neural networks. Neural Netw. 2012;29–30:1–7.
  9. Appleby R, Coward P, Sanders-Reed JN. Evaluation of a passive millimeter wave imaging for wide detection in degraded visual condition. SPIE 7309. 2009. Coward P, Appleby R. Comparison of passive millimeter-wave and IR imagery in a nautical environment. SPIE Proc 7309. PMMW Img Tech. 2009:1–8.
  10. Cha JH, Abbott AL, Szu HH. Passive ranging redundancy reduction in diurnal weather conditions. SPIE Proc 8750. “ICA, Compressive Sampling, Wavelets etc.” (ed. Szu & Dai ) (Baltimore). 2013:1–3.
  11. Hsu C, Hsu MK, Cha J, et al. Adaptive compressive sensing camera. SPIE Proc 8750. “ICA, Compressive Sampling, Wavelets etc.” (ed. Szu & Dai ) (Baltimore). 2013:1–3.
  12. Kubick WR. BDA Lecture Series. Clinical trial information. 2012:26–28.
  13. Elgendy N, Elragal A. Big data analytics: A literature review paper. 2014:214–227.
Creative Commons Attribution License

©2024 Szu. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.