Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Commentary Volume 5 Issue 1

Commentary : ANN involves a variation thresholdlogic that generated a broader artificial intelligenceapps from deterministic chaos to fuzzy logic

Harold Szu, Ph.D1

1Res. Ord. Professor, Bio-Med. Engineering, Catholic University of America, USA
1Res. Ord. Professor, Bio-Med. Engineering, Catholic University of America, USA

Correspondence: Harold Szu, Ph.D, Fellows of IEEE, AIMBE, OSA, INNS, SPIE, Academician RAS, Res. Ord. Professor, BioMed. Engineering, Catholic University of America, USA

Received: May 29, 2021 | Published: July 12, 2021

Citation: Szu H. Commentary: ANN involves a variation threshold logic that generated a broader artificial intelligence apps from deterministic chaos to fuzzy logic. MOJ App Bio Biomech. 2021;5(1):23-25. DOI: 10.15406/mojabb.2021.05.00152

Download PDF

Introduction

We wish to show how computational intelligence can be varied with different neuronal decision logic: (1) Donald Hebb neural networks:  “neurons that fire together wire together1-3 with a Sigmoid Logic (SL) adopted for Artificial Neural Networks (ANN) (2) Mitchell Feigenbaum, a founding father of Chaos Theory,4 bifurcations for “guess-estimation” as deterministic Chaos Intelligence (CI); (3) Lotfi Zadeh open-set possibility thinking called Fuzzy Logic (FL).5 We wish to emphasize these underlying logic have been used for (1) computational intelligence called Artificial Intelligence (AI), Yann LaCun6 NYU Courant Inst. And together with computational simplification threshold logic adopted by Andrew Ng of Stanford7 Developed multiple layer convolution learning called Deep Learning in the massively parallel matrix algebra emulating Layer 1 to 5 at the cortex 17 back of our head HVS; (2) Possibility Intelligence (PI) based on the deterministic chaos; (3) Fuzzy Intelligence (FI), an open-set possibility thinking.6

Figure 1 Twenty to Twenty First Century:  (a) Ludwig Boltzmann (1844 –1906) head-stone: ;(b) Herman Helmholtz(1821 –1894); (c) Donald Hebb (1904 –1985) Hebbian Learning “firing together wiring together”; (d) Michelle Feigenbaum (1944-2019) deterministic Chaos; (e) Lotfi Zadeh(1921-2017), Fuzzy (open-set) Logic;  (f) Academician William A. Hagins (1925-2012) of National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)'s discovered at 1970 the dark current when no incoming photon to a rod, and a single photon can disrupt the “dark current” leading to the detection mechanism.  (g)Yann LeCun of NYU co-inventors of Deep Learning; (h) Andrew Ng of Stanford U of matrix coupled layers deep learning; The single photon can have EMF potential perturbed the membrane potential, as such the dark current is broken (i) “negate the converse” logic when there is no more dark current inhibiting the Ganglion cells, so that the information triggers the detection of a photon overcoming the thermal background noise energy about (1/37) eV through the integration Ganglion cells using own energy to fire to the Cortex 17 area located at the back of our heads. This physiology trick is important to our cavern-dweller ancestors to be able to detect a single photon emitted from wolf eyes in a complete peach dark cavern.  The Boltzmann constants can be compared at the hot room temperature  and our own body temperature 37 o C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIZaGaaG4na8aadaahaaWcbeqaa8qacaWGVbaaaOGaam4qaaaa @39A7@

k B T o = k B (27°C+273°K)= k B 300°K= 1 40 eV2.5%eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamOqaaqabaGccaWGubWaaSbaaSqaaiaad+gaaeqaaOGaeyyp a0Jaam4AamaaBaaaleaacaWGcbaabeaakiaacIcacaaIYaGaaG4nai abgclaWkaadoeacqGHRaWkcaaIYaGaaG4naiaaiodacqGHWcaScaWG lbGaaiykaiabg2da9iaadUgadaWgaaWcbaGaamOqaaqabaGccaaIZa GaaGimaiaaicdacqGHWcaScaWGlbGaeyypa0ZaaSaaaeaacaaIXaaa baGaaGinaiaaicdaaaGaamyzaiaadAfacqGHfjcqcaaIYaGaaiOlai aaiwdacaGGLaGaamyzaiaadAfaaaa@5C0F@

This thermal energy is equivalent to the homeostasis temperature T o =37°C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4BaaqabaGccqGH9aqpcaaIZaGaaG4naiabgclaWkaadoea aaa@3E49@ of the homo-sapiens about   1 37 eV3%eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaiodacaaI3aaaaiaadwgacaWGwbGaeyisISRaaG4maiaa cwcacaWGLbGaamOvaaaa@3FF8@ .

Szu8 detailed how Hagins’ dark currents satisfy the Quantum Mechanics Uncertainty Principle.  (1) First of all, as the single photon has not enough energy to sustain neuronal 100 Hz firing rates we have to forgo the need of information from the energy.   (2) Secondly, we have physiologically keep 100 rods bundled together in a spatial uncertainty unit ∆X for the dark currents. Then, when a single photon processes a sharp momentum Δp/ Δx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaadc hacqWIQjspdaWcgaqaaiabl+qiObqaaiabgs5aejaadIhaaaaaaa@3E67@ requires the support of a large spatial uncertainty ∆X of 100 rods bundle of which the circulating dark current must go through the bundle in order to satisfy the Schrodinger-Dirac uncertainty principle: ΔxΔp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaadI hacqGHuoarcaWGWbGaeyisISRaeS4dHGgaaa@3EA8@ ;

Let’s consider the classical “ions” concept (large calcium ions outside the rods & small potassium ions insides the rods) They were circulating around 150 million rods, and detection “by means of the negate the converse detection logic” among 100 rods integrating  Ganglion neurons (with the uncertainty in position; but sharp in single photon momentum). Furthermore, those ions currents follows one another, like “ducks” walking & quacking across the axon road, but ushered along by means of ten times more and ten times smaller house-cleaning neuralgia (glia: Greek: Glue) cells.

Artificial neuron model

Moreover; the Boltzmann entropy can be rewritten as the canonical probability in terms of Helmholtz free energy  H brain MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamOyaiaadkhacaWGHbGaamyAaiaad6gaaeqaaaaa@3CAC@ .

W=exp( S k B )=exp( ST k B T )=exp( EST k B T )/exp( E k B T )exp( β H brain )/exp( β E brain ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfacqGH9a qpciGGLbGaaiiEaiaacchadaqadaqaamaalaaabaGaam4uaaqaaiaa dUgadaWgaaWcbaGaamOqaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0 JaciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiaadofacaWGubaa baGaam4AamaaBaaaleaacaWGcbaabeaakiaadsfaaaaacaGLOaGaay zkaaGaeyypa0JaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWc aaqaaiaadweacqGHsislcaWGtbGaamivaaqaaiaadUgadaWgaaWcba GaamOqaaqabaGccaWGubaaaaGaayjkaiaawMcaaiaac+caciGGLbGa aiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaamyraaqaaiaadU gadaWgaaWcbaGaamOqaaqabaGccaWGubaaaaGaayjkaiaawMcaaiab ggMi6kGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaeqOSdiMaam isamaaBaaaleaacaWGIbGaamOCaiaadggacaWGPbGaamOBaaqabaaa kiaawIcacaGLPaaacaGGVaGaciyzaiaacIhacaGGWbWaaeWaaeaacq GHsislcqaHYoGycaWGfbWaaSbaaSqaaiaadkgacaWGYbGaamyyaiaa dMgacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@7C00@

H brain I/O E brain I/O S T o ;β 1 k B T o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaqhaa WcbaGaamOyaiaadkhacaWGHbGaamyAaiaad6gaaeaacaWGjbGaai4l aiaad+eaaaGccqGHHjIUcaWGfbWaa0baaSqaaiaadkgacaWGYbGaam yyaiaadMgacaWGUbaabaGaamysaiaac+cacaWGpbaaaOGaeyOeI0Ia am4uaiaadsfadaWgaaWcbaGaam4BaaqabaGccaGG7aGaeqOSdiMaey yyIO7aaSaaaeaacaaIXaaabaGaam4AamaaBaaaleaacaWGcbaabeaa kiaadsfadaWgaaWcbaGaam4Baaqabaaaaaaa@5572@

Artificial neural nets (ANN)1 input/output (I/O) must be normalization with respect to an isothermal brain equilibrium, as the following isothermal logistic map defined the Donald Hebb sigmoid logic3

Input normalization = exp( β H brain input ) exp( β H brain input )+exp( β H brain ouput ) = 1 1+exp ( β( H brain ouput H brain input ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ysaiaad6gacaWGWbGaamyDaiaadshaaeaacaWGUbGaam4Baiaadkha caWGTbGaamyyaiaadYgacaWGPbGaamOEaiaadggacaWG0bGaamyAai aad+gacaWGUbaaaiabg2da9maalaaabaGaciyzaiaacIhacaGGWbWa aeWaaeaacqGHsislcqaHYoGycaWGibWaa0baaSqaaiaadkgacaWGYb GaamyyaiaadMgacaWGUbaabaGaamyAaiaad6gacaWGWbGaamyDaiaa dshaaaaakiaawIcacaGLPaaaaeaaciGGLbGaaiiEaiaacchadaqada qaaiabgkHiTiabek7aIjaadIeadaqhaaWcbaGaamOyaiaadkhacaWG HbGaamyAaiaad6gaaeaacaWGPbGaamOBaiaadchacaWG1bGaamiDaa aaaOGaayjkaiaawMcaaiabgUcaRiGacwgacaGG4bGaaiiCamaabmaa baGaeyOeI0IaeqOSdiMaamisamaaDaaaleaacaWGIbGaamOCaiaadg gacaWGPbGaamOBaaqaaiaad+gacaWG1bGaamiCaiaadwhacaWG0baa aaGccaGLOaGaayzkaaaaaiabg2da9maalaaabaGaaGymaaqaaiaaig dacqGHRaWkciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiabek7a InaabmaabaGaamisamaaDaaaleaacaWGIbGaamOCaiaadggacaWGPb GaamOBaaqaaiaad+gacaWG1bGaamiCaiaadwhacaWG0baaaOGaeyOe I0IaamisamaaDaaaleaacaWGIbGaamOCaiaadggacaWGPbGaamOBaa qaaiaadMgacaWGUbGaamiCaiaadwhacaWG0baaaaGccaGLOaGaayzk aaaacaGLOaGaayzkaaWaaWbaaSqabeaakiadaISHYaIOaaaaaaaa@A30E@

y=σ( x )= 1 1+exp( x ) = [ 1+exp( x ) ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpcqaHdpWCdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaaigdaaeaacaaIXaGaey4kaSIaciyzaiaacIhacaGGWbWaae WaaeaacqGHsislcaWG4baacaGLOaGaayzkaaaaaiabg2da9maadmaa baGaaGymaiabgUcaRiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0 IaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGa eyOeI0IaaGymaaaaaaa@53CF@

It turns out that the slope of sigmoid logic is a mathematics basis of chaos:

dy dx = d dx [ 1+exp( x ) ] 1 = ( 1 ) 2 exp( x ) [ 1+exp( x ) ] 2 = [ 1+exp( x ) ]1 [ 1+exp( x ) ] 2 =y y 2 =y( 1y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpdaWcaaqaaiaadsga aeaacaWGKbGaamiEaaaadaWadaqaaiaaigdacqGHRaWkciGGLbGaai iEaiaacchadaqadaqaaiabgkHiTiaadIhaaiaawIcacaGLPaaaaiaa wUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpda WcaaqaamaabmaabaGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaakiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0 IaamiEaaGaayjkaiaawMcaaaqaamaadmaabaGaaGymaiabgUcaRiGa cwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamiEaaGaayjkaiaawM caaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqp daWcaaqaamaadmaabaGaaGymaiabgUcaRiGacwgacaGG4bGaaiiCam aabmaabaGaeyOeI0IaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2fa aiabgkHiTiaaigdaaeaadaWadaqaaiaaigdacqGHRaWkciGGLbGaai iEaiaacchadaqadaqaaiabgkHiTiaadIhaaiaawIcacaGLPaaaaiaa wUfacaGLDbaadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaamyEai abgkHiTiaadMhadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWG5bWa aeWaaeaacaaIXaGaeyOeI0IaamyEaaGaayjkaiaawMcaaaaa@8364@

This is equivalent to set Michelle Feigenbaum4 bifurcation logistic map  lambda knob

Fig.2 (a) Feigenbaum logistic map; (b) bifurcation toward deterministic chaos.

dy dx =4λy( 1y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpcaaI0aGaeq4UdWMa amyEamaabmaabaGaaGymaiabgkHiTiaadMhaaiaawIcacaGLPaaaaa a@4390@

Lambda knot   dy dx =1;4λ=1,y=λ;x= 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpcaaIXaGaai4oaiaa isdacqaH7oaBcqGH9aqpcaaIXaGaaiilaiaadMhacqGH9aqpcqaH7o aBcaGG7aGaamiEaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaaa aa@4A4F@

Lambda knot λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C2@  generates the bifurcation cascades

Bifurcation led to deterministic chaos which with multiple origins can result into a collection of Einstein diffusion

Robert May followed its discrete approximation of the sigmoid logic, and showed is the stable (bifurcation or fertility) birth rate per-generation. “If it is too high in birth ratescan breed sever competition, on the other hand the fertility were too low the population cannot sustain.”

Δ y n+1 =4λ y n ( 1 y n );n=1,2,3;Δx=1;λ0.575 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaadM hadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0JaaGin aiabeU7aSjaadMhadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaaig dacqGHsislcaWG5bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzk aaGaai4oaiaad6gacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG 4maiaacUdacaaMc8UaaGPaVlabgs5aejaadIhacqGH9aqpcaaIXaGa ai4oaiaaykW7caaMc8Uaeq4UdWMaeyyrIaKaaGimaiaac6cacaaI1a GaaG4naiaaiwdaaaa@5FDD@

Since bifurcation helps mixing into diffusion, we shall furthermore derive Diffusion Equation in discrete time steps τ 10  in the continuous random space governed with the probability density φ(Δ)dΔ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaGaeq OXdOMaaiikaiabgs5aejaacMcacaWGKbGaeyiLdqKaeyypa0JaaGym aaWcbeqab0Gaey4kIipaaaa@4197@ .

f(t,x)+τ t f( t ,x )| t =t +...=f(t=t+τ,x)Taylorexpansion MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiaacYcacaWG4bGaaiykaiabgUcaRiabes8a0naalaaabaGa eyOaIylabaGaeyOaIyRabmiDayaafaaaaiaadAgadaqadaqaaiqads hagaqbaiaacYcacaWG4baacaGLOaGaayzkaaWaaqqaaeaadaWgaaWc baGabmiDayaafaGaeyypa0JaamiDaaqabaaakiaawEa7aiabgUcaRi aac6cacaGGUaGaaiOlaiabg2da9iaadAgacaGGOaGaamiDaiabg2da 9iaadshacqGHRaWkcqaHepaDcaGGSaGaamiEaiaacMcacaaMc8Uaam ivaiaadggacaWG5bGaamiBaiaad+gacaWGYbGaaGPaVlGacwgacaGG 4bGaaiiCaiaadggacaWGUbGaam4CaiaadMgacaWGVbGaamOBaaaa@6B32@

= f( t,xΔ ) φ( Δ )dΔEΔ[ f( t,xΔ ) ]=f( t,x ) φ( Δ )dΔ+ x f( t,x ) Δ φ( Δ )dΔ+ 2 x 2 f( t,x ) Δ 2 2 φ( Δ )dΔf( t,x )+0+ D o 2 x 2 f( t,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maape aabaGaamOzamaabmaabaGaamiDaiaacYcacaWG4bGaeyOeI0IaeyiL dqeacaGLOaGaayzkaaaaleqabeqdcqGHRiI8aOGaeqOXdO2aaeWaae aacqGHuoaraiaawIcacaGLPaaacaWGKbGaeyiLdqKaeyyyIORaamyr aiabgs5aenaadmaabaGaamOzamaabmaabaGaaiiDaiaacYcacaWG4b GaeyOeI0IaeyiLdqeacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyyp a0JaamOzamaabmaabaGaamiDaiaacYcacaWG4baacaGLOaGaayzkaa Waa8qaaeaacqaHgpGAdaqadaqaaiabgs5aebGaayjkaiaawMcaaiaa dsgacqGHuoarcqGHRaWkdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadI haaaGaamOzamaabmaabaGaamiDaiaacYcacaWG4baacaGLOaGaayzk aaWaa8qaaeaacqGHuoarcqGHflY1aSqabeqaniabgUIiYdaaleqabe qdcqGHRiI8aOGaaGPaVlabeA8aQnaabmaabaGaeyiLdqeacaGLOaGa ayzkaaGaamizaiabgs5aejabgUcaRmaalaaabaGaeyOaIy7aaWbaaS qabeaacaaIYaaaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOm aaaaaaGccaWGMbWaaeWaaeaacaWG0bGaaiilaiaadIhaaiaawIcaca GLPaaadaWdbaqaamaalaaabaGaeyiLdq0aaWbaaSqabeaacaaIYaaa aaGcbaGaaGOmaaaaaSqabeqaniabgUIiYdGccqGHflY1caaMc8Uaeq OXdO2aaeWaaeaacqGHuoaraiaawIcacaGLPaaacaWGKbGaeyiLdqKa eyyyIORaamOzamaabmaabaGaamiDaiaacYcacaWG4baacaGLOaGaay zkaaGaey4kaSIaaGimaiabgUcaRiaadseadaWgaaWcbaGaam4Baaqa baGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaaOqaaiabgk Gi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaamOzamaabmaabaGa amiDaiaacYcacaWG4baacaGLOaGaayzkaaaaaa@AEED@

t f( t,x )= D o 2 x 2 f( t,x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaamiDaaaacaWGMbWaaeWaaeaacaWG0bGaaiil aiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGebWaaSbaaSqaaiaad+ gaaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaaakeaa cqGHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiaadAgadaqada qaaiaadshacaGGSaGaamiEaaGaayjkaiaawMcaaaaa@4DCF@

Scalar Diffusion constant, that’s the reason why it’s second order in space.

D o < Δ 2 2τ >= 1 2τ Δ 2 φ(Δ)dΔ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaam4BaaqabaGccqGHHjIUcqGH8aapdaWcaaqaaiabgs5aenaa CaaaleqabaGaaGOmaaaaaOqaaiaaikdacqaHepaDaaGaeyOpa4Jaey ypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabes8a0baadaWdbaqaaiab gs5aenaaCaaaleqabaGaaGOmaaaakiabgwSixdWcbeqab0Gaey4kIi pakiaaykW7cqaHgpGAcaGGOaGaeyiLdqKaaiykaiaadsgacqGHuoar aaa@5514@

Figure 3 All phenomenology were related, from underground bifurcation leading to Chaos turbulent, Earth quake, and Fire Diffusion on the ground. A typical historical cases was On April 18, 1906, an earthquake and subsequent fires devastated San Francisco, California, leaving more than 3,000 people dead and destroying more than 28,000 buildings. The quake ruptured the San Andreas fault to the north and south of the city, for a total of 296 miles, and could be felt from southern Oregon to Los Angeles and inland to central Nevada.

Conclusion

All these results seem to be unrelated but confirm what Albert Einstein said all along “Science has nothing to do with the truth, but the consistency.” To substantiate this thinking, we have begun with Ludwig Boltzmann, so-called Entropy, S, to Herman erman Herman Helmholtz free to-do-work energy, which has been derived from and degree of no-information, so-called entropy.  Once again, we have demonstrated the fact that the scientific disciplines do not stand alone, but mutually dependent on by the consistency and simplicity.

Acknowledgments

ONR 321Grant N0001420 12271.

Appendix

Thermal mixing of chemical hormones signal in animal instant responses.

  1. Externally:

Einstein interpreted the botanist Brown observed phenomena, the so-called Brownian motions, as one can visually see, without using the microscope, the thermally agitating water molecules kicking incessantly around the macroscopic pollen. Likewise, the smoke coming out of the chimney initially in a linear motion and then in parabolic motion due to the air molecules kicking around the smoke particles incessantly.

  1. Internally:

Homo sapiens (the wise one) have kept thermal equilibrium of core body energy at T o =( 37°C+273K ) k B ( 1/ 37 )eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4BaaqabaGccqGH9aqpdaqadaqaaiaaiodacaaI3aGaeyiS aaRaam4qaiabgUcaRiaaikdacaaI3aGaaG4maiaadUeaaiaawIcaca GLPaaacaWGRbWaaSbaaSqaaiaadkeaaeqaaOGaeyyrIa0aaeWaaeaa daWcgaqaaiaaigdaaeaacaaIZaGaaG4naaaaaiaawIcacaGLPaaaca WGLbGaamOvaaaa@4C7B@ .  According to Boltzmann the definition of entropyis S= k B LogW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacqGH9a qpcaWGRbWaaSbaaSqaaiaadkeaaeqaaOGaamitaiaad+gacaWGNbGa am4vaaaa@3E66@ proportional to the available phase space W, and the total entropy should be separated into internal and external S= S in + S out MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacqGH9a qpcaWGtbWaaSbaaSqaaiaadMgacaWGUbaabeaakiabgUcaRiaadofa daWgaaWcbaGaam4BaiaadwhacaWG0baabeaaaaa@40A8@ then, the homo-sapiens isothermal equilibrium system turns out to be associated with the sigmoid logic derived as follows:

W=exp( S k B )=exp( S T o k B T o )=exp( ( S in + S out ) T o k B T o )=exp( β H in ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfacqGH9a qpciGGLbGaaiiEaiaacchadaqadaqaamaalaaabaGaam4uaaqaaiaa dUgadaWgaaWcbaGaamOqaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0 JaciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiaadofacaWGubWa aSbaaSqaaiaad+gaaeqaaaGcbaGaam4AamaaBaaaleaacaWGcbaabe aakiaadsfadaWgaaWcbaGaam4BaaqabaaaaaGccaGLOaGaayzkaaGa eyypa0JaciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaamaabmaaba Gaam4uamaaBaaaleaacaWGPbGaamOBaaqabaGccqGHRaWkcaWGtbWa aSbaaSqaaiaad+gacaWG1bGaamiDaaqabaaakiaawIcacaGLPaaaca WGubWaaSbaaSqaaiaad+gaaeqaaaGcbaGaam4AamaaBaaaleaacaWG cbaabeaakiaadsfadaWgaaWcbaGaam4BaaqabaaaaaGccaGLOaGaay zkaaGaeyypa0JaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislcqaH YoGycaWGibWaaSbaaSqaaiaadMgacaWGUbaabeaaaOGaayjkaiaawM caaaaa@6C06@

Where use is made of the conservation of thermal energy E in + S out T o =0; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamyAaiaad6gaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWG VbGaamyDaiaadshaaeqaaOGaamivamaaBaaaleaacaWGVbaabeaaki abg2da9iaaicdacaGG7aaaaa@4348@ the short hand notation β 1 k B T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabgg Mi6oaaliaabaGaaGymaaqaaiaadUgadaWgaaWcbaGaamOqaaqabaGc caWGubaaaaaa@3E0B@  and Helmholtz (internal) free (to do work) energy  H in E in S in T o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamyAaiaad6gaaeqaaOGaeyyyIORaamyramaaBaaaleaacaWG PbGaamOBaaqabaGccqGHsislcaWGtbWaaSbaaSqaaiaadMgacaWGUb aabeaakiaadsfadaWgaaWcbaGaam4Baaqabaaaaa@4471@ .

Neuronal logic is a weighted probability of the output with respect to the total probability defined as the following logistic sigmoid function.

σ(x)= exp( β H out ) exp( β H in )+exp( β H out ) = 1 exp( β( H in H out ) )+1 1 exp( x )+1 ;xβ( H out H in ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjaacI cacaWG4bGaaiykaiabg2da9maalaaabaGaciyzaiaacIhacaGGWbWa aeWaaeaacqGHsislcqaHYoGycaWGibWaaSbaaSqaaiaad+gacaWG1b GaamiDaaqabaaakiaawIcacaGLPaaaaeaaciGGLbGaaiiEaiaaccha daqadaqaaiabgkHiTiabek7aIjaadIeadaWgaaWcbaGaamyAaiaad6 gaaeqaaaGccaGLOaGaayzkaaGaey4kaSIaciyzaiaacIhacaGGWbWa aeWaaeaacqGHsislcqaHYoGycaWGibWaaSbaaSqaaiaad+gacaWG1b GaamiDaaqabaaakiaawIcacaGLPaaaaaGaeyypa0ZaaSaaaeaacaaI XaaabaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislcqaHYoGyda qadaqaaiaadIeadaWgaaWcbaGaamyAaiaad6gaaeqaaOGaeyOeI0Ia amisamaaBaaaleaacaWGVbGaamyDaiaadshaaeqaaaGccaGLOaGaay zkaaaacaGLOaGaayzkaaGaey4kaSIaaGymaaaacqGHHjIUdaWcaaqa aiaaigdaaeaaciGGLbGaaiiEaiaacchadaqadaqaaiaadIhaaiaawI cacaGLPaaacqGHRaWkcaaIXaaaaiaacUdacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caWG4bGaeyyyIORaeqOSdi2aaeWaaeaaca WGibWaaSbaaSqaaiaad+gacaWG1bGaamiDaaqabaGccqGHsislcaWG ibWaaSbaaSqaaiaadMgacaWGUbaabeaaaOGaayjkaiaawMcaaaaa@918F@

Clearly, the Ricati equation follows:

dσ dx = d dx [ exp( x )+1 ] 1 = [ exp( x )+1 ] 2 [ exp( x )+11 ]=σ+ σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabeo8aZbqaaiaadsgacaWG4baaaiabg2da9maalaaabaGaamiz aaqaaiaadsgacaWG4baaamaadmaabaGaciyzaiaacIhacaGGWbWaae WaaeaacaWG4baacaGLOaGaayzkaaGaey4kaSIaaGymaaGaay5waiaa w2faamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iabgkHiTm aadmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaacaWG4baacaGLOaGa ayzkaaGaey4kaSIaaGymaaGaay5waiaaw2faamaaCaaaleqabaGaey OeI0IaaGOmaaaakmaadmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaa caWG4baacaGLOaGaayzkaaGaey4kaSIaaGymaiabgkHiTiaaigdaai aawUfacaGLDbaacqGH9aqpcqGHsislcqaHdpWCcqGHRaWkcqaHdpWC daahaaWcbeqaaiaaikdaaaaaaa@6903@

We can apply the Baker or E.  Hopf transform to linear-lize the pseudo nonlinearity to reduce to the second order diffusion equation as follows:

Letσ= φ φ [ = dlogφ dx ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaWGLb GaamiDaiaaykW7cqaHdpWCcqGH9aqpcqGHsisldaWcaaqaaiqbeA8a QzaafaaabaGaeqOXdOgaamaadmaabaGaeyypa0JaeyOeI0YaaSaaae aacaWGKbGaciiBaiaac+gacaGGNbGaeqOXdOgabaGaamizaiaadIha aaaacaGLBbGaayzxaaaaaa@4DEA@

Then  dσ dx = φ φ + φ 2 φ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabeo8aZbqaaiaadsgacaWG4baaaiabg2da9iabgkHiTmaalaaa baGafqOXdOMbayaaaeaacqaHgpGAaaGaey4kaSYaaSaaaeaacuaHgp GAgaqbaiaaikdaaeaacqaHgpGAdaahaaWcbeqaaiaaikdaaaaaaaaa @4757@ ;

Consequently from sigmoid defining equation  dσ dx +σ= σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabeo8aZbqaaiaadsgacaWG4baaaiabgUcaRiabeo8aZjabg2da 9iabeo8aZnaaCaaaleqabaGaaGOmaaaaaaa@4207@ follows

RHS= [ φ φ ] 2 =LHS= φ φ + φ 2 φ 2 φ φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaWGib Gaam4uaiabg2da9maadmaabaWaaSaaaeaacuaHgpGAgaqbaaqaaiab eA8aQbaaaiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaaGccqGH9a qpcaWGmbGaamisaiaadofacqGH9aqpcqGHsisldaWcaaqaaiqbeA8a QzaagaaabaGaeqOXdOgaaiabgUcaRmaalaaabaGafqOXdOMbauaaca aIYaaabaGaeqOXdO2aaWbaaSqabeaacaaIYaaaaaaakiabgkHiTmaa laaabaGafqOXdOMbauaaaeaacqaHgpGAaaaaaa@54BB@ ; One has arrived from the sigmoid logic the φ = φ = φ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeA8aQzaaga Gaeyypa0JaeyOeI0IafqOXdOMbauaacqGH9aqpcqaHgpGAdaWgaaWc baGaamiDaaqabaaaaa@407C@ , where use is made of replacing the streaming with partial time derivative of Einstein equation of thermal diffusion of chemical hormone signals in rapid emotional response  φ = φ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeA8aQzaaga Gaeyypa0JaeqOXdO2aaSbaaSqaaiaadshaaeqaaaaa@3CC0@ .

References

  1. Larry Medsker of ACM interviewed Harold Szu for his visional pioneer effort ( together with 17 International Interdisciplinary Renown Scientists) to establish the International of Neural Network Society (INNS)in 1988.
  2. The Dangers of Artificial Intelligence - Robot Sophia makes fun of Elon Musk - A.I. 2018 2ndEarth.
  3. Donald O. Hebb: worked between 1932 and 1949,  led to the publication of “neurons that fire together wire together” in the book of “The Organization of Behavior” the concepts of the “Hebb synapse”, “Hebbian cell assembly”
  4. Feigenbaum MJ. "Quantitative Universality for a Class of Non-Linear Transformations". J Stat Phys. 1978;19(1):25–52.
  5. Zadeh LA. "Fuzzy logic = computing with words". IEEE Transactions on Fuzzy Systems. 1996;4(2):103–111.
  6. Yann LeCun, NYU Center for Data Science, and the Courant Institute of Mathematical Science..cf. “Deep Learning,” Yann LeCun, Yoshua Bengio & Geoffrey Hinton, Nature 521, pp 436-444 (2015); (LeNet is a convolutional neural network structure proposed by Yann LeCun et al. in 1989).
  7. Andrew Ng, associated with Stanford CS, utilized the massively parallel matrix algebra in the “Coursera” internet course populated  the Deep Learning Computational Intelligence Work, app to image processing etc.
  8. Harold Szu. “Elucidation of human vision systems at microscopic level,” MOJ App Bionics & Biomechanics. 2018;2(2):137–142.
  9. Harold Szu, Takeshi Yamakawa. Isothermal Brain pertaining McCullough Pitts Logic  implication Walter Freeman ionic diffusion & Lotfi Zadeh fuzzy logic that might be useful for coding autonomous vehicles to coexisting with Pedestrians’. MOJ Bionics & Biomechanics. 2018;2(3):177‒184.
Creative Commons Attribution License

©2021 Szu. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.