Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Review Article Volume 3 Issue 2

Biomathematical model study on the opioid crisis in America

Bin Zhao,1 Xia Jiang,2 Jinming Cao,3 Kuiyun Huang,1 Jingfeng Tang4

1School of Science, Hubei University of Technology, China
1School of Science, Hubei University of Technology, China
2Hospital, Hubei University of Technology, China
3School of Information and Mathematics, Yangtze University, China
4National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, China

Correspondence: Dr. Bin Zhao, School of Science, Hubei University of Technology, Wuhan, Hubei, China

Received: February 20, 2019 | Published: February 27, 2019

Citation: Zhao B, Jiang X, Cao J, et al. Biomathematical model study on the opioid crisis in America. MOJ App Bio Biomech. 2019;3(1):34-46. DOI: 10.15406/mojabb.2019.03.00097

Download PDF

Abstract

In the process of this paper, we started with the data from 2010 to 2017 provided by NFLIS concerned with opioid crisis in the US. After sorting and analyzing the panel data, we decided to transform the derived data and then model the panel data, cross-section data and time series data respectively. Next, we consider how to objectively select a large number of socio-economic data and indicators, and then establish a model that can reflect two different databases at the same time, so that the model can be combined with some indicators. Finally, we propose a feasible strategy to resist the opioid crisis.

Keywords: dynamic panel data model, systematic cluster analysis, correlation analysis, weighted principal component analysis

Introduction

The United States opioid epidemic is a nationwide public health crisis. Opioids are prescription drugs, and three-thirds of the deaths from opioids die each year from opioid prescription drugs. Heroin is one of the most highly dependent substances in opioids. It is more addictive than any other drug and is loved by addicts. Although heroin mortality is high, it is still difficult to control.1 Since President Nixon launched a large-scale anti-drug operation in the late 1960s, successive US administrations have made unremitting efforts in combating drug smuggling and controlling the spread of drugs. They have also set up the Narcotics Bureau to kill drugs from the root causes. According to statistics, an average of 40 people die every day in the United States due to overdose of opioids. This number has tripled since 1999.2 The National Drug Use and Health Survey (NSDUH) of the US Drug Abuse and Mental Health Service Management (SAMHSA) shows that in 2016, more than 11 million people in the United States abused opioid prescription drugs and nearly 1 million people used heroin. All of the above indications indicate that the use of opioids in the United States has caused serious social problems. The real need for the United States to face up is the growing gap between the rich and the poor, the inability to make ends meet, and the low-education employment opportunities.

Methods

We discuss the extent of opioids flooding, and establishes a dynamic panel data model for characterization and prediction of crisis, using generalized moment estimation and time series analysis to solve the model; the grey relational analysis is carried out to judge whether the use of opioids is related to population data, and the principal component evaluation model is established to verify the results; the linear programming model was analyzed using the sensitivity analysis for the validity of the test strategy. First, a multi-dimensional descriptive statistical analysis of the data, and found the geographical distribution of opioids. The data was organized into panel data. On the one hand, the dynamic panel data model was established and the parameters were estimated by generalized moments. It was concluded that the heroin should first appeared in 1910, OH-HAMILTON and synthetic opioids first appeared in 1939 PA-PHILADELPHIA. On the other hand, the Hierachical Cluster based on the panel data of “absolute quantity”, “fluctuation”, “skewness”, “kurtosis” and “trend” feature extraction is used to find out the five counties that need the most concern in the US. And time Series Analysis was used to find the year when these counties reached the drug threshold and the threshold level was obtained by the dynamic panel data model. For example, the threshold for the number of synthetic opioid cases in OH-CUYAHOGA in 2018 was 6783.

To judge whether the use of opioids is related to US population data, use gray correlation analysis to find the ratio of the number of heroin and synthetic opioid cases in the county to the total number of identified substances. The correlation between the two and the selected first-level indicators from the population data is greater than 0.5, indicating that the degree of association between them is greater. To verify the five counties that may cause the US to panic, the entropy weight method is used to select 16 indicators, and the indicators in the NFLIS are combined to establish a comprehensive evaluation system for the degree of opioid flooding and principal component evaluation model. The comprehensive weighted scores were used as the class of opioid flooding scores, and the 461 counties in 8 years were distributed according to the frequency distribution of F values, and the degree of opioid abuse was divided into three levels: severe, general and lower. We propose the strategies for combating the opioid crisis: the US can stipulate that all people must have completed the 12th grade compulsory education when they are 25 years old. To test the effectiveness of the strategy and determine the range of important parameters, a sensitivity analysis of linear programming was used. Taking min F1 as the objective function, a constraint condition is formed between the 20 indicators, and the parameter range (c, k) of each index is obtained by local sensitivity analysis. The obtained parameter range is brought into the first principal component expression, and it is determined whether the parameter range is valid according to the level of the F1. In the end, the parameters of high school education, university but no degree and university degree and above are correct (0,0.2637), (0.2615,1), (0.2615,1), and the flood levels of the four counties are correct. Has been reduced to a lower level, only Hamilton County, Ohio's hazard level reduced to a general conclusion, which shows that the strategy is effective.

Biomathematical model establishment and solution

Biomathematical modelling

Multidimensional descriptive statistical analysis model

This study investigates the data concerned with opioid crisis from 461 counties in the five states from 2010 to 2017, with a total of 24,063 samples and 61 substance name.

Counties: The data can be sorted out. In the 461 counties, not every county has an incident report every year. The reason may be that the data of the current year is difficult to obtain, or the data of the year is 0, so it is omitted. However, we believe that either case can indicate that the county’s drug abuse has not reached a serious level. Combined with the data of each county, the counties with missing data have fewer drugs in the few years with data, close to zero, so we fill the value of the drug that was missing in the county from zero.

Substance Name: The name of the substance identified in the analysis contains 47 synthetic opioids and 13 non-synthetic opioids, these 13 non-synthetic drugs are Codeine, Dihydrocodeine, Acetylcodeine, Acetyldihydrocodeine, Morphine, Heroin, Hydromorphone, Oxycodone, Oxymorphone, Buprenorphine, Hydrocodone, Nalbuphine, Dihydromorphone.

YYYY&FIPS_Combined: The time and county code data are all integers, and the distance between the data is the same, so the two columns of data are logarithmically transformed to make the data better visualized, and the difference between the two columns is small, especially year. Therefore the logarithmic transformation is performed with a base of 1.1.

The overall trend of the number of drugs in the five states from 2010 to 2017 and the overall trend of the number of heroin were analyzed. The resulting bar chart is shown in Figures 1 & 2. It can be seen intuitively from Figure 1 that the total number of drugs in KY and OH states is far greater than the other three states. Among them, the OH state has increased year by year, the PA state has decreased year by year, the VA state has fluctuated greatly, and the KY state and the WV state have stabilized at a lower value. As can be seen from Figure 2, the number of heroin in these five regions increased first and then decreased over time. The turning point is probably in 2015, and the number of heroin in OH and PA states is much higher than in the other three states. Therefore, PA State and OH State are the targets of key observations. Further analysis of the change in the proportion of the substance identified in the analysis from 2010 to 2017, the resulting percentage of the accumulated area is shown in Figure 3. The greater the proportion of color in the percentage stacked graph, the greater the proportion of the substance in the analysis. It can be seen from Figure 3 that heroin (dark brown part of Figure 3) accounts for the most, nearly half. Followed by Oxycodone (light grey), the proportion of other substances is much smaller than heroin. Continue to observe the geographical distribution of the number of heroin, as shown in Figure 4. It can be seen from Figure 4 that heroin is concentrated in five counties, and the codes according to the distribution order (FIPS) are 39035, 39061, 39113, 42003, 42101.

Figure 1 Changes in the number of drugs in five states.

Figure 2 Changes in the number of heroin.

Figure 3 percentage stacked column chart.

Figure 4 Geographical distribution of opioids.

The establishment of dynamic panel data model

The data given in the title is multi-indicator panel data. In order to facilitate the observation of indicators, the data is organized into the form of Table 1. Strictly speaking, it should be represented by a three-dimensional table. For ease of understanding and explanation, the following two tables are still used. As shown in Table 1, there are a total of N samples in the study. Each sample has T records and p indicators per period. Then the value of the j-th indicator of the sample i in the t-th period is, where i=1,2Nj=1,2pt=1,2T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca aI9aGaaGymaiaaiYcacaaIYaGaeS47IWKaamOtaiaadQgacaaI9aGa aGymaiaaiYcacaaIYaGaeS47IWKaamiCaiaadshacaaI9aGaaGymai aaiYcacaaIYaGaeS47IWKaamivaaaa@4A96@ , the difference between this table and the simple two-dimensional table is that it contains three-dimensional information such as time, sample and indicator.

Time

1

t

T

Sample

X1…Xj…Xp

X1…Xj…Xp

X1…Xj…Xp

1

X11(1)

X1p(1)

X11(t)

X1p(t)

X11(T)

X1p(T)

2

X21(1)

X2p(1)

X21(t)

X2p(t)

X21(T)

X2p(T)

i

Xi1(1)

Xip(1)

Xi1(t)

Xip(t)

Xi1(T)

Xip(T)

N

XN1(1)

XNp(1)

XN1(t)

XNp(t)

XN1(T)

XNp(T)

Table 1 Multiple indicator panel data

Data preprocessing

The data of time and county code are integers, and the distance between the data is the same, so the two columns of data are logarithmically transformed to make the data better visual, and the difference between the two columns is small, especially time. Therefore, the logarithmic transformation is performed with a base of 1.1.

Dynamic panel data model establishment

Since the title requires determining the earliest position used by the specific opioid, the quantization model is prioritized to incorporate the position as a variable into the model to solve the earliest position. Therefore, the regression model is used. The initial model is as follows

Y=α+ β 1 X 1 + β 2 X 2 + β 3 X 3 +μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfaca aI9aGaeqySdeMaey4kaSIaeqOSdi2cdaWgaaqcfayaaKqzadGaaGym aaqcfayabaGaamiwamaaBaaabaqcLbmacaaIXaaajuaGbeaacqGHRa WkcqaHYoGydaWgaaqaaKqzadGaaGOmaaqcfayabaGaamiwamaaBaaa baqcLbmacaaIYaaajuaGbeaacqGHRaWkcqaHYoGydaWgaaqaaKqzad GaaG4maaqcfayabaGaamiwaSWaaSbaaKqbagaajugWaiaaiodaaKqb agqaaiabgUcaRiabeY7aTbaa@573D@ (3.1)

Among them, Y represents the number of drugs identified in each county, X1 represents the code of each county, X2 represents time (yearly), and X3 represents the ratio of the number of identified drugs in each county to the total number of confirmed drug cases in the county for we believe that the ratio can reflect the degree of development of drugs to some extent. Considering the indelibility and infectivity of drugs, the drugs that lag behind the first phase should have an impact on the previous period. Therefore, the lag phase is included as an explanatory variable in the model, and the first-order lag variable is considered. Since the explanatory variables contain both time variables and regional variables, and cover both time series data and cross-section data, the dynamic panel data model is finally adopted. Since the number and proportion of drugs have zero values, the initial model (3.1) is adjusted as follows.

Y=α+ β 0 Y i(t1) + β 1 log 1 X 1 + β 2 log 1 X 2 + β 3 X 3 +μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfaca aI9aGaeqySdeMaey4kaSIaeqOSdi2aaSbaaeaajugWaiaaicdaaKqb agqaaiaadMfadaWgaaqaaKqzadGaamyAaiaaiIcacaWG0bGaeyOeI0 IaaGymaiaaiMcaaKqbagqaaiabgUcaRiabek7aInaaBaaabaqcLbma caaIXaaajuaGbeaadaqfqaqabeaajugWaiaaigdaaKqbagqabaGaci iBaiaac+gacaGGNbaaaiaadIfadaWgaaqaaKqzadGaaGymaaqcfaya baGaey4kaSIaeqOSdi2cdaWgaaqcfayaaKqzadGaaGOmaaqcfayaba WaaubeaeqabaqcLbmacaaIXaaajuaGbeqaaiGacYgacaGGVbGaai4z aaaacaWGybWcdaWgaaqcfayaaKqzadGaaGOmaaqcfayabaGaey4kaS IaeqOSdi2cdaWgaaqcfayaaKqzadGaaG4maaqcfayabaGaamiwamaa BaaabaqcLbmacaaIZaaajuaGbeaacqGHRaWkcqaH8oqBaaa@6F89@ (3.2)

where  number of drugs identified in the t-th year of the i-th county.

Model solving and analysis

In the dynamic panel data model, due to the existence of the lag-interpreted variable, it is possible that the explanatory variable is related to the random error term, so that the estimators obtained by using OLS and GLS are biased and non-uniform. Ahn and Schmidt (1995) and Judson and Oewn (1999) used generalized moments (GMM) to study the parameter estimation of the dynamic panel data model, the statistical properties of the estimates and the model checking methods.3 The core idea of GMM estimation is to use tool variables to generate corresponding moment conditions.

According to the estimation idea of GMM, the model (3.2) is estimated by EVIEWS software, and the hysteresis order is determined according to whether the t-test of the parameter estimation has robustness. The result is as follows.

Section 1: Heroin

Y it =84481.93+0.9934 Y i(t1) 0.4126 log 1.1 X 1 105.856 log 1.1 X 2 +75.018 X 3 +μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfalm aaBaaajuaGbaqcLbmacaWGPbGaamiDaaqcfayabaGaaGypaiaaiIda caaI0aGaaGinaiaaiIdacaaIXaGaaGOlaiaaiMdacaaIZaGaey4kaS IaaGimaiaai6cacaaI5aGaaGyoaiaaiodacaaI0aGaamywaSWaaSba aKqbagaajugWaiaadMgacaaIOaGaamiDaiabgkHiTiaaigdacaaIPa aajuaGbeaacqGHsislcaaIWaGaaGOlaiaaisdacaaIXaGaaGOmaiaa iAdadaqfqaqabeaajugWaiaaigdacaaIUaGaaGymaaqcfayabeaaci GGSbGaai4BaiaacEgaaaGaamiwaSWaaSbaaKqbagaajugWaiaaigda aKqbagqaaiabgkHiTiaaigdacaaIWaGaaGynaiaai6cacaaI4aGaaG ynaiaaiAdadaqfqaqabeaajugWaiaaigdacaaIUaGaaGymaaqcfaya beaaciGGSbGaai4BaiaacEgaaaGaamiwamaaBaaabaqcLbmacaaIYa aajuaGbeaacqGHRaWkcaaI3aGaaGynaiaai6cacaaIWaGaaGymaiaa iIdacaWGybWaaSbaaeaajugWaiaaiodaaKqbagqaaiabgUcaRiabeY 7aTbaa@7C2D@ R 2 =0.849(216.4359) *** (1.0367)( 7.2537) *** MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabkfada ahaaqabeaajugWaiaaikdaaaqcfaOaaGypaiaaicdacaaIUaGaaGio aiaaisdacaaI5aGaaGikaiaaikdacaaIXaGaaGOnaiaai6cacaaI0a GaaG4maiaaiwdacaaI5aGaaGykamaaCaaabeqaaKqzadGaaGOkaiaa iQcacaaIQaaaaKqbakaaiIcacqGHsislcaaIXaGaaGOlaiaaicdaca aIZaGaaGOnaiaaiEdacaaIPaGaaGikaiabgkHiTiaaiEdacaaIUaGa aGOmaiaaiwdacaaIZaGaaG4naiaaiMcalmaaCaaajuaGbeqaaKqzad GaaGOkaiaaiQcacaaIQaaaaaaa@5B35@ (5.7406) *** MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiIcaca aI1aGaaGOlaiaaiEdacaaI0aGaaGimaiaaiAdacaaIPaWcdaahaaqc fayabeaajugWaiaaiQcacaaIQaGaaGOkaaaaaaa@4053@

It can be seen from the above formula that the adjusted R square is 0.849, and the fitting effect is general, and does not pass the 10% t test. However, the correlation matrix shows that there is no multicollinearity between and other explanatory variables, so the data is adjusted to raw data. The model is improved as follows.

Y it =548.502+0.9935 Y i(t1) 21323825.669 X 1 75.339 X 2 0.00137 X 3 2 +μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfalm aaBaaajuaGbaqcLbmacaWGPbGaamiDaaqcfayabaGaaGypaiaaiwda caaI0aGaaGioaiaai6cacaaI1aGaaGimaiaaikdacqGHRaWkcaaIWa GaaGOlaiaaiMdacaaI5aGaaG4maiaaiwdacaWGzbWcdaWgaaqcfaya aKqzadGaamyAaiaaiIcacaWG0bGaeyOeI0IaaGymaiaaiMcaaKqbag qaaiabgkHiTmaalaaabaGaaGOmaiaaigdacaaIZaGaaGOmaiaaioda caaI4aGaaGOmaiaaiwdacaaIUaGaaGOnaiaaiAdacaaI5aaabaGaam iwaSWaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaaacqGHsislcaaI 3aGaaGynaiaai6cacaaIZaGaaG4maiaaiMdacaWGybWcdaWgaaqcfa yaaKqzadGaaGOmaaqcfayabaGaeyOeI0IaaGimaiaai6cacaaIWaGa aGimaiaaigdacaaIZaGaaG4naiaadIfalmaaDaaajuaGbaqcLbmaca aIZaaajuaGbaqcLbmacaaIYaaaaKqbakabgUcaRiabeY7aTbaa@75D3@ AQF( F ij )= t=1 T X ij * ( t ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WGrbGaamOraiaaiIcacaWGgbWaaSbaaeaajugWaiaadMgacaWGQbaa juaGbeaacaaIPaGaaGypamaalaaabaWaaCbmaeaacqGHris5aeaaju gWaiaadshacqGH9aqpcaaIXaaajuaGbaqcLbmacaWGubaaaKqbakaa dIfalmaaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaWcdaahaa qcfayabeaajugWaiaacQcaaaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaabaGaamivaaaaaaa@544D@

Among them, the t-statistic is in the brackets, *** indicates that it is significant at the level of 0.05, and * indicates that it is significant at the level of 0.1. Except for the dynamic panel data model, the county code is significant at the level of 0.1, and other estimates are significant at the 0.05 level, indicating that the regression effect is good.

Section 2: Synthetic opioid

Y it =16277.25+2.0342 Y i(t1) 0.126 log 1 X 1 204.764 log 1 X 2 +39.4997 X 3 2 +μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMfalm aaBaaajuaGbaqcLbmacaWGPbGaamiDaaqcfayabaGaaGypaiabgkHi TiaaigdacaaI2aGaaGOmaiaaiEdacaaI3aGaaGOlaiaaikdacaaI1a Gaey4kaSIaaGOmaiaai6cacaaIWaGaaG4maiaaisdacaaIYaGaamyw aSWaaSbaaKqbagaajugWaiaadMgacaaIOaGaamiDaiabgkHiTiaaig dacaaIPaaajuaGbeaacqGHsislcaaIWaGaaGOlaiaaigdacaaIYaGa aGOnamaavababeqaaKqzadGaaGymaaqcfayabeaaciGGSbGaai4Bai aacEgaaaGaamiwamaaBaaabaGaaGymaaqabaGaeyOeI0IaaGOmaiaa icdacaaI0aGaaGOlaiaaiEdacaaI2aGaaGinamaavababeqaaKqzad GaaGymaaqcfayabeaaciGGSbGaai4BaiaacEgaaaGaamiwamaaBaaa baqcLbmacaaIYaaajuaGbeaacqGHRaWkcaaIZaGaaGyoaiaai6caca aI0aGaaGyoaiaaiMdacaaI3aGaamiwaSWaa0baaKqbagaajugWaiaa iodaaKqbagaajugWaiaaikdaaaqcfaOaey4kaSIaeqiVd0gaaa@7AEA@ R 2 =0.849(216.4359) *** (1.0367)( 7.2537) *** (5.7406) *** MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabkfalm aaCaaajuaGbeqaaKqzadGaaGOmaaaajuaGcaaI9aGaaGimaiaai6ca caaI4aGaaGinaiaaiMdacaaIOaGaaGOmaiaaigdacaaI2aGaaGOlai aaisdacaaIZaGaaGynaiaaiMdacaaIPaWaaWbaaeqabaqcLbmacaaI QaGaaGOkaiaaiQcaaaqcfaOaaGikaiabgkHiTiaaigdacaaIUaGaaG imaiaaiodacaaI2aGaaG4naiaaiMcacaaIOaGaeyOeI0IaaG4naiaa i6cacaaIYaGaaGynaiaaiodacaaI3aGaaGykamaaCaaabeqaaKqzad GaaGOkaiaaiQcacaaIQaaaaKqbakaaiIcacaaI1aGaaGOlaiaaiEda caaI0aGaaGimaiaaiAdacaaIPaWaaWbaaeqabaqcLbmacaaIQaGaaG OkaiaaiQcaaaaaaa@6504@

It can be seen from the above formula that the adjusted R square is 0.949, and the fitting effect is good, and each explanatory variable has passed the significant level of 0.01.

The earliest appearance of opioids must have never appeared before, and began to grow after emergence. Therefore, the panel data model can be used to make then and ratio are 0. To find the earliest position, we hope that the year is as small as possible. We have obtained a quantitative relationship between the area and the number of drugs, so that the year can be reduced in turn, and the corresponding county codes are obtained separately. In the case of Heroin, when the year is reduced to 1910, the corresponding county code is 39061. When the year is reduced to 1909, the county code has been reduced to four digits, which is inconsistent with the data. Therefore, 1910 is considered to be Heroin. Because of the earliest year, the earliest position corresponding to the occurrence is 39061 (OH-HAMILTON). The earliest appearance time of synthetic opioids is 1939, and the earliest position is 42101 (PA-PHILADELPHIA).

Time series model based on system clustering

Five feature extraction of panel data

Several statistics for the multidimensional indicator panel are given below, and the statistic feature extraction will use these statistics.

The mean and standard deviation of the j th indicator T period of sample i are:

μ ij = t=1 T X ij (t) N , σ ij =[ t=1 T ( X ij (t) X ¯ ij ) 2 N ] 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeY7aTT WaaSbaaKqbagaajugWaiaadMgacaWGQbaajuaGbeaacaaI9aWaaSaa aeaadaaeWbqabeaajugWaiaadshacaaI9aGaaGymaaqcfayaaKqzad GaamivaaqcfaOaeyyeIuoacaWGybWcdaWgaaqcfayaaKqzadGaamyA aiaadQgaaKqbagqaaiaaiIcacaWG0bGaaGykaaqaaiaad6eaaaGaaG ilaiaaysW7cqaHdpWCdaWgaaqaaSGaamyAaiaadQgaaKqbagqaaiaa i2dacaaIBbWaaSaaaeaadaaeWbqabeaajugWaiaadshacaaI9aGaaG ymaaqcfayaaKqzadGaamivaaqcfaOaeyyeIuoacaaIOaGaamiwamaa BaaabaGaamyAaiaadQgaaeqaaiaaiIcacaWG0bGaaGykaiabgkHiTm aanaaabaGaamiwaaaalmaaBaaajuaGbaqcLbmacaWGPbGaamOAaaqc fayabaGaaGykaSWaaWbaaKqbagqabaqcLbmacaaIYaaaaaqcfayaai aad6eaaaGaaGyxamaaCaaabeqaamaalaaabaGaaGymaaqaaiaaikda aaaaaaaa@7363@

Standardization of panel data

Due to the difference in the dimension and magnitude of the indicator, it will have an impact on the final analysis results. Therefore, the standardization process of he mean of X ij (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaOAqcfaOaam iwaSWaaSbaaKqbagaajugWaiaadMgacaWGQbaajuaGbeaacaaIOaGa amiDaiaaiMcaaaa@3EB8@ is first performed, and the standardized data is set to X ij * (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfalm aaDaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayaaKqzadGaaGOkaaaa juaGcaaIOaGaamiDaiaaiMcaaaa@4078@ , and the standardized formula is Due to the difference in the dimension and magnitude of the indicator, it will have an impact on the final analysis results. Therefore, the standardization process for the mean value is first set, and the standardized data is

X ij * (t)= X ij (t) X ¯ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfalm aaDaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayaaKqzadGaaGOkaaaa juaGcaaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaWGybWaaSbaae aajugWaiaadMgacaWGQbaajuaGbeaacaaIOaGaamiDaiaaiMcaaeaa daqdaaqaaiaadIfaaaWaaSbaaeaajugWaiaadQgaaKqbagqaaaaaaa a@4BFE@ (3.3)

 Among them X ¯ j = i=1 N t=1 T X ij (t) NT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaanaaaba GaamiwaaaadaWgaaqaaKqzadGaamOAaaqcfayabaGaaGypamaalaaa baWaaCbmaeaacqGHris5aeaajugWaiaadMgacqGH9aqpcaaIXaaaju aGbaqcLbmacaWGobaaaKqbaoaaxadabaGaeyyeIuoabaqcLbmacaWG 0bGaeyypa0JaaGymaaqcfayaaKqzadGaamivaaaajuaGcaWGybWaaS baaeaajugWaiaadMgacaWGQbaajuaGbeaacaaIOaGaamiDaiaaiMca aeaacaWGobGaamivaaaaaaa@5592@ after standardization, the mean value of each indicator is 1, and the variance is

Var( X j * )= 1 NT1 i=1 N t=1 T [ X ij (t) X ¯ j 1] 2 = Var( X j ) X ¯ j 2 =( σ j X ¯ j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGHbGaamOCaiaaiIcacaWGybWcdaqhaaqcfayaaKqzadGaamOAaaqc fayaaKqzadGaaGOkaaaajuaGcaaIPaGaaGypamaalaaabaGaaGymaa qaaiaad6eacaWGubGaeyOeI0IaaGymaaaadaWfWaqaaiabggHiLdqa aKqzadGaamyAaiabg2da9iaaigdaaKqbagaajugWaiaad6eaaaqcfa 4aaCbmaeaacqGHris5aeaajugWaiaadshacqGH9aqpcaaIXaaajuaG baqcLbmacaWGubaaaKqbakaaiUfadaWcaaqaaiaadIfadaWgaaqaaK qzadGaamyAaiaadQgaaKqbagqaaiaaiIcacaWG0bGaaGykaaqaamaa naaabaGaamiwaaaadaWgaaqaaKqzadGaamOAaaqcfayabaaaaiabgk HiTiaaigdacaaIDbWaaWbaaeqabaqcLbmacaaIYaaaaKqbakaai2da daWcaaqaaiaadAfacaWGHbGaamOCaiaaiIcacaWGybWaaSbaaeaaju gWaiaadQgaaKqbagqaaiaaiMcaaeaadaqdaaqaaiaadIfaaaWcdaqh aaqcfayaaKqzadGaamOAaaqcfayaaKqzadGaaGOmaaaaaaqcfaOaaG ypaiaaiIcadaWcaaqaaiabeo8aZnaaBaaabaqcLbmacaWGQbaajuaG beaaaeaadaqdaaqaaiaadIfaaaWaaSbaaeaajugWaiaadQgaaKqbag qaaaaacaaIPaaaaa@82D1@ (3.4)

The variance of each index after such standardization is the square of the coefficient of variation of each index, which not only eliminates the influence of dimension and magnitude, but also retains the variation information of the original indicator.

Feature quantity extraction of panel data indicators

According to the extraction of the feature quantity of panel data in the literature,4 this paper defines the feature quantity of each index during the inspection period from the aspects of development level, trend, fluctuation degree and distribution of the indicator period. For the panel dataset { X ij * (t)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaiUhaca WGybWcdaqhaaqcfayaaKqzadGaamyAaiaadQgaaKqbagaajugWaiaa iQcaaaqcfaOaaGikaiaadshacaaIPaGaaGyFaaaa@4284@ , there are  samples, each sample records T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabsfaaa a@3750@ , and there are p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabchaaa a@376C@ indicators in each period.

Definition 1: The jth indicator of the sample i is the full-time Absolute Quantity Feature, abbreviated as AQF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WGrbGaamOraiaaiIcacaWGgbWaaSbaaeaacaWGPbGaamOAaaqabaGa aGykaaaa@3D0E@ .

AQF( F ij )= t=1 T X ij * ( t ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WGrbGaamOraiaaiIcacaWGgbWaaSbaaeaajugWaiaadMgacaWGQbaa juaGbeaacaaIPaGaaGypamaalaaabaWaaCbmaeaacqGHris5aeaaju gWaiaadshacqGH9aqpcaaIXaaajuaGbaqcLbmacaWGubaaaKqbakaa dIfalmaaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaWcdaahaa qcfayabeaajugWaiaacQcaaaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaabaGaamivaaaaaaa@544D@ (3.5)

AQF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WGrbGaamOraiaaiIcacaWGgbWaaSbaaeaajugWaiaadMgacaWGQbaa juaGbeaacaaIPaaaaa@3ECA@ is actually the mean of the jth indicator of sample i over the total period T, which reflects the absolute level of development of the jth indicator of sample i in the analysis time domain (over the entire period).

Definition 2: The jth indicator of the sample i is the full-time "Variance Feature", abbreviated as VF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGgbWaaeWaaeaacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaadQga aKqbagqaaaGaayjkaiaawMcaaaaa@3EC6@ , then

VF( F ij )= [ t=1 T ( X ij * ( t ) X ¯ * ij ) T1 ] 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGgbWaaeWaaeaacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaadQga aKqbagqaaaGaayjkaiaawMcaaiaaykW7cqGH9aqpcaaMc8+aamWaae aadaWcaaqaamaaxadabaGaeyyeIuoabaqcLbmacaWG0bGaeyypa0Ja aGymaaqcfayaaKqzadGaamivaaaajuaGdaqadaqaaiaadIfalmaaBa aajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaWcdaahaaqcfayabeaa jugWaiaacQcaaaqcfa4aaeWaaeaacaWG0baacaGLOaGaayzkaaGaey OeI0Yaa0aaaeaacaWGybaaamaaCaaabeqaaKqzadGaaiOkaaaajuaG daWgaaqaaKqzadGaamyAaiaadQgaaKqbagqaaaGaayjkaiaawMcaaa qaaiaadsfacqGHsislcaaIXaaaaaGaay5waiaaw2faamaaCaaabeqa aSWaaSaaaKqbagaajugWaiaaigdaaKqbagaajugWaiaaikdaaaaaaa aa@6A0E@ (3.6)

Among them X ¯ * ij = t=1 T X ij * ( t ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaanaaaba GaamiwaaaadaahaaqabeaajugWaiaacQcaaaqcfa4aaSbaaeaacaWG PbGaamOAaaqabaGaaGPaVlabg2da9iaaykW7daWcaaqaamaaxadaba GaeyyeIuoabaqcLbmacaWG0bGaeyypa0JaaGymaaqcfayaaKqzadGa amivaaaajuaGcaWGybWcdaWgaaqcfayaaKqzadGaamyAaiaadQgaaK qbagqaaSWaaWbaaKqbagqabaqcLbmacaGGQaaaaKqbaoaabmaabaGa amiDaaGaayjkaiaawMcaaaqaaiaadsfaaaaaaa@54C9@ ,is AQF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca WGrbGaamOraiaaiIcacaWGgbWaaSbaaeaajugWaiaadMgacaWGQbaa juaGbeaacaaIPaaaaa@3ECA@ , VF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfaca WGgbWaaeWaaeaacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaadQga aKqbagqaaaGaayjkaiaawMcaaaaa@3EC6@ in definition 1, which reflects the degree of fluctuation of the jth index of sample i over time.

Definition 3: The jth indicator of the sample i is the full-time Skewness Coefficient Feature, abbreviated as

SCF( F ij )= t=1 T ( X ij * ( t ) X ¯ * ij ) 3 T ( σ ij * ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGdbGaamOraiaaiIcacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaa dQgaaKqbagqaaiaaiMcacaaI9aWaaSaaaeaadaWfWaqaaiabggHiLd qaaKqzadGaamiDaiabg2da9iaaigdaaKqbagaajugWaiaadsfaaaqc fa4aaeWaaeaacaWGybWcdaWgaaqcfayaaKqzadGaamyAaiaadQgaaK qbagqaaSWaaWbaaKqbagqabaqcLbmacaGGQaaaaKqbaoaabmaabaGa amiDaaGaayjkaiaawMcaaiabgkHiTmaanaaabaGaamiwaaaalmaaCa aajuaGbeqaaKqzadGaaiOkaaaalmaaBaaajuaGbaqcLbmacaWGPbGa amOAaaqcfayabaaacaGLOaGaayzkaaWaaWbaaeqabaqcLbmacaaIZa aaaaqcfayaaiaadsfadaqadaqaaiabeo8aZTWaa0baaKqbagaajugW aiaadMgacaWGQbaajuaGbaqcLbmacaGGQaaaaaqcfaOaayjkaiaawM caamaaCaaabeqaaKqzadGaaG4maaaaaaaaaa@6DEA@ (3.7)

Where σ ij * = [ t=1 T ( X ij * ( t ) X ¯ * ij ) T1 ] 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZT Waa0baaKqbagaajugWaiaadMgacaWGQbaajuaGbaqcLbmacaGGQaaa aKqbakabg2da9iaaykW7daWadaqaamaalaaabaWaaCbmaeaacqGHri s5aeaajugWaiaadshacqGH9aqpcaaIXaaajuaGbaqcLbmacaWGubaa aKqbaoaabmaabaGaamiwaSWaaSbaaKqbagaajugWaiaadMgacaWGQb aajuaGbeaalmaaCaaajuaGbeqaaKqzadGaaiOkaaaajuaGdaqadaqa aiaadshaaiaawIcacaGLPaaacqGHsisldaqdaaqaaiaadIfaaaWcda ahaaqcfayabeaajugWaiaacQcaaaWcdaWgaaqcfayaaKqzadGaamyA aiaadQgaaKqbagqaaaGaayjkaiaawMcaaaqaaiaadsfacqGHsislca aIXaaaaaGaay5waiaaw2faamaaCaaabeqaaSWaaSaaaKqbagaajugW aiaaigdaaKqbagaajugWaiaaikdaaaaaaaaa@695B@ represents the standard deviation of the jth index of the sample i over the entire period, SCF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGdbGaamOraiaaiIcacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaa dQgaaKqbagqaaiaaiMcaaaa@3F67@ reflects the degree of symmetry of the jth index of the sample i over the entire period, SCF( F ij )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGdbGaamOraiaaiIcacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaa dQgaaKqbagqaaiaaiMcacaaMc8UaaGipaiaaicdaaaa@4272@ , indicating that most of the index is located to the right of the average, SCF( F ij )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGdbGaamOraiaaiIcacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaa dQgaaKqbagqaaiaaiMcacaaMc8UaaGipaiaaicdaaaa@4272@ , indicating that most of indicators are located to the left of the average.

Definition 4: The jth indicator of the sample i is the Kurtosis Coefficient Feature, abbreviated as KCF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeaca WGdbGaamOraiaaiIcacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaa dQgaaKqbagqaaiaaiMcaaaa@3F5F@ .

KCF( F ij )= t=1 T ( X ij * ( t ) X ¯ * ij ) T( σ ij * ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeaca WGdbGaamOraiaaiIcacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaa dQgaaKqbagqaaiaaiMcacaaMc8Uaeyypa0JaaGPaVlaaykW7daWcaa qaamaaxadabaGaeyyeIuoabaqcLbmacaWG0bGaeyypa0JaaGymaaqc fayaaKqzadGaamivaaaajuaGdaqadaqaaiaadIfalmaaBaaajuaGba qcLbmacaWGPbGaamOAaaqcfayabaWcdaahaaqcfayabeaajugWaiaa cQcaaaqcfa4aaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyOeI0Yaa0 aaaeaacaWGybaaaSWaaWbaaKqbagqabaqcLbmacaGGQaaaaSWaaSba aKqbagaajugWaiaadMgacaWGQbaajuaGbeaaaiaawIcacaGLPaaaae aacaWGubWaaeWaaeaacqaHdpWClmaaDaaajuaGbaqcLbmacaWGPbGa amOAaaqcfayaaKqzadGaaiOkaaaaaKqbakaawIcacaGLPaaaaaGaaG PaVlabgkHiTiaaiodaaaa@714F@ ;(3.8)

KCF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeaca WGdbGaamOraiaaiIcacaWGgbWcdaWgaaqcfayaaKqzadGaamyAaiaa dQgaaKqbagqaaiaaiMcaaaa@3F5F@ reflects the sharpness of the distribution curve of the jth indicator of sample i over the entire period.

KCF( F ij )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaayyqcfaOaam 4saiaadoeacaWGgbGaaGikaiaadAealmaaBaaajuaGbaqcLbmacaWG PbGaamOAaaqcfayabaGaaGykaiaaykW7caaI+aGaaGPaVlaaicdaaa a@4418@ indicates that the distribution of the index value is more dispersed than the normal distribution, and KCF( F ij )<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaayyqcfaOaam 4saiaadoeacaWGgbGaaGikaiaadAealmaaBaaajuaGbaqcLbmacaWG PbGaamOAaaqcfayabaGaaGykaiaaykW7caaI8aGaaGimaaaa@428B@ indicates that the distribution of the index value is more concentrated around the average value than the normal distribution.

Definition 5: The jth indicator full-time “Trend Feature” of sample i, abbreviated as TF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfaca WGgbGaaGikaiaadAealmaaBaaajuaGbaqcLbmacaWGPbGaamOAaaqc fayabaGaaGykaaaa@3EA0@ , the long-term trend of the TF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfaca WGgbGaaGikaiaadAealmaaBaaajuaGbaqcLbmacaWGPbGaamOAaaqc fayabaGaaGykaaaa@3EA0@ indicator. If the TF( F ij ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfaca WGgbGaaGikaiaadAealmaaBaaajuaGbaqcLbmacaWGPbGaamOAaaqc fayabaGaaGykaaaa@3EA0@ value of the indicator is closer, it means that both indicators show the same slope change and the closer the two indicators are.

Indicator selection

According to the previous analysis of the data and the variables of the demand, feature extraction of the following indicators: Heroin, non-synthetic opioids, Synthetic opioid, opioids, Total Drug Reports County.

Extraction results

Take the Absolute Quantity Feature as an example. The final data obtained is shown in Table 2 below.

 

Descriptive Statistics FIPS_ Heroin non-synthetic Combined

Heroin

non-synthetic opioids

AQF synthetic opioids

opioids

Total Drug Reports County

1

21001

0.01

0.14

0.1

0.13

0.21

2

21003

0

0.21

0.26

0.2

0.23

3

21005

0.13

0.16

0.27

0.16

0.14

461

54109

0

0.05

0

0.04

0.03

Table 2 Absolute Quantity Feature

In order to visually see the data characteristics of different indicators in the time dimension between the county and the county, take the Absolute Quantity Feature as an example and make an observation chart of five indicators. The obtained line chart is shown in Figure 5.

The abscissa in Figure 5 indicates (total coding) FIPS_Combined, the ordinate indicates the AQF value corresponding to each county, and Figure 6 is a partial enlarged view of. 5. As can be seen from Figure 5 and Figure 6, the fluctuations of these indicators are similar. Explain heroin, non-synthetic drugs, synthetic drugs, opioids, total drug counts in Total Drug Reports County. These indicators have similar development levels throughout the period from 2010 to 2017, and each county has its own characteristics (Appendix 1).

Figure 5 AQF.

Figure 6 AQF(part).

Cluster data clustering results

The five characteristics extracted from the panel data index were systematically clustered with heroin and synthetic opioids. The obtained pedigree map is shown in Appendix 2. The systematic clustering results of synthetic opioids and the systematic clustering results of heroin. Consistent, see Appendix 3 for details. The clustering results are shown in Table 3. The results of the two system clusters pointed out that the five counties, Cuyahoga, Hamilton, Montgomery, Allegheny, And Philadelphia, are the two counties with the largest number of heroin cases and the most counties with the largest number of synthetic opioid cases. Counties are the top priority areas in the United States that require major concerns.

Category

FIPS_Combined

Category I

39035

39061

39113

42003

42101

Category II

other

Table 3 Clustering result

Time-Series Model

The panel data includes time series data and cross-section data. We have obtained five key counties (39061, 39035, 42101, 39113, 42003) in the previous section. Now we analyze the time and space characteristics of the data in these five counties. Based on the extracted features for clustering, the clustering results have depicted the absolute amount of specific drugs from this perspective. To extract more relevant information from the data provided by NFLIS, we use the county's specific drugs and the county's total The ratio of the number of drugs is derived data, and time series analysis is performed. The final results of the 2010-2017 consecutive year time series analysis of the heroine ratio and the synthetic opioid ratio of the five counties in the five counties are shown in the following Table 4.

Are there any Variable

Model

Time-Series

R2

Are there any specific concerns in 2010-2027?

The earliest concerns in time Threshold of 2010-2027

390

synthetic

Variable ARIMA(0,2,0) 0.905

 

YES

2017

----

35

opioids

ratio

Brown

0.909

YES

2018

6782.83

390

synthetic

Variable ARIMA(0,2,0) 0.889

 

YES

2016

----

61

opioids

ratio

Brown

0.893

YES

2017

5425

 

 

Variable

Damped Trend Holt

 

YES YES

 

4985

421

heroin

 ratio

 

0.98

 

2010

 

1

 

 

 

0.869

 

2015

 

Table 4 Time series analysis results

Reference5 mentions the statistical analysis of data from previous years, The number of cases of abusive use of opioids in a state accounted for about 20% of the number of cases of drug deaths in the state, which already reflects the seriousness of the abuse of opioids. We borrowed this ratio to indicate that when a county's abuse of opioids accounted for 20% of the number of drug use cases in the county, it indicated that the situation was critical and relevant government departments should pay great attention to this. Therefore, the arguments such as the position of the sequence indicating the "ratio" and the year when the ratio reaches 20% are brought into the dynamic panel data model, and the critical value of the independent variable that is, the threshold of the corresponding sequence can be obtained separately.

Principal Component Evaluation Model Based on Entropy Weight Method

Data analysis and processing

We need to analyze the common variables of the counties shared by the seven-year data, and by comparison, we find that each observation has four forms (Estimate; Margin of Error; Percent; Percent Margin of Error), and what we need is the estimated amount, and the variables and counties in the annex from 2010 to 2016 are not exactly the same. The data of the four tables from 2010 to 2013 are the same as the individuals, and the variables of the three tables are the same as the individuals from 2014 to 2016. For example, from 2010 to 2013 (county code) GEO.id2 has 51515, and the county code from 2014 to 2016 does not have this county. From 2010 to 2013, there are no variables (COMPUTERS AND INTERNET USE - Total Households, COMPUTERS AND INTERNET USE - Total Households - With a computer, COMPUTERS AND INTERNET USE - Total Households - With a broadband Internet subscription). Therefore, the relevant individuals of 51159, 51161, 51685 in the variable GEO.id2 are deleted. In the same way, the variables common to the seven years are screened for analysis. After the above treatment, 149 variables and 464 samples (counties) were obtained. And we need to analyze the data of the first question. And similarly, screen out the same county in the first two questions, and finally get 460 samples. After excluding the variables with unreasonable estimates and error ranges, we will select the variables we need from the remaining variables according to the literature and topic requirements, and finally get 21 variables to classify the data such as educational achievements. Variables of less than nine years and education levels of nine to twelve years are aggregated, new indicators are obtained for education levels below 12 years, and so on, and the four key points included in the first question are included. From the variable to the second question indicator, the last 22 variables selected initially are shown in Appendix 4.

Grey correlation analysis

There are known information in the objective world, as well as many unknown and unconfirmed information. Known information is white, unknown or non-confirmed information is black, and between the two is gray. The grey concept is the integration of the concepts of “less data” and “information uncertainty”. The grey system theory is aimed at this kind of uncertainty problem with neither experience nor information, that is, the problem of “less data uncertainty”. The grey system theory regards the uncertainty as the amount of gray. In essence, it is a mathematical theory to solve the uncertainty theory of information deficiency. Because the gray system has less data and incomplete information, it is difficult for decision makers to determine the quantitative relationship between factors. It is difficult to distinguish the main factors and secondary factors of the system, thus introducing the gray correlation analysis method. A comprehensive evaluation method based on the grey system theory--grey correlation analysis method is to measure the degree of correlation between factors according to the similarity or dissimilarity between the developmental trends of factors, and quantifies or orchestrate the factors between systems with incomplete information.

According to the theory of grey relational space, the original data needs to satisfy the dimensionless or the same dimension. In this paper, the extremum method is used to dimensionize the original data, and the processed data is combined with the ideal object data column to obtain a new matrix:

S={ 1 1 1 1 S 11 S 12 S 1n S 21 S 22 S 2n S m1 S m2 S mn } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaaI9a WaaiWaaeaafaqaaeqbeaaaaaqaaiaaigdaaeaacaaIXaaabaGaaGym aaqaaiaaigdaaeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaaaO qaaiaadofadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaeS47IWea baGaam4uamaaBaaaleaacaaIXaGaamOBaaqabaaakeaacaWGtbWaaS baaSqaaiaaikdacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGaaGOm aiaaikdaaeqaaaGcbaGaeS47IWeabaGaam4uamaaBaaaleaacaaIYa GaamOBaaqabaaakeaacqWIUlstaeaacqWIUlstaeaacqWIXlYtaeaa cqWIUlstaeaacaWGtbWaaSbaaSqaaiaad2gacaaIXaaabeaaaOqaai aadofadaWgaaWcbaGaamyBaiaaikdaaeqaaaGcbaGaeS47IWeabaGa am4uamaaBaaaleaacaWGTbGaamOBaaqabaaaaaGccaGL7bGaayzFaa aaaa@6249@

Record S i =( S i1 , S i2 , r S in ),i=0,1,m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabofadaWgaa WcbaGaaeyAaaqabaGccaaI9aGaaGikaiaadofadaWgaaWcbaGaamyA aiaaigdaaeqaaOGaaGilaiaadofadaWgaaWcbaGaamyAaiaaikdaae qaaOGaaGilaiablAcilnaaBaaaleaacaWGYbaabeaakiaadofadaWg aaWcbaGaamyAaiaad6gaaeqaaOGaaGykaiaaiYcacaWGPbGaaGypai aaicdacaaISaGaaGymaiaaiYcacqWIMaYscaWGTbGaaGilaiaadofa daWgaaWcbaGaaGimaaqabaaaaa@4FFC@ as the reference sequence, and calculate the correlation coefficient layer β i (i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaqGPbaabeaakiaaiIcacaWGPbGaaGykaaaa@3B01@ of the jth index of S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabofadaWgaa WcbaGaaeyAaaqabaaaaa@37D9@ and the jth index of S 0 (i=1,2,,m;j=1,2,,n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabofada WgaaqaaKqzadGaaGimaaqcfayabaGaaGikaiaabMgacaaI9aGaaGym aiaaiYcacaaIYaGaaGilaiablAciljaaiYcacaqGTbGaaG4oaiaabQ gacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablAciljaaiYcacaqG UbGaaGykaaaa@4ACE@

β i ( j )= i min j min | S oj S ij |+ρ i max j max | S oj S ij | | S oj S ij |+ρ i max j max | S oj S ij | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaayyqcfaOaeq OSdi2cdaWgaaqcfayaaKqzadGaamyAaaqcfayabaWaaeWaaeaacaWG QbaacaGLOaGaayzkaaGaaGPaVlabg2da9iaaykW7daWcaaqaamaaxa cabaGaamyAaaqabeaajugWaiGac2gacaGGPbGaaiOBaaaajuaGdaWf GaqaaiaadQgaaeqabaqcLbmaciGGTbGaaiyAaiaac6gaaaqcfa4aaq WaaeaacaWGtbWaaSbaaeaajugWaiaad+gacaWGQbaajuaGbeaacqGH sislcaWGtbWcdaWgaaqcfayaaKqzadGaamyAaiaadQgaaKqbagqaaa Gaay5bSlaawIa7aiaaykW7cqGHRaWkcaaMc8UaeqyWdiNaaGPaVpaa xacabaGaamyAaaqabeaajugWaiGac2gacaGGHbGaaiiEaaaajuaGda WfGaqaaiaadQgaaeqabaqcLbmaciGGTbGaaiyyaiaacIhaaaqcfa4a aqWaaeaacaWGtbWaaSbaaeaajugWaiaad+gacaWGQbaajuaGbeaacq GHsislcaWGtbWaaSbaaeaajugWaiaadMgacaWGQbaajuaGbeaaaiaa wEa7caGLiWoacaaMc8oabaWaaqWaaeaacaWGtbWaaSbaaeaajugWai aad+gacaWGQbaajuaGbeaacqGHsislcaWGtbWaaSbaaeaajugWaiaa dMgacaWGQbaajuaGbeaaaiaawEa7caGLiWoacaaMc8Uaey4kaSIaeq yWdiNaaGPaVpaaxacabaGaamyAaaqabeaajugWaiGac2gacaGGHbGa aiiEaaaajuaGdaWfGaqaaiaadQgaaeqabaqcLbmaciGGTbGaaiyyai aacIhaaaqcfa4aaqWaaeaacaWGtbWaaSbaaeaajugWaiaad+gacaWG QbaajuaGbeaacqGHsislcaWGtbWaaSbaaeaajugWaiaadMgacaWGQb aajuaGbeaaaiaawEa7caGLiWoacaaMc8UaaGPaVdaaaaa@ABC3@

In the above formula, , generally takes. By calculating as above, the correlation coefficient matrix is obtained:

β={ β 1 (1) β 1 (2) β(2) β 2 (1) β 2 (2) β(2) β m (1) β m (2) β(2) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIj aai2dadaGadaqaauaabaqaemaaaaqaaiabek7aInaaBaaabaqcLbma caaIXaaajuaGbeaacaaIOaGaaGymaiaaiMcaaeaacqaHYoGydaWgaa qaaKqzadGaaGymaaqcfayabaGaaGikaiaaikdacaaIPaGaaGPaVlaa ykW7caaMc8UaeS47IWeabaGaeqOSdiMaaGikaiaaikdacaaIPaaaba GaeqOSdi2aaSbaaeaajugWaiaaikdaaKqbagqaaiaaiIcacaaIXaGa aGykaaqaaiabek7aInaaBaaabaqcLbmacaaIYaaajuaGbeaacaaIOa GaaGOmaiaaiMcacaaMc8UaaGPaVlabl+Uimbqaaiabek7aIjaaiIca caaIYaGaaGykaaqaaiabl6Uinbqaaiabl6UinjaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cqWIXlYtaeaacqWIUlstaeaacqaHYoGydaWgaa qaaKqzadGaamyBaaqcfayabaGaaGikaiaaigdacaaIPaaabaGaeqOS di2aaSbaaeaajugWaiaad2gaaKqbagqaaiaaiIcacaaIYaGaaGykai aaykW7caaMc8UaeS47IWeabaGaeqOSdiMaaGikaiaaikdacaaIPaaa aaGaay5Eaiaaw2haaaaa@995E@

Let x i = i n j=1 n β i ( j ), x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqaaKqzadGaamyAaaqcfayabaGaaGPaVlabg2da9iaaykW7daWc aaqaaiaadMgaaeaacaWGUbaaaiaaykW7daWfWaqaaiabggHiLdqaaK qzadGaamOAaiabg2da9iaaigdaaKqbagaajugWaiaad6gaaaqcfaOa eqOSdi2aaSbaaeaajugWaiaadMgaaKqbagqaamaabmaabaGaamOAaa GaayjkaiaawMcaaiaacYcacaaMc8UaamiEamaaBaaabaqcLbmacaWG PbaajuaGbeaaaaa@57CC@ is the degree of association between the i-th evaluated object and the ideal object. The merits of the object to be evaluated are evaluated according to the size of the x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqaaKqzadGaamyAaaqcfayabaaaaa@3A41@ value. The larger the x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqaaKqzadGaamyAaaqcfayabaaaaa@3A41@ , the higher the degree of association between the i-th evaluated object and the ideal object, and thus the better it is among all the evaluated objects.

Because the topic requires judging whether the use or use trend of opioids is related to the socio-economic data of the census, and the part 2 data shows the rules of the first-level indicators and the second-level indicators, of which there are 7 first-level indicators. Combining the use and use trends of opioids (represented by the number of drug cases in each county and the number of drug cases in each county and the total number of identified drug cases), the gray correlation analysis is carried out on 9 indicators. The correlation degree is solved by using Matlab. The specific procedure is shown in Appendix 5. As can be seen from the above results, all correlations are greater than 0.5. As can also be seen from Appendix 3, the correlation coefficient matrix is close to 1, indicating that the use or use trend of opioids has a strong correlation with all aspects of the population (Appendix 6).

Principal component evaluation model based on entropy weight method

According to the idea of information entropy, entropy is an ideal scale when evaluating the index weight of indicator system. The principal component analysis method has a good dimensionality reduction processing technology, which can transform multiple indicators into several uncorrelated comprehensive factors, and the comprehensive factor variables can reflect most of the information of the original index variables, which can better solve many problems. Requirements for indicator evaluation. Therefore, a principal component evaluation model based on entropy weight method can be established.

Consider an indicator evaluation system, in which there are n evaluation indicators, m evaluated objects, and the raw data of the corresponding indicators of the evaluated objects are represented by the following matrix form.

R={ r 11 r 12 r 1n r 21 r 22 r 2n r m1 r m2 r mn } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaI9a WaaiWaaeaafaqaaeabdaaaaeaacaWGYbWaaSbaaSqaaiaaigdacaaI XaaabeaaaOqaaiaadkhadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcba GaamOCamaaBaaaleaacaaIXaGaamOBaaqabaaakeaacaWGYbWaaSba aSqaaiaaikdacaaIXaaabeaaaOqaaiaadkhadaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaamOCamaaBaaaleaacaaIYaGaamOBaaqabaaa keaacqWIUlstaeaacqWIUlstaeaacqWIUlstaeaacaWGYbWaaSbaaS qaaiaad2gacaaIXaaabeaaaOqaaiaadkhadaWgaaWcbaGaamyBaiaa ikdaaeqaaaGcbaGaamOCamaaBaaaleaacaWGTbGaamOBaaqabaaaaa GccaGL7bGaayzFaaaaaa@58AC@

First, the raw data is dimensionless:

Remember that the optimal value for each column in R

r j * ={ max r ij,wherej=thecostindex max r ij,wherej=theyieldindex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada qhaaqaaiaadQgaaeaacaGGQaaaaiaaykW7cqGH9aqpcaaMc8+aaiqa aeaadaqhaaqaaiGac2gacaGGHbGaaiiEaiaadkhadaWgaaqaaKqzad GaamyAaiaadQgajuaGcaGGSaGaaGPaVlaadEhacaWGObGaamyzaiaa dkhacaWGLbGaaGPaVlaadQgacaaMc8Uaeyypa0JaaGPaVlaadshaca WGObGaamyzaiaaykW7ciGGJbGaai4BaiaacohacaWG0bGaaGPaVlaa dMgacaWGUbGaamizaiaadwgacaWG4baabeaaaeaaciGGTbGaaiyyai aacIhacaWGYbWaaSbaaeaajugWaiaadMgacaWGQbqcfaOaaiilaiaa ykW7caWG3bGaamiAaiaadwgacaWGYbGaamyzaiaaykW7caWGQbGaaG PaVlabg2da9iaaykW7caWG0bGaamiAaiaadwgacaaMc8UaamyEaiaa dMgacaWGLbGaamiBaiaadsgacaaMc8UaamyAaiaad6gacaWGKbGaam yzaiaadIhaaeqaaaaaaiaawUhaaaaa@8645@ i=1,2,....,m,j=1,2,...n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca aMc8Uaeyypa0JaaGPaVlaaigdacaGGSaGaaGOmaiaacYcacaGGUaGa aiOlaiaac6cacaGGUaGaaiilaiaaykW7caWGTbGaaiilaiaaykW7ca WGQbGaaGPaVlabg2da9iaaykW7caaIXaGaaiilaiaaikdacaGGSaGa aiOlaiaac6cacaGGUaGaamOBaaaa@5298@ (3.9)

(Note: The profitability indicator is that the larger the index value, the better. The cost index is the smaller the indicator value, the better.)

After the original data is dimensionless, it is recorded as a matrix S=( s ij ) m×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca aI9aGaaGikaiaadohalmaaBaaajuaGbaqcLbmacaWGPbGaamOAaaqc fayabaGaaGykamaaBaaabaqcLbmacaWGTbGaey41aqRaamOBaaqcfa yabaaaaa@44A1@

S ij ={ r ij r j * ,wherej=thecostindex r ij r j * ,wherej=theyieldindex MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofalm aaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaGaaGPaVlabg2da 9iaaykW7daGabaqaamaaDaaabaWaaSbaaeaadaWcaaqaaiaadkhalm aaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaaabaGaamOCaSWa a0baaKqbagaajugWaiaadQgaaKqbagaajugWaiaacQcaaaaaaKqbak aacYcacaaMc8Uaam4DaiaadIgacaWGLbGaamOCaiaadwgacaaMc8Ua amOAaiaaykW7cqGH9aqpcaaMc8UaamiDaiaadIgacaWGLbGaaGPaVl GacogacaGGVbGaai4CaiaadshacaaMc8UaamyAaiaad6gacaWGKbGa amyzaiaadIhaaeqaaaqaamaaBaaabaWaaSaaaeaacaWGYbWcdaWgaa qcfayaaKqzadGaamyAaiaadQgaaKqbagqaaaqaaiaadkhadaqhaaqa aKqzadGaamOAaaqcfayaaiaacQcaaaaaaiaacYcacaaMc8Uaam4Dai aadIgacaWGLbGaamOCaiaadwgacaaMc8UaamOAaiaaykW7cqGH9aqp caaMc8UaamiDaiaadIgacaWGLbGaaGPaVlaadMhacaWGPbGaamyzai aadYgacaWGKbGaaGPaVlaadMgacaWGUbGaamizaiaadwgacaWG4baa beaaaaaacaGL7baaaaa@8FDF@ i=1,2,....,m,j=1,2,...n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca aMc8Uaeyypa0JaaGPaVlaaigdacaGGSaGaaGOmaiaacYcacaGGUaGa aiOlaiaac6cacaGGUaGaaiilaiaaykW7caWGTbGaaiilaiaaykW7ca WGQbGaaGPaVlabg2da9iaaykW7caaIXaGaaiilaiaaikdacaGGSaGa aiOlaiaac6cacaGGUaGaamOBaaaa@5298@ (3.9)

Normalize S, remember

S ij ' = S ij j i S ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofalm aaDaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayaaKqzadGaai4jaaaa caaMc8EcfaOaeyypa0JaaGPaVpaalaaabaGaam4uamaaBaaabaqcLb macaWGPbGaamOAaaqcfayabaaabaWaaCbeaeaacqGHris5aeaajugW aiaadQgaaKqbagqaamaaxababaGaeyyeIuoabaqcLbmacaWGPbaaju aGbeaacaWGtbWaaSbaaeaajugWaiaadMgacaWGQbaajuaGbeaaaaaa aa@5455@

The s ' ij [ 0,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4CaKqzadGaai4jaSWaaSbaaKqbagaajugWaiaadMgacaWG QbaajuaGbeaacaaMc8UaeyicI4SaaGPaVpaadmaabaGaaGimaiaacY cacaaIXaaacaGLBbGaayzxaaaaaa@466E@ obtained in this way does not destroy the proportional relationship between the data.

Define the entropy of the jth evaluation indicator as

H j =k i=1 m t ij ln t ij j=1,2,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIealm aaBaaajuaGbaqcLbmacaWGQbaajuaGbeaacaaI9aGaeyOeI0Iaam4A amaaqahabeqaaKqzadGaamyAaiaai2dacaaIXaaajuaGbaqcLbmaca WGTbaajuaGcqGHris5aiaadshadaWgaaqaaiaadMgacaWGQbaabeaa ciGGSbGaaiOBaiaadshadaWgaaqaaiaadMgacaWGQbaabeaacaWGQb GaaGypaiaaigdacaaISaGaaGOmaiaaiYcacqWIVlctcaWGUbaaaa@55A0@

t ij = S ij ' i=1 m S ij ,j=1,2,....n,k= 1 1nm' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshalm aaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaGaaGPaVlabg2da 9iaaykW7daWcaaqaaiaadofalmaaDaaajuaGbaqcLbmacaWGPbGaam OAaaqcfayaaKqzadGaai4jaaaaaKqbagaadaaeWbqabeaajugWaiaa dMgacaaI9aGaaGymaaqcfayaaKqzadGaamyBaaqcfaOaeyyeIuoaca WGtbWcdaWgaaqcfayaaKqzadGaamyAaiaadQgaaKqbagqaaaaacaGG SaGaaGPaVlaadQgacaaMc8Uaeyypa0JaaGPaVlaaigdacaGGSaGaaG OmaiaacYcacaaMc8UaaiOlaiaac6cacaGGUaGaaiOlaiaad6gacaGG SaGaam4AaiaaykW7cqGH9aqpcaaMc8+aaSaaaeaacaaIXaaabaGaaG ymaiaad6gacaWGTbGaai4jaaaaaaa@6EE9@ (so the chosen k is such that,

0 H j 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaicdacq GHKjYOcaqGibWcdaWgaaqcfayaaKqzadGaaeOAaaqcfayabaGaeyiz ImQaaGPaVlaaigdaaaa@4111@ ,convenient for subsequent processing)

Define the difference coefficient of the jth evaluation indicator as

α j =1 H j ,j=1,2,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaBaaabaGaamOAaaqabaGaaGypaiaaigdacqGHsislcaWGibWaaSba aeaacaWGQbaabeaacaaISaGaamOAaiaai2dacaaIXaGaaGilaiaaik dacaaISaGaeS47IWKaamOBaaaa@45A4@

Define the entropy weight of the jth evaluation indicator as

ω j = α j j=1 n ,j=1,2,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aaBaaabaqcLbmacaWGQbaajuaGbeaacaaI9aWaaSaaaeaacqaHXoqy daWgaaqaaKqzadGaamOAaaqcfayabaaabaWaaCbmaeaacqGHris5ae aajugWaiaadQgacqGH9aqpcaaIXaaajuaGbaqcLbmacaWGUbaaaaaa juaGcaaISaGaamOAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaeS 47IWKaamOBaaaa@5190@ (3.10)

The entropy weight thus defined has the following properties:

When the values of the evaluated objects on the index J are exactly the same, the entropy value reaches the maximum value of 1, and the entropy weight is zero, which means that the indicator does not provide any useful information to the decision maker, and the indicator can be considered to be cancelled.

When the values of the evaluated objects on the index J differ greatly, the entropy value is small and the entropy weight is large, which means that the indicator provides useful information to the decision maker, and in the problem, each object is in the There are obvious differences in indicators, which should be focused on;

The larger the entropy of the indicator, the smaller its entropy weight, and the less important the indicator is. The entropy defined by equation (3.10) satisfies:

0 ω j land j=1 n ω j =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaicdacq GHKjYOcqaHjpWDdaWgaaqaaKqzadGaamOAaaqcfayabaGaeyizImQa aeiBaiaaykW7caqGHbGaaeOBaiaabsgadaWfWaqaaiabggHiLdqaaK qzadGaamOAaiabg2da9iaaigdaaKqbagaajugWaiaad6gaaaqcfaOa eqyYdC3aaSbaaeaajugWaiaadQgaaKqbagqaaiaai2dacaaIXaaaaa@5393@

It can be seen from the above discussion that the entropy weight method reflects the importance of the difference between the observations of the same indicator. The final indicators are as shown in Figure 7 below.

Figure 7 Opioid flooding indicator system.

Solution and result

The above 18 indicators can be obtained by SPSS factor analysis to obtain the factor load matrix and the variance interpretation ratio. The variance interpretation scale table is as Table 5, the first four components are extracted, and the factor load matrix is shown in Appendix 2. It can be seen from Table 6 that the first four principal components explain 85.115% of the overall properties, that is, 85% of the features can be explained according to the first four principal components. Therefore, the first four principal components are analyzed here.

Correlation

 

 

 

 

 

 

 

 

0.9219

0.9218

0.949

NaN

0.9383

0.9737

0.9825

0.9249

1

Table 5 Correlation

Component

Initial Eigen values

Extraction Sums of Squared Loadings

Total

% of Variance

Cumulative %

Total

% of Variance

Cumulative %

1

13.279

66.397

66.397

13.279

66.397

66.397

2

1.614

8.068

74.465

1.614

8.068

74.465

3

1.119

5.596

80.061

1.119

5.596

80.061

4

1.011

5.054

85.115

1.011

5.054

85.115

5

0.864

4.32

89.435

 

 

 

 

 

 

20

5.36E-05

0

100

 

 

 

Table 6 Total Variance Explained

The eigenvector of the principal component is A={ a 11 a 12 a 1m a 21 a 22 a 2m a p1 a p2 a pm }={ u 11 λ 1 u 12 h u 1m λ m u 21 λ 1 u 22 λ 2 u 2m λ m u p1 λ 1 u p2 h u pm λ m } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca aI9aWaaiWaaeaafaqaaeabdaaaaeaacaWGHbWcdaWgaaqcfayaaKqz adGaaGymaiaaigdaaKqbagqaaaqaaiaadggadaWgaaqaaKqzadGaaG ymaiaaikdajuaGcaaMc8oabeaacaaMc8UaaGPaVlabl+Uimbqaaiaa dggalmaaBaaajuaGbaqcLbmacaaIXaGaamyBaaqcfayabaaabaGaam yyamaaBaaabaqcLbmacaaIYaGaaGymaaqcfayabaaabaGaamyyamaa BaaabaqcLbmacaaIYaGaaGOmaaqcfayabaGaaGPaVlaaykW7cqWIVl ctaeaacaWGHbWaaSbaaeaajugWaiaaikdacaWGTbaajuaGbeaaaeaa cqWIVlctaeaacqWIVlctcaaMc8UaaGPaVlaaykW7caaMc8UaeS47IW eabaGaeS47IWeabaGaamyyamaaBaaabaqcLbmacaWGWbGaaGymaaqc fayabaaabaGaamyyamaaBaaabaqcLbmacaWGWbGaaGOmaaqcfayaba GaaGPaVlaaykW7cqWIVlctaeaacaWGHbWaaSbaaeaajugWaiaadcha caWGTbaajuaGbeaaaaaacaGL7bGaayzFaaGaaGypamaacmaabaqbae aabmWaaaqaaiaadwhadaWgaaqaaKqzadGaaGymaiaaigdaaKqbagqa amaakaaabaGaeq4UdW2cdaWgaaqcfayaaKqzadGaaGymaaqcfayaba aabeaaaeaacaWG1bWaaSbaaeaajugWaiaaigdacaaIYaaajuaGbeaa daGcaaqaaiaadIgaaeqaaaqaaiaadwhadaWgaaqaaKqzadGaaGymai aad2gaaKqbagqaamaakaaabaGaeq4UdW2aaSbaaeaajugWaiaad2ga aKqbagqaaaqabaaabaGaamyDaSWaaSbaaKqbagaajugWaiaaikdaca aIXaaajuaGbeaadaGcaaqaaiabeU7aSnaaBaaabaqcLbmacaaIXaaa juaGbeaaaeqaaaqaaiaadwhadaWgaaqaaKqzadGaaGOmaiaaikdaaK qbagqaamaakaaabaGaeq4UdW2aaSbaaeaajugWaiaaikdaaKqbagqa aaqabaaabaGaamyDamaaBaaabaqcLbmacaaIYaGaamyBaaqcfayaba WaaOaaaeaacqaH7oaBdaWgaaqaaKqzadGaamyBaaqcfayabaaabeaa aeaacaWG1bWcdaWgaaqcfayaaKqzadGaamiCaiaaigdaaKqbagqaam aakaaabaGaeq4UdW2cdaWgaaqcfayaaKqzadGaaGymaaqcfayabaaa beaaaeaacaWG1bWaaSbaaeaajugWaiaadchacaaIYaaajuaGbeaada GcaaqaaiaadIgaaeqaaaqaaiaadwhadaWgaaqaaKqzadGaamiCaiaa d2gaaKqbagqaamaakaaabaGaeq4UdW2aaSbaaeaajugWaiaad2gaaK qbagqaaaqabaaaaaGaay5Eaiaaw2haaaaa@CFFC@

Among them, represents the value of the factor load matrix, λ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aST WaaSbaaKqbagaajugWaiaadMgaaKqbagqaaaaa@3B91@ represents the eigenvalue, and a ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggalm aaBaaajuaGbaqcLbmacaWGPbGaamOAaaqcfayabaaaaa@3BB2@ represents the eigenvector. Therefore, the part of the corresponding feature vector is shown in Table 7, and the full content is shown in Appendix 2.

Component

1

2

3

4

GEO.id2

0.0148

-0.0527

0.4878

0.724

year

0.0044

0.4794

0.4037

-0.2019

SCHOOL ENROLLMENT - Elementary school (grades 1-8)

0.2717

-0.0252

0.0009

-0.002

SCHOOL ENROLLMENT - High school (grades 9-12)

0.272

-0.0291

-0.0095

0.005

SCHOOL ENROLLMENT - College or graduate school

0.2654

-0.0307

-0.0113

0.009

EDUCATIONAL ATTAINMENT - Less than 12th grade, no diploma

 

 

 

 

 

0.2574

-0.0291

-0.0832

0.0249

EDUCATIONAL ATTAINMENT - High school graduate (includes equivalency)

 

 

 

 

 

0.2615

0.0449

-0.139

0.1233

EDUCATIONAL ATTAINMENT - Associate's degree

0.2637

0.0575

-0.0841

0.0786

 

 

 

 

 

WORLD REGION OF BIRTH OF FOREIGN BORN - Latin

 

 

 

 

America

0.2009

-0.211

0.4112

-0.2884

LANGUAGE SPOKEN AT HOME - English only

0.27

0.022

-0.0832

0.0676

Heroin

0.2179

0.2039

-0.2675

0.1243

synthetic opioid

0.1131

0.3928

-0.2912

-0.0358

Heroin ratio

0.0623

0.4353

0.2127

0.3481

synthetic opioid ratio

0.0096

0.5282

0.1683

-0.3093

Table 7 Feature vector (part)

Therefore, the main components are: F k = p a kp x p ,i=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada WgaaqaaKqzadGaam4AaaqcfayabaGaaGypamaaxacabaWaaabqaeqa beqabiabggHiLdaabeqaaKqzadGaamiCaaaajuaGcaWGHbWcdaWgaa qcfayaaKqzadGaam4AaiaadchaaKqbagqaaiaadIhadaWgaaqaaKqz adGaamiCaaqcfayabaGaaGilaiaadMgacaaI9aGaaGymaiaaiYcaca aIYaGaaGilaiaaiodacaaISaGaaGinaaaa@5053@

Among them, a kp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggalm aaBaaajuaGbaqcLbmacaWGRbGaamiCaaqcfayabaaaaa@3BBA@ represents the corresponding feature vector of the k-th indicator in the i-th principal component, and x p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhada WgaaqaaKqzadGaamiCaaqcfayabaaaaa@3A48@ represents the p-th index.

In the expression of the first principal component, the coefficients of the 3rd, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, and 16th indicators are large, and the eleven indicators play a major role, so we can Think of the first principal component as a comprehensive indicator consisting of these eleven single indicators. The second, third and fourth principal components are the same. Any event can be derived from the opioid flooding score as long as the indicator is known. For the purposes of this paper, the total score is weighted by the first four principal components, and the principal component pre-factors can be the respective variance contribution rates.

which is F=0.66397 F 1 +0.08068 F 2 +0.05596 F 3 +0.05054 F 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeaca aI9aGaaGimaiaai6cacaaI2aGaaGOnaiaaiodacaaI5aGaaG4naiaa dAealmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaacqGHRaWkcaaIWa GaaGOlaiaaicdacaaI4aGaaGimaiaaiAdacaaI4aGaamOraSWaaSba aKqbagaajugWaiaaikdaaKqbagqaaiabgUcaRiaaicdacaaIUaGaaG imaiaaiwdacaaI1aGaaGyoaiaaiAdacaWGgbWaaSbaaeaajugWaiaa iodaaKqbagqaaiabgUcaRiaaicdacaaIUaGaaGimaiaaiwdacaaIWa GaaGynaiaaisdacaWGgbWcdaWgaaqcfayaaKqzadGaaGinaaqcfaya baaaaa@5EBA@

Opioid class of abuse level

According to the principal component evaluation model based on entropy weight method, the algebraic value F of the opioid drug flooding score is obtained.6,7 According to the distribution of F value, the degree of flooding of opioids is graded, and the filled area map and frequency distribution map are obtained. As shown in Figures 8 & 9. It can be seen from Figures 8 & 9 that the maximum F value is greater than 90,000, all the data falls within the interval [0, 1000000], and more are gathered in the interval [0, 450000].In order to effectively classify the degree of flooding, the interval [0, 400000] is subdivided, and the data of the degree of flooding between each cell is counted to obtain a frequency distribution map, as shown in Figure 10. It can be found that the comprehensive evaluation value of more than 3000 reports is in the interval [0, 450000], and there are almost no reports of more than 400,000. Only a few important events can be seen in Figure 8. For example, the F value of the county 42101 is 96, 7854.7 which is the highest, and opioids are the most rampant. In order to further discover the level of data, the data of this interval is refined according to the step-by-step refinement analysis method, and is divided into the figures as shown in Figure 10.

Figure 8 area.

Figure 9 F-value frequency distribution.

Figure 10 Number of reports in different evaluation value intervals.

From the Figure 10, we can see the obvious hierarchical distribution. As the interval is continuously refined, it is true that a large amount of data is found between [0,50000]. As the value of F is higher, the flood is more serious. Such incidents do occur in practice, and the use of appropriate opioids occurs in all regions of the United States, so the number is large. Therefore, according to the frequency of the degree of opioid influx, the degree of opioid influx is divided into one to three levels from high to low, see Table 8. The degree of flooding of opioids in Table 8 is graded, and level 1 indicates the greatest degree of flooding. In order to verify the rationality of the classification, combined with the actual considerations, random or selected boundary values for verification, the data can meet the requirements and meet the actual facts, which also proves the rationality and accuracy of the model. At the same time, the F values of the five counties (39035, 39061, 39113, 42003, 42101) that were firstly observed were in the serious category, further illustrating the correctness of the results Tables 9-11.

Level

F-flooding score

Corresponding number of reports

Total ratio

1-serious

>400000

63

1.96%

2-General

(50000, 400000]

728

22.60%

3-lower

(0, 50000]

2430

75.44%

Table 8 Classification of the extent of opioids

County code

Parameter a7 (high school education)

Parameter a8 (University but no degree)

Parameter a9 (≥university degree)

F1 value Corresponding interval

Flood level

39035

(0,0.2637)

(0.2615,1)

(0.2615,1)

(22524.912,41786.003)

Lower

39061

(0,0.2637)

(0.2615,1)

(0.2615,1)

(72094.505,334953,171)

General

39113

(0,0.2637)

(0.2615,1)

(0.2615,1)

(28967.624,48021.552)

Lower

42003

(0,0.2637)

(0.2615,1)

(0.2615,1)

(26349.411,29854.518)

Lower

42101

(0,0.2637)

(0.2615,1)

(0.2615,1)

(21552.004,45897.343)

Lower

Table 9 Estimated interval

Time

Predicted value of synthetic opioids

V39061 Predicted value of synthetic opioids

V42003 Predicted value of synthetic opioids

V39035 Predicted value of synthetic opioids

V42101 Heroin case number prediction

V39061 Heroin case Number prediction

2010

23.83

986.33

392

224.57

3360.48

2044.22

2011

200.83

760.33

301

973.2

3575.35

2357.88

2012

380.83

478.33

239

1035.47

3745.12

2675.21

2013

419.83

451.33

251

2242.11

3921.44

3146.27

2014

411.83

500.33

280

2916.63

4074.26

3552.92

2015

661.83

851.33

386

3262.71

4193.2

3921.72

2016

1050.83

3385.33

1003

3139.86

4470.1

4314.29

2017

3876.83

4528.33

1705

2839.98

4745.26

4699.54

2018

6782.83

8444.33

3757

2440.05

4971.38

4885.61

2019

9750.5

11900

5479

2246.33

5210.89

5226.22

2020

13090

15792

7419

2074.26

5461.93

5566.84

Table 10 Forecast data 1

Time

Prediction _of_ the _proportion _of_ synthetic _opioids39035

Prediction _of_ the _proportion _of_ synthetic _opioids39061

Prediction _of_ the _proportion _of_ synthetic _opioids39113

Prediction _of_ the_ ratio _of _heroin39035

Prediction _of_ the _ratio_ of _heroin42101

2010

0.006468

0.007762

0.008335

0.140011

0.107245

2011

0.004262

0.007403

0.008581

0.140069

0.129526

2012

0.002056

0.006179

0.008827

0.141602

0.149719

2013

0.000667

0.002216

0.004667

0.138233

0.168613

2014

0.002581

0.004688

0.014995

0.139344

0.187054

2015

0.017201

0.029276

0.08438

0.142694

0.207191

2016

0.045115

0.178035

0.046437

0.147687

0.233344

2017

0.197334

0.222675

0.226049

0.150012

0.254845

2018

0.265979

0.320816

0.465621

0.146909

0.270898

2019

0.342783

0.396373

0.630162

0.147922

0.290963

2020

0.419587

0.47193

0.794704

0.148945

0.311027

2021

0.496391

0.547488

0.959245

0.149976

0.331091

2022

0.573196

0.623045

1.123786

0.151017

0.351155

2023

0.65

0.698602

1.288327

0.152066

0.371219

2024

0.726804

0.77416

1.452868

0.153125

0.391283

2025

0.803608

0.849717

1.617409

0.154194

0.411347

2026

0.880412

0.925275

1.78195

0.155272

0.431411

2027

0.957217

1.000832

1.946491

0.15636

0.451475

Table 11 Forecast data 2

Linear programming model

The foundation of modexl

In question 1, we have used system cluster analysis and time series analysis to select the five counties where opium is the most widespread in the United States. In question 2, we sorted the weighted composite scores F of 460 counties, and divided 460 counties into three layers according to the order of F. The larger the value of F, the higher the extent of opioids in the county. Regarding question 3, we find that if min F is regarded as an objective function, a linear relationship can be established between the socio-economic secondary indicators used and their own primary indicators. That is, all 20 indicators used can be formed into restrictions. Further, since F1's contribution rate is 66%, most of the information about the whole can be explained. Considering the implementation cost of the strategy, in order to make the effectiveness of the anti-opioid crisis strategy as obvious as possible, we replace min F with min F1. The linear programming model is established as follows.

Objective function:

min F 1 = k=1 20 a k χ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGac2gaca GGPbGaaiOBaiaadAealmaaBaaajuaGbaqcLbmacaaIXaaajuaGbeaa caaI9aWaaabCaeqabaqcLbmacaWGRbGaaGypaiaaigdaaKqbagaaju gWaiaaikdacaaIWaaajuaGcqGHris5aiaadggadaWgaaqaaKqzadGa am4AaKqbaoaaCaaabeqaaiabeE8aJbaajugWaiaadUgaaKqbagqaaa aa@4FD1@ s.t.{ x 1 =GEOid2, x 2 =year, x 3 + x 4 + x 5 enrollmentrate, x 6 =0, x 7 populationEducation(high school graduates), x 8 Population Education (University but no degree), x 9 Population Education (University), x 6 + x 7 + x 8 + x 9 =Population Education, x 10 =Veterans( 18yearsold ), x 13 + x 14 + x 15 world born population, x 11 + x 12 The number of people living in a house for one y ear, x 16 Family language population, x 17 + x 18 number of opioidcases per county, x 19 + x 20 proportionnumber of opioid cases per county total county, x 1 , x 2, x 3 ,... x 18 , x 19 , x 20 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadohaca GGUaGaamiDaiaac6cadaGabaabaeqabaGaamiEamaaBaaabaqcLbma caaIXaaajuaGbeaacaaMc8Uaeyypa0JaaGPaVlaadEeacaWGfbGaam 4taiaadMgacaWGKbGaaGOmaiaacYcacaaMc8UaamiEamaaBaaabaGa aGOmaaqabaGaaGPaVlabg2da9iaaykW7caWG5bGaamyzaiaadggaca WGYbGaaiilaiaaykW7caWG4bWaaSbaaeaacaaIZaaabeaacaaMc8Ua ey4kaSIaamiEamaaBaaabaGaaGinaaqabaGaaGPaVlabgUcaRiaayk W7caWG4bWaaSbaaeaacaaI1aaabeaacaaMc8UaeyizImQaaGPaVlaa dwgacaWGUbGaamOCaiaad+gacaWGSbGaamiBaiaad2gacaWGLbGaam OBaiaadshacaaMc8UaamOCaiaadggacaWG0bGaamyzaiaacYcaaeaa caWG4bWaaSbaaeaajugWaiaaiAdaaKqbagqaaiaaykW7cqGH9aqpca aMc8UaaGPaVlaaicdacaGGSaGaaGPaVlaadIhadaWgaaqaaiaaiEda caaMc8UaeyyzImRaaGPaVdqabaGaamiCaiaad+gacaWGWbGaamyDai aadYgacaWGHbGaamiDaiaadMgacaWGVbGaamOBaiaaykW7cqGHsisl caaMc8UaamyraiaadsgacaWG1bGaam4yaiaadggacaWG0bGaamyAai aad+gacaWGUbGaaGPaVlaacIcacaqGObGaaeyAaiaabEgacaqGObGa aeiiaiaabohacaqGJbGaaeiAaiaab+gacaqGVbGaaeiBaiaabccaca qGNbGaaeOCaiaabggacaqGKbGaaeyDaiaabggacaqG0bGaaeyzaiaa bohacaGGPaGaaiilaaqaaiaadIhadaWgaaqaaKqzadGaaGioaKqbak aaykW7cqGHLjYSaeqaaiaaykW7caqGqbGaae4BaiaabchacaqG1bGa aeiBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabweaca qGKbGaaeyDaiaabogacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaa bccacaqGOaGaaeyvaiaab6gacaqGPbGaaeODaiaabwgacaqGYbGaae 4CaiaabMgacaqG0bGaaeyEaiaabccacaqGIbGaaeyDaiaabshacaqG GaGaaeOBaiaab+gacaqGGaGaaeizaiaabwgacaqGNbGaaeOCaiaabw gacaqGLbGaaeykaiaabYcaaeaacaWG4bWaaSbaaeaajugWaiaaiMda aKqbagqaaiaaykW7cqGHLjYScaaMc8Uaaeiuaiaab+gacaqGWbGaae yDaiaabYgacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqG fbGaaeizaiaabwhacaqGJbGaaeyyaiaabshacaqGPbGaae4Baiaab6 gacaqGGaGaaeikaiabgwMiZkaabwfacaqGUbGaaeyAaiaabAhacaqG LbGaaeOCaiaabohacaqGPbGaaeiDaiaabMhacaqGPaGaaeilaiaayk W7caWG4bWaaSbaaeaacaaI2aaabeaacaaMc8Uaey4kaSIaamiEamaa BaaabaGaaG4naaqabaGaaGPaVlabgUcaRiaaykW7caWG4bWaaSbaae aacaaI4aaabeaacqGHRaWkcaaMc8UaamiEamaaBaaabaGaaGyoaaqa baGaaGPaVlabg2da9iaaykW7caqGqbGaae4BaiaabchacaqG1bGaae iBaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabweacaqG KbGaaeyDaiaabogacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaacY caaeaacaWG4bWaaSbaaeaajugWaiaaigdacaaIWaaajuaGbeaacaaM c8Uaeyypa0JaaGPaVlaabAfacaqGLbGaaeiDaiaabwgacaqGYbGaae yyaiaab6gacaqGZbGaaGPaVpaabmaabaGaeyyzImRaaGPaVlaaigda caaI4aGaaGPaVlaadMhacaWGLbGaamyyaiaadkhacaWGZbGaaGPaVl aad+gacaWGSbGaamizaaGaayjkaiaawMcaaiaacYcacaaMc8UaamiE amaaBaaabaGaaGymaiaaiodaaeqaaiaaykW7cqGHRaWkcaWG4bWaaS baaeaacaaIXaGaaGinaaqabaGaaGPaVlabgUcaRiaaykW7caWG4bWa aSbaaeaacaaIXaGaaGynaaqabaGaaGPaVlabgsMiJkaaykW7caqG3b Gaae4BaiaabkhacaqGSbGaaeizaiaabccacaqGIbGaae4Baiaabkha caqGUbGaaeiiaiaabchacaqGVbGaaeiCaiaabwhacaqGSbGaaeyyai aabshacaqGPbGaae4Baiaab6gacaGGSaGaaGPaVdqaaiaadIhadaWg aaGcbaqcLbmacaaIXaGaaGymaaqcfayabaGaaGPaVlabgUcaRiaayk W7caWG4bWaaSbaaeaajugWaiaaigdacaaIYaaajuaGbeaacaaMc8Ua eyizImQaaGPaVlaabsfacaqGObGaaeyzaiaabccacaqGUbGaaeyDai aab2gacaqGIbGaaeyzaiaabkhacaqGGaGaae4BaiaabAgacaqGGaGa aeiCaiaabwgacaqGVbGaaeiCaiaabYgacaqGLbGaaeiiaiaabYgaca qGPbGaaeODaiaabMgacaqGUbGaae4zaiaabccacaqGPbGaaeOBaiaa bccacaqGHbGaaeiiaiaabIgacaqGVbGaaeyDaiaabohacaqGLbGaae iiaiaabAgacaqGVbGaaeOCaiaabccacaqGVbGaaeOBaiaabwgacaqG GaGaaeyEaiaabccacaqGLbGaaeyyaiaabkhacaqGSaGaaGPaVdqaai aadIhadaWgaaqaaKqzadGaaGymaiaaiAdaaKqbagqaaiaaykW7cqGH KjYOcaaMc8UaaeOraiaabggacaqGTbGaaeyAaiaabYgacaqG5bGaae iiaiaabYgacaqGHbGaaeOBaiaabEgacaqG1bGaaeyyaiaabEgacaqG LbGaaeiiaiaabchacaqGVbGaaeiCaiaabwhacaqGSbGaaeyyaiaabs hacaqGPbGaae4Baiaab6gacaGGSaGaaGPaVlaadIhadaWgaaqaaiaa igdacaaI3aaabeaacaaMc8Uaey4kaSIaaGPaVlaadIhadaWgaaqaai aaigdacaaI4aaabeaacaaMc8UaeyizImQaaGPaVlaab6gacaqG1bGa aeyBaiaabkgacaqGLbGaaeOCaiaabccacaqGVbGaaeOzaiaabccaca qGVbGaaeiCaiaabMgacaqGVbGaaeyAaiaabsgacaaMc8Uaae4yaiaa bggacaqGZbGaaeyzaiaabohacaqGGaGaaeiCaiaabwgacaqGYbGaae iiaiaabogacaqGVbGaaeyDaiaab6gacaqG0bGaaeyEaiaacYcaaeaa caWG4bWaaSbaaeaajugWaiaaigdacaaI5aaajuaGbeaacaaMc8Uaey 4kaSIaaGPaVlaadIhadaWgaaqaaKqzadGaaGOmaiaaicdaaKqbagqa aiaaykW7cqGHKjYOcaaMc8UaaeiCaiaabkhacaqGVbGaaeiCaiaab+ gacaqGYbGaaeiDaiaabMgacaqGVbGaaeOBaiaaykW7cqGHsislcaaM c8UaaeOBaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaab+ gacaqGMbGaaeiiaiaab+gacaqGWbGaaeyAaiaab+gacaqGPbGaaeiz aiaabccacaqGJbGaaeyyaiaabohacaqGLbGaae4CaiaabccacaqGWb GaaeyzaiaabkhacaqGGaGaae4yaiaab+gacaqG1bGaaeOBaiaabsha caqG5bGaaeiiaiaabshacaqGVbGaaeiDaiaabggacaqGSbGaaeiiai aabogacaqGVbGaaeyDaiaab6gacaqG0bGaaeyEaiaacYcaaeaacaWG 4bWaaSbaaeaajugWaiaaigdaaKqbagqaaiaacYcacaaMc8UaamiEam aaBaaabaqcLbmacaaIYaqcfaOaaiilaiaaykW7aeqaaiaadIhadaWg aaqaaKqzadGaaG4maaqcfayabaGaaiilaiaac6cacaGGUaGaaiOlai aadIhadaWgaaqaaKqzadGaaGymaiaaiIdaaKqbagqaaiaacYcacaaM c8UaamiEamaaBaaabaqcLbmacaaIXaGaaGyoaaqcfayabaGaaiilai aaykW7caWG4bWaaSbaaeaajugWaiaaikdacaaIWaaajuaGbeaacaaM c8UaeyyzImRaaGPaVlaaicdacaGGSaGaaGPaVdaacaGL7baaaaa@8A82@

Among them, x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIhadaWgaa WcbaGaae4Aaaqabaaaaa@3800@ is the 20 indicators selected by Philadelphia, and a k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaae4Aaaqabaaaaa@37EB@ is the corresponding coefficient (parameter).

Model solution and sensitivity analysis

Therefore, we can use the adjustment of an indicator x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIhadaWgaa WcbaGaae4Aaaqabaaaaa@3800@ in the constraint as a strategy against the opioid crisis. And through the local sensitivity analysis after the change of x k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabIhadaWgaa WcbaGaae4Aaaqabaaaaa@3800@ , the parameter range (c, k) of each index is obtained. That is, when the parameter of an indicator is in (c, k), the optimal solution does not change. It can be preliminarily understood that when the parameters of an indicator fluctuate in (c, k), the provided strategy is effective. Of course, we can also bring the obtained parameter range into the first principal component score expression to find a new F1 value, and determine whether the parameter range is valid according to the level of the opioid drug flood level to which the new F1 value belongs.

When the new F1 value is at the third level, the parameter range is successful. When it is at the second level, the success or failure of the parameter range is not obvious, that is, the corresponding measures are not effective. When at the third level, this parameter range is unsuccessful. Taking the indicator of education as an example, we give measures to resist the opioid crisis: education is a comprehensive indicator of importance. Our strategy is to continue to increase the popularity of basic education in the United States, so that all people over the age of 25 in the United States will reach at least the high school education and above. The more a person knows about the dangers of drugs, the more proficient the correct use of opioids, the higher the knowledge and personal cultivation, the less likely he is to take drugs and abuse opioids. Combined with the above analysis, in the new constraints, the population below the high school education is 0, and the reduced population is distributed to the population with higher education. As we analyze the latest data provided, the data of the five counties of Cuyahoga, Hamilton, Montgomery, Allegheny, And Philadelphia are substituted into the model. Analyzing the sensitivity of important coefficients with Lingo and the estimated range of the parameters can be obtained. Substituting the endpoint value of each parameter into the first principal component score, the interval of the opioid flooding scores of the five counties was obtained, and the results are shown in the following table. According to Question 2, the grading model of the opioid flooding scores in the five counties shows that by raising the basic education level of young people under the age of 25, only Hamilton County, Ohio (39061) is in the general level of flooding, and the remaining counties have fallen to lower levels. The level of opioids in these five counties has dropped from severe to lower or general, indicating that the future opioid crisis predicted in Part 1 may not occur. From the overall situation of the five counties, our strategy is effective.

Model evaluation and promotion

Strengths

In the second problem, the panel data is used in the dynamic panel data model. Compared with the cross-section data model, the panel data model controls the deviation of the OLS estimation caused by the unobservable variables, making the model more reasonable and the sample estimation of the model parameters more accurate. Compared with time series data, the panel data model expands the sample information, reduces the collinearity between variables, and improves the validity of the estimator. Among them, the dynamic panel data model can more accurately adjust the dynamics of the response variables. In question 2, the degree of flooding of opioids was based on the frequency of F values, and the results were verified.

Weaknesses

The data given in question 2 does not take into account income, economic indicators.

In question 2, the degree of spread of opioids is divided into three layers, with certain subjectivity.

Discussion

Since some research results are not the focus of answering the question, and considering the reasons for the paper, the data we have obtained in the modeling process are not all in the text. However, some models have good statistical results, so we want to put the data passed by the statistical test in the memorandum. The following table shows the data prediction results for a time series analysis during the modeling process. It should be pointed out that since the known data is only 8 years, we believe that the reliability of the data in the later years may be verified. And our study is limited to the extent that it focuses on the data provided by NFLIS concerned with opioid crisis in the US at one time period (2010–2017). After sorting and analyzing the panel data, we decided to transform the derived data and then model the panel data, cross-section data and time series data respectively.9,10 Next, we consider how to objectively select a large number of socio-economic data and indicators, and then establish a model that can reflect two different databases at the same time, so that the model can be combined with some indicators. Further, we note that the sample selection strategy may have resulted in an underrepresentation of heroin users with a prescription opioid misuse history. Additionally, we note that the findings reported here may not be completely generalizable to other settings and time periods.11,12

Acknowledgments

We would like to express my gratitude to all those who helped us during the writing of this article.

Conflict of interest

We have no conflict of interests to disclose and the manuscript has been read and approved by all named authors.

References

  1. Yang Yuhui, Xu Xiuli, Zhu Zhu. Overview of Opioid Abuse and Its Governance in the United States. Chinese Medical Alert. 2017;14(12):746‒751.
  2. Wang Shujiang, Li Weiyan. Dose titration and conversion of opioids in the treatment of cancer pain. Journal of Southeastern Defense Medicine. 2016;18(5):522‒526.
  3. Yan Shuai, Dang Yaoguo, Ding Song, Shang Zhongju. Research on panel data clustering method based on grey likelihood function. Control and decision. 2019;1‒7.
  4. Wu Jian, Liu Zidong, Wang Chao, et al. Analysis of Resonance Characteristics of Inverter Grid‒Connected System Based on Sensitivity Theory. Journal of Electric Machines and Control. 2018;22(12):11‒ 29.
  5. Overdose Death Rates. 2018.
  6. Volkow ND, Collins FS. The role of science in addressing the opioid crisis. N Engl J Med. 2017;377(4):391‒394.
  7. Zhao Hailong. Research and application of function substitution method for reliability and reliability sensitivity analysis. Northwestern Polytechnical University. 2015.
  8. Xu Chongang, Hu Yuanman, Chang Wei, et al. Sensitivity analysis of ecological model. Chinese Journal of Applied Ecology. 2004;15(6):1056‒1062.
  9. Zhu Xiaohua, Yang Xiuchun. Application of Analytic Hierarchy Process in Regional Eco‒environmental Quality Assessment. Scientific and Technological Management of Land and Resources. 2001;5:43‒46.
  10. Li Xueping. Discussion on the Method of Scoring Index Weights by Analytic Hierarchy Process. Journal of Beijing University of Posts and Telecommunications (Social Sciences Edition). 2001;1:25‒27.
  11. Dang Yaoguo, Hou Yuqing. Multi-indicator panel data clustering method based on feature extraction. Statistics & Decision. 2016(19): 68‒72.
  12. Cicero TJ, Ellis MS, Kasper ZA. Increases in self-reported fentanyl use among a population entering drug treatment: The need for systematic surveillance of illicitly manufactured opioids. Drug and Alcohol dependence. 2017(177):101‒103.
  13. Dang Yaoguo, Hou Yuqing. Multi‒indicator panel data clustering method based on feature extraction. Statistics & Decision, 2016(19): 68‒72.
  14. Cicero, T. J., Ellis, M. S., Kasper, Z. A. Increases in self‒reported fentanyl use among a population entering drug treatment: The need for systematic surveillance of illicitly manufactured opioids. Drug and Alcohol Dependence, 2017(177): 101‒103.
Creative Commons Attribution License

©2019 Zhao, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.