Submit manuscript...
Journal of
eISSN: 2374-6947

Diabetes, Metabolic Disorders & Control

Research Article Volume 8 Issue 2

The effects of vitamin D on glucose-insulin dynamics: mathematical model and simulation

Saloni Rathee,1 Nilam ,2 Murray E Alexander3

1Department of Mathematics, PDM University, India
2Department of Applied Mathematics, Delhi Technological University, India
3Department of Physics, University of Winnipeg, Canada

Correspondence: Nilam, Department of Applied Mathematics, Delhi Technological University, Delhi, 110042, India

Received: September 15, 2021 | Published: December 3, 2021

Citation: Rathee S, Nilam, Alexander ME. The effects of vitamin D on glucose-insulin dynamics: mathematical model and simulation. J Diab Metab Disorder Control. 2021;8(2):105-114. DOI: 10.15406/jdmdc.2021.08.00229

Download PDF

Abstract

Background: Maintenance of glucose level for diabetic people is very important and challenging. Many factors seem to affect the level of glucose in our body, out of which vitamin D is found to be one of the most important factors. It inspires us to develop a model that is capable of predicting the effect of vitamin D on glucose-insulin dynamics of human body.

Objective: The main objective of the study is to develop a model to capture the effect of vitamin D on the glucose-insulin dynamics of non-diabetic, T2DM and T1DM people.

Method: A minimal model previously developed by Bergman is extended to include the effects of vitamin D via parameters. Stability analysis and numerical simulation has been performed on the vitamin D model to analyze the behavior of the model. Comparisons are made to observe the blood glucose and insulin level in non-diabetic, T2DM and T1DM people.

Result: The model assess the changes in glucose-insulin dynamics after the induction of different values of vitamin D parameters in their respective range.

Conclusion and future work: The vitamin D model captured the glucose-insulin dynamics effectively and should be recommended in our daily routine, especially for the diabetic people. Further, the dosage of vitamin D may be calculated clinically because of the variation in the population and severity of the disease.

Keywords: diabetes, glucose-insulin dynamics, T1DM, T2DM, vitamin D, insulin sensitivity, insulin resistance

Abbreviations

T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus

Introduction

Diabetes is the most widespread disease after cancer, and therefore extensive research is being carried out to develop drugs for its therapeutics. Diabetes mellitus is classified as T1DM (type 1 diabetes mellitus), T2DM (type 2 diabetes mellitus) and gestational diabetes. T1DM is an autoimmune disease in which the immune system attacks the insulin - producing β cells in the pancreas and destroys them. In T2DM, the pancreas usually produces enough insulin but for unknown reasons the body cannot use the insulin effectively a condition called insulin resistance. Insulin resistance is a risk factor for T2DM and recent studies have shown a strong relation among insulin resistance and vitamin D deficiency. Recent studies have shown that deficiency of vitamin D results in reduction of insulin secretion and thus in hyperglycemia, which leads to diabetes if it persists long.1 Optimal profile of insulin release for diabetics has been discussed in.2 Vitamin D deficiency was significantly associated with increased diastolic blood pressure, increased triglycerides levels, and reduced high density lipoprotein cholesterol and measurements of vitamin D may help to detect type 2 diabetic patients.3 A review4 states evidence of strong link between abnormal glucose-insulin dynamics and deficiency of vitamin D. Vitamin D also plays a role in the pathogenesis of T1DM and T2DM, with a special emphasis on the direct effects of vitamin D on pancreatic cells.5 Vitamin D has both direct and indirect effects on various mechanisms related to the pathophysiology of T2DM and hypertension, including pancreatic beta cell dysfunction and impaired insulin action.6 The causal link between vitamin D, T2DM and hypertension remains to be determined. Most of the researches have been done in the United States on persons suffering from either T1DM or T2DM.

Vitamin D is a powerful substance our body usually produces its own with the help of sunlight which makes our body produce a powdery substance which then converts to vitamin D. Vitamin D is obtained from exposure to sunlight, fortified foods and dietary supplements. When our skin is exposed to solar ultraviolet radiation (wavelength 290-350 nm), 7-dehydrocholesterol is converted to previtamin (D3) which is rapidly converted to cholecalciferol (D3). Ergocalciferol (D2) obtained from food along with cholecalciferol (D3) is converted into 25-hydroxyvitamin D in the presence of vitamin D-25-hydroxylase in the liver which is the major circulating metabolite and used to determine a patient’s vitamin D status.1,3–6 Almost all 25 - hydroxyvitamin D is bound to circulating DBP (vitamin D - binding protein) and is filtered by the kidneys and reabsorbed by the proximal convoluted tubules. The biologically inactive 25-hydroxyvitamin D must be converted in the kidneys to active 1, 25-hydroxyvitamin D by 1-alpha hydroxylase. Finally, the active 1, 25-hydroxyvitamin D can bind to VDR-RXR (vitamin D receptor - retinoic acid X - receptor complex) in the intestine, bone and parathyroid glands. VDRs are present in pancreatic β cells and vitamin D is essential for normal insulin secretion.7 See Figure 1 for the mechanism of synthesis of vitamin D).

Figure 1 Mechanism of synthesis of Vitamin D.

Sunlight exposure is just one of the factors out of many which influence vitamin D status, photochemical and photobiological sciences.8 Studies have indicated that 25-hydroxyvitamin D (25(OH)D) level in obese people is lower than normal weight people. However relationship between 25(OH)D and fat mass are found to be inconsistent.9 Islet cell insulin secretion is reduced in vitamin D - deficient animals and can be corrected by vitamin D supplementation.7,10,11 The impact of vitamin D deficiency on β cell function seen in vitro and in vivo in animal models has been matched by vitamin D studies in human volunteers undergoing hyperglycaemic clamps.12 Epidemiological studies have shown that vitamin D deficiency might increase the incidence of an autoimmune disease such as T1DM.13 Vitamin D appears to affect exclusively the insulin response to glucose stimulation, while it does not appear to influence basal insulinemia.14,15 Vitamin D may have a beneficial effect on insulin action by stimulating the expression of insulin receptor thereby enhancing insulin responsiveness for glucose transport.16 Association between low vitamin D level and decreased insulin sensitivity has been reported in cross-sectional studies.12,16–22 Based on available data from recent studies, vitamin D supplementation is considered to be a potential and inexpensive therapy, which not only decreases the risk but also improves glycemic parameters in T2DM.23 The positive effects of vitamin D on insulin secretion and sensitivity and secondary its action on inflammation can be seen through available clinical and epidemiological data.24 Studies have shown that a low serum level of vitamin D increases the risk of developing diabetes.25–27 A multivariate logistic regression model was used to predict the relationship between glucose control and vitamin D deficiency.28 Recently in 2019,29 it is quoted that sunlight exposure had a beneficial but insufficient effect on 25[OH]D levels and the same levels were documented in two consecutive summer seasons confirming that vitamin D supplementation in both summer and winter should be considered. It has been shown that there is an association of vitamin D deficiency with a myriad of acute and chronic illnesses including preeclampsia, childhood dental caries, periodontitis, autoimmune disorders, infectious diseases, cardiovascular disease, deadly cancers, type 2 diabetes and neurological disorders.30–34

The purpose of the present study is to use the minimal model in order to predict the role of vitamin D on glucose-insulin regulatory system. The paper is divided into six sections. Section (1) contains the introduction of the work done till now in this area. In section (2), mathematical model is discussed by using vitamin D parameters. Positive and bounded solution of the model is given in the section (3). Stability is checked in section (4), analysis of model is done in section (5) and computer simulations are discussed in section (6). In section (7), discussion about the work done is given. Conclusion and future aspects of the work are presented in section (8).

Mathematical model

Glucose is stored in liver and peripheral tissues including muscle tissues. Glucose utilization process is controlled by insulin, which enhances glucose uptake. Also, an increase in glucose concentration augments pancreatic release of insulin. This feedback loop leads to difficulties in interpretation of test results. To overcome this problem, the whole system is decomposed into two independent components:35 (i) the effect of insulin to accelerate glucose uptake and (ii) the effect of glucose to enhance insulin secretion.

The two subsystems are described in mathematical terms and the mathematical model given by Bergman et al.36 is given as:

dG( t ) dt =X( t )G( t ) p 1 ( G( t ) G b ),G( 0 )= G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaam4raKqbaoaabmaakeaajugibiaadshaaOGa ayjkaiaawMcaaaqaaKqzGeGaamizaiaadshaaaGaeyypa0JaeyOeI0 IaamiwaKqbaoaabmaakeaajugibiaadshaaOGaayjkaiaawMcaaKqz GeGaam4raKqbaoaabmaakeaajugibiaadshaaOGaayjkaiaawMcaaK qzGeGaeyOeI0IaamiCaSWaaSbaaeaajugWaiaaigdaaSqabaqcfa4a aeWaaOqaaKqzGeGaam4raKqbaoaabmaakeaajugibiaadshaaOGaay jkaiaawMcaaKqzGeGaeyOeI0Iaam4raKqbaoaaBaaaleaajugWaiaa dkgaaSqabaaakiaawIcacaGLPaaajugibiaacYcacaWGhbqcfa4aae WaaOqaaKqzGeGaaGimaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWG hbWcdaWgaaqaaKqzadGaaGimaaWcbeaaaaa@68B9@   (1)

dX( t ) dt = p 2 X( t )+ p 3 ( I( t ) I b ),X( 0 )= X 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamiwaKqbaoaabmaakeaajugibiaadshaaOGa ayjkaiaawMcaaaqaaKqzGeGaamizaiaadshaaaGaeyypa0JaeyOeI0 IaamiCaKqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaajugibiaadIfa juaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiabgU caRiaadchalmaaBaaabaqcLbmacaaIZaaaleqaaKqbaoaabmaakeaa jugibiaadMeajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPa aajugibiabgkHiTiaadMealmaaBaaabaqcLbmacaWGIbaaleqaaaGc caGLOaGaayzkaaqcLbsacaGGSaGaaiiwaKqbaoaabmaakeaajugibi aaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaamiwaSWaaSbaaeaa jugWaiaaicdaaSqabaaaaa@67F5@   (2)

dI( t ) dt = p 5 ( G( t ) G c )+t p 4 (I(t) I b );I(0)= I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamysaKqbaoaabmaakeaajugibiaadshaaOGa ayjkaiaawMcaaaqaaKqzGeGaamizaiaadshaaaGaeyypa0JaamiCaS WaaSbaaKqbagaajugWaiaaiwdaaKqbagqaamaabmaabaqcLbsacaWG hbqcfa4aaeWaaeaajugibiaadshaaKqbakaawIcacaGLPaaajugibi abgkHiTiaadEeajuaGdaWgaaqaaKqzadGaam4yaaqcfayabaaacaGL OaGaayzkaaqcLbsacqGHRaWkcaWG0bGaeyOeI0IaamiCaKqbaoaaBa aabaqcLbmacaaI0aaajuaGbeaajugibiaacIcacaWGjbGaaiikaiaa dshacaGGPaGaeyOeI0IaamysaKqbaoaaBaaabaqcLbmacaWGIbaaju aGbeaajugibiaacMcacaGG7aGaamysaiaacIcacaaIWaGaaiykaiab g2da9iaadMeajuaGdaWgaaqaaKqzadGaaGimaaqcfayabaaaaa@6ECD@   (3)

where, G( t )[ mg/ dl ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eajuaGdaqadaqaaKqzGeGaamiDaaqcfaOaayjkaiaawMcaamaadmaa baWaaSGbaeaajugibiaad2gacaWGNbaajuaGbaqcLbsacaWGKbGaam iBaaaaaKqbakaawUfacaGLDbaaaaa@46AF@ represents glucose concentration at time t, X( t )[ min 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI fajuaGdaqadaqaaKqzGeGaamiDaaqcfaOaayjkaiaawMcaamaadmaa baqcLbsaciGGTbGaaiyAaiaac6galmaaCaaajuaGbeqaaKqzadGaey OeI0IaaGymaaaaaKqbakaawUfacaGLDbaaaaa@4838@ represents remote insulin concentration at time t, I( t )[ μU/ ml ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajuaGdaWa daGcbaqcfa4aaSGbaOqaaKqzGeGaeqiVd0MaamyvaaGcbaqcLbsaca WGTbGaamiBaaaaaOGaay5waiaaw2faaaaa@471A@ represents the interstitial insulin at time t, G c [ mg/ dl ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaWGJbaaleqaaKqbaoaadmaakeaajuaGdaWc gaGcbaqcLbsacaWGTbGaam4zaaGcbaqcLbsacaWGKbGaamiBaaaaaO Gaay5waiaaw2faaaaa@44F7@ represents the threshold level of glucose above which the endogenous insulin secretion will be stimulated, G b [ mg/ dl ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaWGIbaaleqaaKqbaoaadmaakeaajuaGdaWc gaGcbaqcLbsacaWGTbGaam4zaaGcbaqcLbsacaWGKbGaamiBaaaaaO Gaay5waiaaw2faaaaa@44F6@ represents the basal glucose level and I b [ μU/ ml ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM ealmaaBaaabaqcLbmacaWGIbaaleqaaKqbaoaadmaakeaajuaGdaWc gaGcbaqcLbsacqaH8oqBcaWGvbaakeaajugibiaad2gacaWGSbaaaa GccaGLBbGaayzxaaaaaa@45B3@ denotes the basal insulin level. The parameters, p i ( p i >0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc hajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqbaoaabmaaleaajugi biaadchalmaaBaaameaajugWaiaadMgaaWqabaqcLbsacqGH+aGpca aIWaaaliaawIcacaGLPaaaaaa@45F4@ i=1,2,3,4,5 are defined in Table 1.

Parameters

Units

Explanation

References

p1

min 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGac2 gacaGGPbGaaiOBaSWaaWbaaeqabaqcLbmacqGHsislcaaIXaaaaaaa @3F91@

represents glucose effectiveness

[34]

p2

min 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGac2 gacaGGPbGaaiOBaSWaaWbaaeqabaqcLbmacqGHsislcaaIXaaaaaaa @3F91@

fractional rate of insulin appearance in interstitial

compartment

[34]

p3

( min 2 ) (μU/ml) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacI caciGGTbGaaiyAaiaac6galmaaCaaabeqaaKqzadGaeyOeI0IaaGOm aaaajugibiaacMcacaGGOaGaeqiVd0Maamyvaiaac+cacaWGTbGaam iBaiaacMcajuaGdaahaaadbeqaaKqzadGaeyOeI0IaaGymaaaaaaa@4B8B@  

contribution of plasma insulin to the remote compartment

from interstitial compartment

[34]

p4

min 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiGac2 gacaGGPbGaaiOBaSWaaWbaaeqabaqcLbmacqGHsislcaaIXaaaaaaa @3F91@

clearance of plasma insulin

[34]

p5

( min 2 ) (μU/ml) 1 (mg/dl) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacI caciGGTbGaaiyAaiaac6galmaaCaaabeqaaKqzadGaeyOeI0IaaGOm aaaajugibiaacMcacaGGOaGaeqiVd0Maamyvaiaac+cacaWGTbGaam iBaiaacMcajuaGdaahaaadbeqaaKqzadGaeyOeI0IaaGymaaaajugi biaacIcacaWGTbGaam4zaiaac+cacaWGKbGaamiBaiaacMcalmaaCa aajuaGbeqaaKqzadGaeyOeI0IaaGymaaaaaaa@556F@

degree by which glucose exceeds threshold or baseline

glucose level

[34]

Table 1 Values of the parameters

To model the effects of vitamin D on glucose-insulin dynamics, we take into account four major factors:33

  • vitamin D helps the cells in glucose uptake i.e. it increases glucose effectiveness
  • it improves the insulin sensitivity of the body
  • insulin secretion is increased due to vitamin D
  • it decreases the insulin resistance.

To observe the changes in glucose-insulin dynamics due to the above said effects of vitamin D, four new parameters v j ( v j >0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaWGQbaaleqaaKqbaoaabmaakeaajugibiaa dAhalmaaBaaabaqcLbmacaWGQbaaleqaaKqzGeGaeyOpa4JaaGimaa GccaGLOaGaayzkaaaaaa@4565@ , j=1,2,3,4 have been introduced in the model (1- 3) for which explanation is as follows:

  • v 1 [ min 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaIXaaaleqaaKqbaoaadmaakeaajugibiGa c2gacaGGPbGaaiOBaKqbaoaaCaaaleqabaqcLbmacqGHsislcaaIXa aaaaGccaGLBbGaayzxaaaaaa@465D@ represents the effect of vitamin D on muscles and fat cells to utilize glucose so it is incorporated with parameter p1 which represents glucose effectiveness.
  • v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaIYaaaleqaaaaa@3CD8@ deals with the effect of vitamin D on muscles and fat cells to increase insulin sensitivity, hence incorporated in the term containing X( t )G( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI fajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiaa dEeajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaaaaa@435A@ .
  • Since vitamin D levels modulate the secretion of insulin by pancreas, hence v 3 [ ml ( μU ) 1 min 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaIZaaaleqaaKqbaoaadmaakeaajugibiaa d2gacaWGSbqcfa4aaeWaaOqaaKqzGeGaeqiVd0MaamyvaaGccaGLOa Gaayzkaaqcfa4aaWbaaSqabeaajugWaiabgkHiTiaaigdaaaqcLbsa ciGGTbGaaiyAaiaac6galmaaCaaabeqaaKqzadGaeyOeI0IaaGOmaa aaaOGaay5waiaaw2faaaaa@511F@ is combined with p 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIZaaaleqaaaaa@3CD3@ which explains the same phenomena.
  • v 4 [ min 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaI0aaaleqaaKqbaoaadmaakeaajugibiGa c2gacaGGPbGaaiOBaSWaaWbaaeqabaqcLbmacqGHsislcaaIXaaaaa GccaGLBbGaayzxaaaaaa@45D2@ represents the effect of vitamin D in increasing utilization of the insulin, therefore combined with parameter p 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc hajuaGdaWgaaWcbaqcLbmacaaI0aaaleqaaaaa@3D62@ .

After incorporating the above new parameters in the minimal model, the extended model is as below:

dG( t ) dt =( 1+ v 2 )X( t )G( t )( p 1 + v 1 )( G( t ) G b ),G( 0 )= G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaam4raKqbaoaabmaakeaajugibiaadshaaOGa ayjkaiaawMcaaaqaaKqzGeGaamizaiaadshaaaGaeyypa0JaeyOeI0 scfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRiaadAhalmaaBaaabaqc LbmacaaIYaaaleqaaaGccaGLOaGaayzkaaqcLbsacaWGybqcfa4aae WaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacaWGhbqcfa4a aeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGHsislju aGdaqadaGcbaqcLbsacaWGWbWcdaWgaaqaaKqzadGaaGymaaWcbeaa jugibiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIXaaaleqaaaGcca GLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGaam4raKqbaoaabmaakeaa jugibiaadshaaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaam4raKqbao aaBaaaleaajugWaiaadkgaaSqabaaakiaawIcacaGLPaaajugibiaa cYcacaWGhbqcfa4aaeWaaOqaaKqzGeGaaGimaaGccaGLOaGaayzkaa qcLbsacqGH9aqpcaWGhbWcdaWgaaqaaKqzadGaaGimaaWcbeaaaaa@7801@   (4)

dX( t ) dt = p 2 X( t )+( p 3 + v 3 )( I(t) I b ),X(0)= X 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamiwaKqbaoaabmaakeaajugibiaadshaaOGa ayjkaiaawMcaaaqaaKqzGeGaamizaiaadshaaaGaeyypa0JaeyOeI0 IaamiCaSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacaWGybqcfa4a aeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzkaaqcLbsacqGHRaWkju aGdaqadaGcbaqcLbsacaWGWbWcdaWgaaqaaKqzadGaaG4maaWcbeaa jugibiabgUcaRiaadAhajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaa GccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGaamysaiaacIcacaWG 0bGaaiykaiabgkHiTiaadMealmaaBaaabaqcLbmacaWGIbaaleqaaa GccaGLOaGaayzkaaqcLbsacaGGSaGaamiwaiaacIcacaaIWaGaaiyk aiabg2da9iaadIfajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaaaa@6B74@    (5)

dI( t ) dt = p 5 ( G(t) G c ) + t( p 4 + v 4 )( I( t ) I b );I( 0 )= I 0 + I b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamysaKqbaoaabmaakeaajugibiaadshaaOGa ayjkaiaawMcaaaqaaKqzGeGaamizaiaadshaaaGaeyypa0JaamiCaS WaaSbaaeaajugWaiaaiwdaaSqabaqcfa4aaeWaaOqaaKqzGeGaam4r aiaacIcacaGG0bGaaiykaiabgkHiTiaadEealmaaBaaabaqcLbmaca WGJbaaleqaaaGccaGLOaGaayzkaaWcdaahaaqcfayabeaajugWaiab gUcaRaaajugibiaadshacqGHsisljuaGdaqadaGcbaqcLbsacaWGWb qcfa4aaSbaaSqaaKqzadGaaGinaaWcbeaajugibiabgUcaRiaadAha juaGdaWgaaWcbaqcLbmacaaI0aaaleqaaaGccaGLOaGaayzkaaqcfa 4aaeWaaOqaaKqzGeGaamysaKqbaoaabmaakeaajugibiaadshaaOGa ayjkaiaawMcaaKqzGeGaeyOeI0IaamysaSWaaSbaaeaajugWaiaadk gaaSqabaaakiaawIcacaGLPaaajugibiaacUdacaWGjbqcfa4aaeWa aOqaaKqzGeGaaGimaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGjb WcdaWgaaqaaKqzadGaaGimaaWcbeaajugibiabgUcaRiaadMealmaa BaaabaqcLbmacaWGIbaaleqaaaaa@7B66@   (6)

The first term of the eqn.(6) contributes the plasma insulin concentration when the glucose concentration exceeds the threshold G c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaWGJbaaleqaaaaa@3CD5@ , and is defined as

( G( t ) G c ) + t={ (G(t) G c )t,ifG(t)> G c 0,ifG(t) G c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaWGhbqcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGa ayzkaaqcLbsacqGHsislcaWGhbWcdaWgaaqaaKqzadGaam4yaaWcbe aaaOGaayjkaiaawMcaaSWaaWbaaeqabaqcLbmacqGHRaWkaaqcLbsa caWG0bGaeyypa0tcfa4aaiqaaOqaaKqzGeqbaeqabiqaaaGcbaqcLb sacaGGOaGaai4raiaacIcacaGG0bGaaiykaiabgkHiTiaacEealmaa BaaabaqcLbmacaWGJbaaleqaaKqzGeGaaiykaiaadshacaGGSaGaam yAaiaadAgacaWGhbGaaiikaiaadshacaGGPaGaeyOpa4Jaam4raSWa aSbaaeaajugWaiaadogaaSqabaaakeaajugibiaaicdacaGGSaGaam yAaiaadAgacaWGhbGaaiikaiaadshacaGGPaGaeyizImQaam4raKqb aoaaBaaaleaajugWaiaadogaaSqabaaaaaGccaGL7baaaaa@6CD7@  

Positive and bounded solutions of the model

To show G( t )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiab g6da+iaaicdaaaa@408C@

Eqn.(4) can be written as

dG(t) dt +[ (1+ v 2 )X(t)+( p 1 + v 1 ) ]G(t)=( p 1 + v 1 ) G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaam4raiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaamiDaaaacqGHRaWkjuaGdaWadaGcbaqcLbsacaGGOaGaaG ymaiabgUcaRiaadAhajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqz GeGaaiykaiaadIfacaGGOaGaamiDaiaacMcacqGHRaWkcaGGOaGaai iCaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGHRaWkcaWG2bWc daWgaaqaaKqzadGaaGymaaWcbeaajugibiaacMcaaOGaay5waiaaw2 faaKqzGeGaam4raiaacIcacaWG0bGaaiykaiabg2da9iaacIcacaWG Wbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabgUcaRiaadA halmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaaiykaiaadEeajuaG daWgaaWcbaqcLbmacaWGIbaaleqaaaaa@6C23@

G(t)= ( p 1 + v 1 ) G b 0 t f(u)du+ G 0 f(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgk DiElaadEeacaGGOaGaamiDaiaacMcacqGH9aqpjuaGdaWcaaGcbaqc LbsacaGGOaGaamiCaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacq GHRaWkcaWG2bWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaacMca caWGhbWcdaWgaaqaaKqzadGaamOyaaWcbeaajuaGdaWdXaGcbaqcLb sacaWGMbGaaiikaiaadwhacaGGPaGaamizaiaadwhacqGHRaWkcaWG hbWcdaWgaaqaaKqzadGaaGimaaWcbeaaaeaajugWaiaaicdaaSqaaK qzadGaamiDaaqcLbsacqGHRiI8aaGcbaqcLbsacaWGMbGaaiikaiaa dshacaGGPaaaaaaa@62BA@    (7)

where

f(t)= e 0 t [(1+ v 2 )X(s)+( p 1 + v 1 )ds >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA gacaGGOaGaamiDaiaacMcacqGH9aqpcaWGLbqcfa4aaWbaaSqabeaa juaGdaWdXaWcbaqcLbmacaGGBbGaaiikaiaaigdacqGHRaWkcaWG2b WcdaWgaaadbaqcLbmacaaIYaaameqaaKqzadGaaiykaiaadIfacaGG OaGaam4CaiaacMcacqGHRaWkcaGGOaGaamiCaSWaaSbaaWqaaKqzad GaaGymaaadbeaajugWaiabgUcaRiaadAhalmaaBaaameaajugWaiaa igdaaWqabaqcLbmacaGGPaGaamizaiaadohaaWqaaKqzadGaaGimaa adbaqcLbmacaWG0baajugibiabgUIiYdaaaiabg6da+iaaicdaaaa@62F2@

Since p 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOpa4JaaGimaaaa @3F22@ , v 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOpa4JaaGimaaaa @3F28@ , G b >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eajuaGdaWgaaWcbaqcLbmacaWGIbaaleqaaKqzGeGaeyOpa4JaaGim aaaa@3FB3@ , G 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaaIWaaaleqaaKqzGeGaeyOpa4JaaGimaaaa @3EF8@  and f( u )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA gajuaGdaqadaGcbaqcLbsacaWG1baakiaawIcacaGLPaaajugibiab g6da+iaaicdaaaa@40AC@ , therefore right hand side of the eqn.(7) is positive. Hence G(t)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaamiDaiaacMcacqGH+aGpcaaIWaaaaa@3E9C@ .

To show I(t)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eacaGGOaGaamiDaiaacMcacqGH+aGpcaaIWaaaaa@3E9E@

Now eqn.(6) implies

dI(t) dt = p 5 (G(t) G c ) + t( p 4 + v 4 )(I(t) I b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa qaaKqzGeGaamizaiaadMeacaGGOaGaamiDaiaacMcaaKqbagaajugi biaadsgacaWG0baaaiabg2da9iaadchalmaaBaaajuaGbaqcLbmaca aI1aaajuaGbeaajugibiaacIcacaWGhbGaaiikaiaadshacaGGPaGa eyOeI0Iaam4raKqbaoaaBaaabaqcLbmacaWGJbaajuaGbeaajugibi aacMcalmaaCaaajuaGbeqaaKqzadGaey4kaScaaKqzGeGaamiDaiab gkHiTiaacIcacaWGWbqcfa4aaSbaaeaajugWaiaaisdaaKqbagqaaK qzGeGaey4kaSIaamODaSWaaSbaaKqbagaajugWaiaaisdaaKqbagqa aKqzGeGaaiykaiaacIcacaWGjbGaaiikaiaacshacaGGPaGaeyOeI0 IaaiysaSWaaSbaaKqbagaajugWaiaadkgaaKqbagqaaKqzGeGaaiyk aaaa@6C37@

dI(t) dt +( p 4 + v 4 )(I(t) I b )= p 5 (G(t) G c ) + t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamysaiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaamiDaaaacqGHRaWkcaGGOaGaamiCaKqbaoaaBaaaleaaju gWaiaaisdaaSqabaqcLbsacqGHRaWkcaWG2bqcfa4aaSbaaSqaaKqz adGaaGinaaWcbeaajugibiaacMcacaGGOaGaamysaiaacIcacaGG0b GaaiykaiabgkHiTiaacMealmaaBaaabaqcLbmacaWGIbaaleqaaKqz GeGaaiykaiabg2da9iaadchalmaaBaaabaqcLbmacaaI1aaaleqaaK qzGeGaaiikaiaadEeacaGGOaGaamiDaiaacMcacqGHsislcaWGhbWc daWgaaqaaKqzadGaam4yaaWcbeaajugibiaacMcalmaaCaaabeqaaK qzadGaey4kaScaaKqzGeGaamiDaaaa@6701@

The solution is given by

I(t)= I b + I 0 e ( p 4 + v 4 )t + 0 t p 5 (G(u) G c ) + e ( p 4 + v 4 )(tu) udu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eacaGGOaGaamiDaiaacMcacqGH9aqpcaWGjbqcfa4aaSbaaSqaaKqz adGaamOyaaWcbeaajugibiabgUcaRiaadMeajuaGdaWgaaWcbaqcLb macaaIWaaaleqaaKqzGeGaamyzaSWaaWbaaeqabaqcLbmacqGHsisl caGGOaGaamiCaSWaaSbaaWqaaKqzadGaaGinaaadbeaajugWaiabgU caRiaadAhalmaaBaaameaajugWaiaaisdaaWqabaqcLbmacaGGPaGa amiDaaaajugibiabgUcaRKqbaoaapedakeaajugibiaadchalmaaBa aabaqcLbmacaaI1aaaleqaaaqaaKqzadGaaGimaaWcbaqcLbmacaWG 0baajugibiabgUIiYdGaaiikaiaadEeacaGGOaGaamyDaiaacMcacq GHsislcaWGhbWcdaWgaaqaaKqzadGaam4yaaWcbeaajugibiaacMca lmaaCaaabeqaaKqzadGaey4kaScaaKqzGeGaamyzaKqbaoaaCaaale qabaqcLbmacqGHsislcaGGOaGaaiiCaSWaaSbaaWqaaKqzadGaaGin aaadbeaajugWaiabgUcaRiaadAhalmaaBaaameaajugWaiaaisdaaW qabaqcLbmacaGGPaGaaiikaiaadshacqGHsislcaWG1bGaaiykaaaa jugibiaadwhacaWGKbGaamyDaaaa@84A6@    (8)

Since the integral term in the right hand side of the eqn.(8) is positive,

I(t) I b + I 0 e ( p 4 + v 4 )t ,t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eacaGGOaGaamiDaiaacMcacqGHLjYScaWGjbWcdaWgaaqaaKqzadGa amOyaaWcbeaajugibiabgUcaRiaadMealmaaBaaabaqcLbmacaaIWa aaleqaaKqzGeGaamyzaKqbaoaaCaaaleqabaqcLbmacqGHsislcaGG OaGaamiCaSWaaSbaaWqaaKqzadGaaGinaaadbeaajugWaiabgUcaRi aadAhalmaaBaaameaajugWaiaaisdaaWqabaqcLbmacaGGPaGaamiD aaaajugibiaacYcacqGHaiIicaGG0bGaeyyzImRaaGimaaaa@5BD0@    (9)

which implies

I(t) I b >0,t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eacaGGOaGaamiDaiaacMcacqGHLjYScaWGjbWcdaWgaaqaaKqzadGa amOyaaWcbeaajugibiabg6da+iaaicdacaGGSaGaeyiaIiIaamiDai abgwMiZkaaicdaaaa@4906@    (10)

Hence, I(t)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eacaGGOaGaamiDaiaacMcacqGH+aGpcaaIWaaaaa@3E9E@ .

To show X(t)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI facaGGOaGaamiDaiaacMcacqGH+aGpcaaIWaaaaa@3EAD@

Eqn.(5) can be written as

dX(t) d(t) + p 2 X(t)=( p 3 + v 3 )( I(t) I b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamiwaiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaaiikaiaadshacaGGPaaaaiabgUcaRiaadchalmaaBaaaba qcLbmacaaIYaaaleqaaKqzGeGaamiwaiaacIcacaWG0bGaaiykaiab g2da9KqbaoaabmaakeaajugibiaadchalmaaBaaabaqcLbmacaaIZa aaleqaaKqzGeGaey4kaSIaamODaSWaaSbaaeaajugWaiaaiodaaSqa baaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaWGjbGaaiikai aadshacaGGPaGaeyOeI0IaamysaSWaaSbaaeaajugWaiaadkgaaSqa baaakiaawIcacaGLPaaaaaa@5F4C@

X(t) X 0 e p 2 t = 0 t ( p 3 + v 3 ) e p 2 (tu) ( I(u) I b )du MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgk DiElaadIfacaGGOaGaamiDaiaacMcacqGHsislcaWGybWcdaWgaaqa aKqzadGaaGimaaWcbeaajugibiaadwgajuaGdaahaaWcbeqaaKqzad GaeyOeI0IaamiCaSWaaSbaaWqaaKqzadGaaGOmaaadbeaajugWaiaa dshaaaqcLbsacqGH9aqpjuaGdaWdXaGcbaqcLbsacaGGOaGaamiCaS WaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqGHRaWkcaWG2bWcdaWg aaqaaKqzadGaaG4maaWcbeaajugibiaacMcacaWGLbWcdaahaaqabe aajugWaiabgkHiTiaadchalmaaBaaameaajugWaiaaikdaaWqabaqc LbmacaGGOaGaamiDaiabgkHiTiaadwhacaGGPaaaaaWcbaqcLbmaca aIWaaaleaajugWaiaadshaaKqzGeGaey4kIipajuaGdaqadaGcbaqc LbsacaWGjbGaaiikaiaadwhacaGGPaGaeyOeI0IaamysaKqbaoaaBa aaleaajugWaiaadkgaaSqabaaakiaawIcacaGLPaaajugibiaadsga caWG1baaaa@7876@

From eqn.(9),

I( t ) I b I 0 e ( p 4 + v 4 )t ,t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiab gkHiTiaadMealmaaBaaabaqcLbmacaWGIbaaleqaaKqzGeGaeyyzIm RaamysaKqbaoaaBaaaleaajugWaiaaicdaaSqabaqcLbsacaWGLbWc daahaaqabeaajugWaiabgkHiTiaacIcacaWGWbWcdaWgaaadbaqcLb macaaI0aaameqaaKqzadGaey4kaSIaamODaSWaaSbaaWqaaKqzadGa aGinaaadbeaajugWaiaacMcacaWG0baaaKqzGeGaaiilaiabgcGiIi aadshacqGHLjYScaaIWaaaaa@5DCC@

After solving

X( t ) X 0 e p 2 t { I 0 ( p 3 + v 3 )( e ( p 4 + v 4 )t e p 2 t ) p 2 ( p 4 + v 4 ) I 0 ( p 3 + v 3 ) e p 2 t t,if p 2 = p 4 + v 4 ,if p 2 p 4 + v 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI fajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiab gkHiTiaadIfalmaaBaaabaqcLbmacaaIWaaaleqaaKqzGeGaamyzaK qbaoaaCaaaleqabaqcLbmacqGHsislcaWGWbWcdaWgaaadbaqcLbma caaIYaaameqaaKqzadGaamiDaaaajugibiabgwMiZMqbaoaaceaake aajugibuaabeqaceaaaOqaaKqbaoaalaaakeaajugibiaadMealmaa BaaabaqcLbmacaaIWaaaleqaaKqzGeGaaiikaiaadchalmaaBaaaba qcLbmacaaIZaaaleqaaKqzGeGaey4kaSIaamODaSWaaSbaaeaajugW aiaaiodaaSqabaqcLbsacaGGPaGaaiikaiaadwgajuaGdaahaaWcbe qaaKqzadGaeyOeI0IaaiikaiaadchalmaaBaaameaajugWaiaaisda aWqabaqcLbmacqGHRaWkcaWG2bWcdaWgaaadbaqcLbmacaaI0aaame qaaKqzadGaaiykaiaacshaaaqcLbsacqGHsislcaWGLbqcfa4aaWba aSqabeaajugWaiabgkHiTiaadchalmaaBaaameaajugWaiaaikdaaW qabaqcLbmacaWG0baaaKqzGeGaaiykaaGcbaqcLbsacaWGWbWcdaWg aaqaaKqzadGaaGOmaaWcbeaajugibiabgkHiTiaacIcacaWGWbqcfa 4aaSbaaSqaaKqzadGaaGinaaWcbeaajugibiabgUcaRiaadAhalmaa BaaabaqcLbmacaaI0aaaleqaaKqzGeGaaiykaaaaaOqaaKqzGeGaam ysaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacaGGOaGaamiCaSWa aSbaaeaajugWaiaaiodaaSqabaqcLbsacqGHRaWkcaWG2bWcdaWgaa qaaKqzadGaaG4maaWcbeaajugibiaacMcacaWGLbqcfa4aaWbaaSqa beaajugWaiabgkHiTiaadchalmaaBaaameaajugWaiaaikdaaWqaba qcLbmacaWG0baaaKqzGeGaamiDaiaacYcacaWGPbGaamOzaiaadcha lmaaBaaameaajugWaiaaikdaaWqabaqcLbsacqGH9aqpcaWGWbWcda WgaaadbaqcLbmacaaI0aaameqaaKqzGeGaey4kaSIaamODaSWaaSba aWqaaKqzadGaaGinaaadbeaaaaaakiaawUhaaKqzGeGaaiilaiaadM gacaWGMbGaamiCaKqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLbsa cqGHGjsUcaWGWbWcdaWgaaqaaKqzadGaaGinaaWcbeaajugibiabgU caRiaadAhalmaaBaaabaqcLbmacaaI0aaaleqaaaaa@C298@

Since the right hand side of the above expression is positive, therefore

X(t)> X 0 e p 2 t >0,t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI facaGGOaGaamiDaiaacMcacqGH+aGpcaWGybWcdaWgaaqaaKqzadGa aGimaaWcbeaajugibiaadwgajuaGdaahaaWcbeqaaKqzadGaeyOeI0 IaamiCaSWaaSbaaWqaaKqzadGaaGOmaaadbeaajugWaiaadshaaaqc LbsacqGH+aGpcaaIWaGaaiilaiabgcGiIiaadshacqGHLjYScaaIWa aaaa@51D2@    (11)

Hence, X(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI facaGGOaGaamiDaiaacMcaaaa@3CEB@ always exceeds the level X0 for all time t. It can be seen in Section (4).

To show G(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaamiDaiaacMcaaaa@3CDA@ is bounded

From eqn.(4),

dG(t) dt =(1+ v 2 )X(t)G(t)( p 1 + v 1 )(G(t) G b ),G(0)= G 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa qaaKqzGeGaamizaiaadEeacaGGOaGaamiDaiaacMcaaKqbagaajugi biaadsgacaWG0baaaiabg2da9iabgkHiTiaacIcacaaIXaGaey4kaS IaamODaSWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaKqzGeGaaiyk aiaadIfacaGGOaGaamiDaiaacMcacaWGhbGaaiikaiaadshacaGGPa GaeyOeI0IaaiikaiaadchalmaaBaaajuaGbaqcLbmacaaIXaaajuaG beaajugibiabgUcaRiaadAhalmaaBaaajuaGbaqcLbmacaaIXaaaju aGbeaajugibiaacMcacaGGOaGaam4raiaacIcacaWG0bGaaiykaiab gkHiTiaadEealmaaBaaajuaGbaqcLbmacaWGIbaajuaGbeaajugibi aacMcacaGGSaGaam4raiaacIcacaaIWaGaaiykaiabg2da9iaadEea lmaaBaaajuaGbaqcLbmacaaIWaaajuaGbeaaaaa@7097@

Therefore,

dG(t) d(t) ( p 1 + v 1 )(G(t) G b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaam4raiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaaiikaiaadshacaGGPaaaaiabgsMiJkabgkHiTiaacIcaca WGWbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabgUcaRiaa dAhalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaaiykaiaacIcaca WGhbGaaiikaiaadshacaGGPaGaeyOeI0Iaam4raSWaaSbaaeaajugW aiaadkgaaSqabaqcLbsacaGGPaaaaa@5803@

Let P(t)=G(t) G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc facaGGOaGaamiDaiaacMcacqGH9aqpcaGGhbGaaiikaiaacshacaGG PaGaeyOeI0Iaai4raSWaaSbaaeaajugWaiaadkgaaSqabaaaaa@4509@ . Then,

dP dt +( p 1 + v 1 )P0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamiuaaGcbaqcLbsacaWGKbGaamiDaaaacqGH RaWkcaGGOaGaamiCaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacq GHRaWkcaWG2bWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaacMca caWGqbGaeyizImQaaGimaaaa@4C4C@

which implies

P(t)P(0) e ( p 1 + v 1 )t ,t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc facaGGOaGaamiDaiaacMcacqGHKjYOcaWGqbGaaiikaiaaicdacaGG PaGaamyzaSWaaWbaaeqabaqcLbmacqGHsislcaGGOaGaamiCaSWaaS baaWqaaKqzadGaaGymaaadbeaajugWaiabgUcaRiaadAhalmaaBaaa meaajugWaiaaigdaaWqabaqcLbmacaGGPaGaamiDaaaajugibiaacY cacqGHaiIicaGG0bGaeyOpa4JaaGimaaaa@5555@

G(t) G b (G(0) G b ) e ( p 1 + v 1 )t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaamiDaiaacMcacqGHsislcaWGhbWcdaWgaaqaaKqzadGa amOyaaWcbeaajugibiabgsMiJkaacIcacaWGhbGaaiikaiaaicdaca GGPaGaeyOeI0Iaam4raSWaaSbaaeaajugWaiaadkgaaSqabaqcLbsa caGGPaGaamyzaSWaaWbaaeqabaqcLbmacqGHsislcaGGOaGaamiCaS WaaSbaaWqaaKqzadGaaGymaaadbeaajugWaiabgUcaRiaadAhalmaa BaaameaajugWaiaaigdaaWqabaqcLbmacaGGPaGaamiDaaaaaaa@5AFB@

<(G(0) G b ),t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgY da8iaacIcacaWGhbGaaiikaiaaicdacaGGPaGaeyOeI0Iaam4raSWa aSbaaeaajugWaiaadkgaaSqabaqcLbsacaGGPaGaaiilaiabgcGiIi aadshacqGH+aGpcaaIWaaaaa@47C7@

which implies

G(t)<G(0),t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaamiDaiaacMcacqGH8aapcaWGhbGaaiikaiaaicdacaGG PaGaaiilaiabgcGiIiaacshacqGH+aGpcaaIWaaaaa@44F7@

Since G(t)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaamiDaiaacMcacqGH+aGpcaaIWaaaaa@3E9C@ and G(t)G(0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaamiDaiaacMcacqGHKjYOcaWGhbGaaiikaiaaicdacaGG Paaaaa@416E@ , this implies G(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaamiDaiaacMcaaaa@3CDA@ is bounded.

Hence we can conclude that all the solutions) G(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaamiDaiaacMcaaaa@3CDA@ , X(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI facaGGOaGaamiDaiaacMcaaaa@3CEB@ , I(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eacaGGOaGaamiDaiaacMcaaaa@3CDC@ are positive. They are also bounded above (and hence remain finite for all t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHLjYScaaIWaaaaa@3D35@ ) is proved in the following section.

Stability analysis of vitamin D model

Theorem 1 (Comparison Theorem37): Let ϕ 1,i (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 9aMTWaaSbaaeaajugWaiaaigdacaGGSaGaamyAaaWcbeaajugibiaa cIcacaWG0bGaaiykaaaa@4223@ be a solution of the ordinary differential equations

d x i dt = f i (x,t),i=1,2,....n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamiEaSWaaSbaaeaajugWaiaadMgaaSqabaaa keaajugibiaadsgacaWG0baaaiabg2da9iaadAgajuaGdaWgaaWcba qcLbmacaWGPbaaleqaaKqzGeGaaiikaiaadIhacaGGSaGaamiDaiaa cMcacaGGSaGaaiyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcaca GGUaGaaiOlaiaac6cacaGGUaGaamOBaaaa@53AD@

and ϕ 2,i (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 9aMTWaaSbaaeaajugWaiaaikdacaGGSaGaamyAaaWcbeaajugibiaa cIcacaWG0bGaaiykaaaa@4224@ be a solution of a second system

d x i dt = g i (x,t),i=1,2,....n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamiEaSWaaSbaaeaajugWaiaadMgaaSqabaaa keaajugibiaadsgacaWG0baaaiabg2da9iaadEgalmaaBaaabaqcLb macaWGPbaaleqaaKqzGeGaaiikaiaadIhacaGGSaGaamiDaiaacMca caGGSaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaGGUa GaaiOlaiaac6cacaGGUaGaamOBaaaa@5321@

satisfying the same initial conditions ϕ 1,i ( t 0 )= ϕ 2,i ( t 0 )= x i,0 ,i=1,2,....n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 9aMTWaaSbaaeaajugWaiaaigdacaGGSaGaamyAaaWcbeaajugibiaa cIcacaWG0bWcdaWgaaqaaKqzadGaaGimaaWcbeaajugibiaacMcacq GH9aqpcqaHvpGzjuaGdaWgaaWcbaqcLbmacaaIYaGaaiilaiaacMga aSqabaqcLbsacaGGOaGaamiDaSWaaSbaaeaajugWaiaaicdaaSqaba qcLbsacaGGPaGaeyypa0JaamiEaSWaaSbaaKqbagaajugWaiaadMga caGGSaGaaGimaaqcfayabaqcLbsacaGGSaGaamyAaiabg2da9iaaig dacaGGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGUaGaamOB aaaa@6210@ , over the interval atb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadg gacqGHKjYOcaWG0bGaeyizImQaamOyaaaa@3FEC@ . fi, gi are defined on U×[ a,b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadw facqGHxdaTjuaGdaWadaGcbaqcLbsacaWGHbGaaiilaiaadkgaaOGa ay5waiaaw2faaaaa@424D@ and U R n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadw facqGHckcZcaWGsbWcdaahaaqabeaajugWaiaad6gaaaaaaa@3FB7@ is an open domain. Hence f i , g i :U×[ a,b ]R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA gajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGaaiilaiaadEga juaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGaaiOoaiaadwfacq GHxdaTjuaGdaWadaGcbaqcLbsacaWGHbGaaiilaiaadkgaaOGaay5w aiaaw2faaKqzGeGaeyOKH4QaamOuaaaa@4FC5@ are continuous functions such that f i < g i [ f i > g i ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA gajuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGaeyipaWJaam4z aSWaaSbaaeaajugWaiaadMgaaSqabaqcfa4aamWaaOqaaKqzGeGaam OzaKqbaoaaBaaaleaajugWaiaadMgaaSqabaqcLbsacqGH+aGpcaWG NbWcdaWgaaqaaKqzadGaamyAaaWcbeaaaOGaay5waiaaw2faaaaa@4E1F@ on U. Then, ϕ 1,i (t) ϕ 2,i (t)[ ϕ 1,t (t) ϕ 2,t (t)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabew 9aMTWaaSbaaKqbagaajugWaiaaigdacaGGSaGaamyAaaqcfayabaqc LbsacaGGOaGaamiDaiaacMcacqGHKjYOcqaHvpGzlmaaBaaajuaGba qcLbmacaaIYaGaaiilaiaadMgaaKqbagqaaKqzGeGaaiikaiaadsha caGGPaGaai4waiabew9aMTWaaSbaaKqbagaajugWaiaaigdacaGGSa GaaiiDaaqcfayabaqcLbsacaGGOaGaamiDaiaacMcacqGHLjYScqaH vpGzlmaaBaaajuaGbaqcLbmacaaIYaGaaiilaiaadshaaKqbagqaaK qzGeGaaiikaiaadshacaGGPaGaaiyxaaaa@64EE@  for all t[ a,b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHiiIZjuaGdaWadaGcbaqcLbsacaWGHbGaaiilaiaadkgaaOGa ay5waiaaw2faaaaa@41D9@ .

In the model (4–6), for conciseness of notation, define

g(t)=(G(t) G b ),x(t)=X(t),i(t)=I(t) I b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gacaGGOaGaamiDaiaacMcacqGH9aqpcaGGOaGaam4raiaacIcacaWG 0bGaaiykaiabgkHiTiaadEealmaaBaaabaqcLbmacaWGIbaaleqaaK qzGeGaaiykaiaacYcacaWG4bGaaiikaiaadshacaGGPaGaeyypa0Ja amiwaiaacIcacaWG0bGaaiykaiaacYcacaWGPbGaaiikaiaadshaca GGPaGaeyypa0JaamysaiaacIcacaWG0bGaaiykaiabgkHiTiaadMea lmaaBaaabaqcLbmacaWGIbaaleqaaaaa@5B5C@

q 1 =( p 1 + v 1 ), q 2 =(1+ v 2 ) G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadg halmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0Jaaiikaiaa dchalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaamODaS WaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGGPaGaaiilaiaadgha juaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyypa0Jaaiikai aaigdacqGHRaWkcaWG2bqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaa jugibiaacMcacaWGhbWcdaWgaaqaaKqzadGaamOyaaWcbeaaaaa@5821@

q 3 =( p 3 + v 3 ), q 4 =( p 4 + v 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadg halmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaeyypa0Jaaiikaiaa dchalmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaey4kaSIaamODaS WaaSbaaeaajugWaiaaiodaaSqabaqcLbsacaGGPaGaaiilaiaadgha lmaaBaaabaqcLbmacaaI0aaaleqaaKqzGeGaeyypa0Jaaiikaiaadc halmaaBaaabaqcLbmacaaI0aaaleqaaKqzGeGaey4kaSIaamODaKqb aoaaBaaaleaajugWaiaaisdaaSqabaqcLbsacaGGPaaaaa@5771@

The eqns. (4–6) can be written in the form:

dg(t) dt =(1+ v 2 )x(t)g(t) q 2 x(t) q 1 g(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaam4zaiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaamiDaaaacqGH9aqpcqGHsislcaGGOaGaaGymaiabgUcaRi aadAhalmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaaiykaiaadIha caGGOaGaamiDaiaacMcacaWGNbGaaiikaiaadshacaGGPaGaeyOeI0 IaamyCaSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacaWG4bGaaiik aiaadshacaGGPaGaeyOeI0IaamyCaSWaaSbaaeaajugWaiaaigdaaS qabaqcLbsacaWGNbGaaiikaiaadshacaGGPaaaaa@5FD9@     (12)

dx(t) dt = p 2 x(t)+ q 3 i(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamiEaiaacIcacaGG0bGaaiykaaGcbaqcLbsa caWGKbGaamiDaaaacqGH9aqpcqGHsislcaWGWbqcfa4aaSbaaSqaaK qzadGaaGOmaaWcbeaajugibiaadIhacaGGOaGaamiDaiaacMcacqGH RaWkcaWGXbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiaadM gacaGGOaGaamiDaiaacMcaaaa@52E2@     (13)

di(t) dt = p 5 H(g(t)) q 4 i(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamyAaiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaamiDaaaacqGH9aqpcaWGWbqcfa4aaSbaaSqaaKqzadGaaG ynaaWcbeaajugibiaadIeacaGGOaGaam4zaiaacIcacaWG0bGaaiyk aiaacMcacqGHsislcaWGXbWcdaWgaaqaaKqzadGaaGinaaWcbeaaju gibiaadMgacaGGOaGaamiDaiaacMcaaaa@537D@     (14)

Where G c = G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaWGJbaaleqaaKqzGeGaeyypa0Jaam4raSWa aSbaaeaajugWaiaadkgaaSqabaaaaa@4182@ (Preposition I.5,38) is taken in the eqn.(6) of the model to check the stability of the model at the equilibrium point. H=H(g(t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI eacqGH9aqpcaWGibGaaiikaiaadEgacaGGOaGaamiDaiaacMcacaGG Paaaaa@40F3@  is the unit step function:

H(g(t))={ 0ifg(T)0 1,ifg(T)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI eacaGGOaGaam4zaiaacIcacaWG0bGaaiykaiaacMcacqGH9aqpjuaG daGabaqcLbsaeaqabKqbagaajugibiaaicdacaWGPbGaamOzaiaadE gacaGGOaGaamivaiaacMcacqGHKjYOcaaIWaaajuaGbaqcLbsacaaI XaGaaiilaiaadMgacaWGMbGaam4zaiaacIcacaWGubGaaiykaiabg6 da+iaaicdaaaqcfaOaay5Eaaaaaa@5570@     (15)

Consider the system of eqns.(12–14), first term on the right-hand side of eqn.(14) is non-zero only when g>0, any instability would arise only if g were maintained above zero i.e., G> G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacqGH+aGpcaWGhbWcdaWgaaqcfayaaKqzadGaamOyaaqcfayabaaa aa@3FB9@ for all t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHLjYScaaIWaaaaa@3D35@ .

Suppose g(0)<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gacaGGOaGaaGimaiaacMcacqGH8aapcaaIWaaaaa@3E79@ (i.e., G(0)< G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaaGimaiaacMcacqGH8aapcaWGhbqcfa4aaSbaaeaajugW aiaadkgaaKqbagqaaaaa@41BD@ ). Then, H=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI eacqGH9aqpcaaIWaaaaa@3C49@ and from eqns.(12–14) we see that g, x, and i tends to zero, hence the system is stable for G(0)< G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaaGimaiaacMcacqGH8aapcaWGhbWcdaWgaaqcfayaaKqz adGaamOyaaqcfayabaaaaa@41C8@ .

From eqn.(12), and using the Comparison Theorem, we have (where H=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI eacqGH9aqpcaaIXaaaaa@3C4A@ ):

g . = q 1 g q 2 x(1+ v 2 )gx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa qaaKqzGeGaam4zaaqcfayabeaajugWaiaac6caaaqcLbsacqGH9aqp cqGHsislcaWGXbWcdaWgaaqcfayaaKqzadGaaGymaaqcfayabaqcLb sacaWGNbGaeyOeI0IaamyCaSWaaSbaaKqbagaajugWaiaaikdaaKqb agqaaKqzGeGaamiEaiabgkHiTiaacIcacaaIXaGaey4kaSIaamODaS WaaSbaaKqbagaajugWaiaaikdaaKqbagqaaKqzGeGaaiykaiaadEga caWG4baaaa@572F@

q 1 g q 2 x min (1+ v 2 )g x min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgs MiJkabgkHiTiaadghalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGa am4zaiabgkHiTiaadghalmaaBaaabaqcLbmacaaIYaaaleqaaKqzGe GaamiEaSWaaSbaaeaajugWaiGac2gacaGGPbGaaiOBaaWcbeaajugi biabgkHiTiaacIcacaaIXaGaey4kaSIaamODaKqbaoaaBaaaleaaju gWaiaaikdaaSqabaqcLbsacaGGPaGaam4zaiaadIhalmaaBaaabaqc LbmaciGGTbGaaiyAaiaac6gaaSqabaaaaa@5981@

=Qg q 2 x min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabg2 da9iabgkHiTiaadgfacaWGNbGaeyOeI0IaamyCaKqbaoaaBaaaleaa jugWaiaaikdaaSqabaqcLbsacaWG4bWcdaWgaaqaaKqzadGaciyBai aacMgacaGGUbaaleqaaaaa@47C6@

where Q= q 1 +(1+ v 2 ) x min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadg facqGH9aqpcaWGXbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiab gUcaRiaacIcacaaIXaGaey4kaSIaamODaSWaaSbaaeaajugWaiaaik daaSqabaqcLbsacaGGPaGaamiEaSWaaSbaaeaajugWaiGac2gacaGG PbGaaiOBaaWcbeaaaaa@4BF4@

g(t)g(0) e Qt q 2 x min Q (1 e Qt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gacaGGOaGaaiiDaiaacMcacqGHKjYOcaGGNbGaaiikaiaaicdacaGG PaGaaiyzaKqbaoaaCaaaleqabaqcLbmacqGHsislcaWGrbGaamiDaa aajugibiabgkHiTKqbaoaalaaakeaajugibiaadghajuaGdaWgaaWc baqcLbmacaaIYaaaleqaaKqzGeGaamiEaKqbaoaaBaaaleaajugWai Gac2gacaGGPbGaaiOBaaWcbeaaaOqaaKqzGeGaamyuaaaacaGGOaGa aGymaiabgkHiTiaadwgalmaaCaaabeqaaKqzadGaeyOeI0Iaamyuai aadshaaaqcLbsacaGGPaaaaa@5DE3@

g(t) q 2 x min Q <0ast MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gacaGGOaGaamiDaiaacMcacqGHsgIRcqGHsisljuaGdaWcaaGcbaqc LbsacaWGXbWcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiaadIhaju aGdaWgaaWcbaqcLbmaciGGTbGaaiyAaiaac6gaaSqabaaakeaajugi biaadgfaaaGaeyipaWJaaGimaiaadggacaWGZbGaamiDaiabgkziUk abg6HiLcaa@53D5@

Since glucose level can’t be negative at any time of day, hence it can be considered that g(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gacaGGOaGaamiDaiaacMcaaaa@3CFA@ tends to zero after a finite time T, so that g(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gacaGGOaGaamiDaiaacMcaaaa@3CFA@ passes through 0 after a time T G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads falmaaBaaabaqcLbmacaWGhbaaleqaaaaa@3CC6@ , where T G T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads fajuaGdaWgaaWcbaqcLbmacaWGhbaaleqaaKqzGeGaeyizImQaamiv aaaa@4071@ . Also at t= T G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGH9aqpcaWGubWcdaWgaaqaaKqzadGaam4raaWcbeaaaaa@3EC5@ , H becomes zero. From this, it can be concluded that g(0)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE gacaGGOaGaaGimaiaacMcacqGH+aGpcaaIWaaaaa@3E7D@ (i.e., G(0)> G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaaGimaiaacMcacqGH+aGpcaWGhbWcdaWgaaqcfayaaKqz adGaamOyaaqcfayabaaaaa@41CC@ ).

From eqn.(14),

i= p 5 Hgt q 4 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM gacqGH9aqpcaWGWbWcdaWgaaqaaKqzadGaaGynaaWcbeaajugibiaa dIeacaWGNbGaamiDaiabgkHiTiaadghajuaGdaWgaaWcbaqcLbmaca aI0aaaleqaaKqzGeGaamyAaaaa@481B@

i(t)=i(0) e q 4 t + p 5 e q 4 t 0 t H(g(s))sg(s)ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM gacaGGOaGaamiDaiaacMcacqGH9aqpcaWGPbGaaiikaiaaicdacaGG PaGaamyzaSWaaWbaaeqabaqcLbmacqGHsislcaWGXbWcdaWgaaadba qcLbmacaaI0aaameqaaKqzadGaamiDaaaajugibiabgUcaRiaadcha lmaaBaaabaqcLbmacaaI1aaaleqaaKqzGeGaamyzaKqbaoaaCaaale qabaqcLbmacqGHsislcaWGXbWcdaWgaaadbaqcLbmacaaI0aaameqa aKqzadGaamiDaaaajuaGdaWdXaGcbaqcLbsacaWGibGaaiikaiaadE gacaGGOaGaai4CaiaacMcacaGGPaGaai4CaiaacEgacaGGOaGaai4C aiaacMcacaGGKbGaai4CaaWcbaqcLbmacaaIWaaaleaajugWaiaads haaKqzGeGaey4kIipaaaa@6B07@     (16)

Now, the integral on the right in eqn.(16) is bounded above by

0 T G sg(s)ds< MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWdXa GcbaqcLbsacaWGZbGaam4zaiaacIcacaWGZbGaaiykaiaadsgacaWG ZbGaeyipaWJaeyOhIukaleaajugWaiaaicdaaSqaaKqzadGaamivaS WaaSbaaWqaaKqzadGaam4raaadbeaaaKqzGeGaey4kIipaaaa@4BC2@

This shows that i(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM gacaGGOaGaaiiDaiaacMcaaaa@3CFB@ is bounded: i(t) i max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM gacaGGOaGaaiiDaiaacMcacqGHKjYOcaGGPbWcdaWgaaqcfayaaKqz adGaciyBaiaacggacaGG4baajuaGbeaaaaa@44E7@ for t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHLjYScaaIWaaaaa@3D35@ .

Similarly, using eqn.(13) and Theorem 1, we have

x . = p 2 x+ q 3 i p 2 x+ q 3 i max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa qaaKqzGeGaamiEaaqcfayabeaajugWaiaac6caaaqcLbsacqGH9aqp cqGHsislcaWGWbqcfa4aaSbaaeaajugWaiaaikdaaKqbagqaaKqzGe GaamiEaiabgUcaRiaadghajuaGdaWgaaqaaKqzadGaaG4maaqcfaya baqcLbsacaWGPbGaeyizImQaeyOeI0IaamiCaSWaaSbaaKqbagaaju gWaiaaikdaaKqbagqaaKqzGeGaamiEaiabgUcaRiaadghajuaGdaWg aaqaaKqzadGaaG4maaqcfayabaqcLbsacaWGPbWcdaWgaaqcfayaaK qzadGaciyBaiaacggacaGG4baajuaGbeaaaaa@60B6@

x(t)x(0) e p 2 t + q 3 i max p 2 (1 e p 2 t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hacaGGOaGaamiDaiaacMcacqGHKjYOcaWG4bGaaiikaiaaicdacaGG PaGaamyzaKqbaoaaCaaaleqabaqcLbmacqGHsislcaWGWbWcdaWgaa adbaqcLbmacaaIYaaameqaaKqzadGaamiDaaaajugibiabgUcaRKqb aoaalaaakeaajugibiaadghajuaGdaWgaaWcbaqcLbmacaaIZaaale qaaKqzGeGaamyAaSWaaSbaaeaajugWaiGac2gacaGGHbGaaiiEaaWc beaaaOqaaKqzGeGaamiCaSWaaSbaaeaajugWaiaaikdaaSqabaaaaK qzGeGaaiikaiaaigdacqGHsislcaWGLbWcdaahaaqabeaajugWaiab gkHiTiaadchalmaaBaaameaajugWaiaaikdaaWqabaqcLbmacaWG0b aaaKqzGeGaaiykaaaa@6728@

x(0)+ q 3 i max p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgs MiJkaadIhacaGGOaGaaGimaiaacMcacqGHRaWkjuaGdaWcaaGcbaqc LbsacaWGXbWcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaadMgalm aaBaaabaqcLbmaciGGTbGaaiyyaiaacIhaaSqabaaakeaajugibiaa dchalmaaBaaabaqcLbmacaaIYaaaleqaaaaaaaa@4D17@

x max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgg Mi6kaadIhalmaaBaaabaqcLbmaciGGTbGaaiyyaiaacIhaaSqabaaa aa@40BB@

It can be seen from eqn.(16) that i is bounded below : i(t) i min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM gacaGGOaGaamiDaiaacMcacqGHLjYScaWGPbWcdaWgaaqcfayaaKqz adGaamyBaiaadMgacaWGUbaajuaGbeaaaaa@44F9@ for some finite i min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM galmaaBaaabaqcLbmaciGGTbGaaiyAaiaac6gaaSqabaaaaa@3EE1@ and t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHLjYScaaIWaaaaa@3D35@ . Therefore from eqn.(13) and using the Comparison Theorem,

x . = p 2 x+ q 3 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWfGa qaaKqzGeGaamiEaaqcfayabeaajugWaiaac6caaaqcLbsacqGH9aqp cqGHsislcaWGWbqcfa4aaSbaaeaajugWaiaaikdaaKqbagqaaKqzGe GaamiEaiabgUcaRiaadghajuaGdaWgaaqaaKqzadGaaG4maaqcfaya baqcLbsacaWGPbaaaa@4C9A@

p 2 x+ q 3 i min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabgw MiZkabgkHiTiaadchalmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGa amiEaiabgUcaRiaadghajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaK qzGeGaamyAaSWaaSbaaeaajugWaiGac2gacaGGPbGaaiOBaaWcbeaa aaa@4B4D@

x(t)x(0) e p 2 t + q 3 i min p 2 (1 e p 2 t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hacaGGOaGaaiiDaiaacMcacqGHLjYScaWG4bGaaiikaiaaicdacaGG PaGaamyzaSWaaWbaaeqabaqcLbmacqGHsislcaWGWbWcdaWgaaadba qcLbmacaaIYaaameqaaKqzadGaamiDaaaajugibiabgUcaRKqbaoaa laaakeaajugibiaadghalmaaBaaabaqcLbmacaaIZaaaleqaaKqzGe GaamyAaSWaaSbaaeaajugWaiGac2gacaGGPbGaaiOBaaWcbeaaaOqa aKqzGeGaamiCaSWaaSbaaeaajugWaiaaikdaaSqabaaaaKqzGeGaai ikaiaaigdacqGHsislcaWGLbWcdaahaaqabeaajugWaiabgkHiTiaa dchalmaaBaaameaajugWaiaaikdaaWqabaqcLbmacaWG0baaaKqzGe Gaaiykaaaa@661A@     (17)

which implies x(t)( X(t) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI hacaGGOaGaamiDaiaacMcajuaGdaqadaGcbaqcLbsacqGHHjIUcaWG ybGaaiikaiaadshacaGGPaaakiaawIcacaGLPaaaaaa@44BD@ is also bounded from above and below for t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHLjYScaaIWaaaaa@3D35@ .

Hence it can be concluded that if G(0)< G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaaGimaiaacMcacqGH8aapcaWGhbWcdaWgaaqcfayaaKqz adGaamOyaaqcfayabaaaaa@41C8@ , the system (4–6) is stable. If G(0)> G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eacaGGOaGaaGimaiaacMcacqGH+aGpcaWGhbWcdaWgaaqcfayaaKqz adGaamOyaaqcfayabaaaaa@41CC@ , then the solution to eqn. (4) remain bounded for all t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaads hacqGHLjYScaaIWaaaaa@3D35@ .

Analysis of model

Mathematical model will be analyzed in the neighborhood of equilibrium point to check its stability. Therefore, to determine the effect of vitamin D on glucose disappearance and insulin sensitivity after a glucose bolus at the equilibrium point, a modification has been introduced in the model (4–6) to include a glucose source. The model is given as:

dG(t) dt =(1+ v 2 )X(t)G(t)( p 1 + v 1 )(G(t) G b )+ G in (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaam4raiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaamiDaaaacqGH9aqpcqGHsislcaGGOaGaaGymaiabgUcaRi aadAhajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaaiykaiaa dIfacaGGOaGaamiDaiaacMcacaWGhbGaaiikaiaadshacaGGPaGaey OeI0IaaiikaiaacchalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGa ey4kaSIaamODaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGGPa GaaiikaiaadEeacaGGOaGaamiDaiaacMcacqGHsislcaWGhbWcdaWg aaqaaKqzadGaamOyaaWcbeaajugibiaacMcacqGHRaWkcaWGhbWcda WgaaqaaKqzadGaamyAaiaad6gaaSqabaqcLbsacaGGOaGaamiDaiaa cMcaaaa@6BAA@ ,

dX(t) dt = p 2 X(t)+( p 3 + v 3 )(I(t) I b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamiwaiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaamiDaaaacqGH9aqpcqGHsislcaWGWbWcdaWgaaqaaKqzad GaaGOmaaWcbeaajugibiaadIfacaGGOaGaamiDaiaacMcacqGHRaWk caGGOaGaamiCaSWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqGHRa WkcaWG2bWcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaacMcacaGG OaGaamysaiaacIcacaWG0bGaaiykaiabgkHiTiaadMeajuaGdaWgaa WcbaqcLbmacaWGIbaaleqaaKqzGeGaaiykaaaa@5DCA@ ,

dI(t) dt = p 5 (G(t) G c ) + t( p 4 + v 4 )(I(t) I b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa GcbaqcLbsacaWGKbGaamysaiaacIcacaWG0bGaaiykaaGcbaqcLbsa caWGKbGaamiDaaaacqGH9aqpcaWGWbWcdaWgaaqaaKqzadGaaGynaa WcbeaajugibiaacIcacaWGhbGaaiikaiaadshacaGGPaGaeyOeI0Ia am4raSWaaSbaaeaajugWaiaadogaaSqabaqcLbsacaGGPaqcfa4aaW baaSqabeaajugWaiabgUcaRaaajugibiaadshacqGHsislcaGGOaGa amiCaSWaaSbaaeaajugWaiaaisdaaSqabaqcLbsacqGHRaWkcaWG2b WcdaWgaaqaaKqzadGaaGinaaWcbeaajugibiaacMcacaGGOaGaamys aiaacIcacaWG0bGaaiykaiabgkHiTiaadMealmaaBaaabaqcLbmaca WGIbaaleqaaKqzGeGaaiykaaaa@6680@ ,

where G in (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaWGPbGaamOBaaWcbeaajugibiaacIcacaWG 0bGaaiykaaaa@40AF@ is the glucose infusion rate per unit of volume at time t, which is assumed to be constant for stability analysis.

Equilibrium condition

 At equilibrium   (G,X,I)=( G * , X * , I * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacI cacaWGhbGaaiilaiaadIfacaGGSaGaamysaiaacMcacqGH9aqpcaGG OaGaam4raSWaaWbaaeqabaqcLbmacaGGQaaaaKqzGeGaaiilaiaadI falmaaCaaabeqaaKqzadGaaiOkaaaajugibiaacYcacaWGjbqcfa4a aWbaaSqabeaajugWaiaacQcaaaqcLbsacaGGPaaaaa@4D78@ , we have

X * = ( p 3 + v 3 )( I * I b ) p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI falmaaCaaabeqaaKqzadGaaiOkaaaajugibiabg2da9Kqbaoaalaaa keaajugibiaacIcacaWGWbWcdaWgaaqaaKqzadGaaG4maaWcbeaaju gibiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGa aiykaiaacIcacaWGjbWcdaahaaqabeaajugWaiaacQcaaaqcLbsacq GHsislcaWGjbWcdaWgaaqaaKqzadGaamOyaaWcbeaajugibiaacMca aOqaaKqzGeGaamiCaKqbaoaaBaaaleaajugWaiaaikdaaSqabaaaaa aa@568D@

G in * =(1+ v 2 ) X * G * +( p 1 + v 1 )( G * G b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaDaaabaqcLbmacaWGPbGaamOBaaWcbaqcLbmacaGGQaaaaKqz GeGaeyypa0JaaiikaiaaigdacqGHRaWkcaWG2bqcfa4aaSbaaSqaaK qzadGaaGOmaaWcbeaajugibiaacMcacaWGybWcdaahaaqabeaajugW aiaacQcaaaqcLbsacaWGhbWcdaahaaqabeaajugWaiaacQcaaaqcLb sacqGHRaWkcaGGOaGaamiCaSWaaSbaaeaajugWaiaaigdaaSqabaqc LbsacqGHRaWkcaWG2bqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaaju gibiaacMcacaGGOaGaam4raSWaaWbaaeqabaqcLbmacaGGQaaaaKqz GeGaeyOeI0Iaam4raSWaaSbaaeaajugWaiaadkgaaSqabaqcLbsaca GGPaaaaa@6392@

where G in * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaDaaabaqcLbmacaWGPbGaamOBaaWcbaqcLbmacaGGQaaaaaaa @3FAB@ represents the constant rate of injection of glucose

G * = ( p 1 + v 1 ) G b + G in * (1+ v 2 )( p 3 + v 3 )( I * I b ) p 2 +( p 1 + v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiabg2da9Kqbaoaalaaa keaajugibiaacIcacaWGWbWcdaWgaaqaaKqzadGaaGymaaWcbeaaju gibiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGa aiykaiaacEealmaaBaaabaqcLbmacaWGIbaaleqaaKqzGeGaey4kaS Iaam4raSWaa0baaeaajugWaiaadMgacaWGUbaaleaajugWaiaacQca aaaakeaajuaGdaWcaaGcbaqcLbsacaGGOaGaaGymaiabgUcaRiaadA halmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaaiykaiaacIcacaWG Wbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiabgUcaRiaadA halmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaaiykaiaacIcacaWG jbqcfa4aaWbaaSqabeaajugWaiaacQcaaaqcLbsacqGHsislcaWGjb WcdaWgaaqaaKqzadGaamOyaaWcbeaajugibiaacMcaaOqaaKqzGeGa amiCaSWaaSbaaeaajugWaiaaikdaaSqabaaaaKqzGeGaey4kaSIaai ikaiaadchajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaey4k aSIaamODaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGGPaaaaa aa@7E74@

Define I= I * I b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eacqGH9aqpcaWGjbqcfa4aaWbaaSqabeaajugWaiaacQcaaaqcLbsa cqGHsislcaWGjbWcdaWgaaqaaKqzadGaamOyaaWcbeaaaaa@438B@ , then the function G * (I) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiaacIcacaWGjbGaaiyk aaaa@3F47@ is given by

G * (I)= ( p 1 + v 1 ) G b + G in * (1+ v 2 )( p 3 + v 3 )I p 2 +( p 1 + v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiaacIcacaWGjbGaaiyk aiabg2da9KqbaoaalaaakeaajugibiaacIcacaWGWbWcdaWgaaqaaK qzadGaaGymaaWcbeaajugibiabgUcaRiaadAhalmaaBaaabaqcLbma caaIXaaaleqaaKqzGeGaaiykaiaacEealmaaBaaabaqcLbmacaWGIb aaleqaaKqzGeGaey4kaSIaam4raSWaa0baaeaajugWaiaadMgacaWG UbaaleaajugWaiaacQcaaaaakeaajuaGdaWcaaGcbaqcLbsacaGGOa GaaGymaiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIYaaaleqaaKqz GeGaaiykaiaacIcacaWGWbWcdaWgaaqaaKqzadGaaG4maaWcbeaaju gibiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGa aiykaiaadMeaaOqaaKqzGeGaamiCaSWaaSbaaeaajugWaiaaikdaaS qabaaaaKqzGeGaey4kaSIaaiikaiaadchalmaaBaaabaqcLbmacaaI XaaaleqaaKqzGeGaey4kaSIaamODaKqbaoaaBaaaleaajugWaiaaig daaSqabaqcLbsacaGGPaaaaaaa@76F8@     (18)

G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaCaaabeqaaKqzadGaaiOkaaaaaaa@3C91@ is a decreasing function of I and

lim I0 G * (I)= G b + G in * ( p 1 + v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGfqb GcbeWcbaqcLbmacaWGjbGaeyOKH4QaaGimaaWcbeqdbaqcLbsaciGG SbGaaiyAaiaac2gaaaGaam4raSWaaWbaaeqabaqcLbmacaGGQaaaaK qzGeGaaiikaiaadMeacaGGPaGaeyypa0Jaam4raSWaaSbaaeaajugW aiaadkgaaSqabaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGhb WcdaqhaaqaaKqzadGaamyAaiaad6gaaSqaaKqzadGaaiOkaaaaaOqa aKqzGeGaaiikaiaadchalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGe Gaey4kaSIaamODaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGG Paaaaaaa@5EBB@     (19)

also

lim I I c G * (I)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaGfqb GcbeWcbaqcLbmacaWGjbGaeyOKH4QaamysaSWaaSbaaWqaaKqzadGa am4yaaadbeaaaSqab0qaaKqzGeGaciiBaiaacMgacaGGTbaaaiaadE ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiaacIcacaWGjbGaaiyk aiabgkziUkaaicdaaaa@4CF9@     (20)

where I c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eajuaGdaWgaaWcbaqcLbmacaWGJbaaleqaaaaa@3D65@ represents the threshold level of insulin.

Eqn.(19) shows that in absence of insulin, the presence of vitamin D does not lower the glucose concentration and a risk of hyperglycaemia may occur in case of T1DM and T2DM. On the other hand eqn.(20) represents the case of critical situation in which a patient dies if the level of insulin crossed the threshold level.

Non-diabetic case

In non-diabetic people, cells which are secreted by pancreas work properly so plasma glucose and plasma insulin concentration are maintained and hence the blood sugar concentration does not cross the threshold level in the body.

Analysis of the stationary point of the model:

dG(t) dt =0; dX(t) dt =0; dI(t) dt =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaWcaa qaaKqzGeGaamizaiaadEeacaGGOaGaamiDaiaacMcaaKqbagaajugi biaadsgacaWG0baaaiabg2da9iaaicdacaGG7aqcfa4aaSaaaeaaju gibiaadsgacaWGybGaaiikaiaacshacaGGPaaajuaGbaqcLbsacaWG KbGaamiDaaaacqGH9aqpcaaIWaGaai4oaKqbaoaalaaabaqcLbsaca WGKbGaamysaiaacIcacaWG0bGaaiykaaqcfayaaKqzGeGaamizaiaa dshaaaGaeyypa0JaaGimaaaa@5896@

gives the following:

X * = ( p 3 + v 3 )( I * I b ) p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadI falmaaCaaajuaGbeqaaKqzadGaaiOkaaaajugibiabg2da9Kqbaoaa laaabaqcLbsacaGGOaGaamiCaKqbaoaaBaaabaqcLbmacaaIZaaaju aGbeaajugibiabgUcaRiaadAhalmaaBaaajuaGbaqcLbmacaaIZaaa juaGbeaajugibiaacMcacaGGOaGaamysaKqbaoaaCaaabeqaaKqzad GaaiOkaaaajugibiabgkHiTiaadMealmaaBaaajuaGbaqcLbmacaWG IbaajuaGbeaajugibiaacMcaaKqbagaajugibiaadchalmaaBaaaju aGbaqcLbmacaaIYaaajuaGbeaaaaaaaa@5BC3@

G in * = (1+ v 2 )( p 3 + v 3 ) p 2 ( I * I b ) G * +( p 1 + v 1 )( G * G b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaDaaabaqcLbmacaWGPbGaamOBaaWcbaqcLbmacaGGQaaaaKqz GeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaiikaiaaigdacqGHRaWkca WG2bWcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiaacMcacaGGOaGa amiCaSWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqGHRaWkcaWG2b WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaacMcaaOqaaKqzGeGa amiCaSWaaSbaaeaajugWaiaaikdaaSqabaaaaKqzGeGaaiikaiaadM ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiabgkHiTiaadMealmaa BaaabaqcLbmacaWGIbaaleqaaKqzGeGaaiykaiaadEealmaaCaaabe qaaKqzadGaaiOkaaaajugibiabgUcaRiaacIcacaWGWbWcdaWgaaqa aKqzadGaaGymaaWcbeaajugibiabgUcaRiaadAhalmaaBaaabaqcLb macaaIXaaaleqaaKqzGeGaaiykaiaacIcacaWGhbWcdaahaaqabeaa jugWaiaacQcaaaqcLbsacqGHsislcaWGhbWcdaWgaaqaaKqzadGaam OyaaWcbeaajugibiaacMcaaaa@7758@

The glucose effectiveness S G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado falmaaBaaabaqcLbmacaWGhbaaleqaaaaa@3CC5@ is defined as

S G = G in * G * = (1+ v 2 )( p 3 + v 3 ) p 2 ( I * I b )+( p 1 + v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado fajuaGdaWgaaWcbaqcLbmacaWGhbaaleqaaKqzGeGaeyypa0tcfa4a aSaaaSqaaKqzGeGaeyOaIyRaam4raSWaa0baaWqaaKqzadGaamyAai aad6gaaWqaaKqzadGaaiOkaaaaaSqaaKqzGeGaeyOaIyRaam4raKqb aoaaCaaameqabaqcLbmacaGGQaaaaaaajugibiabg2da9Kqbaoaala aaleaajugibiaacIcacaaIXaGaey4kaSIaamODaSWaaSbaaWqaaKqz adGaaGOmaaadbeaajugibiaacMcacaGGOaGaamiCaKqbaoaaBaaame aajugWaiaaiodaaWqabaqcLbsacqGHRaWkcaWG2bqcfa4aaSbaaWqa aKqzadGaaG4maaadbeaajugibiaacMcaaSqaaKqzGeGaamiCaSWaaS baaWqaaKqzadGaaGOmaaadbeaaaaqcLbsacaGGOaGaamysaKqbaoaa CaaameqabaqcLbmacaGGQaaaaKqzGeGaeyOeI0IaamysaKqbaoaaBa aameaajugWaiaadkgaaWqabaqcLbsacaGGPaGaey4kaSIaaiikaiaa dchalmaaBaaameaajugWaiaaigdaaWqabaqcLbsacqGHRaWkcaWG2b WcdaWgaaadbaqcLbmacaaIXaaameqaaKqzGeGaaiykaaaa@7A53@

and the insulin sensitivity in presence of vitamin D ( S ID ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGdaqada GcbaqcLbsacaWGtbWcdaWgaaqaaKqzadGaamysaiaadseaaSqabaaa kiaawIcacaGLPaaaaaa@3FBB@ is defined as

S ID = 2 G in * G * I * = (1+ v 2 )( p 3 + v 3 ) p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado fajuaGdaWgaaWcbaqcLbsacaWGjbGaamiraaWcbeaajugibiabg2da 9KqbaoaalaaakeaajugibiabgkGi2UWaaWbaaeqabaqcLbmacaaIYa aaaKqzGeGaam4raSWaa0baaeaajugWaiaadMgacaWGUbaaleaajugW aiaacQcaaaaakeaajugibiabgkGi2kaadEeajuaGdaahaaWcbeqaaK qzadGaaiOkaaaajugibiabgkGi2kaadMealmaaCaaabeqaaKqzadGa aiOkaaaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaGGOaGaaG ymaiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGa aiykaiaacIcacaWGWbqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaaju gibiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGa aiykaaGcbaqcLbsacaWGWbWcdaWgaaqaaKqzadGaaGOmaaWcbeaaaa aaaa@6BAB@

In the absence of vitamin D, insulin sensitivity S I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado falmaaBaaabaqcLbmacaWGjbaaleqaaaaa@3CC7@ becomes

S I = p 3 p 2 < S ID MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado falmaaBaaabaqcLbmacaWGjbaaleqaaKqzGeGaeyypa0tcfa4aaSaa aOqaaKqzGeGaamiCaSWaaSbaaeaajugWaiaaiodaaSqabaaakeaaju gibiaadchalmaaBaaabaqcLbmacaaIYaaaleqaaaaajugibiabgYda 8iaadofalmaaBaaabaqcLbmacaWGjbGaamiraaWcbeaaaaa@4BC0@

Hence it can be concluded that vitamin D improves insulin sensitivity, a result which was also found by.16

T2DM (Type 2 diabetes mellitus)

Consider

G * = ( p 1 + v 1 ) G b + G in * (1+ v 2 )( p 3 + v 3 )( I * I b ) p 2 +( p 1 + v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE eajuaGdaahaaWcbeqaaKqzadGaaiOkaaaajugibiabg2da9Kqbaoaa laaakeaajugibiaacIcacaWGWbWcdaWgaaqaaKqzadGaaGymaaWcbe aajugibiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIXaaaleqaaKqz GeGaaiykaiaadEealmaaBaaabaqcLbmacaWGIbaaleqaaKqzGeGaey 4kaSIaam4raSWaa0baaeaajugWaiaadMgacaWGUbaaleaajugWaiaa cQcaaaaakeaajuaGdaWcaaGcbaqcLbsacaGGOaGaaGymaiabgUcaRi aadAhalmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaaiykaiaacIca caWGWbWcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiabgUcaRiaadA halmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaaiykaiaacIcacaGG jbqcfa4aaWbaaSqabeaajugWaiaacQcaaaqcLbsacqGHsislcaGGjb qcfa4aaSbaaSqaaKqzadGaamOyaaWcbeaajugibiaacMcaaOqaaKqz GeGaamiCaSWaaSbaaeaajugWaiaaikdaaSqabaaaaKqzGeGaey4kaS IaaiikaiaadchalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaey4k aSIaamODaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGGPaaaaa aa@7E73@

In case of T2DM, I * 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiabgIKi7kaaicdaaaa@3F8D@ Therefore,

G * ( p 1 + v 1 ) G b + G in * ( p 1 + v 1 ) (1+ v 2 )( p 3 + v 3 ) I b p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiabgIKi7Mqbaoaalaaa keaajugibiaacIcacaWGWbWcdaWgaaqaaKqzadGaaGymaaWcbeaaju gibiabgUcaRiaadAhajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqz GeGaaiykaiaadEealmaaBaaabaqcLbmacaWGIbaaleqaaKqzGeGaey 4kaSIaam4raSWaa0baaeaajugWaiaadMgacaWGUbaaleaajugWaiaa cQcaaaaakeaajugibiaacIcacaWGWbqcfa4aaSbaaSqaaKqzadGaaG ymaaWcbeaajugibiabgUcaRiaadAhalmaaBaaabaqcLbmacaaIXaaa leqaaKqzGeGaaiykaiabgkHiTKqbaoaalaaakeaajugibiaacIcaca aIXaGaey4kaSIaamODaSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsa caGGPaGaaiikaiaadchalmaaBaaabaqcLbmacaaIZaaaleqaaKqzGe Gaey4kaSIaamODaSWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacaGG PaGaamysaSWaaSbaaeaajugWaiaadkgaaSqabaaakeaajugibiaadc hajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaaaaaaaa@78F0@    (21)

where,

( p 1 + v 1 )> (1+ v 2 )( p 3 + v 3 ) I b p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacI cacaWGWbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgUcaRiaa dAhalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaaiykaiabg6da+K qbaoaalaaakeaajugibiaacIcacaaIXaGaey4kaSIaamODaSWaaSba aeaajugWaiaaikdaaSqabaqcLbsacaGGPaGaaiikaiaadchajuaGda WgaaWcbaqcLbmacaaIZaaaleqaaKqzGeGaey4kaSIaamODaSWaaSba aeaajugWaiaaiodaaSqabaqcLbsacaGGPaGaamysaSWaaSbaaeaaju gWaiaadkgaaSqabaaakeaajugibiaadchalmaaBaaabaqcLbmacaaI Yaaaleqaaaaaaaa@5D09@

for the values of parameter described in Table 3. In the absence of vitamin D the above expression becomes

G * p 1 G b + G in * p 1 p 3 p 2 I b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiabgIKi7Mqbaoaalaaa keaajugibiaadchalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaam 4raSWaaSbaaeaajugWaiaadkgaaSqabaqcLbsacqGHRaWkcaWGhbWc daqhaaqaaKqzadGaamyAaiaad6gaaSqaaKqzadGaaiOkaaaaaOqaaK qzGeGaamiCaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGHsisl juaGdaWcaaGcbaqcLbsacaWGWbWcdaWgaaqaaKqzadGaaG4maaWcbe aaaOqaaKqzGeGaamiCaKqbaoaaBaaaleaajugWaiaaikdaaSqabaaa aKqzGeGaamysaSWaaSbaaeaajugWaiaadkgaaSqabaaaaaaa@5F82@   (22)

I b < p 1 p 2 p 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM ealmaaBaaabaqcLbmacaWGIbaaleqaaKqzGeGaeyipaWtcfa4aaSaa aOqaaKqzGeGaamiCaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsaca WGWbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaaaOqaaKqzGeGaamiC aSWaaSbaaeaajugWaiaaiodaaSqabaaaaaaa@4A98@

for the values of parameter described in Table 3.

T1DM (Type 1 diabetes mellitus)

People with T1DM depends totally on insulin injection as thecells are damaged fully and do not produce any insulin, hence in this case we can take I * 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiabgIKi7kaaicdaaaa@3F8D@ and I b =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eajuaGdaWgaaqaaKqzadGaamOyaaqcfayabaqcLbsacqGH9aqpcaaI Waaaaa@402B@ so that

G * G b + G in * ( p 1 + v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaCaaabeqaaKqzadGaaiOkaaaajugibiabgIKi7kaadEealmaa BaaabaqcLbmacaWGIbaaleqaaKqzGeGaey4kaSscfa4aaSaaaOqaaK qzGeGaam4raSWaa0baaeaajugWaiaadMgacaWGUbaaleaajugWaiaa cQcaaaaakeaajugibiaacIcacaWGWbWcdaWgaaqaaKqzadGaaGymaa WcbeaajugibiabgUcaRiaadAhajuaGdaWgaaWcbaqcLbmacaaIXaaa leqaaKqzGeGaaiykaaaaaaa@5530@    (23)

Eqn.(23) illustrates that in absence of insulin, even the presence of vitamin D does not lower the glucose level and a risk of hyperglycaemia may occur. Also if the amount of vitamin D increases the level of glucose in the plasma goes near to basal level and not less than basal.

Computer simulations

The model was numerical simulated by using ode45 method in Matlab 2012b. To carry out the numerical simulation, the values of parameters p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3D04@  i=1,2,3,4,5 are given in Tables 2–4. G b [ 100mg/ dl ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaqcLbmacaWGIbaaleqaaKqbaoaadmaakeaajugibiab lYJi6KqbaoaalyaakeaajugibiaaigdacaaIWaGaaGimaiaad2gaca WGNbaakeaajugibiaadsgacaWGSbaaaaGccaGLBbGaayzxaaaaaa@48DD@ ,39 G c [ 100mg/ dl ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadE ealmaaBaaabaGaam4yaaqabaqcfa4aamWaaOqaaKqzGeGaeSipIOtc fa4aaSGbaOqaaKqzGeGaaGymaiaaicdacaaIWaGaamyBaiaadEgaaO qaaKqzGeGaamizaiaadYgaaaaakiaawUfacaGLDbaaaaa@47A5@ 39 have been taken for the numerical simulation of the model. Since two different level of dosages (mild and strong) of vitamin D have been considered, therefore v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3D0A@ , i =1,2,3,4 has taken three set of values corresponding to the absence of vitamin D, mild dosage of vitamin D and strong dosage of vitamin D. The values of the new parameters v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3D0A@ , i=1,2,3,4 which was introduced to assess the effect of vitamin D on glucose-insulin dynamics are given in the Tables 2–4. Comparisons have been made in the glucose-insulin dynamics corresponding to these three different set of values. Graphs have been plotted for each case (non-diabetic, T1DM and T2DM) to capture the effect of vitamin D to lower down the glucose level near to basal value.

Parameters

Without Vit. D

With mild dose of Vit. D

With strong dose of Vit. D

References

p1

0.399e-01

0.399e-01

0.399e-01

[36]

p2

0.200e-01

0.200e-01

0.200e-01

[36]

p3

0.4e-04

0.4e-04

0.4e-04

[36]

p4

0.257

0.257

0.257

[36]

p5

0.001

0.001

0.001

[36]

G0

287

287

287

[36]

I0

351

351

351

[36]

v1

0

0.1e-04

0.3e-04

[40]

v2

0

0.65

0.95

[40]

v3

0

0.16e-04

0.24e-04

-

v4

0

0.257e-01

0.3855e-01

-

Table 2 Values of parameters for normal

Parameters

Without Vit. D

With mild dose of Vit. D

With strong dose of Vit. D

References

p1

0.14e-01

0.14e-01

0.14e-01

[41]

p2

0.200e-01

0.200e-01

0.200e-01

[41]

p3

0.128e-05

0.128e-05

0.128e-05

[41]

p4

0.129

0.129

0.129

[41]

p5

0.1e-03

0.1e-03

0.1e-03

[41]

G0

438

438

438

[41]

I0

1322

1322

1322

[41]

v1

0

0.28e-02

0.28e-02

[40]

v2

0

0.75

0.85

[40]

v3

0

0.512e-06

0.768e-06

-

v4

0

0.129e-02

0.1.935e-01

-

Table 3 Values of parameters for NIDD

Parameters

Without Vit. D

With mild dose of Vit. D

With strong dose of Vit. D

References

p1

0.16e-01

0.16e-01

0.16e-01

[42]

p2

0.43e-01

0.43e-01

0.43e-01

[42]

p3

0.38e-05

0.38e-05

0.38e-05

[42]

p4

0.2676e-01

0.2676e-01

0.2676e-01

[42]

p5

0.1e-06

0.1e-06

0.1e-06

[42]

G0

300

300

300

[42]

I0

51

51

51

[42]

v1

0

0.28e-02

0.28e-02

[40]

v2

0

0.75

0.75

[40]

v3

0

0.152e-05

0.228e-0.5

-

v4

0

0.26e-02

0.4008e-02

-

Table 4 Values of parameters for IDD

Non-diabetic case

 In non-diabetic case, the values of parameters p 1 , p 4 , G 0 , I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaaiilaiaadchalmaa BaaabaqcLbmacaaI0aaaleqaaKqzGeGaaiilaiaacEealmaaBaaaba qcLbmacaaIWaaaleqaaKqzGeGaaiilaiaacMeajuaGdaWgaaWcbaqc LbmacaaIWaaaleqaaaaa@4A0A@ have been taken from the paper.36 The values of parameters p 2 , p 3 , p 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaaiilaiaadchalmaa BaaabaqcLbmacaaIZaaaleqaaKqzGeGaaiilaiaadchalmaaBaaaju aGbaqcLbmacaaI1aaajuaGbeaaaaa@4691@ was taken same as the average normal values in humans. The values of parameters v 1 , v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaaiilaiaadAhajuaG daWgaaWcbaqcLbmacaaIYaaaleqaaaaa@41C0@ have been picked from the paper40 as the effect of parameters on the glucose-insulin dynamics is the same. The values of the parameters v 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaIZaaaleqaaaaa@3CD9@ and v 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaI0aaaleqaaaaa@3CDA@ have been considered as 40% (60%) and 10% (15%) for vitamin D dose (strong vitamin D dose). The parameters and their values for the non-diabetic case are given in Table 1. The effect of vitamin D on the glucose- insulin dynamics for the non-diabetic case is shown in Figure 2.

Figure 2 Comparison of glucose concentration level of normal people for three different cases (without vitamin D, with mild dose of vitamin D and with strong dose of vitamin D) is shown in fig (a). High peak of interstitial insulin for case of strong dose of vitamin D as compared to other two cases (mild dose of vitamin D and without vitamin D) can be seen in fig (b). Plasma insulin concentration level for all three cases can be seen in fig (c).

T2DM case

 In T2DM case, the values of the parameters ( p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc hajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaaa@3D5F@ to I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM ealmaaBaaabaqcLbmacaaIWaaaleqaaaaa@3CA9@ ) have been taken from the paper.41 Glucose effectiveness ( S G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado falmaaBaaabaqcLbmacaWGhbaaleqaaaaa@3CC5@ ) and insulin sensitivity ( S I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaco fajuaGdaWgaaqaaKqzadGaamysaaqcfayabaaaaa@3DCC@ ) in this case was found lower than the non-diabetic case.41 The parameter p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIYaaaleqaaaaa@3CD2@ has mere effect on original minimal model so we set the value of p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIYaaaleqaaaaa@3CD2@ the same as in the non-diabetic case, also p 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIZaaaleqaaaaa@3CD3@ was derived from p 2 . S I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaaiOlaiaadofalmaa BaaabaqcLbmacaWGjbaaleqaaaaa@411E@ , where S I =( p 3 / p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado fajuaGdaWgaaWcbaqcLbmacaWGjbaaleqaaKqzGeGaeyypa0Jaaiik aKqbaoaalyaakeaajugibiaadchalmaaBaaabaqcLbmacaaIZaaale qaaaGcbaqcLbsacaWGWbqcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaa aaqcLbsacaGGPaaaaa@4963@ was obtained by parametric estimation for the T2DM data with basal values ( G b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacE ealmaaBaaajuaGbaqcLbmacaWGIbaajuaGbeaaaaa@3DE4@ and I b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM ealmaaBaaabaqcLbmacaWGIbaaleqaaaaa@3CD6@ ) and peak glucose values comparable to the normal data. The parameter p 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaajuaGbaqcLbmacaaI1aaajuaGbeaaaaa@3DE6@ was taken as 10% of the p 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaajuaGbaqcLbmacaaI1aaajuaGbeaaaaa@3DE6@ value for the non-diabetic case. The values of the parameters v 1 , v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaaiilaiaadAhajuaG daWgaaWcbaqcLbmacaaIYaaaleqaaaaa@41C0@ have been taken from the paper40 as the effect of parameters on the glucose-insulin dynamics is the same. The values of the parameters p 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIZaaaleqaaaaa@3CD3@ and p 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaameaajugWaiaaisdaaWqabaaaaa@3CE1@ has been taken as 40% (60%) and 10% (15%) for vitamin D dose (strong vitamin D dose). The parameters and their values for the T2DM case are given in Table 2. The effect of vitamin D on glucose-insulin dynamics for T2DM people is shown in Figure 3.

Figure 3 Comparison of glucose concentration level of NIDD people for three different cases (without vitamin D, with mild dose of vitamin D and with strong dose of vitamin D) is shown in fig (a). High peak of interstitial insulin for case of strong dose of vitamin D as compared to other two cases (mild dose of vitamin D and without vitamin D) can be seen in fig (b). Plasma insulin concentration level for all three cases can be seen in fig (c).

T1DM case

In T1DM case, we had considered I e =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eajuaGdaWgaaadbaqcLbmacaWGLbaameqaaKqzGeGaeyypa0JaaGim aaaa@3FB8@   and I b =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eajuaGdaWgaaadbaqcLbmacaWGIbaameqaaKqzGeGaeyypa0JaaGim aaaa@3FB5@ . The values of the parameters ( p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIXaaaleqaaaaa@3CD1@ to I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM eajuaGdaWgaaadbaGaaGimaaqabaaaaa@3BFF@ ) have been chosen from the paper.42 S G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado falmaaBaaabaqcLbmacaWGhbaaleqaaaaa@3CC5@ and S I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaado falmaaBaaabaqcLbmacaWGjbaaleqaaaaa@3CC7@ in T1DM case was lower than in the non-diabetic case. Value of p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaabaqcLbmacaaIYaaaleqaaaaa@3CD2@ has been considered within the normal range and the parameters p 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaameaajugWaiaaisdaaWqabaaaaa@3CE1@ , I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadM ealmaaBaaabaqcLbmacaaIWaaaleqaaaaa@3CA9@ have been obtained by linear regression of log transformed T1DM data. The value of p 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadc halmaaBaaajuaGbaqcLbmacaaI1aaajuaGbeaaaaa@3DE6@ has been taken as very small, as the T1DM cases have lower response to pancreas.40, 42 The values of parameters v 1 , v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jd9 qqaqpfpm0xbba9pwe9Q8fs0=yqaqpepie9Gq=f0=yqaqVeLsFr0=vr 0=vr0dd8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadA halmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaaiilaiaadAhajuaG daWgaaWcbaqcLbmacaaIYaaaleqaaaaa@41C0@ have been taken from the paper,40 as the effect of parameters on the glucose-insulin dynamics is the same. The values of the parameters andhave been taken as 40% (60%) and 10% (15%) for vitamin D dose (strong vitamin D dose). The parameters and their values for the T1DM case are given in Table 3. The effect of vitamin D on glucose-insulin dynamics for T1DM people is shown in Figure 4.

Figure 4 Comparison of glucose concentration level of IDD people for three different cases (without vitamin D, with mild dose of vitamin D and with strong dose of vitamin D) is shown in fig (a). High peak of interstitial insulin for case of strong dose of vitamin D as compared to other two cases (mild dose of vitamin D and without vitamin D) can be seen in fig (b). Plasma insulin concentration level for all three cases can be seen in fig (c).

Discussion

About 422 million people worldwide have diabetes, the majority living in low and middle income countries. Approximately 1.6 million deaths are directly attributed to diabetes each year. People having low income and suffering from diabetes are struggling to get the treatment involves insulin therapy which is very costly. This motivates us to find an approachable way to control the disease and make us focus on the vitamin D which not only increases the insulin sensitivity but gives a clear illustration of glucose-insulin dynamics. Vitamin D helps the muscles and fat cells to absorb glucose from plasma and increases the insulin sensitivity. To the best of our knowledge, it is the first mathematical model which incorporates the effects of vitamin D via parameters. In this paper, we have shown the level of glucose concentration decreased to 140 mg/dl from 180 mg/dl in T2DM people and from 190 mg/dl to 165 mg/dl in T1DM people after incorporating the vitamin D parameters (still not in the normal physiological range as vitamin d dose is not the solely responsible factor to control the glucose concentration). This illustration confirms that we should include a vitamin D dose in our daily routine (by the recommendation of a physician), especially for the persons who are involved in the industrial sector and do indoor jobs. Each individual should adjust the dosage of vitamin D according to his/her requirements.

Conclusions and future work

In this paper, we discussed the glucose-insulin regulatory system model for diabetic persons using vitamin D effect via parameters. We have studied the mathematical model analytically and numerically. For the first time, effect of vitamin D has been dealt mathematically to discuss the situation of diabetes. Our results reveal that vitamin D has a great impact on the glucose-insulin regulatory system. The mathematical model captured the effect of vitamin D on glucose-insulin dynamics in which it is confirmed that the important parameters which determine insulin sensitivity, pancreatic responsivity and glucose effectiveness have a large impact on the model. In future, the present mathematical model can be extended further to incorporate the exact dose of vitamin D to capture the impact of vitamin D on glucose-insulin regulatory system, according to the severity of the disease. Such mathematical model will be of great help to the diabetic community which is currently increasing very rapidly.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Contributory details

Ms. Saloni Rathee has contributed to the study design, numerical analysis and manuscript preparation. Ms. Nilam has contributed to the manuscript editing and review. Both have made equal contribution in the literature search.

Acknowledgments

The authors are thankful to Delhi Technological University, Delhi for the financial support.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Funding

None.

References

  1. MF Holick. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–2072.
  2. Nilam, ME Alexander, R Mathur, et al. Modelling the effect of CSII on the control of glucose concentration in type 1diabetes. Applied Mathematics and Computing. 2006;187(2):1476–1483.
  3. R Bouillon. Vitamin D: from photosynthesis, metabolism, and action to clinical applications eds. In: Endocrinology, LJ DeGroot and JL Jameson, Eds. WB Saunders, Philadelphia, Pa, USA. 2001:1009–1028.
  4. HF DeLuca. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–1696S.
  5. MF Holick. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281.
  6. KA Hruska. Hyperphosphatemia and hypophosphatemia, In primer on the metabolic bone diseases and disorders of mineral metabolism, MJ Favus, Ed. American society for bone and mineral research. Washington, DC, USA, 6th edition. 2006:233–242.
  7. AW Norman, JB Frankel, AM Heldt, et al. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science. 1980;209(4485):823–825.
  8. M Abboud, MS Rybchyn, R Rizk, et al. Sunlight exposure is just one of the factors which influence vitamin D status. Photochemical and Photobiological Sciences. 2017;16(3):302–313.
  9. M Golzarand, BW Hollis, P Mirmiran, et al. Vitamin D supplementation and body fat mass: a systematic review and meta-analysis. Eur J Clin Nutr. 2018;72(10):1345–1357.
  10. BS Chertow, WI Sivitz, NG Baranetsky, et al. Cellular mechanisms of insulin release: the effects of vitamin D deficiency and repletion on rat insulin secretion. Endocrinology. 1983;113(4):1511–1518.
  11. BL Nyomba, J Auwerx, V Bormans, et al. Pancreatic secretion in man with subclinical vitamin D deficiency. Diabetologia. 1986;29(1):34–38.
  12. KC Chiu, A Chu, VLW Go, et al. Hypovitaminosis D is associated with insulin resistance and b cell dysfunction. Am J Clin Nutr. 2004;79(5):820–825.
  13. C Mathieu, K Badenhoop. Vitamin D and type 1 diabetes mellitus: state of the art. Trends Endocrinol Metab. 2005;16(6):261–266.
  14. PM Bourlon, B Billaudel, A Faure-Dussert. Influence of vitamin D3 deficiency and 1, 25 dihydroxyvitamin D3 on de novo insulin biosynthesis in the islets of the rat endocrine pancreas. J Endocrinol. 1999;160(1):87–95.
  15. U Zeitz, K Weber, DW Soegiarto, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003;17(3):509–511.
  16. L Lind, A Hanni, H Lithell, et al. Vitamin D is related to blood pressure and other cardiovascular risk factors in middle - aged men. Am J Hypertens. 1995;8(9):894–901.
  17. O Gedik, S Akalin. Effects of vitamin D deficiency and repletion on insulin and glucagon secretion in man. Diabetologia. 1986;29(3):142–145.
  18. AM Borissova, T Tankova, G Kirilov, et al. The effect of vitamin D3 on insulin secretion peripheral insulin sensitivity in type 2 diabetic patients. Int J Clin Pract. 2003;57(4):258–261.  
  19. L Lind, T Pollare, A Hvarfner, et al. Long-term treatment with active vitamin D (alphacalcidol) in middle-aged men with impaired glucose tolerance, effects on insulin secretion and sensitivity, glucose tolerance and blood pressure. Diabetes Res. 1989;11(3):141–147.
  20. E Orwoll, M Riddle, M Prince. Effects of vitamin D on insulin and glucagon secretion in non-insulin independent diabetes mellitus. Am J Clin Nutr. 1984;59(5):1083–1087.
  21. R Scragg, M Sowers, C Bell. Serum 25 - hydroxyvitamin D, diabetes, and ethnicity in the third national health and nutrition examination survey. Diabetes Care. 2004;27(12):2813–2818.  
  22. KC Baynes, BJ Boucher, EJ Feskens, et al. Vitamin D, glucose tolerance and insulinaemia in elderly men. Diabetologia. 1997;40(3):344–347.
  23. T Takiishi, C Gysemans, R Bouillon, et al. Vitamin D and diabetes. Endocrinol Metab Clin North Am. 2010;39(2):419–446.
  24. CEA Chagas, Borges MC, Martini LA, et al. Focus on vitamin D, inflammation and type 2 diabetes. Nutrients. 2012;4(1):52–67.
  25. B Schottker, C Herder, D Rothenbacher, et al. Serum 25-hydroxyvitamin D levels and incident diabetes mellitus type 2: a competing risk analysis in a large population-based cohort of older adults. European J Epidemiol. 2013;28(3):267–275.
  26. Tsur A, BS Feldman, I Feldhammer, et al. Decreased serum concentrations of 25-hydroxycholecalciferol are associated with increased risk of progression to impaired fasting glucose and diabetes. Diabetes Care. 2013;36(5):1361–1367.
  27. S Afzal, SE Bojesen, BG Nordestgaard. Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and metaanalysis. Clin Chem. 2013;59(2):381–391.
  28. Mansour S Almetwazi, Ahmad O Noor, Diena M Almasri, et al. The association of vitamin D deficiency and glucose control among diabetic patients. Saudi Pharm J. 2017;25(8):1179–1183.
  29. P Lundstrm, K Caidahl, MJ Eriksson, et al. Changes in vitamin D status in overweight middle-aged adults with or without impaired glucose metabolism in two consecutive Nordic summers. J Nutr Metab. 2019:1840374.
  30. MF Holick. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153–165.
  31. CE Williams, EA Williams, BM Corfe. Vitamin D status in irritable bowel syndrome and the impact of supplementation on symptoms: what do we know and what do we need to know? Eur J Clin Nutr. 2018;72(10):1358–1363.
  32. M Wacker, MF Holick. Sunlight and vitamin D. A global perspective for health. Dermatoendocrinol. 2013;5(1):51–108.
  33. CC Sung, MT Liao, KC Lu, et al. Role of vitamin D in insulin resistance. J Biomed Biotechnol. 2012;2012:634195.
  34. RN Bergman, LS Phillips, C Cobelli. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981;68(6):1456–1467.
  35. RN Bergman, C Cobelli. Minimal modeling, partition analysis and the estimation of insulin sensitivity. Fed Proc. 1980;39(1):110–115.
  36. G Pacini, RN Bergman. MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput Methods and Programs in Biomed. 1986;23(2):113–122. 17
  37. Arnold VI. Ordinary differential equations. MIT Presss, Cambridge MA. 1973.
  38. D Gaetano, O Arino. Mathematical modelling of the intravenous glucose tolerance test. J Math Biol. 2000;40(2):136–168.
  39. Nittalal, S Ghosh, D Stefanovski, et al. Dimensional analysis of MINMOD leads to definition of the disposition index of glucose regulation and improved simulation algorithm. BioMedical Engineering OnLine. 2006;44(5):1–15.
  40. M Derouich, A Boutayeb. The effect of physical exercise on the dynamics of glucose and insulin. J Biomech. 2002;35(7):911–917.
  41. S Welch, SS Gebhart, RN Bergman, et al. Minimal model analysis of intravenous glucose tolerance test-derived insulin sensitivity in diabetic subjects. J Clin Endocrinol Metab. 1990;71(6):1508–1518.
  42. DT Finegood, IM Hramiak, J Dupre. A modified protocol for estimation of insulin sensitivity with the minimal model of glucose kinetics in patients with insulin-dependent diabetes. J Clin Endocrinol Metab. 1990;17(6):1538–1549.
Creative Commons Attribution License

©2021 Rathee, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.