Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Correspondence:

Received: January 01, 1970 | Published: ,

Citation: DOI:

Download PDF

Abstract

In the subject work a multi tubular reactor with provision for internal heat recovery is proposed for storing of natural gas (NG) in adsorbed form using highly micro porous adsorbent such as activated carbon and subsequent discharging. The proposed reactor is suitable for large scale storage of NG without any external heating and cooling. The water present in the shell side of the shell-and-tube type reactor absorbs heat during charging keeps the tubes packed with adsorbent relatively cooler and releases heat during discharging of NG thereby accelerates the charging and discharging process. The transient behaviour of the proposed system is predicted by numerically solving the corresponding heat and mass transfer equations. Simulation is being carried out for constant pressure (35 bar) charging and constant pressure (1 bar) discharging till a stable cycle is attained. The novelty of the system lies in the fact that the proposed reactor does not need any external energy input, at the same time offering high delivery capacity. Moreover, the system works under pressure swing principle. Parametric studies as well as second law analysis are presented to identify suitable water circulation rates and initial fluid temperature by minimizing net entropy generation.

Keywords: natural gas storage, energy storage, heat and mass transfer, shell and tube, entropy

Introduction

Natural Gas (NG) is an inexpensive and clean burning fuel. Hence it has attracted the attention of the policy makers in several countries including China and India for its commercial and industrial use.1 However the challenge of safe and compact storage of NG, due to its low energy density need to be addressed before it can be considered for its large scale use in various portable as well as stationary applications. Among the various storage methods available at present such as compressed natural gas (CNG), liquefied natural gas (LNG) and adsorbed natural gas (ANG), the last option (i.e., ANG) offers many benefits interalia safety, design flexibility of the storage tank, low cost etc..2–7 On the other hand the exothermic and endothermic nature of the adsorption and desorption processes with poor transport properties of the adsorbent particles strongly affects the storage and delivery capacity, thereby reducing the driving range of the vehicles substantially, when ANG is used for transport applications. Chang & Talu7 observed a reduction of 35% storage capacity under adiabatic conditions, as compared to an isothermal charge case. In view of the importance of effective heat and mass transfer, many researchers have carried out studies on heat and mass transfer management of the adsorbent bed undergoing charge and discharge cycles. Different heat transfer enhancement techniques such as provision of internal and external fins, insertion of tubes carrying hot water during desorption, multi cylinder ANG tanks with centrally located heat pipes etc. have been proposed.8–17 Studies are also carried out on prediction of the structural, thermo-physical as well as adsorption characteristics of different activated carbons.18,19 Several cities in India and elsewhere have already introduced CNG based buses and other vehicles. There is also a growing interest in running locomotives using NG. Attempts were also made to use natural gas for fishing boat engines.20 An important requirement of large scale storage of NG is seen in the filling stations. In most of these applications, design of ANG reactors with fast charge/discharge characteristics is essential. Since charging is exothermic and discharge is endothermic, use of suitable thermal energy storage system can minimize the costs associated with cooling and heating during charge-discharge processes. However, no studies on such ANG systems are available in open literature. In this paper a shell and tube type reactor suitable for large scale storage of NG is considered. Due to high storage pressure (35 bar) of NG, the adsorbent (Activated carbon) and adsorbate (NG) are confined to the tube side, while the external fluid (water) flows on the shell side in a closed loop. The water on the shell side acts as an energy carrier absorbing heat of adsorption from the bed during charging and supplying the same to the bed during discharging. A mathematical model based on reactor heat transfer and kinetics is developed to simulate the performance of this ANG system under variable charge-discharge conditions. Effects of important design and operating parameters on the performance of the reactor are studied in detail so as to suggest means for controlling the system performance. It is expected that this study will be useful in the practical design and evaluation of ANG systems for large scale storage of NG.

Nomenclature

Ar            Area ratio

As            Bundle cross flow area, m2

B             Baffle spacing, m

CL          Tube layout constant

CTP        Tube count calculation constant

Ds            Shell diameter, m

De            Equivalent diameter of the shell, m

E             Characteristic energy, J/mol

Ea            Activation energy, J/mol

f               Friction factor

Gs            Shell side mass velocity, kg/ (m2 s)

Kso           Pre exponent constant for equation of kinetics of sorption, s-1

Lt                    Length of the tube, m

m ˙ f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqad2gaga GaamaaBaaabaqcLbmacaWGMbaajuaGbeaaaaa@3A3D@          Circulation rate, kg/s

M            Molecular weight, kg/ k mol

Nb            Number of baffles

Nt            Number of tubes

n              Index of isotherm equation

Pt             Tube pitch, m

PR           Pitch ratio

Qd            Volumetric delivery capacity, m3/m3

q              Concentration, kg/kg

r              Radius of adsorbent bed, m

Res          Shell side Reynolds number

S              Entropy, J/K

s              Specific entropy, J/(kg K)

T             Temperature, K

t               Time, s

U             Overall heat transfer coefficient, W/ (m2 K)

v              Specific volume, m3/kg

Wo                 The limiting volumetric adsorbate uptake, m3/kg

Wp           Pumping work, J

y              Mass ratio, kg/kg

Z              Compressibility factor

Greek symbols

ΔH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadIeaaaa@38AD@ ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLb aa@3821@         Isosteric heat of adsorption, J/mol

ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLb aa@3821@             Porosity

α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHb aa@3819@             Thermal expansion coefficient, K-1

λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSb aa@382E@             Thermal conductivity, W/(m K)

μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeY7aTb aa@3830@             Viscosity, N sec/m2

Subscripts

a              Adsorbed

avg         Average

b              Boiling, bed

c              Cycle, change

d              Delivery

cr            Critical

dis           Discharge

eff           Effective

eq            Equilibrium

f               Fluid, fin, final

g              Gas

gen         Generated

gr            Graphite

i               Inner, initial

net          Net

o              Outer

p              Particle

r              Radial

s              Saturation, specific, steel, solid

t               Total, tube

w             Wall

Mathematical model of the ANG system

Physical model

Figure 1 shows the schematic of the ANG storage system for large scale storage which consists of a shell and tube type ANG reactor, NG gas cylinder, two pressure control valves (PCV) and a pump. Through the 3-way valve, the ANG reactor is connected to the gas cylinder during charging process and discharge which is carried out at 1 bar pressure regulated by a pressure control valve. The water present inside the shell is circulated for improving the heat transfer coefficient by using a pump, without any external heating or cooling. The system behaves as a closed system with shell side filled with water. The shell is assumed to be completely insulated from outside and no renewal of the water inside the shell is considered. The water absorbs heat during charging period and supplies the stored heat to the bed during the discharge time. NG is charged into the reactor through the header and subsequently from the header to the tubes through the central porous filter. As shown in Figure 2, square tube layout is considered here. Figure 3 shows the sectional view of the tube with annular portion between the tube wall and inner porous filter filled with a homogeneous mixture of activated carbon and enhancement material (graphite). For the purpose of simulation, the reactor is assumed to be charged with NG at a constant inlet pressure of 35 bar till the bed concentration reaches 0.2 kg/kg. After the charging process is over, the tank is isolated from the supply tank, then it is allowed to reach equilibrium at the corresponding fluid temperature, and subsequently after reaching equilibrium the discharge process is initiated and continued by withdrawing NG at a constant downstream pressure of 1 bar till bed concentration reaches 0.03 kg/kg. After the above process the delivery valve is closed and the bed is allowed to reach equilibrium. To limit the process time and to get a stable cycle the maximum and minimum concentrations are constrained to 0.2 kg/kg and 0.03 kg/kg respectively.

Figure 1 Physical layout.
Figure 2 Tube layout.
Figure 3 Sectional view of the tube filled with activated carbon.

To simplify the mathematical model, the following assumptions are made:

  1. Heat transfer through the ANG bed is by conduction in radial direction only, and the gas in the bed is in local thermal equilibrium with the adsorbent particles.
  2. It is assumed that in order to improve the heat transfer characteristics, the bed is filled with a homogeneous mixture of activated carbon particles and a high thermal conductivity material. It is also assumed that the high thermal conductivity material (graphite) does not adsorb NG.
  3. The thermo-physical properties of the metal tube and adsorbent are assumed to be constant.
  4. A constant contact resistance exists between the inner tube wall and ANG bed.
  5. There is no heat transfer between the bed and NG at the inner radius of the inner tube.
  6. The thermal energy stored in baffles is not included in the analysis.
  7. The power consumed by the pump is rejected to the surrounding so that there is no net accumulation of energy in the system
  8. Based on the above assumptions, the following governing equations are derived.

Tube side heat and mass transfer

Energy equation: The energy equation, derived by writing energy balance equation for an annular differential control volume of the adsorbent bed is given by:

( ρC ) eff T t = 1 r r ( r λ eff T r )+ 1 k ( 1 ε t ) ρ s ΔH M q t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaa8aabaWdbiabeg8aYLqzadGaam4qaaqcfaOaayjkaiaa wMcaa8aadaWgaaqaa8qacaWGLbGaamOzaiaadAgaa8aabeaapeWaaS aaa8aabaWdbiabgkGi2kaadsfaa8aabaWdbiabgkGi2kaadshaaaGa eyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhaaaWaaSaaa8 aabaWdbiabgkGi2cWdaeaapeGaeyOaIyRaamOCaaaadaqadaWdaeaa peGaamOCaiabeU7aS9aadaWgaaqaaKqzadWdbiaadwgacaWGMbGaam Ozaaqcfa4daeqaa8qadaWcaaWdaeaapeGaeyOaIyRaamivaaWdaeaa peGaeyOaIyRaamOCaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaaWdae aapeGaaGymaaWdaeaacaWGRbaaa8qadaqadaWdaeaapeGaaGymaiab gkHiTiabew7aL9aadaWgaaqaa8qacaWG0baapaqabaaapeGaayjkai aawMcaaiabeg8aY9aadaWgaaqaa8qacaWGZbaapaqabaWdbmaalaaa paqaa8qacqqHuoarcaWGibaapaqaa8qacaWGnbaaamaalaaapaqaa8 qacqGHciITcaWGXbaapaqaa8qacqGHciITcaWG0baaaaaa@6E5C@ ............... (1)

The effective heat capacity and thermal conductivity of the ANG bed (consisting of a homogenous mixture of adsorbent particles, graphite powder and NG in the void space) are given by:

( ρC ) eff = 1 k ( ( 1 ε t ) ρ s C s + ε t ρ g C p,g +( 1 ε t ) ρ s C gr y+( 1 ε t ) ρ s q C a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaa8aabaWdbiabeg8aYLqzadGaam4qaaqcfaOaayjkaiaa wMcaa8aadaWgaaqaaKqzadWdbiaadwgacaWGMbGaamOzaaqcfa4dae qaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaacaWGRbaaa8qa daqadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcqaH1oqzpa WaaSbaaeaajugWa8qacaWG0baajuaGpaqabaaapeGaayjkaiaawMca aiabeg8aY9aadaWgaaqaaKqzadWdbiaadohaaKqba+aabeaapeGaam 4qa8aadaWgaaqaaKqzadWdbiaadohaaKqba+aabeaapeGaey4kaSIa eqyTdu2damaaBaaabaqcLbmapeGaamiDaaqcfa4daeqaa8qacqaHbp GCpaWaaSbaaeaajugWa8qacaWGNbaajuaGpaqabaWdbiaadoeapaWa aSbaaeaajugWaiaadchacaGGSaGaam4zaaqcfayabaWdbiabgUcaRm aabmaapaqaa8qacaaIXaGaeyOeI0IaeqyTdu2damaaBaaabaqcLbma peGaamiDaaqcfa4daeqaaaWdbiaawIcacaGLPaaacqaHbpGCpaWaaS baaeaajugWa8qacaWGZbaajuaGpaqabaWdbiaadoeapaWaaSbaaeaa jugWa8qacaWGNbGaamOCaaqcfa4daeqaa8qacaWG5bGaey4kaSYaae Waa8aabaWdbiaaigdacqGHsislcqaH1oqzpaWaaSbaaeaajugWa8qa caWG0baajuaGpaqabaaapeGaayjkaiaawMcaaiabeg8aY9aadaWgaa qaaKqzadWdbiaadohaaKqba+aabeaacaWGXbqcLbmapeGaam4qaKqb a+aadaWgaaqaaKqzadWdbiaadggaaKqba+aabeaaa8qacaGLOaGaay zkaaaaaa@8E38@ ................. (2)

λ eff = 1 k ( ( 1 ε t ) λ s + ε t λ g +( 1 ε t )y ρ s ρ gr λ gr ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4UdW2damaaBaaabaqcLbmapeGaamyzaiaadAgacaWGMbaa juaGpaqabaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaaiaadU gaaaWdbmaabmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiab ew7aL9aadaWgaaqaaKqzadWdbiaadshaaKqba+aabeaaa8qacaGLOa GaayzkaaGaeq4UdW2damaaBaaabaqcLbmapeGaam4Caaqcfa4daeqa a8qacqGHRaWkcqaH1oqzpaWaaSbaaeaajugWa8qacaWG0baajuaGpa qabaWdbiabeU7aS9aadaWgaaqaaKqzadWdbiaadEgaaKqba+aabeaa peGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcqaH1oqzpaWaaS baaeaajugWa8qacaWG0baajuaGpaqabaaapeGaayjkaiaawMcaaiaa dMhadaWcaaqaaiabeg8aYnaaBaaabaGaam4CaaqabaaabaGaeqyWdi 3aaSbaaeaacaWGNbGaamOCaaqabaaaaiabeU7aSnaaBaaabaqcLbma caWGNbGaamOCaaqcfayabaaacaGLOaGaayzkaaaaaa@6F05@ .............. (3)

k=1+( 1 ε t )y( ρ s ρ gr ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4Aaiabg2da9iaaigdacqGHRaWkdaqadaWdaeaapeGaaGym aiabgkHiTiabew7aL9aadaWgaaqaaKqzadWdbiaadshaaKqba+aabe aaa8qacaGLOaGaayzkaaGaamyEamaabmaapaqaa8qadaWcaaWdaeaa peGaeqyWdi3damaaBaaabaWdbiaadohaa8aabeaaaeaapeGaeqyWdi 3aaSbaaeaacaWGNbGaamOCaaqabaaaaaGaayjkaiaawMcaaaaa@4BE7@

Where, k=1+( 1 ε t )y( ρ s ρ gr ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4Aaiabg2da9iaaigdacqGHRaWkdaqadaWdaeaapeGaaGym aiabgkHiTiabew7aL9aadaWgaaqaaKqzadWdbiaadshaaKqba+aabe aaa8qacaGLOaGaayzkaaGaamyEamaabmaapaqaa8qadaWcaaWdaeaa peGaeqyWdi3damaaBaaabaWdbiaadohaa8aabeaaaeaapeGaeqyWdi 3aaSbaaeaacaWGNbGaamOCaaqabaaaaaGaayjkaiaawMcaaaaa@4BE7@ ; and y= m gr m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyEaiabg2da9maalaaapaqaa8qacaWGTbWdamaaBaaabaqc LbmacaWGNbGaamOCaaqcfayabaaabaWdbiaad2gapaWaaSbaaeaaju gWa8qacaWGZbaajuaGpaqabaaaaaaa@4192@ .................. (4)

“k” is the parameter which accounts for the presence of the graphite powder in the adsorbent bed.

The total porosity of the adsorbent bed is given by:9

ε t = ε b +( 1 ε b ) ε p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyTdu2damaaBaaabaqcLbmapeGaamiDaaqcfa4daeqaa8qa cqGH9aqpcqaH1oqzpaWaaSbaaeaajugWa8qacaWGIbaajuaGpaqaba WdbiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaeqyTdu2damaa BaaabaqcLbmapeGaamOyaaqcfa4daeqaaaWdbiaawIcacaGLPaaacq aH1oqzpaWaaSbaaeaajugWa8qacaWGWbaajuaGpaqabaaaaa@4E85@ ............... (5)

The specific heat of the adsorbed phase is given by [18]:

C a = C p,g ( P,T )+ α 2 ( 1n ) n 2 ET M ( ln W o q eq v a ) ( 12n ) n 2 R g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4qa8aadaWgaaqaaKqzadWdbiaadggaaKqba+aabeaapeGa eyypa0Jaam4qa8aadaWgaaqaaKqzadWdbiaadchacaGGSaGaam4zaa qcfa4daeqaa8qadaqadaWdaeaapeGaamiuaiaacYcacaWGubaacaGL OaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiabeg7aH9aadaahaaqabe aajugWa8qacaaIYaaaaKqbaoaabmaapaqaa8qacaaIXaGaeyOeI0Ia amOBaaGaayjkaiaawMcaaaWdaeaapeGaamOBa8aadaahaaqabeaaju gWa8qacaaIYaaaaaaajuaGdaWcaaWdaeaapeGaamyraiaadsfaa8aa baWdbiaad2eaaaWaaeWaa8aabaWdbiGacYgacaGGUbWaaSaaa8aaba WdbiaadEfapaWaaSbaaeaajugWa8qacaWGVbaajuaGpaqabaaabaWd biaadghadaWgaaqaaKqzadGaamyzaiaadghaaKqbagqaaiaadAhapa WaaSbaaeaajugWa8qacaWGHbaajuaGpaqabaaaaaWdbiaawIcacaGL PaaapaWaaWbaaeqabaWdbmaalaaapaqaa8qadaqadaWdaeaapeGaaG ymaiabgkHiTiaaikdacaWGUbaacaGLOaGaayzkaaaapaqaa8qacaWG UbaaaaaacqGHsislcaaIYaGaamOua8aadaWgaaqaaKqzadWdbiaadE gaaKqba+aabeaaaaa@7169@ ................... (6)

Adsorption isotherm: Among the different isotherm models like Langmuir, Toth , D-R and D-A available in the literature, The Dubinin -Astakhov (D-A) isotherm model is chosen here to calculate the equilibrium adsorption capacity. The D-A isotherm model accounts for surface heterogeneity and also fits well at high pressure.

The D-A isotherm equation is given by:21

q eq = W 0 v a exp[ { R u T E ln( P s P ) } n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghada WgaaqaaKqzadaeaaaaaaaaa8qacaWGLbGaamyCaaqcfa4daeqaa8qa cqGH9aqpdaWcaaWdaeaapeGaam4va8aadaWgaaqaaKqzadWdbiaaic daaKqba+aabeaaaeaapeGaamODa8aadaWgaaqaaKqzadWdbiaadgga aKqba+aabeaaaaWdbiGacwgacaGG4bGaaiiCamaadmaapaqaa8qacq GHsisldaGadaWdaeaapeWaaSaaa8aabaWdbiaadkfapaWaaSbaaeaa jugWa8qacaWG1baajuaGpaqabaWdbiaadsfaa8aabaWdbiaadweaaa GaciiBaiaac6gadaqadaWdaeaapeWaaSaaa8aabaWdbiaadcfapaWa aSbaaeaajugWa8qacaWGZbaajuaGpaqabaaabaWdbiaadcfaaaaaca GLOaGaayzkaaaacaGL7bGaayzFaaWdamaaCaaabeqaaKqzadWdbiaa d6gaaaaajuaGcaGLBbGaayzxaaaaaa@5DBB@ ..................... (7)

Where va is the specific volume of the adsorbate in the adsorbed phase given by:22

v a = v b exp[ α( T T b ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamODa8aadaWgaaqaaKqzadWdbiaadggaaKqba+aabeaapeGa eyypa0JaamODa8aadaWgaaqaaKqzadWdbiaadkgaaKqba+aabeaape GaciyzaiaacIhacaGGWbWaamWaa8aabaWdbiabeg7aHnaabmaapaqa a8qacaWGubGaeyOeI0Iaamiva8aadaWgaaqaaKqzadWdbiaadkgaaK qba+aabeaaa8qacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@4D6C@ ............... (8)

vb is the specific volume of the saturated liquid adsorbate at the normal boiling point, Tb and is the thermal expansion coefficient of the adsorbed phase. The temperature

Dependency of can be approximately expressed as given in equation (9) from the definition of thermal expansion coefficient.23

α= 1 T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqySdeMaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa dsfaaaaaaa@3B20@ ..................... (9)

Ps is the saturation vapour pressure at the adsorption temperature. When adsorption occurs above the critical temperature, Ps is given by:18

P s = ( T T cr ) 2 P cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiua8aadaWgaaqaaKqzadWdbiaadohaaKqba+aabeaapeGa eyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacaWGubaapaqaa8qaca WGubWdamaaBaaabaqcLbmapeGaam4yaiaadkhaaKqba+aabeaaaaaa peGaayjkaiaawMcaa8aadaahaaqabeaajugWa8qacaaIYaaaaKqbak aadcfapaWaaSbaaeaajugWa8qacaWGJbGaamOCaaqcfa4daeqaaaaa @4AA1@ ........................ (10)

Equation of kinetics of sorption: The driving force for adsorption rate of gas molecules in adsorbent bed is given by the kinetic equation:24

dq dt = K so exp( E a R u T )( q eq q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaa8aabaWdbiaadsgacaWGXbaapaqaa8qacaWGKbGaamiD aaaacqGH9aqpcaWGlbWdamaaBaaabaqcLbmapeGaam4Caiaad+gaaK qba+aabeaapeGaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHi Tmaalaaapaqaa8qacaWGfbWaaSbaaeaajugWaiaadggaaKqbagqaaa WdaeaapeGaamOua8aadaWgaaqaaKqzadWdbiaadwhaaKqba+aabeaa peGaamivaaaaaiaawIcacaGLPaaacaGGOaGaamyCa8aadaWgaaqaaK qzadWdbiaadwgacaWGXbaajuaGpaqabaqcLbmapeGaeyOeI0IaamyC aKqbakaacMcaaaa@587E@ ..................... (11)

Initial conditions: Initially (time, t = 0) the reactor is at ambient temperature (308 K) and the bed pressure is same as ambient pressure (0.1 MPa).

T( r,0 )= T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamivamaabmaapaqaa8qacaWGYbGaaiilaiaaicdaaiaawIca caGLPaaacqGH9aqpcaWGubWaaSbaaeaajugWaiaadMgaaKqbagqaaa aa@4025@ ........................ (12)

P( r,0 )= P i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiuamaabmaapaqaa8qacaWGYbGaaiilaiaaicdaaiaawIca caGLPaaacqGH9aqpcaWGqbWaaSbaaeaajugWaiaadMgaaKqbagqaaa aa@401D@ ........................ (13)

q( r,0 )= q eq ( P i , T i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyCamaabmaapaqaa8qacaWGYbGaaiilaiaaicdaaiaawIca caGLPaaacqGH9aqpcaWGXbWaaSbaaeaajugWaiaadwgacaWGXbaaju aGbeaadaqadaqaaiaadcfadaWgaaqaaKqzadGaamyAaaqcfayabaGa aiilaiaadsfadaWgaaqaaKqzadGaamyAaaqcfayabaaacaGLOaGaay zkaaaaaa@4ACE@ ............... (14)

ρ g ( r,0 )=f( P i , T i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqyWdi3damaaBaaabaqcLbmapeGaam4zaaqcfa4daeqaa8qa daqadaWdaeaapeGaamOCaiaacYcacaaIWaaacaGLOaGaayzkaaGaey ypa0JaamOzaiaacIcacaWGqbWaaSbaaeaajugWaiaadMgaaKqbagqa aiaacYcacaWGubWaaSbaaeaajugWaiaadMgaaKqbagqaaiaacMcaaa a@4AA7@ ..................... (15)

The charging process is continued till the average concentration reaches 0.2 kg/ kg under constant pressure (35 bar) charging condition. After charging process is over the reactor is isolated from the supply tank and is allowed to reach equilibrium state without any further supply of NG from outside. Then the bed is subjected to constant pressure (1 bar) discharge condition till the average bed concentration drops to 0.03 kg/kg. After the discharge process the bed is still allowed to reach equilibrium at corresponding fluid temperature.

Tube side boundary conditions: Assuming adiabatic condition at the inner radius of the adsorbent bed,

T r ( r i ,t )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaa8aabaWdbiabgkGi2kaadsfaa8aabaWdbiabgkGi2kaa dkhaaaWaaeWaa8aabaWdbiaadkhapaWaaSbaaeaajugWa8qacaWGPb aajuaGpaqabaWdbiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0Ja aGimaaaa@4494@ .................... (16)

At the outer radius of the adsorbent bed

λ eff T r = h i (T( r o ,t) T t (t)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi abeU7aSnaaBaaabaqcLbmacaWGLbGaamOzaiaadAgaaKqbagqaamaa laaabaGaeyOaIyRaamivaaqaaiabgkGi2kaadkhaaaGaeyypa0Jaam iAamaaBaaabaqcLbmacaWGPbaajuaGbeaacaGGOaGaamivaiaacIca caWGYbWaaSbaaeaajugWaiaad+gaaKqbagqaaiaacYcacaWG0bGaai ykaiabgkHiTiaadsfadaWgaaqaaKqzadGaamiDaaqcfayabaGaaiik aiaadshacaGGPaGaaiykaaaa@570C@ .......................... (17)

The mass averaged bed temperature and concentration Tavg and qavg are defined as:

T avg (t)= r i r o ( ρC ) eff Trdr r i r o ( ρC ) eff rdr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiva8aadaWgaaqaaKqzadWdbiaadggacaWG2bGaam4zaaqc fa4daeqaa8qacaGGOaGaamiDaiaacMcacqGH9aqpdaWcaaWdaeaape WaaubmaeqapaqaaKqzadWdbiaadkhal8aadaWgaaqcfayaaKqzadWd biaadMgaaKqba+aabeaaaeaajugWa8qacaWGYbWcpaWaaSbaaKqbag aajugWa8qacaWGVbaajuaGpaqabaaabaWdbiabgUIiYdaadaqadaWd aeaapeGaeqyWdixcLbmacaWGdbaajuaGcaGLOaGaayzkaaWdamaaBa aabaWdbiaadwgacaWGMbGaamOzaaWdaeqaa8qacaWGubGaaGPaVlaa dkhacaWGKbGaamOCaaWdaeaapeWaaubmaeqapaqaaKqzadWdbiaadk hal8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aabeaaaeaajugW a8qacaWGYbWcpaWaaSbaaKqbagaajugWa8qacaWGVbaajuaGpaqaba aabaWdbiabgUIiYdaadaqadaWdaeaapeGaeqyWdixcLbmacaWGdbaa juaGcaGLOaGaayzkaaWdamaaBaaabaWdbiaadwgacaWGMbGaamOzaa Wdaeqaa8qacaWGYbGaaGPaVlaadsgacaWGYbaaaaaa@7749@ ..................... (18)

q avg (t)= r i r o q(1 ε t ) ρ s rdr r i r o (1 ε t ) ρ s rdr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghada WgaaqaaKqzadaeaaaaaaaaa8qacaWGHbGaamODaiaadEgaaKqba+aa beaapeGaaiikaiaadshacaGGPaGaeyypa0ZaaSaaa8aabaWdbmaava dabeWdaeaajugWa8qacaWGYbWcpaWaaSbaaKqbagaajugWa8qacaWG PbaajuaGpaqabaaabaqcLbmapeGaamOCaSWdamaaBaaajuaGbaqcLb mapeGaam4Baaqcfa4daeqaaaqaa8qacqGHRiI8aaGaamyCaiaacIca caaIXaGaeyOeI0IaeqyTdu2cdaWgaaqcfayaaKqzadGaamiDaaqcfa yabaGaaiykaiabeg8aYnaaBaaabaqcLbmacaWGZbaajuaGbeaacaaM c8UaamOCaiaaykW7caWGKbGaamOCaaWdaeaapeWaaubmaeqapaqaaK qzadWdbiaadkhal8aadaWgaaqcfayaaKqzadWdbiaadMgaaKqba+aa beaaaeaajugWa8qacaWGYbWcpaWaaSbaaKqbagaajugWa8qacaWGVb aajuaGpaqabaaabaWdbiabgUIiYdaacaGGOaGaaGymaiabgkHiTiab ew7aLnaaBaaabaqcLbmacaWG0baajuaGbeaacaGGPaGaeqyWdi3aaS baaeaajugWaiaadohaaKqbagqaaiaadkhacaaMc8Uaamizaiaadkha aaaaaa@7F98@ ......................... (19)

Energy balance for the tube:

(mC) t d T t dt = h i A i (T( r o ,t) T t ) h o A o ( T t T f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca WGTbqcLbmacaWGdbqcfaOaaiykamaaBaaabaGaamiDaaqabaWaaSaa aeaacaWGKbGaamivamaaBaaabaqcLbmacaWG0baajuaGbeaaaeaaca WGKbGaamiDaaaacqGH9aqpcaWGObWaaSbaaeaajugWaiaadMgaaKqb agqaaiaaykW7caWGbbWaaSbaaeaajugWaiaadMgaaKqbagqaaiaacI cacaWGubGaaiikaiaadkhadaWgaaqaaKqzadGaam4BaaqcfayabaGa aiilaiaadshacaGGPaGaeyOeI0IaamivamaaBaaabaqcLbmacaWG0b aajuaGbeaacaGGPaGaeyOeI0IaamiAamaaBaaabaqcLbmacaWGVbaa juaGbeaacaaMc8UaamyqamaaBaaabaqcLbmacaWGVbGaaGPaVdqcfa yabaGaaiikaiaadsfadaWgaaqaaKqzadGaamiDaaqcfayabaGaeyOe I0IaamivamaaBaaabaqcLbmacaWGMbaajuaGbeaacaGGPaaaaa@6F4C@ ....................... (20)

Where Ai and Ao are the inner and outer area of a single tube respectively.

Initial condition for the tube:

T t ( t = 0 ) = T i   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiva8aadaWgaaqaaKqzadWdbiaadshaaKqba+aabeaadaqa daqaa8qacaWG0bGaaeiiaiabg2da9iaabccacaaIWaaapaGaayjkai aawMcaa8qacaqGGaGaeyypa0Jaamiva8aadaWgaaqaaKqzadWdbiaa dMgaaKqba+aabeaapeGaaiiOaaaa@46DC@ ..................... (21)

Shell side calculations: The energy balance for the shell side fluid can be given by:

(mC) f d T f dt = h o A o,t ( T t T f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacIcaca WGTbqcLbmacaWGdbqcfaOaaiykamaaBaaabaGaamOzaaqabaWaaSaa aeaacaWGKbGaamivamaaBaaabaqcLbmacaWGMbaajuaGbeaaaeaaca WGKbGaamiDaaaacqGH9aqpcaWGObWaaSbaaeaajugWaiaad+gaaKqb agqaaiaaykW7caWGbbWaaSbaaeaajugWaiaad+gacaGGSaGaamiDaa qcfayabaGaaiikaiaadsfadaWgaaqaaKqzadGaamiDaaqcfayabaGa eyOeI0IaamivamaaBaaabaqcLbmacaWGMbaajuaGbeaacaGGPaaaaa@57F6@ ...................... (22)

Where the total outside heat transfer surface area based on outside diameter of the tube is given by:

A o,t =π d o N t L t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeada WgaaqaaKqzadGaam4BaiaacYcacaWG0baajuaGbeaacqGH9aqpcqaH apaCcaWGKbWaaSbaaeaajugWaiaad+gaaKqbagqaaiaad6eadaWgaa qaaKqzadGaamiDaaqcfayabaGaamitamaaBaaabaqcLbmacaWG0baa juaGbeaaaaa@4987@ ............... (23)

Shell side heat transfer coefficient calculation: The length of the tube is fixed at 2.5 m then number of tubes is calculated from the mass of the adsorbent using the following expression:

N t = k m s ρ s (1 ε t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6eada WgaaqaaKqzadGaamiDaaqcfayabaGaeyypa0ZaaSaaaeaacaWGRbGa aGPaVlaad2gadaWgaaqaaKqzadGaam4CaaqcfayabaGaaGPaVdqaai abeg8aYnaaBaaabaqcLbmacaWGZbaajuaGbeaacaaMc8Uaaiikaiaa igdacqGHsislcqaH1oqzdaWgaaqaaKqzadGaamiDaaqcfayabaGaai ykaaaaaaa@50A3@ ...................... (24)

Shell diameter is calculated using following expression:25

D s =0.637 CL CTP [ A o,t PR d o L t ] 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseada WgaaqaaKqzadGaam4CaaqcfayabaGaeyypa0JaaGimaiaac6cacaaI 2aGaaG4maiaaiEdadaGcaaqaamaalaaabaGaam4qaiaadYeaaeaaca WGdbGaamivaiaadcfaaaaabeaadaWadaqaamaalaaabaGaamyqamaa BaaabaqcLbmacaWGVbGaaiilaiaadshaaKqbagqaaiaadcfacaWGsb GaaGPaVlaadsgadaWgaaqaaKqzadGaam4BaaqcfayabaaabaGaamit amaaBaaabaqcLbmacaWG0baajuaGbeaaaaaacaGLBbGaayzxaaWaaW baaeqabaqcLbmacaaIWaGaaiOlaiaaiwdaaaaaaa@584C@ ............................ (25)

Where: PR= P t d o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadcfaca WGsbGaeyypa0ZaaSaaaeaacaWGqbWaaSbaaeaajugWaiaadshaaKqb agqaaaqaaiaadsgadaWgaaqaaKqzadGaam4Baaqcfayabaaaaaaa@40A1@ .......... (26)

Equivalent diameter of the shell is defined as:

......................... (27)

A s = D s C t B P t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeada WgaaqaaKqzadGaam4CaaqcfayabaGaeyypa0ZaaSaaaeaacaWGebWa aSbaaeaajugWaiaadohaaKqbagqaaiaadoeadaWgaaqaaKqzadGaam iDaaqcfayabaGaamOqaaqaaiaadcfadaWgaaqaaKqzadGaamiDaaqc fayabaaaaaaa@46D9@

Bundle cross flow area:

D e = 4( P t 2 π d o 2 4 ) π d o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseada WgaaqaaKqzadGaamyzaaqcfayabaGaeyypa0ZaaSaaaeaacaaI0aWa aeWaaeaacaWGqbWaa0baaeaacaWG0baabaqcLbmacaaIYaaaaKqbak abgkHiTmaalaaabaGaeqiWdaNaamizamaaDaaabaqcLbmacaWGVbaa juaGbaqcLbmacaaIYaaaaaqcfayaaiaaisdaaaaacaGLOaGaayzkaa aabaGaeqiWdaNaamizamaaBaaabaqcLbmacaWGVbaajuaGbeaaaaaa aa@50F1@ ................................. (28)

Where baffle spacing B is taken as 0.6 Ds and .25

Shell side mass velocity:

G s = m ˙ f A s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada WgaaqaaKqzadGaam4CaaqcfayabaGaeyypa0ZaaSaaaeaaceWGTbGb aiaadaWgaaqaaKqzadGaamOzaaqcfayabaaabaGaamyqamaaBaaaba qcLbmacaWGZbaajuaGbeaaaaaaaa@428F@ ..................................... (29)

The shell side heat transfer coefficient for external fluid is calculated using McAdams correlation given below:25

h o D e λ f =0.36 ( D e G s μ f ) 0.55 ( C p,f μ f k f ) 1/3 ( μ f μ w ) 0.14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamiAamaaBaaabaqcLbmacaWGVbaajuaGbeaacaWGebWaaSbaaeaa jugWaiaadwgaaKqbagqaaaqaaiabeU7aSnaaBaaabaqcLbmacaWGMb aajuaGbeaaaaGaeyypa0JaaGimaiaac6cacaaIZaGaaGOnaiaaykW7 daqadaqaamaalaaabaGaamiramaaBaaabaqcLbmacaWGLbaajuaGbe aacaWGhbWaaSbaaeaajugWaiaadohaaKqbagqaaaqaaiabeY7aTnaa BaaabaqcLbmacaWGMbaajuaGbeaaaaaacaGLOaGaayzkaaWaaWbaae qabaqcLbmacaaIWaGaaiOlaiaaiwdacaaI1aaaaKqbaoaabmaabaWa aSaaaeaacaWGdbWaaSbaaeaajugWaiaadchacaGGSaGaamOzaaqcfa yabaGaeqiVd02aaSbaaeaajugWaiaadAgaaKqbagqaaaqaaiaadUga daWgaaqaaKqzadGaamOzaaqcfayabaaaaaGaayjkaiaawMcaamaaCa aabeqaaKqzadGaaGymaiaac+cacaaIZaaaaKqbaoaabmaabaWaaSaa aeaacqaH8oqBdaWgaaqaaKqzadGaamOzaaqcfayabaaabaGaeqiVd0 2aaSbaaeaajugWaiaadEhaaKqbagqaaaaaaiaawIcacaGLPaaadaah aaqabeaajugWaiaaicdacaGGUaGaaGymaiaaisdaaaaaaa@7BC5@

(for 2× 10 3 < Re s = G s D e μ f <1× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdacq GHxdaTcaaIXaGaaGimamaaCaaabeqaaKqzadGaaG4maaaajuaGcqGH 8aapciGGsbGaaiyzamaaBaaabaqcLbmacaWGZbaajuaGbeaacqGH9a qpdaWcaaqaaiaadEeadaWgaaqaaKqzadGaam4CaaqcfayabaGaamir amaaBaaabaqcLbmacaWGLbaajuaGbeaaaeaacqaH8oqBdaWgaaqaaK qzadGaamOzaaqcfayabaaaaiabgYda8iaaigdacqGHxdaTcaaIXaGa aGimamaaCaaabeqaaKqzadGaaGOnaaaaaaa@5717@ )................ (30)

For no circulation case it is assumed that:

h o D e λ f =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamiAamaaBaaabaqcLbmacaWGVbaajuaGbeaacaWGebWaaSbaaeaa jugWaiaadwgaaKqbagqaaaqaaiabeU7aSnaaBaaabaqcLbmacaWGMb aajuaGbeaaaaGaeyypa0JaaGymaaaa@4414@ ................. (31)

In the above correlation μ w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeY7aTn aaBaaabaqcLbmacaWG3baajuaGbeaaaaa@3B09@ is the viscosity of external fluid calculated at wall temperature and μ f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeY7aTn aaBaaabaqcLbmacaWGMbaajuaGbeaaaaa@3AF8@ is the viscosity of external fluid calculated at mean fluid temperature.

Shell side pressure drop calculation: The pressure drop on the shell side is calculated by the following expression:25

Δ P s = f G s 2 ( N b +1) D s 2 ρ f D e ϕ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadcfadaWgaaqaaKqzadGaam4CaaqcfayabaGaeyypa0ZaaSaaaeaa caWGMbGaam4ramaaDaaabaqcLbmacaWGZbaajuaGbaqcLbmacaaIYa aaaKqbakaacIcacaWGobWaaSbaaeaajugWaiaadkgaaKqbagqaaiab gUcaRiaaigdacaGGPaGaamiramaaBaaabaqcLbmacaWGZbaajuaGbe aaaeaacaaIYaGaeqyWdi3aaSbaaeaajugWaiaadAgaaKqbagqaaiaa dseadaWgaaqaaKqzadGaamyzaaqcfayabaGaeqy1dy2aaSbaaeaaju gWaiaadohaaKqbagqaaaaaaaa@5B41@ .......................... (32)

Where: ϕ s = ( μ f / μ w ) 0.14 , N b = ( L t /B )1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew9aMn aaBaaabaqcLbmacaWGZbaajuaGbeaacqGH9aqpdaqadaqaamaalyaa baGaeqiVd02aaSbaaeaacaWGMbaabeaaaeaacqaH8oqBdaWgaaqaaK qzadGaam4DaaqcfayabaaaaaGaayjkaiaawMcaamaaCaaabeqaaKqz adGaaGimaiaac6cacaaIXaGaaGinaaaajuaGcaGGSaGaaGPaVlaad6 eadaWgaaqaaKqzadGaamOyaaqcfayabaGaeyypa0ZaaSGbaeaacaGG OaGaamitamaaBaaabaGaamiDaaqabaaabaGaamOqaaaacaGGPaqcLb macqGHsislcaaIXaaaaa@579F@ ................... (33)

(Nb+1) is the number of times the shell fluid passes the tube bundle and Nb is the number of baffles.

The friction factor f is calculated from

f=exp( 0.5760.19ln( Re s ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgacq GH9aqpciGGLbGaaiiEaiaacchadaqadaqaaiaaicdacaGGUaGaaGyn aiaaiEdacaaI2aGaeyOeI0IaaGimaiaac6cacaaIXaGaaGyoaiGacY gacaGGUbGaaGPaVlaacIcaciGGsbGaaiyzamaaBaaabaqcLbmacaWG ZbaajuaGbeaacaGGPaaacaGLOaGaayzkaaGaaGPaVdaa@4F3B@

for 400< Re s = G s D e μ f 1× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaisdaca aIWaGaaGimaiabgYda8iGackfacaGGLbWaaSbaaeaajugWaiaadoha aKqbagqaaiabg2da9maalaaabaGaam4ramaaBaaabaqcLbmacaWGZb aajuaGbeaacaWGebWaaSbaaeaajugWaiaadwgaaKqbagqaaaqaaiab eY7aTnaaBaaabaqcLbmacaWGMbaajuaGbeaaaaGaeyizImQaaGymai abgEna0kaaigdacaaIWaWaaWbaaeqabaqcLbmacaaI2aaaaaaa@5317@ .................. (34)

The energy input to the pump required for the circulation of water for a complete cycle is calculated using following formula:

W p = o t cyc m ˙ f Δ p s ρ f dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEfada WgaaqaaKqzadGaamiCaaqcfayabaGaaGPaVlabg2da9maapehabaWa aSaaaeaaceWGTbGbaiaadaWgaaqaaKqzadGaamOzaaqcfayabaGaeu iLdqKaamiCamaaBaaabaqcLbmacaWGZbaajuaGbeaaaeaacqaHbpGC daWgaaqaaKqzadGaamOzaaqcfayabaaaaaqaaiaad+gaaeaajugWai aadshalmaaBaaajuaGbaqcLbmacaWGJbGaamyEaiaadogaaKqbagqa aaGaey4kIipacaaMc8Uaamizaiaadshaaaa@5861@ ............................. (35)

To simplify the calculation it is assumed that the power input to the water by the pump got dissipated by friction and an equivalent amount of heat i.e Q ˙ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgfaga GaamaaBaaabaqcLbmacaWGWbaajuaGbeaaaaa@3A2B@ is lost to the surrounding. So the net energy input to the system is zero. Based on this assumption it can be written that

Q ˙ p = W ˙ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgfaga GaamaaBaaabaqcLbmacaWGWbaajuaGbeaacaaMc8Uaeyypa0Jabm4v ayaacaWaaSbaaeaajugWaiaadchaaKqbagqaaaaa@4073@ ......................... (36)

All the thermo physical and transport properties of the external fluid (water) are taken from NIST Standard Reference Database 23, Version 9.0.

The performance of the ANG system is indicated in terms of the delivery capacity and effective delivery capacity, given by:

Q d = 1.5×(( q avg, i,dis q avg, f,dis ) m s + m g,i,dis m g,f,dis ) V t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyuamaaBaaabaqcLbmacaWGKbaajuaGbeaacqGH9aqpdaWc aaWdaeaacaaIXaGaaiOlaiaaiwdacqGHxdaTcaGGOaGaaiikaiaadg hadaWgaaqaaKqzadGaamyyaiaadAhacaWGNbGaaiilaaqcfayabaWa aSbaaeaacaWGPbGaaiilaiaadsgacaWGPbGaam4CaaqabaGaeyOeI0 IaamyCamaaBaaabaqcLbmacaWGHbGaamODaiaadEgacaGGSaaajuaG beaadaWgaaqaaiaadAgacaGGSaGaamizaiaadMgacaWGZbaabeaaca GGPaGaamyBamaaBaaabaqcLbmacaWGZbaajuaGbeaacqGHRaWkcaWG TbWaaSbaaeaajugWaiaadEgacaGGSaGaamyAaiaacYcacaWGKbGaam yAaiaadohaaKqbagqaaiabgkHiTiaad2gadaWgaaqaaKqzadGaam4z aiaacYcacaWGMbGaaiilaiaadsgacaWGPbGaam4CaaqcfayabaGaai ykaaqaaiaadAfadaWgaaqaaiaadshaaeqaaaaaaaa@722D@ ............................. (37)

Q d,eff = Q d V t V shell MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyuamaaBaaabaqcLbmacaWGKbGaaiilaiaadwgacaWGMbGa amOzaaqcfayabaGaeyypa0ZaaSaaa8aabaWdbiaadgfadaWgaaqaaK qzadGaamizaaqcfayabaGaaGPaVlaadAfadaWgaaqaaKqzadGaamiD aaqcfayabaaapaqaaiaadAfadaWgaaqaaKqzadGaam4CaiaadIgaca WGLbGaamiBaiaadYgaaKqbagqaaaaaaaa@4F2A@ .......................... (38)

Where Vt is the total tube volume and qavg,i,dis is the average concentration at the start of discharge and qavg,f,dis is the average concentration at the end of discharge. Similarly mg,i,dis and mg,f,dis are the gas mass in the gas space at the beginning and end of desorption respectively. The constant ‘1.5’ is the specific volume of the gas calculated at standard temperature and pressure (STP) (T = 298 K, P = 101.325 kPa). Qd,eff is the effective delivery capacity based on the shell volume.

Second law analysis for the ANG bed for complete charge discharge cycle

The net entropy generated during both charging and discharging of an ANG bed is calculated using entropy balance equation.

d S b dt + d S t dt + d S f dt = S ˙ g,in S ˙ g,out + S ˙ gen,net Q ˙ p T amb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaiaadofadaWgaaqaaKqzadGaamOyaaqcfayabaaabaGaamiz aiaadshaaaGaey4kaSYaaSaaaeaacaWGKbGaam4uamaaBaaabaqcLb macaWG0baajuaGbeaaaeaacaWGKbGaamiDaaaacqGHRaWkdaWcaaqa aiaadsgacaWGtbWaaSbaaeaajugWaiaadAgaaKqbagqaaaqaaiaads gacaWG0baaaiabg2da9iqadofagaGaamaaBaaabaqcLbmacaWGNbGa aiilaiaadMgacaWGUbaajuaGbeaacqGHsislceWGtbGbaiaadaWgaa qaaKqzadGaam4zaiaacYcacaWGVbGaamyDaiaadshaaKqbagqaaiab gUcaRiqadofagaGaamaaBaaabaqcLbmacaWGNbGaamyzaiaad6gaca GGSaGaamOBaiaadwgacaWG0baajuaGbeaacqGHsisldaWcaaqaaiqa dgfagaGaamaaBaaabaqcLbmacaWGWbaajuaGbeaaaeaacaWGubWaaS baaeaajugWaiaadggacaWGTbGaamOyaaqcfayabaaaaaaa@6F3A@ ............................ (39)

0 t cycle S ˙ gen,net dt = 0 t cycle d S b dt dt + 0 t cycle d S t dt dt + 0 t cycle d S f dt dt + t ch t f S ˙ g,out dt 0 t ch S ˙ g,in dt + 0 t cycle Q ˙ p T amb dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapehaba Gabm4uayaacaWaaSbaaeaajugWaiaadEgacaWGLbGaamOBaiaacYca caWGUbGaamyzaiaadshaaKqbagqaaiaadsgacaWG0baabaqcLbmaca aIWaaajuaGbaqcLbmacaWG0bWcdaWgaaqcfayaaKqzadGaam4yaiaa dMhacaWGJbGaamiBaiaadwgaaKqbagqaaaGaey4kIipacqGH9aqpda WdXbqaamaalaaabaGaamizaiaadofadaWgaaqaaKqzadGaamOyaaqc fayabaaabaGaamizaiaadshaaaGaamizaiaadshaaeaajugWaiaaic daaKqbagaajugWaiaadshalmaaBaaajuaGbaqcLbmacaWGJbGaamyE aiaadogacaWGSbGaamyzaaqcfayabaaacqGHRiI8aiabgUcaRmaape habaWaaSaaaeaacaWGKbGaam4uamaaBaaabaqcLbmacaWG0baajuaG beaaaeaacaWGKbGaamiDaaaacaWGKbGaamiDaaqaaKqzadGaaGimaa qcfayaaKqzadGaamiDaSWaaSbaaKqbagaajugWaiaadogacaWG5bGa am4yaiaadYgacaWGLbaajuaGbeaaaiabgUIiYdGaey4kaSYaa8qCae aadaWcaaqaaiaadsgacaWGtbWaaSbaaeaajugWaiaadAgaaKqbagqa aaqaaiaadsgacaWG0baaaiaadsgacaWG0baabaqcLbmacaaIWaaaju aGbaqcLbmacaWG0bWcdaWgaaqcfayaaKqzadGaam4yaiaadMhacaWG JbGaamiBaiaadwgaaKqbagqaaaGaey4kIipacqGHRaWkdaWdXbqaai qadofagaGaamaaBaaabaqcLbmacaWGNbGaaiilaiaad+gacaWG1bGa amiDaaqcfayabaGaamizaiaadshaaeaajugWaiaadshalmaaBaaaju aGbaqcLbmacaWGJbGaamiAaaqcfayabaaabaqcLbmacaWG0bWcdaWg aaqcfayaaKqzadGaamOzaaqcfayabaaacqGHRiI8aiabgkHiTmaape habaGabm4uayaacaWaaSbaaeaajugWaiaadEgacaGGSaGaamyAaiaa d6gaaKqbagqaaiaadsgacaWG0baabaqcLbmacaaIWaaajuaGbaqcLb macaWG0bWcdaWgaaqcfayaaKqzadGaam4yaiaadIgaaKqbagqaaaGa ey4kIipacqGHRaWkdaWdXbqaamaalaaabaGabmyuayaacaWaaSbaae aajugWaiaadchaaKqbagqaaaqaaiaadsfadaWgaaqaaKqzadGaamyy aiaad2gacaWGIbaajuaGbeaaaaGaamizaiaadshaaeaajugWaiaaic daaKqbagaajugWaiaadshalmaaBaaajuaGbaqcLbmacaWGJbGaamyE aiaadogacaWGSbGaamyzaaqcfayabaaacqGHRiI8aaaa@DC21@ ................. (40)

S gen,net =Δ S b +Δ S t +Δ S f + S gas,out S gas,in + Q ˙ p T amb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada WgaaqaaKqzadGaam4zaiaadwgacaWGUbGaaiilaiaad6gacaWGLbGa amiDaaqcfayabaGaeyypa0JaeuiLdqKaam4uamaaBaaabaqcLbmaca WGIbaajuaGbeaacqGHRaWkcqqHuoarcaWGtbWaaSbaaeaajugWaiaa dshaaKqbagqaaiabgUcaRiabfs5aejaadofadaWgaaqaaKqzadGaam OzaaqcfayabaGaey4kaSIaam4uamaaBaaabaqcLbmacaWGNbGaamyy aiaadohacaGGSaGaam4BaiaadwhacaWG0baajuaGbeaacqGHsislca WGtbWaaSbaaeaajugWaiaadEgacaWGHbGaam4CaiaacYcacaWGPbGa amOBaaqcfayabaGaey4kaSYaaSaaaeaaceWGrbGbaiaadaWgaaqaaK qzadGaamiCaaqcfayabaaabaGaamivamaaBaaabaqcLbmacaWGHbGa amyBaiaadkgaaKqbagqaaaaaaaa@6E70@ ........................... (41)

The entropy change of the adsorbent bed comprising of different parts can be expressed as:

Δ S b =Δ S s +Δ S gr +Δ S g +Δ S a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadofadaWgaaqaaKqzadGaamOyaaqcfayabaGaeyypa0JaeuiLdqKa am4uamaaBaaabaqcLbmacaWGZbaajuaGbeaacqGHRaWkcqqHuoarca WGtbWaaSbaaeaajugWaiaadEgacaWGYbaajuaGbeaacqGHRaWkcqqH uoarcaWGtbWaaSbaaeaajugWaiaadEgaaKqbagqaaiabgUcaRiabfs 5aejaadofadaWgaaqaaKqzadGaamyyaaqcfayabaaaaa@5441@ ....................... (42)

The change in entropy of the adsorbent (activated carbon) for a complete but stable cycle is expressed as:

Δ S s = m s,t C s ln( T avg,f T avg,i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadofadaWgaaqaaKqzadGaam4CaaqcfayabaGaeyypa0JaamyBamaa BaaabaqcLbmacaWGZbGaaiilaiaadshaaKqbagqaaiaadoeadaWgaa qaaKqzadGaam4CaaqcfayabaGaciiBaiaac6gadaqadaqaamaalaaa baGaamivamaaBaaabaqcLbmacaWGHbGaamODaiaadEgacaGGSaGaam OzaaqcfayabaaabaGaamivamaaBaaabaqcLbmacaWGHbGaamODaiaa dEgacaGGSaGaamyAaaqcfayabaaaaaGaayjkaiaawMcaaaaa@575C@ .......................... (43)

Similarly the entropy change of the enhancement material (graphite), methane in gaseous as well as in adsorbed form are expressed as given in equations 44, 45 and 46 respectively.

Δ S gr = m s,t y C gr ln( T avg,f T avg,i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadofadaWgaaqaaKqzadGaam4zaiaadkhaaKqbagqaaiabg2da9iaa d2gadaWgaaqaaKqzadGaam4CaiaacYcacaWG0baajuaGbeaacaWG5b Gaam4qamaaBaaabaqcLbmacaWGNbGaamOCaaqcfayabaGaciiBaiaa c6gadaqadaqaamaalaaabaGaamivamaaBaaabaqcLbmacaWGHbGaam ODaiaadEgacaGGSaGaamOzaaqcfayabaaabaGaamivamaaBaaabaqc LbmacaWGHbGaamODaiaadEgacaGGSaGaamyAaaqcfayabaaaaaGaay jkaiaawMcaaaaa@5A30@ ................... (44)

Δ S g = m g,f s g ( P f , T avg,f ) m g,i s g ( P i , T avg,i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadofadaWgaaqaaKqzadGaam4zaaqcfayabaGaeyypa0JaamyBamaa BaaabaqcLbmacaWGNbGaaiilaiaadAgaaKqbagqaaiaadohadaWgaa qaaKqzadGaam4zaaqcfayabaGaaiikaiaadcfadaWgaaqaaKqzadGa amOzaaqcfayabaGaaiilaiaadsfadaWgaaqaaKqzadGaamyyaiaadA hacaWGNbGaaiilaiaadAgaaKqbagqaaiaacMcacqGHsislcaWGTbWa aSbaaeaajugWaiaadEgacaGGSaGaamyAaaqcfayabaGaam4CamaaBa aabaqcLbmacaWGNbaajuaGbeaacaGGOaGaamiuamaaBaaabaqcLbma caWGPbaajuaGbeaacaGGSaGaamivamaaBaaabaqcLbmacaWGHbGaam ODaiaadEgacaGGSaGaamyAaaqcfayabaGaaiykaaaa@6933@ ...................... (45)

Δ S a = m s,t q i s a,i m s,t q f s a,f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadofadaWgaaqaaKqzadGaamyyaaqcfayabaGaeyypa0JaamyBamaa BaaabaqcLbmacaWGZbGaaiilaiaadshaaKqbagqaaiaadghadaWgaa qaaKqzadGaamyAaaqcfayabaGaam4CamaaBaaabaqcLbmacaWGHbGa aiilaiaadMgaaKqbagqaaiabgkHiTiaad2gadaWgaaqaaKqzadGaam 4CaiaacYcacaWG0baajuaGbeaacaWGXbWaaSbaaeaajugWaiaadAga aKqbagqaaiaadohadaWgaaqaaKqzadGaamyyaiaacYcacaWGMbaaju aGbeaaaaa@5A7C@ ......................... (46)

s a,i =s( T avg,i , P i , q eq,i )and s a,f =s( T avg,f , P f , q eq,f ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadohada WgaaqaaKqzadGaamyyaiaacYcacaWGPbaajuaGbeaacqGH9aqpcaWG ZbGaaiikaiaadsfadaWgaaqaaKqzadGaamyyaiaadAhacaWGNbGaai ilaiaadMgaaKqbagqaaiaacYcacaWGqbWaaSbaaeaajugWaiaadMga aKqbagqaaiaacYcacaWGXbWaaSbaaeaajugWaiaadwgacaWGXbGaai ilaiaadMgaaKqbagqaaiaacMcacaaMc8UaaGPaVlaadggacaWGUbGa amizaiaaygW7caaMb8UaaGPaVlaaykW7caaMc8UaaGPaVlaadohada WgaaqaaKqzadGaamyyaiaacYcacaWGMbaajuaGbeaacqGH9aqpcaWG ZbGaaiikaiaadsfadaWgaaqaaKqzadGaamyyaiaadAhacaWGNbGaai ilaiaadAgaaKqbagqaaiaacYcacaWGqbWaaSbaaeaajugWaiaadAga aKqbagqaaiaacYcacaWGXbWaaSbaaeaajugWaiaadwgacaWGXbGaai ilaiaadAgaaKqbagqaaiaacMcaaaa@7BCA@ .............................. (47)

The specific entropy of the adsorbed phase can be expressed as:18

s a (T,P, q eq )= T o T C p,a T dT P o P α v a dP 0 q eq q v a { αP n ln( P sat P )/ ln( W o q v a ) } dq MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadohada WgaaqaaKqzadGaamyyaaqcfayabaGaaGPaVlaacIcacaWGubGaaiil aiaadcfacaGGSaGaamyCamaaBaaabaGaamyzaiaadghaaeqaaiaacM cacqGH9aqpdaWdXbqaamaalaaabaGaam4qamaaBaaabaqcLbmacaWG WbGaaiilaiaadggaaKqbagqaaaqaaiaadsfaaaaabaqcLbmacaWGub WcdaWgaaqcfayaaKqzadGaam4BaaqcfayabaaabaqcLbmacaWGubaa juaGcqGHRiI8aiaaykW7caWGKbGaamivaiabgkHiTmaapehabaGaeq ySdeMaamODamaaBaaabaqcLbmacaWGHbaajuaGbeaacaWGKbGaamiu aiabgkHiTmaapehabaGaamyCaiaadAhadaWgaaqaaKqzadGaamyyaa qcfayabaWaaiWaaeaadaWcaaqaaiabeg7aHjaadcfaaeaacaWGUbaa amaalyaabaGaciiBaiaac6gacaaMc8+aaeWaaeaadaWcaaqaaiaadc fadaWgaaqaaKqzadGaam4CaiaadggacaWG0baajuaGbeaaaeaacaWG qbaaaaGaayjkaiaawMcaaaqaaiGacYgacaGGUbWaaeWaaeaadaWcaa qaaiaadEfadaWgaaqaaKqzadGaam4BaaqcfayabaaabaGaamyCaKqz adGaamODaSWaaSbaaKqbagaajugWaiaadggaaKqbagqaaaaaaiaawI cacaGLPaaaaaaacaGL7bGaayzFaaaabaqcLbmacaaIWaaajuaGbaGa amyCamaaBaaabaqcLbmacaWGLbGaamyCaaqcfayabaaacqGHRiI8aa qaaiaadcfadaWgaaqaaKqzadGaam4BaaqcfayabaaabaqcLbmacaWG qbaajuaGcqGHRiI8aiaaykW7caWGKbGaamyCaaaa@99BF@ ............... (48)

In the above equation the specific heat of the adsorbed phase, CP,a is replaced by:18

C P,a = C P,f + α 2 (1n) n 2 ET M ln ( W o q v a ) 12n n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqaaKqzadGaamiuaiaacYcacaWGHbaajuaGbeaacqGH9aqpcaWG dbWaaSbaaeaajugWaiaadcfacaGGSaGaamOzaaqcfayabaGaey4kaS YaaSaaaeaacqaHXoqydaahaaqabeaajugWaiaaikdaaaqcfaOaaiik aiaaigdacqGHsislcaWGUbGaaiykaaqaaiaad6gadaahaaqabeaaju gWaiaaikdaaaaaaKqbaoaalaaabaGaamyraiaadsfaaeaacaWGnbaa aiaaykW7ciGGSbGaaiOBaiaaykW7daqadaqaamaalaaabaGaam4vam aaBaaabaqcLbmacaWGVbaajuaGbeaaaeaacaWGXbGaamODamaaBaaa baqcLbmacaWGHbaajuaGbeaaaaaacaGLOaGaayzkaaWaaWbaaeqaba WaaSaaaeaacaaIXaGaeyOeI0IaaGOmaiaad6gaaeaacaWGUbaaaaaa aaa@6446@ For (T < Tcr)............... (49)

for (T C P,a = C P,g (P,T)+ α 2 (1n) n 2 ET M ln ( W o q v a ) 12n n 2 R g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqaaKqzadGaamiuaiaacYcacaWGHbaajuaGbeaacqGH9aqpcaWG dbWaaSbaaeaajugWaiaadcfacaGGSaGaam4zaaqcfayabaGaaiikai aadcfacaGGSaGaamivaiaacMcacqGHRaWkdaWcaaqaaiabeg7aHnaa CaaabeqaaKqzadGaaGOmaaaajuaGcaGGOaGaaGymaiabgkHiTiaad6 gacaGGPaaabaGaamOBamaaCaaabeqaaKqzadGaaGOmaaaaaaqcfa4a aSaaaeaacaWGfbGaamivaaqaaiaad2eaaaGaaGPaVlGacYgacaGGUb WaaeWaaeaadaWcaaqaaiaadEfadaWgaaqaaKqzadGaam4Baaqcfaya baaabaGaamyCaiaadAhadaWgaaqaaKqzadGaamyyaaqcfayabaaaaa GaayjkaiaawMcaamaaCaaabeqaamaalaaabaqcLbmacaaIXaGaeyOe I0IaaGOmaiaad6gaaKqbagaajugWaiaad6gaaaaaaKqbakabgkHiTi aaikdacaWGsbWaaSbaaeaacaWGNbaabeaaaaa@6D78@ Tcr).................. (50)

For the integration in equation 45, To is taken same as the normal boiling point of methane (111 K) and Po is the normal atmospheric pressure 101.325 kPa. At this reference state the entropy of the adsorbed phase as well as the gaseous phase are assumed to be zero.

The change in entropy of the reactor wall as well as shell side fluid can be expressed as:

Δ S t = m t C t ln T t,f T t,i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadofadaWgaaqaaKqzadGaamiDaaqcfayabaGaeyypa0JaamyBamaa BaaabaqcLbmacaWG0baajuaGbeaacaWGdbWaaSbaaeaajugWaiaads haaKqbagqaaiGacYgacaGGUbWaaSaaaeaacaWGubWaaSbaaeaajugW aiaadshacaGGSaGaamOzaaqcfayabaaabaGaamivamaaBaaabaqcLb macaWG0bGaaiilaiaadMgaaKqbagqaaaaaaaa@5085@ ........................ (51)

Δ S f = m f C f ln T f,f T f,i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadofadaWgaaqaaKqzadGaamOzaaqcfayabaGaeyypa0JaamyBamaa BaaabaqcLbmacaWGMbaajuaGbeaacaWGdbWaaSbaaeaajugWaiaadA gaaKqbagqaaiGacYgacaGGUbWaaSaaaeaacaWGubWaaSbaaeaajugW aiaadAgacaGGSaGaamOzaaqcfayabaaabaGaamivamaaBaaabaqcLb macaWGMbGaaiilaiaadMgaaKqbagqaaaaaaaa@503F@ ............ (52)

Entropy in and out during the gas exchange process are evaluated using the following expressions:

S g,in = 0 t ch m ˙ g,in s g,in dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada WgaaqaaKqzadGaam4zaiaacYcacaWGPbGaamOBaaqcfayabaGaeyyp a0Zaa8qCaeaaceWGTbGbaiaadaWgaaqaaKqzadGaam4zaiaacYcaca WGPbGaamOBaaqcfayabaGaam4CamaaBaaabaqcLbmacaWGNbGaaiil aiaadMgacaWGUbaajuaGbeaacaWGKbGaamiDaaqaaKqzadGaaGimaa qcfayaaKqzadGaamiDaSWaaSbaaKqbagaajugWaiaadogacaWGObaa juaGbeaaaiabgUIiYdaaaa@5773@ ;Where: s g,in = s g ( P ch , T i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadohada WgaaqaaKqzadGaam4zaiaacYcacaWGPbGaamOBaaqcfayabaGaeyyp a0JaaGPaVlaadohadaWgaaqaaKqzadGaam4zaaqcfayabaGaaGPaVl aacIcacaWGqbWaaSbaaeaajugWaiaadogacaWGObaajuaGbeaacaGG SaGaamivamaaBaaabaqcLbmacaWGPbaajuaGbeaacaGGPaaaaa@4EDD@ ..................... (53)

S g,out = t ch t f m ˙ g,out s g,out dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofada WgaaqaaKqzadGaam4zaiaacYcacaWGVbGaamyDaiaadshaaKqbagqa aiabg2da9maapehabaGabmyBayaacaWaaSbaaeaajugWaiaadEgaca GGSaGaam4BaiaadwhacaWG0baajuaGbeaacaWGZbWaaSbaaeaajugW aiaadEgacaGGSaGaam4BaiaadwhacaWG0baajuaGbeaacaWGKbGaam iDaaqaaKqzadGaamiDaSWaaSbaaKqbagaajugWaiaadogacaWGObaa juaGbeaaaeaajugWaiaadshalmaaBaaajuaGbaqcLbmacaWGMbaaju aGbeaaaiabgUIiYdaaaa@5D98@ where: s g,out = s g ( P dis , T avg ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadohada WgaaqaaKqzadGaam4zaiaacYcacaWGVbGaamyDaiaadshaaKqbagqa aiabg2da9iaadohadaWgaaqaaKqzadGaam4zaaqcfayabaGaaiikai aadcfadaWgaaqaaKqzadGaamizaiaadMgacaWGZbaajuaGbeaacaGG SaGaamivamaaBaaabaqcLbmacaWGHbGaamODaiaadEgaaKqbagqaai aacMcaaaa@4FA6@ ........................... (54)

m ˙ g,in = V g,t d ρ g dt + m s,t dq dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqad2gaga GaamaaBaaabaqcLbmacaWGNbGaaiilaiaadMgacaWGUbaajuaGbeaa cqGH9aqpcaWGwbWaaSbaaeaajugWaiaadEgacaGGSaGaamiDaaqcfa yabaWaaSaaaeaacaWGKbGaeqyWdi3aaSbaaeaajugWaiaadEgaaKqb agqaaaqaaiaadsgacaWG0baaaiabgUcaRiaad2gadaWgaaqaaKqzad Gaam4CaiaacYcacaWG0baajuaGbeaadaWcaaqaaiaadsgacaWGXbaa baGaamizaiaadshaaaaaaa@54A9@ ......................... (55)

m ˙ g,out = m s,t dq dt V g,t d ρ g dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqad2gaga GaamaaBaaabaqcLbmacaWGNbGaaiilaiaad+gacaWG1bGaamiDaaqc fayabaGaeyypa0JaeyOeI0IaamyBamaaBaaabaqcLbmacaWGZbGaai ilaiaadshaaKqbagqaamaalaaabaGaamizaiaadghaaeaacaWGKbGa amiDaaaacqGHsislcaWGwbWaaSbaaeaajugWaiaadEgacaGGSaGaam iDaaqcfayabaWaaSaaaeaacaWGKbGaeqyWdi3aaSbaaeaajugWaiaa dEgaaKqbagqaaaqaaiaadsgacaWG0baaaaaa@56A7@ ........................ (56)

Results and discussion

The results are obtained for the input values given Table 1.9,25,26 Due to lack of availability of kinetic data of methane and Maxsorb III pair for linear driving force (LDF) model, the kinetic data for the present study are obtained by carrying out non-linear regression analysis using the experimental adsorption uptake data of Rahman.26 The governing differential equations for mass and energy balance of the adsorbent bed have been solved by using a fully explicit finite difference method (FTCS - Forward in Time and Central in Space scheme).The grid size and time step are fixed based on the stability criteria and grid independence test. If not mentioned the tube length, pitch ratio are assumed to be fixed at 2.5 m and1.25 respectively.

Adsorbent

MAXSORB III

Mass of the adsorbent (ms,t), kg

250

Density of the solid adsorbent ( ρ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGZbaabeaaaaa@38CF@ ), kg/m3

2200

Specific heat capacity of the adsorbent (Cs), J/(kg K)

1375

Thermal conductivity of the solid adsorbent ( λ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGZbaabeaaaaa@38C3@ ), W/(m K)

0.243

Total porosity ( ε t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWG0baabeaaaaa@38B7@ )

0.8

Charging pressure (Pch), MPa

3.5

Discharge pressure (Pdis), MPa

0.1

The limiting volumetric adsorbate uptake (Wo), m3/ kg

1.618×10-3

Characteristic energy (E), J /mol

5257.5

The adsorbent’s surface-structural heterogeneity factor (n)

1.33

Constant (Kso), s-1

11×10-2

Energy of activation (Ea), J/mol

6000

Isosteric heat of adsorption ΔH, kJ/k mol

16000

Inner radius of adsorbent bed (ri), m

0.003

Outer radius of the adsorbent bed (ro), m

0.01301

Outer radius of the tube (rt), m

0.01428

Tube material

Copper

Tube layout constant, (CL)

1

Tube count calculation constant, (CTP)

0.93

Length of the tube, (Lt), m

2-3

Enhancement material

graphite

External cooling/heating fluid

water

Circulation rate m ˙ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2gagaGaam aaBaaaleaacaWGMbaabeaaaaa@37FD@  , kg/sec

0 -100

Ambient temperature (Tamb), K

308

Initial temperature of water K

288-308

Contact conductance between bed and the wall (hin), W/ (m2 K)

1000

Initial bed temperature (Ti), K

308

Percent mass of graphite (y)

10%

Thermal conductivity of graphite ( λ gr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGNbGaamOCaaqabaaaaa@39AE@ ), W/m K

388

Specific heat of graphite (Cgr), J/kg K

1423

Density of graphite ( ρ gr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGNbGaamOCaaqabaaaaa@39BA@ ), kg/m3

2260

Table 1 Input for the simulation

Effects of water circulation rate

Figure 4 depicts the variation of the charge-discharge time as well as net entropy generated for a stable and complete cycle with circulation rate of the fluid present inside the shell. One case was also studied for no circulation of the fluid assuming Nusselt number to be one. From the figure it is evident that from no flow to circulation rate upto1 kg/s there is a sharp drop in charge as well as discharge time. However, increase in circulation rate beyond this does not improve the performance significantly, but increases the net entropy generation.

Figure 4 Variation of Charge/discharge time and net entropy generation with circulation rate of the fluid.

Figure 5 shows the variation of the pumping work with circulation rate. From the figure it is clear that from 10 kg/s to 100 kg/s there is a sharp rise in the energy input to the pump but up to 10 kg /s circulation rate the pumping work is almost negligible. So looking forward to the above explanation the circulation rate is kept fixed at 10 kg/s for stable and optimum performance.

Figure 5 Variation of energy input to the pump with circulation rate.

Figure 6 shows the variation of the maximum and minimum bed temperature with circulation rate of the shell side fluid. The figure clearly shows that maximum and minimum bed temperatures do not vary much for flow rate beyond 10 kg/s. It is clearly visible in the figure that the maximum temperature of the bed is much below the boiling point of the water and minimum temperature is above the freezing point. So water can be safely used as the shell side fluid.

Figure 6 Effect of circulation rate on maximum and minimum bed temperatures for a complete cycle.

Figures 7, Figures 8 show the temporal variation of the average bed temperature, average bed concentration and fluid temperature for multiple stable cycles for circulation rate of 10 kg/s and no circulation case respectively. During charging the bed temperature rises initially due to its exothermic nature and low heat extraction rate. Towards the end of the charging process the bed temperature starts dropping due to lower heat generation rate compared to extraction rate as the bed gets almost saturated thereby reducing the adsorption rate. It is also seen that the fluid temperature continuously rises during charging because it takes heat from the adsorbent bed but the rate of rise reduces towards the later part of charging process. If we compare no flow with flow case the maximum temperature reached in no flow case is nearly 20 K more than that of flow case. Also the temperature drop towards the end of charging is more for no flow case compared to flow case due to higher temperature difference between the bed and fluid. In spite of higher temperature drop the bed temperature at start of discharge will be higher for the no flow case which favours the discharge process compared to that with flow case. Similarly during discharge process initially the bed temperature drops sharply due to endothermic desorption process but towards the end of desorption the rate of temperature fall reduces due to the same reason as explained earlier.

Figure 7 Temporal variation of bed temperature, concentration and fluid temperature for optimum circulation case.
Figure 8 Temporal variation of bed temperature, concentration and fluid temperature without circulation.

Effect of initial fluid temperature

Figures 9, Figures 10 shows the variation of both charge and discharge times as well as net entropy generation with initial temperature of the fluid for no circulation and circulation cases respectively. As the initial temperature of fluid increases the heat transfer from the bed to fluid decreases during charging due to lower potential for heat transfer there by increasing the average bed temperature and reducing adsorption rate. Due to decrease in the adsorption rate, the time for charging increases. On the other hand higher initial fluid temperature results in higher fluid temperature during discharge. As desorption is an endothermic process, higher fluid temperature improves the heat and mass transfer and thereby reduces the discharge time. So, a higher initial temperature of the fluid results in increase in charging time and reduction in discharge time with rise in the net entropy generated. The difference in the entropy generation is mainly due to difference in the temperature of the gas during charging and discharging for different initial fluid temperatures. From the figures it is clear that the effect of the initial fluid temperature is more severe on charging time compared to discharge time both for circulation and no circulation cases. However the effect is more pronounced in no circulation case. So it is found that the cycle time (charge discharge) decreases by 600 s for no circulation case for decrease in initial.

Figure 9 Effect of initial fluid temperature on charge/discharge time and net entropy generated for no circulation case.
Figure 10 Effect of initial fluid temperature on charge/discharge time and net entropy generated for optimum circulation case.

Fluid temperature from 308 to 300 K, but further decrease in fluid temperature to 288 K, decreases the cycle time by nearly 100 s only. So keeping this in mind the optimum initial temperature of the fluid can be fixed at 300 K.

Conclusion

A mathematical model is formulated to design and simulate a shell and tube type of reactor for large scale storage of NG without any external heating and cooling. The reactor behaves as an energy storing device and absorbs the energy during charging and gives up the same during discharge there by helps in accelerating charge and discharge process. Design and simulation are done for both charging at constant pressure of 35 bar and discharging at constant pressure of 1 bar. The study yields typical design dimensions of the reactor and also the designed reactor is simulated for various design and operating conditions. From this study it is found that for a 2.5 m long and 0.9 m shell diameter reactor with 460 tubes each of 2.5 m long, it is possible to accommodate 250 kg of adsorbent. More over with this design condition it is possible to store and discharge 54 kg of NG with charging/discharging time of 4 to 5 minutes with a circulation rate of 10 kg/s. For the given design the delivery capacity based on total tube volume and effective delivery capacity based on shell volume are found to be 104 V/V and 49 V/V respectively.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. X Wang, MJ Economides. Purposefully built underground natural gas storage. Journal of Natural Gas Science and Engineering. 2012;9:130–137.
  2. J Wegrzyn, M Gurevich. Adsorbent storage of natural gas. Applied Energy. 1996;55(2):71–83.
  3. JPB Mota. Recent advances in adsorption processes for environmental protection and security. Adsorption science and technology. 2008;177–192.
  4. S Biloe, V Goetz, S Mauran. Dynamic discharge and performance of a new adsorbent for natural gas storage. AIChE Journal. 2001;47(12):2819–2830.
  5. S Biloe, V Goetz, A Guillot. Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon. 2002;40:1295–1308.
  6. TL Cook, C Komodromos, DF Quinn, et al. Adsorbent storage for natural gas vehicles. Carbon material for advanced technologies. 1999;269–302.
  7. KJ Chang, O Talu. Behaviour and performance of adsorptive natural gas storage cylinders during discharge. Applied Thermal Engineering. 1996;16(5):359–374.
  8. KS Walton, MD Levan. Natural gas storage cycles: influence of non isothermal effects and heavy alkanes. Adsorption. 2006;12(3):227–235.
  9. KA Rahman, WS Loh, A Chakraborty, et al. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage. Applied Thermal Engineering. 2011;30:1–10.
  10. LL Vasiliev, LE Kanonchik, DA Mishkinis, et al. Adsorbed natural gas storage and transportation vessels. International Journal of Thermal Sciences. 2000;39:1047–1055.
  11. R Basumatary, P Dutta, M Prasad, et al. Thermalmodeling of activated carbon based adsorptive natural gas storage system. Carbon. 2005;43541–43549.
  12. JC Santos, F Marcondes, JM Gurgel. Performance analysis of a new tank configuration applied to the natural gas storage systems by adsorption. Applied Thermal Engineering. 2009;29:2365–2372.
  13. XD Yang, QR Zheng, AZ Gu, et al. Experimental studies of the performance of adsorbed natural gas storage system during discharge. Applied Thermal Engineering. 2005;25:591–600.
  14. PK Sahoo, M John, BL Newalkar, et al. Filling characteristics for an activated carbon based adsorbed natural gas storage system. Industrial & Engineering Chemistry research. 2011;50(23):13000–13011.
  15. M Prasad, BS Akkimardi, SC Rastogi, et al. Adsorption characteristics of the charcoal–nitrogen system at 79–320K and pressures to 5 MPa. Carbon. 1996;34(11):1401–1406.
  16. LA Sphaier, DS Jurumenha. Improved lumped–capacitance model for heat and mass transfer in adsorbed gas discharge operations. Energy. 2012;44:978–985.
  17. MJ Prakash, M Prasad, K Srinivasan. Modeling of thermal conductivity of charcoal–nitrogen adsorption beds. Carbon. 2000;38:907–913.
  18. KA Rahman, A Chakraborty, BB Saha, et al. On thermodynamics of methane + carbonaceous materials adsorption. International Journals of Heat and Mass Transfer. 2012;55:565–573.
  19. WS Loh, KA Rahman, A Chakraborty, et al. Improved isotherm data for adsorption of methane on activated carbons. Journals of Chemical Engineering Data. 2010;55(8):2840–2847.
  20. K Wannatong. Natural gas application in Thailand: locomotive and fishing boat. Gasex conference. 2006.
  21. MM Dubinin. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Review. 1960;60:1–70.
  22. S Ozawa, S Kusumi, Y Ogino. Physical Adsorption of Gases at High Pressure. Journal of Colloid and Interface Science. 1976;56(1):83–91.
  23. WS Loh, KA Rahman, A Chakraborty, et al. Improved isotherm data for adsorption of methane on activated carbons. Journals of Chemical Engineering Data. 2010;55:2840–2847.
  24. E Gleuckauf, JI Coates. Theory of chromatography; The influence of incomplete equilibrium on front boundary of chromatograms and effectiveness of separation. J Chem Soc. 1947;p.1315–1321.
  25. S Kakac, H Liu. Heat exchangers selection, rating, and thermal design. Second edition. USA: CRC press; 2002.
  26. Rahaman KA. Experimental and theoretical studies on adsorbed natural gas storage system using activated carbons. National University of Singapore, Singapore, PhD. Thesis. 2011.
Creative Commons Attribution License

© . This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.