Submit manuscript...
International Journal of
eISSN: 2576-4454

Hydrology

Research Article Volume 2 Issue 2

Hydrological data transposition by ratio approach for flood & rainfall frequency analyses for ungauged catchments

Ify L Nwaogazie,1 Itolima Ologhadien,2 Levi O Uba,3 Oghenefejiri Bovwe1

1Department of Civil & Environmental Engineering, University of Port Harcourt, Nigeria
2Department of Civil Engineering, Rivers State University, Nigeria
3Chattel Associates (Nigeria) Limited, Nigeria

Correspondence: Ify L Nwaogazie, Department of Civil & Environmental Engineering, University of Port Harcourt, Nigeria

Received: March 29, 2018 | Published: April 27, 2018

Citation: Nwaogazie IF, Ologhadien I, Uba LO, et al. Hydrological data transposition by ratio approach for flood & rainfall frequency analyses for ungauged catchments. Int J Hydro. 2018;2(2):243-251. DOI: 10.15406/ijh.2018.02.00076

Download PDF

Abstract

This study involves the application of ratio method of hydrological data transposition for flood and rainfall frequency analysis for ungauged catchments. For the flood transposition, a gauging station, River Niger at Onitsha about 166.9km to an ungauged station, Taylor creek, both in Niger Delta were selected. Onitsha station has been established since 1914 with historic discharge records. For the Taylor creek there was evidence of bank erosion that prompted the early study on bank protection design options, either revetment or vertical face retaining wall. The Design element would require flood frequency analysis for determination of flood events such as 10, 50 and 100 year flood flows. Through bathymetric survey and velocity measurements rating curves were established for Taylor creek; at various depths discharges for Taylor creek and River Niger at Onitsha were computed with corresponding ratios. The overall average ratio is 9:100, that is, 9 percent of River Niger is equivalent to flow in Taylor creek. This ratio permitted 30years of records at Onitsha station to be transposed to Taylor creek. Analogous to ratio approach on stream flows, rainfall intensity duration frequency (IDF) models in Port Harcourt were transposed to Peremabiri by ratio 1:1.2. Both rainfall stations are in Niger Delta, Nigeria.

Keywords: hydrological data transposition, flood, rainfall IDF models, river Niger, Taylor creek

Introduction

Transposition is a technique for relocating or transferring isohyetal pattern of storm precipitation within a region that is similar relative to terrain or environmental and meteorological (or climatological) features principal to the particular storm rainfall concerned. A review of pertinent literature shows that transposition has greatly increases the availability of data for evaluating rainfall potential for drainage. The factor which control limits to storm transposition are topography, storm isohyetal charts, weather maps, storm tracks and rainfalls of record for the type of storm under consideration and topographic charts.1 There are basically three steps in transposition; meteorological analysis, the determination of the transposition limits and the application of the appropriate adjustments for the change in storm location. The concept of storm transpostion has been applied in various hydrological studies. Foufoula-Georgious2 developed a probability storm transposition method which systematically uses storm and basin data to estimate extreme precipitation frequencies. The author viewed this as the first step in evaluating the extreme flood probabilities required to apply many risk-analysis methodologies. The method was applied to two hypothetical catchments in Iowa.

The resultant depth-exceedance probability curve was smooth, suggesting that extrapolating the curve to very rare events may be promising. Portela3 proposed the application of storm transposition to tackle the limitation of sufficient storm data for the development of a small hydropower sheme by getting hydrologic data from a gauge station with same meteorological characterisitc in Ireland. Also, in November 2004, the Alberta Transportation4 applied storm transposition concept in developing guidelines for extreme flood analysis which would solve the problem of apparent inconsistencies in estimates of Probable Maximum Flood and probability-base extreme floods employed in the design and evaluation of major hydraulic structure. England et al.5 worked on an integrated data-modeling of hydrologic hazard framework for physiclly-based extreme flood hazard estimation applying transposition technique. The study area for this work was the 12,000km2 Arkansas River watershed in Colorado. The study demonstrated that the size and location of extreme storms are critical factors in the analysis of basin-average rainfall frequency and flood peak distributions. The resultant runoff model was substantially improved by the availability and use of paleoflood nonexceedance data spanning the past 1000 years at critical watershed locations. Gan et al.6 investigated different forms of the regressional relationship between the concurrent monthly discharges of neigbouring catchments with the view to generalising th relationship for a region. This enables monthly streamflow data to be transposed from a gauged catchment to an ungauged catchment, provided the certain transfer coefficient can be estimated from the physical catchment and rainfall characteristics. This may be estimated in a number of ways for a pair of gauged – ungauged. However, errors in the individual transferred flows are high. The aim of this study is to apply a simple hydrological data transposition appraoch, a ratio method of finding the average ratios of peak flows between gauged and unguaged stations. For the unguage station, it is a matter of field measurements carried out at a period coincident with those of the gauged station. Both the guaged and ungauged stations are in the Niger Delta having similar terrain and meteological featurs. Apart from stream flows, is that of rainfall data for a gauged station which facilitated the development of rainfall-intensity-duration-frequency (IDF) models and a nearby gauging station having monthly rainfall totals and no durations recorded. This is the case of Port Harcourt and Peremabiri cities in Niger –Delta. In this case, rainfall IDF model transposition is possible by ratio method.

Materials and methods

Study area

The study area is within Niger Delta in Southern Nigeria bordering with Atlantic Ocean and it covers the River Niger gauging station at Onitsha, Taylor Creek at Koroama and Peremabiri town (Figure 1). Taylor Creek is a tributary of Nun River, also, a tributary of River Niger. The Onisha gauging station is located upstream of the highway bridge at Latitude 06º 10´ and Longitude 06º 45´ and on the left bank of the River Niger. The gauging station was established in 1914 and being operated by the Nigerian Inland Waterway Authority (NIWA). The highest of the gauging station is 25.41m above mean sea level. Taylor creek station is 166.9km from the Onitsha gauging station. The site lies between Longitude 06º 17´to 06º 21´E and Latitude 05º 01´ to 05º 15´N. The elevation is 8m above mean sea level (MSL).

Figure 1 Map showing the study area, locations of Onitsha gauging station, peremabiri and Taylor creek basin.

Data collection

Data collection consists of two aspects:

  1. Collection of hydrological data from hydrological year-books compiled by NIWA, lokoja Nigeria, for flood frequency analyses and development of rating curves,7
  2. Hydrographic and bathymetric surveys were also conducted in compliance with BS3680-3B:1997. Once a current meter has been selected and a cross-section for discharge measurement established, the cross-section was divided into vertical sections.

In general, no one vertical section included more than 10 percent of the total flow, thus, a minimum of ten verticals per cross-section were employed for mean discharge estimation. Velocity measurements were carried out using current meter located at 0.2, 0.6 and 0.8m depths below the water surface.

Data analyses

Cross-sectional velocity &discharge computations

The mean velocities in each vertical segment were calculated according to the formula:

V __ = 1 3 ( V 0.2 + V 0.6 + V 0. 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbmaO qaaKqzGeGaamOvaaWcbaaabaqcLbsacaGGFbGaai4xaaaacaaMc8Ua aGPaVlabg2da9iaaykW7caaMc8UaaGPaVNqbaoaaleaaleaajugibi aaigdaaSqaaKqzGeGaaG4maaaacaaMc8UaaGPaVNqbaoaabmaakeaa jugibiaadAfalmaaBaaabaqcLbmacaaIWaGaaiOlaiaaikdaaSqaba qcLbsacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8UaamOvaSWaaSba aeaajugWaiaaicdacaGGUaGaaGOnaaWcbeaajugibiaaykW7caaMc8 UaaGPaVlabgUcaRiaaykW7caaMc8UaamOvaSWaaSbaaeaajugWaiaa icdacaGGUaaaleqaamaaBaaabaqcLbmacaaI4aaaleqaaaGccaGLOa Gaayzkaaaaaa@6BDE@ (1)

Where: V0.2, V0.6 and V0.8 are point velocities calculated at 20%, 60% and 80% of the depth.

Data transposition for discharge or rainfall gauged to ungauged stations was facilitated by use of discharge or rainfall ratios between both stations. Temporary discharge or rainfall measurements are necessary for the ungauged stations to match the same period of time (rainfall period) for the gauged station in other to validate the computation of rainfall or discharge ratio. Two methods were adopted for discharge computation namely the mean section method and the mid-section method according to Equations 2 & 3, respectively.

Q= q i = V __ A= i=1 m ( v ¯ i1 + V __ i 2 ) *( d i1 + d i 2 )( b i b i1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb Gaeyypa0tcfa4aaabqaOqaaKqzGeGaamyCaKqbaoaaBaaabaqcLbma caWGPbaajuaGbeaajugibiaaykW7caaMc8UaaGPaVlabg2da9iaayk W7caaMc8UaaGPaVlaaykW7juaGdaaeabGcbaqcfa4aaCbiaOqaaKqz GeGaamOvaaWcbeqaaKqzGeGaai4xaiaac+faaaaaleqabeqcLbsacq GHris5aaWcbeqabKqzGeGaeyyeIuoacaWGbbGaaGPaVlaaykW7caaM c8UaaGPaVlabg2da9iaaykW7caaMc8UaaGPaVNqbaoaaqahakeaaju gibiaaykW7caaMc8Ecfa4aaeWaaOqaaKqbaoaalaaakeaaceWG2bGb aebalmaaBaaabaqcLbmacaWGPbGaaGPaVlabgkHiTiaaykW7caaIXa aaleqaaKqzGeGaaGPaVlabgUcaRiaaykW7caaMc8Ecfa4aaCbiaOqa aKqzGeGaamOvaaWcbeqaaKqzGeGaai4xaiaac+faaaWcdaWgbaqaaK qzadGaamyAaaWcbeaaaOqaaKqzGeGaaGOmaaaaaOGaayjkaiaawMca aaWcbaqcLbmacaWGPbGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVl aaigdaaSqaaKqzadGaamyBaaqcLbsacqGHris5aiaaykW7caaMc8Ua aiOkaiaaykW7juaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaK qbaoaaBaaaleaajugWaiaadMgacqGHsislcaaIXaqcLbsacaaMc8oa leqaaKqzGeGaaGPaVlabgUcaRiaaykW7caaMc8UaamizaSWaaSbaae aajugWaiaadMgaaSqabaaakeaajugibiaaikdaaaaakiaawIcacaGL PaaajugibiaaykW7caaMc8Ecfa4aaeWaaOqaaKqzGeGaamOyaSWaaS baaeaajugWaiaadMgaaSqabaqcLbsacaaMc8UaaGPaVlabgkHiTiaa ykW7caaMc8UaamOyaSWaaSbaaeaajugWaiaadMgacaaMb8UaaGPaVl abgkHiTiaaykW7caaIXaaaleqaaaGccaGLOaGaayzkaaaaaa@C360@ (2)

and

Q= q i = V __ A= i=1 m V __ idi ( b i b i1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb Gaeyypa0tcfa4aaabqaOqaaKqzGeGaamyCaKqbaoaaBaaaleaajugW aiaadMgaaSqabaqcLbsacaaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8 UaaGPaVlaaykW7caaMc8Ecfa4aaabqaOqaaKqbaoaaxacakeaajugi biaadAfaaSqabeaajugibiaac+facaGGFbaaaaWcbeqabKqzGeGaey yeIuoaaSqabeqajugibiabggHiLdGaamyqaiaaykW7caaMc8UaaGPa VlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7juaGdaaeWbGcbaqcLb sacaaMc8Ecfa4aaCbiaOqaaKqzGeGaamOvaaWcbeqaaKqzGeGaai4x aiaac+faaaqcfa4aaSbaaSqaaKqzGeGaamyAaiaadsgacaWGPbaale qaaaqaaKqzadGaamyAaiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7 caaIXaaaleaajugWaiaad2gaaKqzGeGaeyyeIuoacaaMc8UaaGPaVN qbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWGIbqcfa4aaSbaaSqa aKqzadGaamyAaaWcbeaajugibiaaykW7caaMc8UaeyOeI0IaaGPaVl aaykW7caWGIbWcdaWgaaqaaKqzadGaamyAaiaaygW7caaMc8UaeyOe I0IaaGPaVlaaigdaaSqabaaakeaajugibiaaikdaaaaakiaawIcaca GLPaaaaaa@97D5@ (3)

where:    Q is the calculated total discharge; bi is the width of the ith Section; di is the depth of the ith Section V __ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaaca WGwbaaleqabaGaai4xaiaac+faaaaaaa@38E0@ ; is the mean velocity in the ith vertical; m is the total number of sections; qi is the calculated segment discharge; and bi–1, vi–1, di–1 refers to the previous section. Although, both methods were employed in discharge computations for comparison purposes. The Q values obtained using the mid-section was used for flood frequency analysis. The mid-section values were generally higher.

Stage-discharge equation

The rating curves were developed according to BS 3680:3c8 & BS ISO9. The stage-discharge relation was expressed by an Equation of the form:

Q = C h β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgfacaqGGaGaeyypa0JaaeiiaiaadoeacaWGObqcfa4d amaaCaaaleqabaqcLbmapeGaeqOSdigaaaaa@3F25@ (4)

Where: Q is the discharge, h is the gauge height and C and β are coefficients, over the whole range of discharges.

If the zero of the gauge does not coincide with zero discharge, as the case of Taylor Creek, a correction factor, “a” must be applied to h, as depicted in Equation (5).

Q = C  ( h + a ) β       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgfacaqGGaGaeyypa0JaaeiiaiaadoeacaqGGaqcfa4d amaabmaakeaajugib8qacaWGObGaaeiiaiabgUcaRiaabccacaWGHb aak8aacaGLOaGaayzkaaWcdaahaaqabeaajugWa8qacqaHYoGyaaqc LbsacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaaaa@4B64@ (5)

For the determination of factor, “a” three values of discharge Q1, Q2 and Q3 are selected in geometric progression. i.e.

Q 2 2 = Q 1 Q 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aa0baaeaajugWaiaaikdaaKqbagaajugWaiaaikdaaaqcLbsa cqGH9aqpcaWGrbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaadg falmaaBaaabaqcLbmacaaIZaaaleqaaaaa@447F@ (6)

If the corresponding values of the gauge or depth readings from the curve are h1, h2 and h3, it is possible to verify that:

a= h 2 2 h 1 h 3 h 1 + h 3 2 h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGHb Gaeyypa0tcfa4aaSaaaOqaaKqbaoaavadakeqaleaajugWaiaaikda caaMc8EcLbsacaaMc8oaleaajugWaiaaikdaa0qaaKqzGeGaamiAaa aacaaMc8UaeyOeI0IaaGPaVlaadIgalmaaBaaabaqcLbmacaaIXaaa leqaaKqzGeGaamiAaKqbaoaaBaaaleaajugWaiaaiodaaSqabaaake aajugibiaadIgajuaGdaWgaaWcbaqcLbmacaaIXaqcLbsacaaMc8oa leqaaKqzGeGaaGPaVlabgUcaRiaaykW7caaMc8UaaGPaVlaadIgaju aGdaqhaaWcbaqcLbmacaaIZaaaleaaaaqcLbsacaaMc8UaaGPaVlab gkHiTiaaykW7caaMc8UaaGOmaiaadIgalmaaBaaabaqcLbmacaaIYa aaleqaaaaaaaa@6B4B@ (7)

Flood frequency analysis

Log-Pearson Type III and Gumbel Extreme Value Type I were the basis of flood frequency analysis, to obtain the design flood for return period of 10, 50 and 100-yrs.10

Log-Person type III

For Log Pearson Type III parameter estimate, we have Equations (8 – 11):

Mean=Log Q ¯ = LogQ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb GaamyzaiaadggacaWGUbGaeyypa0Jaamitaiaad+gacaWGNbqcfa4a a0aaaOqaaKqzGeGaamyuaaaacqGH9aqpjuaGdaWcaaGcbaqcfa4aaa bqaOqaaKqzGeGaamitaiaad+gacaWGNbGaamyuaaWcbeqabKqzGeGa eyyeIuoaaOqaaKqzGeGaamOBaaaaaaa@4A5D@ (8)

Standard deviation, σ LogQ = ( LogQLog Q ¯ ) 2 n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZLqba+aadaWgaaWcbaqcLbmapeGaamitaiaad+ga caWGNbGaamyuaaWcpaqabaqcLbsapeGaeyypa0tcfa4aaOaaaOWdae aajuaGpeWaaSaaaOWdaeaajuaGdaqfGaGcbeWcbeqaaKqzGeGaaGza VdqdbaqcLbsapeGaeyyeIuoaaKqbaoaabmaak8aabaqcLbsapeGaam itaiaad+gacaWGNbGaamyuaiabgkHiTiaadYeacaWGVbGaam4za8aa ceWGrbGbaebaaOWdbiaawIcacaGLPaaajuaGpaWaaWbaaSqabeaaju gWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaa aaWcbeaaaaa@57AB@ (9)

Skew Coefficient, Gs = n (LogQ logQ __ ) 3 (n1)(n2) ( σ LogQ ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEeacaWGZbGaaeiiaiabg2da9Kqba+aadaWcaaGcbaqc LbsacaWGUbGaaGPaVlaaykW7juaGdaaeabGcbaqcLbsacaGGOaGaam itaiaad+gacaWGNbGaamyuaiaaykW7caaMc8UaeyOeI0IaaGPaVlaa ykW7juaGdaWfGaGcbaqcLbsaciGGSbGaai4BaiaacEgacaWGrbaale qabaqcLbsacaGGFbGaai4xaaaacaGGPaWcdaahaaqabeaajugWaiaa iodaaaaaleqabeqcLbsacqGHris5aaGcbaqcLbsacaGGOaGaamOBai aaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7caaIXaGaaiykaiaacIca caWGUbGaaGPaVlaaykW7cqGHsislcaaMc8UaaGPaVlaaikdacaGGPa Gaaiikaiabeo8aZLqbaoaaBaaaleaajugibiaadYeacaWGVbGaam4z aiaadgfaaSqabaqcLbsacaGGPaWcdaahaaqabeaajugWaiaaiodaaa aaaaaa@7812@ (10)

where: Q=value at any probability level is obtained as:

Log Q T = Q ¯ + K T (  σ LogQ  , S) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbGaam4BaiaadEgacaWGrbWdamaaBaaabaqcLbmapeGa amivaaqcfa4daeqaa8qacqGH9aqpceWGrbGbaebacqGHRaWkcaWGlb WdamaaBaaabaqcLbmapeGaamivaaqcfa4daeqaa8qacaGGOaGaaiiO aiabeo8aZ9aadaWgaaqaaKqzadWdbiaadYeacaWGVbGaam4zaiaadg faaKqba+aabeaapeGaaiiOaiaacYcacaGGGcGaam4uaiaacMcaaaa@516B@ (11)

where KT=coefficient for the Log-Pearson Type III; Q ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGrbGbaebaaaa@3792@ = Mean of Logs of annual floods;

σ LogQ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHdpWCpaWaaSbaaeaajugWa8qacaWGmbGaam4BaiaadEga caWGrbaajuaGpaqabaaaaa@3DF9@ =standard deviation of Logs of annual floods; and Gs = coefficient of skewness of logs of annual floods.

Gumbel extreme value type I (EV1)

The probability density function of Gumbel extreme value type I distribution is given by

f( x )=exp{ ( xα )/βexp( ( xα )/β ) }/β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgajuaGdaqadaGcpaqaaKqzGeWdbiaadIhaaOGaayjk aiaawMcaaKqzGeGaeyypa0JaamyzaiaadIhacaWGWbqcfa4aaiWaaO Wdaeaajugib8qacqGHsisljuaGdaqadaGcpaqaaKqzGeWdbiaadIha cqGHsislcqaHXoqyaOGaayjkaiaawMcaaKqzGeGaai4laiabek7aIj abgkHiTiaadwgacaWG4bGaamiCaKqbaoaabmaak8aabaqcLbsapeGa eyOeI0scfa4aaeWaaOWdaeaajugib8qacaWG4bGaeyOeI0IaeqySde gakiaawIcacaGLPaaajugibiaac+cacqaHYoGyaOGaayjkaiaawMca aaGaay5Eaiaaw2haaKqzGeGaai4laiabek7aIbaa@6138@ (12)

The cumulative Density function

F( x ) exp{ exp{ ( x )/β }/β } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAeajuaGdaqadaGcpaqaaKqzGeWdbiaadIhaaOGaayjk aiaawMcaaKqzGeGaaiiOaiaadwgacaWG4bGaamiCaKqbaoaacmaak8 aabaqcLbsapeGaeyOeI0IaamyzaiaadIhacaWGWbqcfa4aaiWaaOWd aeaajugib8qacqGHsisljuaGdaqadaGcpaqaaKqzGeWdbiaadIhacq GHsislcqGHDisTaOGaayjkaiaawMcaaKqzGeGaai4laiabek7aIbGc caGL7bGaayzFaaqcLbsacaGGVaGaeqOSdigakiaawUhacaGL9baaaa a@5797@ (13)

Results and discussion

Velocity measurement & discharge computation

Cross-section number eleven (CS11) was used for the discharge computation and development of stage-discharge relation for Taylor creek. The velocities and depths for the cross-section are shown in Table 1. Equations (2) and (3) were applied to Table 1 for discharge computations. Tables 2, Table 3 show the calculation procedures and the discharge values obtained. Water depths above Low-Low Waters (LLWs) were varied at intervals of 0.5m, until the depth/discharge table was obtained (Table 4). Data in Table 4 were used to generate the Depth-discharge curves for Taylor Creek.

Distance from right bank(m)

0

5

15

25

35

45

55

65

75

85

90

Depth of flow(m)

0

3.0

6.3

7.8

8.7

10.5

11.3

9.0

3.9

2.0

0

Velocity,
m/s

At 0.2 depth

0

0.47

0.2

0.2

0.2

0.5

0.5

0.5

0.19

0.135

0

At 0.6 depth

0

0.03

0.43

0.81

0.188

2.08

2.08

2.08

0.17

0.165

0

At 0.8 depth

0

0.011

0.133

0.153

0.57

0.57

1.32

1.32

0.154

0.153

0

Table 1 Velocity measurement at cross-section No.11

Distance from bank bi(m)

Depth di
(m)

Mean velocity,
m/s

b i b i1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGIbWcdaWgaaqcfayaaKqzadGaamyAaaqcfayabaGaaGPaVlaa ykW7cqGHsislcaaMc8UaaGPaVlaadkgadaWgaaqaaiaadMgajugWai aaygW7caaMc8UaeyOeI0IaaGPaVlaaigdaaKqbagqaaaqaaiaaikda aaaaaa@4CAE@

Segment discharge, qi

0

0

0

0

0

5

3

0.017

7.5

0.383

15

6.3

0.254

10

16.002

25

7.8

0.39

10

30.42

35

8.7

0.53

10

46.11

45

10.5

1.05

10

110.25

55

11.3

1.3

10

146.9

65

9.0

1.3

10

117

75

3.9

0.17

10

6.63

85

2.0

0.151

10

2.265

90

0

0

0

0

å

476m3/sec

Table 2 Discharge computation by mid-section method

Distance
from bank bi(m)

Depth di(m)

Mean velocity, m/s

V i +1 + V __ i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGwbWcdaWgaaqcfayaaKqzadGaamyAaaqcfayabaWcdaWgaaqc fayaaKqzadGaey4kaSIaaGPaVlaaigdaaKqbagqaamaaBaaabaaabe aacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8+aaCbiaeaacaWGwbaa beqaaiaac+facaGGFbaaaSWaaSbaaKqbagaajugWaiaadMgacaaMb8 UaaGPaVdqcfayabaaabaGaaGOmaaaaaaa@51B4@

d i +1 d i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbWcdaWgaaqcfayaaKqzadGaamyAaaqcfayabaWcdaWgaaqc fayaaKqzadGaey4kaSIaaGPaVlaaigdaaKqbagqaamaaBaaabaaabe aacaaMc8UaaGPaVlabgkHiTiaaykW7caaMc8UaamizamaaBaaabaqc LbmacaWGPbqcfaOaaGzaVlaaykW7aeqaaaqaaiaaikdaaaaaaa@4F3E@

b i b i1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGIbWcdaWgaaqcfayaaKqzadGaamyAaaqcfayabaGaaGPaVlaa ykW7cqGHsislcaaMc8UaaGPaVlaadkgadaWgaaqaaiaadMgajugWai aaygW7caaMc8UaeyOeI0IaaGPaVlaaigdaaKqbagqaaaqaaiaaikda aaaaaa@4CAE@

qi

0

0

0

0.0

0.0

0

0

5

3

0.017

0.0085

1.5

5

0.0638

15

6.3

0.254

0.1355

4.65

10

6.30075

25

7.8

0.39

0.322

7.05

10

22.701

35

8.7

0.53

0.46

8.25

10

37.95

45

10.5

1.05

0.79

9.6

10

75.84

55

11.3

1.3

1.175

10.9

10

128.075

65

9.0

1.3

1.3

10.15

10

131.95

75

3.9

0.17

0.735

6.45

10

47.4075

85

2.0

0.151

0.1605

2.95

10

4.73475

90

0

0

0.0755

1.0

5

0.3775

å

å

455.4005m3/s

Table 3 Discharge computation by mean-section method

Development of depth-discharge relation

Given the discharge and stage (depth) values from a typical rating curve for Taylor creek, Equation (5) is calibrated for values of C and β. However, the constant “a” is evaluated via Equation (7). In other to estimate the value of “a” of Equation (7), we select from Table 3, h1=6.94 m, h2=8.94m and h3=11.44m. Thus

a= 8.94 2 (6.94)(11.44) (6.94+11.44)2(8.94) = 0.53 0.5 =1.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeyyai abg2da9maalaaabaGaaGioaiaac6cacaaI5aGaaGinamaaCaaabeqa aKqzadGaaGOmaaaajuaGcaaMc8UaaGPaVlabgkHiTiaaykW7caaMc8 UaaiikaiaaiAdacaGGUaGaaGyoaiaaisdacaGGPaGaaiikaiaaigda caaIXaGaaiOlaiaaisdacaaI0aGaaiykaaqaaiaacIcacaaI2aGaai OlaiaaiMdacaaI0aGaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaa igdacaaIXaGaaiOlaiaaisdacaaI0aGaaiykaiaaykW7caaMc8Uaey OeI0IaaGPaVlaaykW7caaIYaGaaiikaiaaiIdacaGGUaGaaGyoaiaa isdacaGGPaaaaiaaykW7caaMc8UaaGPaVlabg2da9iaaykW7caaMc8 UaaGPaVlaaykW7caaMc8+aaSaaaeaacaaIWaGaaiOlaiaaiwdacaaI ZaaabaGaaGimaiaac6cacaaI1aaaaiaaykW7caaMc8UaaGPaVlabg2 da9iaaykW7caaMc8UaaGPaVlaaigdacaGGUaGaaGymaaaa@8881@

The values of C and β in Equation (5), are obtained by linear regression modeling, after logarithmic linearization. Equations (14 & 15) are the resulting logarithmic normal equations,11‒13 & shows in Table 5.

log Q = N logC +β( log h a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabggHiLlaadYgacaWGVbGaam4zaiaabccacaWGrbGaaeii aiabg2da9iaabccacaWGobGaaeiiaiaadYgacaWGVbGaam4zaiaado eacaqGGaGaey4kaSIaeqOSdiMaeyyeIuEcfa4damaabmaakeaajugi b8qacaWGSbGaam4BaiaadEgacaqGGaGaamiAaiaabccacaGGtaIaam yyaaGcpaGaayjkaiaawMcaaaaa@5241@ (14)

log Q log( ha ) =log ( ha ) log C +β [ log ( h a ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHris5caWGSbGaam4BaiaadEgacaqGGaGaamyuaiaabcca caWGSbGaam4BaiaadEgapaWaaeWaaeaapeGaamiAaiabgkHiTiaadg gaa8aacaGLOaGaayzkaaWdbiaabccacqGH9aqpcqGHris5caWGSbGa am4BaiaadEgacaqGGaWdamaabmaabaWdbiaadIgacqGHsislcaWGHb aapaGaayjkaiaawMcaa8qacaqGGaGaamiBaiaad+gacaWGNbGaaeii aiaadoeacaqGGaGaey4kaSIaeqOSdiMaeyyeIu+damaadmaabaWdbi aadYgacaWGVbGaam4zaiaabccapaWaaeWaaeaapeGaamiAaiaabcca caGGtaIaamyyaaWdaiaawIcacaGLPaaaaiaawUfacaGLDbaalmaaCa aajuaGbeqaaKqzadWdbiaaikdaaaaaaa@669C@ (15)

Using Table 4, Equations (14) and (15) become:

27.6865 = Loc C + 9.01314β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaG4naiaac6cacaaI2aGaaGioaiaaiAdacaaI1aGa aeiiaiabg2da9iaabccacaWGmbGaam4BaiaadogacaqGGaGaam4qai aabccacqGHRaWkcaqGGaGaaGyoaiaac6cacaaIWaGaaGymaiaaioda caaIXaGaaGinaiabek7aIbaa@4B21@ (16)

24.9966 = 9.01314 Log C + 8.18505β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaikdacaaI0aGaaiOlaiaaiMdacaaI5aGaaGOnaiaaiAda caqGGaGaeyypa0JaaeiiaiaaiMdacaGGUaGaaGimaiaaigdacaaIZa GaaGymaiaaisdacaqGGaGaamitaiaad+gacaWGNbGaaeiiaiaadoea caqGGaGaey4kaSIaaeiiaiaaiIdacaGGUaGaaGymaiaaiIdacaaI1a GaaGimaiaaiwdacqaHYoGyaaa@50F4@ (17)

Solving Equations (16) and (17) simultaneously gives:

                Log C = 2.126 or C = 133.66; and β = 0.70368.

 Thus,

Q = 133.66  ( h  1.1 ) 0.70368   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGrbGaaeiiaiabg2da9iaabccacaaIXaGaaG4maiaaioda caGGUaGaaGOnaiaaiAdacaqGGaWdamaabmaabaWdbiaadIgacaqGGa Gaai4eGiaabccacaaIXaGaaiOlaiaaigdaa8aacaGLOaGaayzkaaWc daahaaqcfayabeaajugWa8qacaaIWaGaaiOlaiaaiEdacaaIWaGaaG 4maiaaiAdacaaI4aaaaiaacckaaaa@4DDC@ (18)

S/No.

Mean depth,
hi(m)

Mid-section method,
Q(m3/sec)

Mean-section method,
Q(m3/sec)

Qavg (m3/sec)

1

6.94

476

455.4

465.7

2

7.44

501.56

480.895

491.23

3

7.94

527.16

506.39

516.78

4

8.44

552.76

531.885

542.32

5

8.94

578.36

557.38

567.87

6

9.44

603.96

582.875

593.42

7

9.94

629.56

608.37

618.97

8

10.44

655.16

633.865

644.51

9

10.94

680.76

659.36

670.06

10

11.44

706.36

684.855

695.61

Table 4 Summary of depth-discharge computations

S/No.

A

B

C

D

E

F

H

Q

Log( h1.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbGaam4BaiaadEgapaWaaeWaaeaapeGaamiAaiabgkHi TiaaigdacaGGUaGaaGymaaWdaiaawIcacaGLPaaaaaa@3F0E@

Log Q

logQ*log( h1.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeaaae qaaaqaaabaaaaaaaaapeGaamiBaiaad+gacaWGNbGaamyuaiaacQca caWGSbGaam4BaiaadEgapaWaaeWaaeaapeGaamiAaiabgkHiTiaaig dacaGGUaGaaGymaaWdaiaawIcacaGLPaaaaaaaaa@438C@

[ Log( h1.1 ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aaqaaaaaaaaaWdbiaadYeacaWGVbGaam4za8aadaqadaqaa8qacaWG ObGaeyOeI0IaaGymaiaac6cacaaIXaaapaGaayjkaiaawMcaaaGaay 5waiaaw2faaSWaaWbaaKqbagqabaqcLbmacaaIYaaaaaaa@43A5@

1

6.94

465.7

0.966413

2.66811

2.04487

0.58739

2

7.44

491.23

0.8021

2.6913

2.15868

0.64335

3

7.94

516.78

0.83506

2.713306

2.265773

0.69732

4

8.44

542.32

0.8657

2.73426

2.367045

0.74943

5

8.94

567.87

0.89432

2.75425

2.4632

0.7998

6

9.44

593.42

0.92117

2.773362

2.55474

0.84855

7

9.94

618.97

0.94645

2.79167

2.6412

0.89577

8

10.44

644.51

0.97035

2.80923

2.72594

0.94157

9

10.94

670.06

0.993

2.826114

2.80633

0.98604

10

11.44

695.61

1.01452

2.8424

2.88367

1.02925

9.009083

å27.604002

å24.91142

å8.17847m3/s

Table 5 Evaluation of parameters for normal equations

Discharge transposition for Taylor creek

Bank erosion for Taylor creek at Koroama was of concern that prompted a study on possible bank protection works (revetment or vertical face retaining wall). For instance, the revetment design elements would require flood frequency analysis for determination of flood events such as Q10, Q50 and Q100. Given non-existent historic data on Taylor Creek, the need to transpose River Niger discharges with over 30 years of records was necessitated. Rating curves for both Taylor Creek and River Niger were plotted for sake of comparison and establishment of flow ratios or weighting (Figure 2). Taylor Creek discharges were obtained for 30 years by analyzing the mean ratio of its discharges with those of River Niger at corresponding depths (Table 6). On the average, 9% of River Niger discharge is equivalent to that of Taylor Creek. The flow transposition approach exemplified in this study is possible given that the gauged station (Onitsha) and ungauged station (Taylor Creek) are within Niger Delta, having similar meteorological features. The approach is simple as compared with methods proposed by Foufoula-Georgious,2 Portela,3 & Gan et al.,5 It is also interesting to note that Foufoula-Georgious2 proposed the probability storm transformation approach, While Gan et al.5 worked on regressional relationships for monthly streamflow data, for which high errors were observed.

Figure 2 Stage- discharge plots for Taylor creek and river Niger.

S/No.

Stage
(m)

Discharge Q(m3/sec)

Q Talor Q Niger ×100% MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaaieWapeGaa8xua8aadaWgaaqaaKqzadWdbiaa =rfacaWFHbGaa8hBaiaa=9gacaWFYbaajuaGpaqabaaabaWdbiaa=f fapaWaaSbaaeaajugWa8qacaWFobGaa8xAaiaa=DgacaWFLbGaa8NC aaqcfa4daeqaaaaapeGaey41aqRaaGymaiaaicdacaaIWaGaa8xjaa aa@4AA7@

Taylor creek, at
koroama(m3/se)

Niger river, at onisha,
 (m3/sec)

1

6.94

465.7

2800

16.63

2

7.44

491.23

3500

14.04

3

7.94

516.78

4200

12.3

4

8.44

542.32

5000

10.85

5

8.94

567.87

5800

9.791

6

9.44

593.42

6400

9.272

7

9.94

618.97

6600

9.38

8

10.44

644.51

7700

8.37

9

10.94

670.06

7800

7.702

10

11.44

695.61

10000

6.96

11

12.2

728.763

11600

6.28

12

12.81

756.62

12700

5.96

13

13.42

784.1

14000

5.6

14

14.03

811.1

15700

5.2

Mean Percentage

8.6% 9%

Table 6 Summary of discharge ratio computations river Niger and Taylor creek

Log Pearson type III & gumbel extreme value type I flood frequency predictions

The Taylor Creek discharges taken as 9% of River Niger discharges for 30 years period are as presented in Table 7. Equations (8-10) are evaluated using Table 6 for Taylor Creek, as:

Mean = LogQ n = 3.156859 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbGaamyzaiaadggacaWGUbGaaeiiaiabg2da98aadaWc aaqaamaaqaeabaGaamitaiaad+gacaWGNbGaaeyuaaqabeqacqGHri s5aaqaaiaad6gaaaGaaGPaVlaaykW7peGaeyypa0Jaaeiiaiaaioda caGGUaGaaGymaiaaiwdacaaI2aGaaGioaiaaiwdacaaI5aaaaa@4D31@

Standard deviation s logQ = [ (LogQQ) 2 n1 ] 1 2 = [ 0.34492 29 ] 1 2 =0.11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGZbWcpaWaaSbaaKqbagaajugWa8qacaWGSbGaam4Baiaa dEgacaWGrbaajuaGpaqabaWaaWbaaeqabaWdbiabg2da9aaapaWaam WaaeaadaWcaaqaamaaqaeabaGaaiikaiaadYeacaWGVbGaam4zaiaa bgfacaaMc8UaaGPaVlabgkHiTiaaykW7caaMc8UaaGPaVlaabgfaca GGPaWaaWbaaeqabaGaaGOmaaaaaeqabeGaeyyeIuoaaeaacaWGUbGa aGPaVlaaykW7cqGHsislcaaMc8UaaGPaVlaaykW7caaIXaaaaaGaay 5waiaaw2faaSWaaWbaaKqbagqabaWcdaWccaqcfayaaKqzadGaaGym aaqcfayaaKqzadGaaGOmaaaaaaqcfaOaaGPaVlabg2da9iaaykW7ca aMc8UaaGPaVpaadmaabaWaaSaaaeaacaaIWaGaaiOlaiaaiodacaaI 0aGaaGinaiaaiMdacaaIYaaabaGaaGOmaiaaiMdaaaaacaGLBbGaay zxaaWcdaahaaqcfayabeaalmaaliaajuaGbaqcLbmacaaIXaaajuaG baqcLbmacaaIYaaaaaaajuaGpeGaeyypa0JaaGimaiaac6cacaaIXa GaaGymaaaa@7D2B@

Skew coefficient ( G ) = n (LogQLogQ) 3 (n1)(n2)( σ Log ) 3 = 30(0.009156903) 29x28x (0.11) 3 = 0.254 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadEeaa8aacaGLOaGaayzkaaWdbiaabccacqGH 9aqppaWaaSaaaeaacaWGUbWaaabqaeaacaGGOaGaamitaiaad+gaca WGNbGaaeyuaiaaykW7cqGHsislcaaMc8UaaGPaVlaadYeacaWGVbGa am4zaiaabgfacaGGPaWaaWbaaeqabaqcLbmacaaIZaaaaaqcfayabe qacqGHris5aaqaaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaGG OaGaamOBaiabgkHiTiaaikdacaGGPaGaaGzaVlaaykW7caGGOaGaeq 4Wdm3aaSbaaeaacaaMc8Uaamitaiaad+gacaWGNbaabeaacaGGPaWa aWraaeqabaqcLbmacaaIZaaaaaaajuaGcaaMc8UaaGPaVlaaykW7cq GH9aqpcaaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaaIZaGaaGim aiaacIcacqGHsislcaaIWaGaaiOlaiaaicdacaaIWaGaaGyoaiaaig dacaaI1aGaaGOnaiaaiMdacaaIWaGaaG4maiaaykW7caGGPaaabaGa aGOmaiaaiMdacaWG4bGaaGOmaiaaiIdacaWG4bGaaiikaiaaicdaca GGUaGaaGymaiaaigdacaGGPaWcdaahaaqcfayabeaajugWaiaaioda aaaaaKqba+qacqGH9aqpcaqGGaGaeyOeI0IaaGimaiaac6cacaaIYa GaaGynaiaaisdaaaa@8F61@

Q

Gumbel

Log. pearson III

% Difference/Error

Q10:

1947.2 m3/sec

1971 m3/sec

1.22

Q50:

2415.4 m3/sec

2382 m3/sec

1.38

Q100:

2608.1 m3/sec

2468.1 m3/sec

5.4

Table 7 Gumbel versus log Pearson type III computed values

Adopting Equation (11) for flood frequency modeling, we have skew coefficient (Gs) of -0.254, return periods (T) of 10, 50 & 100 years, the corresponding KT values are for 10 year flood, KT = 1.252; 50 year flood, KT = 1.918 and 100 year flood; KT = 2.141; Thus,

Q 10 = LogQ = Log + K T s logQ   = 3.156859 + 1.252 ( 0.11 ) = 3.294579 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGrbWcpaWaaSbaaKqbagaajugWa8qacaaIXaGaaGimaaqc fa4daeqaa8qacqGH9aqpcaqGGaGaamitaiaad+gacaWGNbGaamyuai aabccacqGH9aqpcaqGGaGaamitaiaad+gacaWGNbGaaiiOaiabgUca RiaadUeal8aadaWgaaqcfayaaKqzadWdbiaadsfaaKqba+aabeaaju gWa8qacaWGZbWcpaWaaSbaaKqbagaajugWa8qacaWGSbGaam4Baiaa dEgacaWGrbaajuaGpaqabaWaaSbaaeaapeGaaiiOaaWdaeqaa8qacq GH9aqpcaqGGaGaaG4maiaac6cacaaIXaGaaGynaiaaiAdacaaI4aGa aGynaiaaiMdacaqGGaGaey4kaSIaaeiiaiaaigdacaGGUaGaaGOmai aaiwdacaaIYaGaaeiia8aadaqadaqaa8qacaaIWaGaaiOlaiaaigda caaIXaaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0Jaaeiiaiaaio dacaGGUaGaaGOmaiaaiMdacaaI0aGaaGynaiaaiEdacaaI5aaaaa@7101@

Thus,

Q10=Antilog (3.2504155)=1971m3/sec

Q50=3.156859+1.918 (0.11)=2332 m3/sec

Q100=3.156859+2.141 (0.11)=2468.1m3/sec

Gumbel extreme value type 1 parameters and predictions

For the Extreme Value Type 1 distribution, the KT values were obtained as follows:

K T = 6 Π [ 0.5772+n[ n( T T1 ) ] ]                         MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGlbWcpaWaaSbaaKqbagaajugWa8qacaWGubaajuaGpaqa baWdbiabg2da98aadaWcaaqaaiabgkHiTmaakaaabaGaaGOnaaqaba aabaGaeuiOdafaaiaaykW7caaMc8+aamWaaeaacaaIWaGaaiOlaiaa iwdacaaI3aGaaG4naiaaikdacaaMc8UaaGPaVlaaykW7cqGHRaWkca aMc8UaaGPaVlaaykW7cqWItecBcaWGUbGaaGPaVlaaykW7daWadaqa aiabloriSjaad6gacaaMc8UaaGPaVpaabmaabaWaaSaaaeaacaWGub aabaGaamivaiaaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7caaIXaaa aaGaayjkaiaawMcaaaGaay5waiaaw2faaaGaay5waiaaw2faa8qaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckakiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaaaa @85F5@ (19)

Where: K10=1.305; K50=2.608; and K100=3.1445 and

Q T =  Q __ + K T S            MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGrbWdamaaBaaabaqcLbmapeGaamivaaqcfa4daeqaa8qa cqGH9aqpcaGGGcWdamaawagabeqabeaacaGGFbGaai4xaaqaaiaabg faaaGaey4kaSIaam4samaaBaaabaqcLbmacaWGubaajuaGbeaacaWG tbWdbiaacckacaGGGcGccaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckaaaa@51A6@ (20)

where S=standard deviation, and S is calculated from data (Table 7), thus:

Q10 =1478.3+1.305 (359.3)=1947.2

Q50 =1478.31+2.608 (359.3)=2415.4

Q100 =1478.31+3.1445 (359.3)=2608.1

Results comparison of Gumbel and log–Pearson III

% Difference at 10 and 100 years:

[ Q 10 (Gumbel)Q 10 (PIII) Q 10 (Gumbel) ]x100%= 1947.21971 1947.2 x100=1.22%    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aadaWcaaqaaiaadgfadaWgbaqaaKqzadGaaGymaiaaicdaaKqbagqa aiaaykW7caGGOaGaam4raiaadwhacaWGTbGaamOyaiaadwgacaWGSb GaaiykaiaaykW7cqGHsislcaaMc8UaamyuaSWaaSraaKqbagaajugW aiaaigdacaaIWaaajuaGbeaacaaMc8UaaiikaiaadcfacaWGjbGaam ysaiaadMeacaGGPaaabaGaamyuaSWaaSraaKqbagaajugWaiaaigda caaIWaaajuaGbeaacaaMc8UaaiikaiaadEeacaWG1bGaamyBaiaadk gacaWGLbGaamiBaiaacMcaaaaacaGLBbGaayzxaaGaaGPaVlaaykW7 caWG4bGaaGPaVlaaykW7caaIXaGaaGimaiaaicdacaGGLaGaaGPaVl aaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7daWcaaqaaiaaigdacaaI 5aGaaGinaiaaiEdacaGGUaGaaGOmaiaaykW7cqGHsislcaaMc8UaaG PaVlaaigdacaaI5aGaaG4naiaaigdaaeaacaaMc8UaaGymaiaaiMda caaI0aGaaG4naiaac6cacaaIYaaaaiaaykW7caaMc8UaamiEaiaayk W7caaMc8UaaGPaVlaaigdacaaIWaGaaGimaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8UaeyOeI0IaaG PaVlaaykW7caaMc8UaaGymaiaac6cacaaIYaGaaGOmaiaacwcaqaaa aaaaaaWdbiaacckacaGGGcGaaiiOaaaa@ABB5@ Q 100 (Gumbel)Q 100 (logPearson)x100 Q 100 (Gumbel) = 2608.12468.1 2608.1 =5.4% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGrbWcdaWgbaqcfayaaKqzadGaaGymaiaaicdacaaIWaaajuaG beaacaaMc8UaaiikaiaadEeacaWG1bGaamyBaiaadkgacaWGLbGaam iBaiaacMcacaaMc8UaeyOeI0IaaGPaVlaadgfadaWgbaqaaSWaaSra aKqbagaajugWaiaaigdacaaIWaGaaGimaaqcfayabaaabeaacaaMc8 UaaiikaiGacYgacaGGVbGaai4zaiaaykW7cqGHsislcaaMc8Uaamiu aiaadwgacaWGHbGaamOCaiaadohacaWGVbGaamOBaiaacMcacaaMc8 UaaGPaVlaadIhacaaMc8UaaGPaVlaaigdacaaIWaGaaGimaaqaaiaa dgfalmaaBeaajuaGbaqcLbmacaaIXaGaaGimaiaaicdaaKqbagqaai aaykW7caGGOaGaam4raiaadwhacaWGTbGaamOyaiaadwgacaWGSbGa aiykaaaacaaMc8UaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVpaala aabaGaaGOmaiaaiAdacaaIWaGaaGioaiaac6cacaaIXaGaaGPaVlaa ykW7cqGHsislcaaMc8UaaGPaVlaaikdacaaI0aGaaGOnaiaaiIdaca GGUaGaaGymaaqaaiaaikdacaaI2aGaaGimaiaaiIdacaGGUaGaaGym aaaacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8UaaGynaiaac6caca aI0aGaaiyjaaaa@9C96@

Errors between the two distributions are within 10% limit, thus they are both acceptable. However, we recommend the Log-Pearson III values for design purposes Table 8.

Year

Q+

Q Q m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGrbGaeyOeI0IaamyuaSWaaSbaaKqbagaajugWaiaad2ga aKqbagqaaaaa@3CA5@

( Q Q m ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaaiaadgfacqGHsislcaWGrbWcdaWgaaqcfayaaKqz adGaamyBaaqcfayabaaacaGLOaGaayzkaaWaaWbaaeqabaqcLbmaca aIYaaaaaaa@403A@

Log Q

Log QLog  Q m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGmbGaam4BaiaadEgacaqGGaGaamyuaiabgkHiTiaadYea caWGVbGaam4zaiaabccacaWGrbWaaSbaaeaajugWaiaad2gaaKqbag qaaaaa@42B4@

( Log QLog  Q m ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaaiaadYeacaWGVbGaam4zaiaabccacaWGrbGaeyOe I0Iaamitaiaad+gacaWGNbGaaeiiaiaadgfadaWgaaqaaKqzadGaam yBaaqcfayabaaacaGLOaGaayzkaaWcdaahaaadbeqaaiaaikdaaaaa aa@4532@

( Log QLog  Q m ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaaiaadYeacaWGVbGaam4zaiaabccacaWGrbGaeyOe I0Iaamitaiaad+gacaWGNbGaaeiiaiaadgfadaWgaaqaaKqzadGaam yBaaqcfayabaaacaGLOaGaayzkaaWcdaahaaadbeqaaiaaiodaaaaa aa@4533@

1

1134.54

-343.77

118178

3.05482

-0.10204

0.010412

-0.001062438

2

1444.95

-33.36

1112.89

3.159853

0.002994

8.96E-06

2.68276E-08

3

2275.2

796.89

635034

3.35702

0.20016

0.040064

0.008019259

4

1939.59

461.28

212779

3.28771

0.130851

0.017122

0.002240414

5

2007.81

529.5

280370

3.302723

0.145863

0.021276

0.003103409

6

1621.08

142.77

20383.3

3.209804

0.052945

0.002803

0.000148416

7

1943.82

465.51

216700

3.288656

0.131797

0.01737

0.002289364

8

1827.27

348.96

121773

3.261803

0.104944

0.011013

0.001155757

9

1785.6

307.29

94427.1

3.251784

0.094925

0.009011

0.000855345

10

1640.07

161.76

26166.3

3.214862

0.058003

0.003364

0.000195144

11

1600.74

122.43

14989.1

3.204321

0.047462

0.002253

0.000106912

12

1338.12

-140.19

19653.2

3.126495

-0.03036

0.000922

-2.79952E-05

13

1108.71

-369.6

136604

3.044818

-0.11204

0.012553

-0.001406481

14

1798.74

320.43

102675

3.254968

0.098109

0.009625

0.000944341

15

1809.99

331.68

110012

3.257676

0.100817

0.010164

0.00102471

16

1079.37

-398.94

159153

3.03317

-0.12369

0.015299

-0.001892308

17

1418.22

-60.09

3610.81

3.151744

-0.00512

2.62E-05

-1.33873E-07

18

1515.87

37.56

1410.75

3.180662

0.023803

0.000567

1.34859E-05

19

1624.05

145.74

21240.1

3.210599

0.05374

0.002888

0.000155202

20

1508.22

29.91

894.608

3.178465

0.021605

0.000467

1.00854E-05

21

1614.51

136.2

18550.4

3.208041

0.051182

0.00262

0.000134072

22

1342.98

-135.33

18314.2

3.12807

-0.02879

0.000829

-2.38622E-05

23

1059.39

-418.92

175494

3.025056

-0.1318

0.017372

-0.002289704

24

910.26

-568.05

322681

2.959165

-0.19769

0.039083

-0.00772643

25

945.45

-532.86

283940

2.975639

-0.18122

0.032841

-0.005951454

26

1331.37

-146.94

21591.4

3.124299

-0.03256

0.00106

-3.452E-05

27

1065.69

-412.62

170255

3.027631

-0.12923

0.0167

-0.002158108

28

1096.11

-382.2

146077

3.039854

-0.11701

0.01369

-0.001601822

29

1605.69

127.38

16225.7

3.205662

0.048802

0.002382

0.000116232

30

955.89

-522.42

272923

2.980408

-0.17645

0.031135

-0.005493822

Sum

44349.3

-1E-11

3743217

94.70578

0.34492

-0.009156903

Mean

1478.31

-4E-13

3.156859

S. Dev.

359.272

Table 8 Flood frequency analysis for Taylor creek basin
+ Source of data, NIWA.7

Developing IDF models by rainfall transposition

Rainfall Transposition between Peremabiri and Port Harcourt is possible (Figure 3). The rainfall Intensity-Duration-Frequency (IDF) models for Port Harcourt were transposed by multiplying with a conversion factor of 1.2 to obtain the equivalent for Peremabiri in Taylor Creek basin. The rainfall distribution of Port Harcourt and Peremabiri were assumed to be similar in this study by reason of nearness and both are in the Niger Delta with same meteorological conditions. The average of the ratios of annual rainfall amounts in Peremabiri and that of Port Harcourt yielded 1: 1.2. That is 1mm of rainfall in Port Harcourt as equivalent to 1.2mm in Peremabiri. In effect, rainfall models for Port Harcourt are multiplied by a factor of 1.2 to obtain that of Peremabiri (Table 9).

Return period
t-yr

IDF models

Port Harcourt±

Peremabiri/Taylor creek basin

5.0

4595.1 ( t+50 ) 1.004 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGinaiaaiwdacaaI5aGaaGynaiaac6ca caaIXaaapaqaa8qadaqadaWdaeaapeGaamiDaiabgUcaRiaaiwdaca aIWaaacaGLOaGaayzkaaWcpaWaaWbaaKqbagqabaqcLbmapeGaaGym aiaac6cacaaIWaGaaGimaiaaisdaaaaaaaaa@4601@

( 1.2 )( 4595 ) ( t+50 ) 1.004 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeWaaeWaa8aabaWdbiaaigdacaGGUaGaaGOm aaGaayjkaiaawMcaamaabmaapaqaa8qacaaI0aGaaGynaiaaiMdaca aI1aaacaGLOaGaayzkaaaapaqaa8qadaqadaWdaeaapeGaamiDaiab gUcaRiaaiwdacaaIWaaacaGLOaGaayzkaaWcpaWaaWbaaKqbagqaba qcLbmapeGaaGymaiaac6cacaaIWaGaaGimaiaaisdaaaaaaaaa@4A0E@
( 1.2 )( 6696.95 ) ( t+50 ) 1.048 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeWaaeWaa8aabaWdbiaaigdacaGGUaGaaGOm aaGaayjkaiaawMcaamaabmaapaqaa8qacaaI2aGaaGOnaiaaiMdaca aI2aGaaiOlaiaaiMdacaaI1aaacaGLOaGaayzkaaaapaqaa8qadaqa daWdaeaapeGaamiDaiabgUcaRiaaiwdacaaIWaaacaGLOaGaayzkaa WdamaaCaaabeqaaKqzadWdbiaaigdacaGGUaGaaGimaiaaisdacaaI 4aaaaaaaaaa@4BB4@
( 1.2 )( 8273 ) ( t+50 ) 1.072 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeWaaeWaa8aabaWdbiaaigdacaGGUaGaaGOm aaGaayjkaiaawMcaamaabmaapaqaa8qacaaI4aGaaGOmaiaaiEdaca aIZaaacaGLOaGaayzkaaaapaqaa8qadaqadaWdaeaapeGaamiDaiab gUcaRiaaiwdacaaIWaaacaGLOaGaayzkaaWcpaWaaWbaaKqbagqaba qcLbmapeGaaGymaiaac6cacaaIWaGaaG4naiaaikdaaaaaaaaa@4A10@
( 1.2 )( 12196.28 ) ( t+50 ) 1.112 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeWaaeWaa8aabaWdbiaaigdacaGGUaGaaGOm aaGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaaGOmaiaaigdaca aI5aGaaGOnaiaac6cacaaIYaGaaGioaaGaayjkaiaawMcaaaWdaeaa peWaaeWaa8aabaWdbiaadshacqGHRaWkcaaI1aGaaGimaaGaayjkai aawMcaaSWdamaaCaaajuaGbeqaaKqzadWdbiaaigdacaGGUaGaaGym aiaaigdacaaIYaaaaaaaaaa@4CF4@

7.5

6696.95 ( t+50 ) 1.048 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGOnaiaaiAdacaaI5aGaaGOnaiaac6ca caaI5aGaaGynaaWdaeaapeWaaeWaa8aabaWdbiaadshacqGHRaWkca aI1aGaaGimaaGaayjkaiaawMcaa8aadaahaaqabeaajugWa8qacaaI XaGaaiOlaiaaicdacaaI0aGaaGioaaaaaaaaaa@463B@

10

8273.47 ( t+50 ) 1.072 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGioaiaaikdacaaI3aGaaG4maiaac6ca caaI0aGaaG4naaWdaeaapeWaaeWaa8aabaWdbiaadshacqGHRaWkca aI1aGaaGimaaGaayjkaiaawMcaaSWdamaaCaaajuaGbeqaaKqzadWd biaaigdacaGGUaGaaGimaiaaiEdacaaIYaaaaaaaaaa@46C8@

20.0

12196.28 ( t+50 ) 1.112 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGymaiaaikdacaaIXaGaaGyoaiaaiAda caGGUaGaaGOmaiaaiIdaa8aabaWdbmaabmaapaqaa8qacaWG0bGaey 4kaSIaaGynaiaaicdaaiaawIcacaGLPaaal8aadaahaaqcfayabeaa jugWa8qacaaIXaGaaiOlaiaaigdacaaIXaGaaGOmaaaaaaaaaa@477B@

Table 9 Rainfall models for Port Harcourt
±Source, Ologhadien & Nwaogazie.14

Figure 3 Plot of annual rainfall for peremabiri and Port Harcourt (1963 - 1981).

Conclusion

Based on this study the following conclusions can be drawn:

  1. The hydrological data transposition between a gauged station at Onitsha and ungauged station at Taylor creek both in Niger Delta with similar meteorological conditions was possible using discharge ratio method. The use of rating curves for both gauged and ungauged stations at the same depth yielded corresponding discharges for which the discharge ratios were computed and the overall mean ratio of 9:100 (or 1:11.11) was generated. That is, 1m3/s flow in Taylor creek is equivalent of 11.11m3/s flow in River Niger.
  2. Similarly, the rainfall intensity-duration-frequency (IDF models) of Port Harcourt city were transposed to an equivalent value for Peremabiri all in Niger Delta. The individual ratios of the annual rainfall totals for Port Harcourt and Peremabiri were computed; the overall average ratio of 1:1.2 was obtained. In effect the factor 1.2 was applied to all the IDF models of Port Harcourt to generate corresponding equivalents for Peremabiri.
  3. The hydrologic transposition by ratio approach has been applied to both stream flow and rainfall records from gauged stations to ungauged stations with an overriding condition of similar terrain and meteorological conditions to minimize error. We expect that the ratio approach, though is new and expected to be tested for more hydrological catchment areas to prove its worth and this is the challenge for researchers in hydrology.

Acknowledgements

None.

Conflict of interest

The authors of this article have declared that no conflict interests exist in the course of preparing this document.

References

  1. Sehreiner LC, Riedel JT. Probable Maximum Precipitation Estimates, United States East of the 105th Meridian. US Department of Commerce, National Oceanic and Atmospheric Administration. Hydro Meteorological Report No. 51. 1978;1‒100.
  2. Foufoula GE. Probabilistic Storm Transposition Approach for Estimating Exceedance Probabilities of Extreme Precepitation Depth. Water Resour Res. 1989;25(5):700‒815.
  3. Portela MM. Hydrology. In: Ramos H, editor. Guidelines for the design of small hydropower plants, Ireland: Cehidro/Wrean/Ded. 2000;21‒38.
  4. Alberta Transportation. Guideline on Extreme Flood Analysis. Transportation and Civil Engineering Division, Civil Projects Branch. 2004;1‒112.
  5. England JF, Julien PY, Velleux ML. Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds. Journal of Hydrology. 2014;510:228‒245.
  6. Gan KC, McMahon TA, O’Neil IC. Transposition of Monthly Streamflow Data to Ungauged Catchment. Hydrology Reseach. 1991;22(2):109‒122.
  7. NIWA. Nigerian Inland Waterways Authority. Hydrological year-books compiled by NIWA, lokoja Nigeria. 2012.
  8. BS 3680-3B. Measurement of Liquid flow in Open Channels. Stream flow measurement. Guide for establishment and operation of a gauging station. 1977.
  9. BS ISO. Measurement of Liquid flow in Open Channels. Determination of Stage Discharge Relation. 1998.
  10. Rao AR, Hamed KH. Flood Frequency Analysis. CRC Press LLC. 2000. p. 376.
  11. Nwaogazie IL. Probability and Statistics for Science and Engineering Practice. 1st ed. Lagos: Prints Konzults; 2011. p. 252.
  12. Nwaogazie IL. Probability and Statistics for Science and Engineering Practice. 2nd ed. University of Port Harcourt Press. 1999. p. 293.
  13. Nwaogazie IL. Probability and Statistics for Science and Engineering Practice. 3rd ed. De-Adroit Innovation, Enugu, 2006. p. 302.
  14. Ologhadien Itolima, Nwaogazie Ify L. Rainfall-Intensity-Duration-Frequency Models for selected Cities in Southern Nigeria. Standard Scientific Research and Essays. 2014;2(10):509‒515.
Creative Commons Attribution License

©2018 Nwaogazie, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.