Submit manuscript...
International Journal of
eISSN: 2576-4454

Hydrology

Research Article Volume 5 Issue 4

Evaluation methods for groundwater inflows into rock tunnels: a state-of-the-art review

Wadslin Frenelus, Hui Peng, Jingyu Zhang

Department of Hydraulic Engineering, College of Hydraulic and Environmental Engineering, China Three Gorges University, China

Correspondence: Wadslin Frenelus, Department of Hydraulic Engineering, College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei, 443002, China, Tel +86-132-3562-4171

Received: June 24, 2021 | Published: July 13, 2021

Citation: Frenelus W, Peng H, Zhang J. Evaluation methods for groundwater inflows into rock tunnels: a state-of-the-art review. Int J Hydro. 2021;5(4):152-168. DOI: 10.15406/ijh.2021.05.00277

Download PDF

Abstract

Groundwater inflow into tunnels is always a salient topic in Hydrology, Hydraulic Engineering, Hydrogeology, Rock Engineering and allied sciences. In fact, tunnels particularly built below the groundwater table, often face groundwater inflows during their excavation, and even sometimes after they are put into operation. These inflows, habitually regarded as unpredictable geological hazards, cause instabilities in the surrounding rocks of tunnels, and lead to considerable damages such as injuries, loss of lives, and huge-scaled economic expenses. It is argued that groundwater conditions are of decisive significance for the design and running of tunnels. Therefore, accurate prediction or evaluation of groundwater inflows into tunnels is of paramount importance. Such prediction, although it is still challenging, has been broached by many researchers with diverse methods. However, a state-of-the-art review of these methods has not yet been presented. This paper reviews the assessment methods of groundwater inflows into tunnels built in rocky media. The results mainly include analytical, semi-analytical, empirical, semi-empirical, numerical, machine learning, and other methods used in the field. This was made possible by selecting and analysing relevant scientific articles published by various worldwide Journals. In addition, some recommendations and future trends are pointed out. This paper can provide useful references in understanding groundwater inflows prediction in different points of view and their limits in terms of applicability and accuracy. 

Keywords: groundwater inflows, groundwater inflows prediction, water table, accurate groundwater inflows prediction, rock behaviors, tunnels stability

Abbreviations

EDZ, excavation damaged zone; EdZ, excavation disturbed zone; TIC, tunnel inflow classification; GSR, groundwater seepage rate; SGR, site groundwater rating; TBM, tunnel boring machine; DB, drill-and-blast; RMR, rock mass rating; VMD, variational mode decomposition; ORELM, outlier robust extreme learning machine; MOGWO, multi-objective grey wolf optimizer; HGWO, hybrid grey wolf optimization; SVR, support vector regression; GIS, geographic information system

Introduction

The assessment or prediction of groundwater inflows is crucial for the design and stability of tunnels, as well as for mitigating associated environmental impacts.1,2 Adequate planifications are always required prior to excavate deep rock tunnels, particularly those built in saturated media. Due to the growing needs of underground spaces, tunnels are generally designed and built for various purposes such as water conveyance, reservoirs emptying, hydropower stations, sanitary drainage, transport systems, etc. One of the challenge facing designers and builders is controlling the groundwater inflows into tunnels. In fact, the latter can increase the risk of excavations failure by influencing their short and long-term stability.3 Groundwater inflows are generally generated during and after deep tunnels excavation, and they influence the behavior of rocks. More precisely, they induce overall instability and reduce rock strength and shear.4 Moreover, the unanticipated high rate of groundwater inflow can engender serious damages like loss of lives and destruction of related equipments.5,6 For instance, Sammarco7 reported that 4 groundwater inrushes resulted in the deaths of 17 people from 1910 to 1964 in the southern Tuscany underground mine of Italy, and more than 1 million of water have been pumped there. On 21 January 2006, a water inrush accident occurred during the construction of Malujing Tunnel (Hubei Province of China), has caused 11 casualties and many injuries.8 In China and elsewhere, many casualties and economic loss are caused by hundreds of water inrushes during tunnelling.9 More recently, Liu et al.10 reported that the unexpected groundwater inflows at a tunnel head provoke uncontrollable effects like mechanical instability and environmental impacts. All these situations can explain that proper evaluation of groundwater inflows is highly required for suitable treatment and ensuring the long-term stability of tunnels.

Analysis of the literature shows that many efforts have been made during the past decades to predict and calculate groundwater inflows into rock tunnels. In fact, different methods have been developed for that. They mainly include analytical, semi-analytical, empirical, semi-empirical, and numerical methods. Despite all, owing to various potential factors, it remains a challenging task to accurately assess groundwater inflows into tunnels.11 This is explained by the fact that rock masses are typically complexes and heterogeneous, and it is very difficult to determine accurately their relevant properties. Thereby, assumptions are habitually made in order to simplify pertinent parameters and real features of the rocky media.11,12 Appropriate selection of one or more methods is also not always obvious, due to the various approaches. This paper aims to provide a review of the assessment methods for groundwater inflows into tunnels built in rocky media. Many studies have been carried out on the prediction of groundwater inflows into underground structures. However, attention has not been drawn sufficiently to the comparison and examination of different methods for assessing groundwater inflows into tunnels. To address this issue, this paper presents a reminder highlighting salient research results published in the field. It provides thus a summarized update of the most relevant researches in the field. 

Material and methods

We performed a systematic literature review by selecting relevant scientific articles published by different worldwide journals. Indeed, we only use information derived from salient papers that have been peer-reviewed. During the reviewing, we followed the guidelines proposed by Okoli and Schabram13 where literatures can be used at any period of time. The review is mainly structured in two essential parts: results and discussion. The results are extractions of relevant information on groundwater inflows into rock tunnels. In the discussion part, the potential factors and their impacts on the precision of groundwater inflows into tunnels are mainly presented. Then, from the results and the discussion, we conclude and offer some recommendations and future trends.  

Results

Definitions and descriptions of groundwater inflows into rock tunnels

A review of literature reveals that many definitions and descriptions are attributed to the groundwater inflows into rock tunnels. They are generally based on various approaches and considerations. Although they have the same objective of predicting the groundwater inflow into tunnels, but it is very important to present the most relevant of them. This could facilitate a better understanding of groundwater inflows into tunnels or into underground excavations. Table 1 presents pertinent definitions and descriptions of groundwater inflows into tunnels or underground excavations provided in the literature.

Authors

Definitions and Descriptions of groundwater inflows into tunnels or excavations

Meiri14

Defined groundwater inflow into tunnels as one of the first geotechnical issues. Important groundwater inflows are dangerous and impose additional costs and construction delays.

Singh and Reed15

In mining excavations, groundwater inflow is mostly the results of interaction of 3 potentials factors namely the mining geometry, the groundwater system, and the hydrogeological features of the rock mass.

Cesano et al.16

Defined groundwater inflows into tunnels as considerable technical and environmental issues for underground constructions.

Molinero et al.17

In fractured bedrock, groundwater inflows into tunnels are serious hazards and govern the tunnels progress rate.

Lipponen and Airo18

Defined groundwater inflow as a crucial factor affecting the planning and running of underground structures; inflow and fractures could be likely linked.

Hwang and Lu5

During tunnel construction, groundwater inflow is one of the most typical and challenging concern facing designers and builders.

Li et al.19

Defined groundwater inflow into tunnels as potential danger and major factor affecting the construction schedule.

Jiang et al.20

Defined groundwater inflow (also called groundwater discharge) as potential geological hazards. It may affect the tunnel excavation time and the construction cost.

Font-Capó et al.21

TBM reveal that the problems generated by groundwater inflows are attributed to the existence of faults or fractures zones which are hydraulically conductive.

Butscher1

A considerable matter in tunnel engineering, generating groundwater drawdown and further environmental impacts.

Huang et al.6

In practice, groundwater inflows into tunnels are typical hydrogeological problem. Among the factors that affect it, the fractures aperture effects are preponderant in fractured environments.

Holmøy & Nilsen22

Groundwater inflow into underground constructions may cause various nuisances such as the risk of groundwater drawdown, attenuation of the rock mass stability, etc.

Javadi et al.23

The inflow of groundwater into excavations is one of the most serious and difficult problems that hydrogeologists face, and it causes many adverse conditions.

Hadi and Homayoon24

It is one of the most considerable problems in excavations operation, generating delayed operations and surrounding rock instabilities, inflicting additional pressure on tunnels supports systems, and additional expenses.

Maleki25

Defined groundwater inflow as one of the utmost risk in completing tunnels projects.

Zabidi et al.11

Groundwater inflows into tunnels are one of the most unpredictable dangers in excavations, and are preponderantly governed by the existence of fault and open fractures.

Wang et al.26

In discontinuous media, excavations perturbations alter the fracture apertures and the groundwater rate distribution into them. Stress field, fractures geotechnical properties and the embedding depth govern the extent of groundwater inflows into underground openings.

Zhang et al.27

In stratified rock masses, groundwater inflow (also called groundwater flowing) into tunnels is ordinarily a challenge for designers, builders and personnel maintenance, can generate further floods and other problems.

Table 1 Definitions and Descriptions of groundwater inflows into tunnels or excavations

Classification of methods for predicting groundwater inflows into rock tunnels

Analysing the literature, methods predicting groundwater inflows into rock tunnels include, up to now, at least analytical, semi-analytical, empirical, semi-empirical, numerical, machine learning, and other methods, as showed in Figure 1.

Figure 1 Classification of Methods for predicting Groundwater inflows into rock Tunnels.

Groundwater inflows triggering and mechanisms into rocks tunnels  

A good understanding of the triggering steps and the mechanism of groundwater inflows into tunnels is very useful for a better evaluation of said inflows. During tunnels excavations, the surrounding rocks endure a complex unloading-loading process.28,29 Thus there is redistribution of the existing stress field. Then, two main zones are formed namely the Excavation Damaged Zone (EDZ), and the Excavation Disturbed Zone (EdZ). EDZ is the zone where surrounding rocks deformations are permanent. In fact, the physical, mechanical, hydraulic and geochemical properties of rocks are considerably altered in the EDZ.30-32  It should also be noted that by excavations, according to the relevant conditions, strain elastic energy can be released;33 and rockbursts could be generated.34,35 When the tunnelling takes place below the groundwater table, the stored groundwater is perturbed. Groundwater inflows into tunnels may constitute a response to this perturbation. Normally, their extent depends on several factors associated with the media subjected to stress generated by the excavations. EDZ is a potential factor facilitating the creation of pathway for groundwater inflows into tunnels.36 In fractured rocks, this facilitation increases due to discontinuities. It remains complex to exactly predict flow-paths. Referring to Lianchong et al.37 stress redistribution may generate reactivation of faults zones, and the permeability of these zones are enhanced. Consequently, pathways between fault and damage zones are created for groundwater inflows. By analysing rocks porosity and permeability, Liu et al.38 simulated a safety thickness (Figure 2) of surrounding rocks below which groundwater inflows can occur into tunnels. According to them, when the safety thickness is lower that 4 or 5 m, groundwater inflow evolution has three stages (slowly, mutation and stable stages).

Figure 2 Safety thickness of the rocks surrounding the tunnels, adapted from Liu et al.38

From the excavation of shallow or deep rock mass, the different steps leading to the Triggering of groundwater inflows into rocks Tunnels could be summarized through Figure 3. The mechanism of groundwater inflows into rock tunnels varies depending on the rock masses properties and the relevant conditions. The magnitude of these inflows into tunnels depends on 4 potential factors namely the hydraulic conductivity, availability of groundwater aquifers and storage, permeability of surrounding rocks, and hydraulic gradient.18 According to Zarei et al.12 lithology and rock solubility and some fractured rocks can increase rock permeability, since they tend to karstification. The features related to the mechanism of groundwater inflows into rock tunnels are presented in Figure 4. The flow mechanism could be described in Figure 5, according to Sharifzadeh et al.39  For tunnels in sedimentary rock masses and taking into account the Tunnel Inflow Classification (TIC) proposed by Zarei et al.12 groundwater inflow mechanism can be described as shown in Figure 6.

Figure 3 Steps leading to the Triggering of Groundwater inflows into rocks Tunnels.

Figure 4 Features related to groundwater inflows into rock tunnels, adapted from Sharifzadeh et al.39

Figure 5 Flow mechanism of groundwater into tunnels with 6 m diameter according to Sharifzadeh et al.39

Figure 6 Description of groundwater inflow mechanism into tunnels, according to Zarei et al.12

Relevant analytical and semi-analytical methods

Over years, analytical and semi-analytical methods are widely used to predict groundwater inflows into rock tunnels and into various underground openings. Assumptions and conditions are usually taken into account when establishing analytical and semi-analytical equations. Figure 7 illustrates a circular tunnel in a semi-infinite rock mass with horizontal water table according to Hassani et al.40 Its description is habitually used for almost all the aforementioned methods. The main equations resulting from these methods are presented in Table 2.

Figure 7 Illustration of circular tunnel in a semi-infinite rock mass with horizontal water table, adapted from.40

Governing equations and parameters

Applicability

Remarks

Researchers

Q=β 2π K 3 h w ln( r 2 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iabek7aInaalaaapaqaa8qacaaIYaGaeqiWdaNa am4sa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaWGObWdamaaBa aaleaapeGaam4DaaWdaeqaaaGcbaWdbiGacYgacaGGUbWaaeWaa8aa baWdbmaalaaapaqaa8qacaWGYbWdamaaBaaaleaapeGaaGOmaaWdae qaaaGcbaWdbiaadkhapaWaaSbaaSqaa8qacaaIZaaapaqabaaaaaGc peGaayjkaiaawMcaaaaaaaa@49BC@
β= ln( r 2 r 3 ) ( k 3 k )ln R 0s + k 3 k 1 ln( r 1 R )+( k 3 k 2 )ln( R r 2 )+ln( r 2 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0ZaaSaaa8aabaWdbiGacYgacaGGUbWaaeWaa8aa baWdbmaaliaapaqaa8qacaWGYbWdamaaBaaaleaapeGaaGOmaaWdae qaaaGcbaWdbiaadkhapaWaaSbaaSqaa8qacaaIZaaapaqabaaaaaGc peGaayjkaiaawMcaaaWdaeaapeGaeyOeI0YaaeWaa8aabaWdbmaali aapaqaa8qacaWGRbWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWd biaadUgaaaaacaGLOaGaayzkaaGaamiBaiaad6gacaWGsbWdamaaBa aaleaapeGaaGimaiaadohaa8aabeaak8qacqGHRaWkdaWccaWdaeaa peGaam4Aa8aadaWgaaWcbaWdbiaaiodaa8aabeaaaOqaa8qacaWGRb WdamaaBaaaleaapeGaaGymaaWdaeqaaaaak8qaciGGSbGaaiOBamaa bmaapaqaa8qadaWccaWdaeaapeGaamOCa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOqaa8qacaWGsbaaaaGaayjkaiaawMcaaiabgUcaRmaa bmaapaqaa8qadaWccaWdaeaapeGaam4Aa8aadaWgaaWcbaWdbiaaio daa8aabeaaaOqaa8qacaWGRbWdamaaBaaaleaapeGaaGOmaaWdaeqa aaaaaOWdbiaawIcacaGLPaaaciGGSbGaaiOBamaabmaapaqaa8qada WccaWdaeaapeGaamOuaaWdaeaapeGaamOCa8aadaWgaaWcbaWdbiaa ikdaa8aabeaaaaaak8qacaGLOaGaayzkaaGaey4kaSIaciiBaiaac6 gadaqadaWdaeaapeWaaSGaa8aabaWdbiaadkhapaWaaSbaaSqaa8qa caaIYaaapaqabaaakeaapeGaamOCa8aadaWgaaWcbaWdbiaaiodaa8 aabeaaaaaak8qacaGLOaGaayzkaaaaaaaa@6FB9@

Deep circular tunnels with grouting and lining support. Karst media. Darcy flow

Equations based on Conformal Mapping Technique

Jiang et al.41

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow per unit length; β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38CF@ , Reduction coefficient of lining; h w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaam4Daaqabaaaaa@3923@ : water head; r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGymaaqabaaaaa@38EC@  grouting circle’s radius; r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGOmaaqabaaaaa@38ED@ radius of initial support; r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaG4maaqabaaaaa@38EE@ : secondary lining’s radius; k 1 , k 2 , k 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGymaaqabaGccaGGSaGaam4AamaaBaaaleaacaaIYaaabeaa kiaacYcacaWGRbWaaSbaaSqaaiaaiodaaeqaaaaa@3E0A@ : respectively permeability coefficient of grouting circle, initial support and secondary lining;   R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfaaaa@37E5@ : Tunnel’s radius.

Q= 2π h 0 K 1 ln( r 1 r 0 )+ K 1 K 2 ln( r 2 r 1 )+ K 1 K 3 ln( h 0 r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9maalaaapaqaa8qacaaIYaGaeqiWdaNaamiAa8aa daWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGlbWdamaaBaaaleaape GaaGymaaWdaeqaaaGcbaWdbiGacYgacaGGUbWaaeWaa8aabaWdbmaa laaapaqaa8qacaWGYbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcba WdbiaadkhapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaaGcpeGaayjk aiaawMcaaiabgUcaRmaalaaapaqaa8qacaWGlbWdamaaBaaaleaape GaaGymaaWdaeqaaaGcbaWdbiaadUeapaWaaSbaaSqaa8qacaaIYaaa paqabaaaaOWdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8 qacaWGYbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaadkha paWaaSbaaSqaa8qacaaIXaaapaqabaaaaaGcpeGaayjkaiaawMcaai abgUcaRmaalaaapaqaa8qacaWGlbWdamaaBaaaleaapeGaaGymaaWd aeqaaaGcbaWdbiaadUeapaWaaSbaaSqaa8qacaaIZaaapaqabaaaaO WdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGObWd amaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiaadkhapaWaaSbaaS qaa8qacaaIYaaapaqabaaaaaGcpeGaayjkaiaawMcaaaaaaaa@61F9@

Deep circular tunnels with lining and grouting. Homogeneous media. Darcy flow

Different grouting ring thickness considered for treatment

Xu et al.42

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow into tunnels ( m 3 /s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yBamaaCaaaleqabaGaaG4maaaakiaac+cacaWGZbaacaGLOaGaayzk aaaaaa@3C29@ : boundary head of the lining; h o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaam4Baaqabaaaaa@391C@ : Tunnel diameter;   r o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaam4Baaqabaaaaa@3926@ : lining diameter; r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGymaaqabaaaaa@38EC@ : outer diameter of the grouting ring; r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGOmaaqabaaaaa@38ED@ : respectively equivalent hydraulic conductivity of lining; k 1 , k 2 , k 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGymaaqabaGccaGGSaGaam4AamaaBaaaleaacaaIYaaabeaa kiaacYcacaWGRbWaaSbaaSqaaiaaiodaaeqaaaaa@3E0A@ Hydraulic conductivity of the grouting area; hydraulic conductivity of surrounding rock.

Q= 2π h w k s π e αD 0 π e αrcosθ dθ ln( 2h r j )+ k s k j ln( r j r l )+ k s k l ln( r l r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9maalaaapaqaa8qacaaIYaGaeqiWdaNaamiAa8aa daWgaaWcbaWdbiaadEhaa8aabeaak8qacaWGRbWdamaaBaaaleaape Gaam4CaaWdaeqaaaGcbaWdbmaalaaapaqaa8qacqaHapaCa8aabaWd biaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaeqySdeMaamiraaaakm aavadabeWcpaqaa8qacaaIWaaapaqaa8qacqaHapaCa0WdaeaapeGa ey4kIipaaOGaamyza8aadaahaaWcbeqaa8qacqaHXoqycaWGYbGaam 4yaiaad+gacaWGZbGaeqiUdehaaOGaamizaiabeI7aXbaaciGGSbGa aiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaaGOmaiaadIgaa8aaba WdbiaadkhapaWaaSbaaSqaa8qacaWGQbaapaqabaaaaaGcpeGaayjk aiaawMcaaiabgUcaRmaalaaapaqaa8qacaWGRbWdamaaBaaaleaape Gaam4CaaWdaeqaaaGcbaWdbiaadUgapaWaaSbaaSqaa8qacaWGQbaa paqabaaaaOWdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8 qacaWGYbWdamaaBaaaleaapeGaamOAaaWdaeqaaaGcbaWdbiaadkha paWaaSbaaSqaa8qacaWGSbaapaqabaaaaaGcpeGaayjkaiaawMcaai abgUcaRmaalaaapaqaa8qacaWGRbWdamaaBaaaleaapeGaam4CaaWd aeqaaaGcbaWdbiaadUgapaWaaSbaaSqaa8qacaWGSbaapaqabaaaaO WdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGYbWd amaaBaaaleaapeGaamiBaaWdaeqaaaGcbaWdbiaadkhapaWaaSbaaS qaa8qacaaIWaaapaqabaaaaaGcpeGaayjkaiaawMcaaaaaaaa@7B25@

Circular tunnels with grouting and lining. Heterogeneous and isotropic rocky media. Darcy flow

Hydraulic conductivity of the grouting is nonlinear. Grouting and lining are Homogeneous and isotropic.

Cheng et al.43

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow per unit length ( m 3 d 1 m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yBamaaCaaaleqabaGaaG4maaaakiaadsgadaahaaWcbeqaaiabgkHi TiaaigdaaaGccaWGTbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcca GLOaGaayzkaaaaaa@4017@ ; α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AE@ : reduction coefficient ( m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yBamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaaaa @3B69@ ; D; Center line tunnel depth; k s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaam4Caaqabaaaaa@3923@ : hydraulic conductivity at D=0; k j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamOAaaqabaaaaa@391A@ : hydraulic conductivity of the grouting; k l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamiBaaqabaaaaa@391C@ : hydraulic head of the grouting; θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C5@ : angle between lengthwise axis and the tunnel radius; r j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaamOAaaqabaaaaa@3920@ : grouting outer radius; r l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaamiBaaqabaaaaa@3922@ : lining outer radius; r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGimaaqabaaaaa@38EB@ : lining inner radius; h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgaaaa@37FB@ : groundwater head; h w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaam4Daaqabaaaaa@3923@ : groundwater table at early stage of investigation.

Q=( a F ( J1 )×C( J1 )×sin( α J1 ) 1000 S J1 + a F ( J2 )×C( J2 )×sin( α J2 ) 1000 S J2 + + a F ( J3 )×C( J3 )×sin( α J3 ) 1000 S Jn )kh L e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9maabmaapaqaauaabeqaeeaaaaqaa8qadaWcaaWd aeaapeGaamyya8aadaWgaaWcbaWdbiaadAeaa8aabeaak8qadaqada WdaeaapeGaamOsaiaaigdaaiaawIcacaGLPaaacqGHxdaTcaWGdbWa aeWaa8aabaWdbiaadQeacaaIXaaacaGLOaGaayzkaaGaey41aqRaci 4CaiaacMgacaGGUbWaaeWaa8aabaWdbiabeg7aH9aadaWgaaWcbaWd biaadQeacaaIXaaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qaca aIXaGaaGimaiaaicdacaaIWaGaam4ua8aadaWgaaWcbaWdbiaadQea caaIXaaapaqabaaaaOWdbiabgUcaRaWdaeaapeWaaSaaa8aabaWdbi aadggapaWaaSbaaSqaa8qacaWGgbaapaqabaGcpeWaaeWaa8aabaWd biaadQeacaaIYaaacaGLOaGaayzkaaGaey41aqRaam4qamaabmaapa qaa8qacaWGkbGaaGOmaaGaayjkaiaawMcaaiabgEna0kGacohacaGG PbGaaiOBamaabmaapaqaa8qacqaHXoqypaWaaSbaaSqaa8qacaWGkb GaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaaWdaeaapeGaaGymaiaa icdacaaIWaGaaGimaiaadofapaWaaSbaaSqaa8qacaWGkbGaaGOmaa Wdaeqaaaaak8qacqGHRaWka8aabaWdbiabgAci8kabgUcaRaWdaeaa peWaaSaaa8aabaWdbiaadggapaWaaSbaaSqaa8qacaWGgbaapaqaba GcpeWaaeWaa8aabaWdbiaadQeacaaIZaaacaGLOaGaayzkaaGaey41 aqRaam4qamaabmaapaqaa8qacaWGkbGaaG4maaGaayjkaiaawMcaai abgEna0kaadohacaWGPbGaamOBamaabmaapaqaa8qacqaHXoqypaWa aSbaaSqaa8qacaWGkbGaaG4maaWdaeqaaaGcpeGaayjkaiaawMcaaa WdaeaapeGaaGymaiaaicdacaaIWaGaaGimaiaadofapaWaaSbaaSqa a8qacaWGkbGaamOBaaWdaeqaaaaaaaaak8qacaGLOaGaayzkaaGaam 4AaiaadIgacaWGmbWdamaaBaaaleaapeGaamyzaaWdaeqaaaaa@9685@

Deep circular tunnel. Jointed rocks media. Darcy flow

Geological and Hydraulic parameters, as well as tunnel properties are required. The equations are derived from the Groundwater Seepage Rating (SGR).

Maleki25

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : Effective groundwater inflow into tunnel ( m 3 d 1 m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yBamaaCaaaleqabaGaaG4maaaakiaadsgadaahaaWcbeqaaiabgkHi TiaaigdaaaGccaWGTbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcca GLOaGaayzkaaaaaa@4017@ ;: joints aperture (mm); α J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaamOsaaWdaeqaaaaa@39F7@ : joint aperture surface m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaaIYaaaaaaa@3929@ ; C( J ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWGkbaacaGLOaGaayzkaaaaaa@3A6E@ Shape perimeter from joint strike intersection and tunnel axis (m); S( J ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWGkbaacaGLOaGaayzkaaaaaa@3A7E@ : joints spacing (m); h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaaaa@381C@ : water head (m); J 1 ..., J 2 , J n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaWgaaWcbaWdbiaaigdaa8aabeaakiaac6cacaGGUaGa aiOlaiaacYcacaWGkbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadQ eadaWgaaWcbaGaamOBaaqabaaaaa@4042@ : joints sets. k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ : hydraulic conductivity (m/s); L e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@3944@ : effective discharge length (m).

 

Circular lined Tunnel. Homogeneous media. Isotropic permeability. Constant water table. Darcy flow

Semi-analytical equations derived from Conformal mapping and Fourier series

Ying et al.44

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : Groundwater inflow into tunnel ( m 3 d 1 m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yBamaaCaaaleqabaGaaG4maaaakiaadsgadaahaaWcbeqaaiabgkHi TiaaigdaaaGccaWGTbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcca GLOaGaayzkaaaaaa@4017@ ; k s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaam4Caaqabaaaaa@3923@ : aquifer permeability coefficient (m/s); C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaGaaGymaaqabaaaaa@38BE@ : parameter derived from conformal mapping and Fourier series.

Q=2πk 0.3( r h ) 0.014r0.22 h  ln 2h r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGRbWaaSaaa8aabaWdbmaa biaapaqaa8qacaaIWaGaaiOlaiaaiodadaqabaWdaeaapeWaaSaaa8 aabaWdbiaadkhaa8aabaWdbiaadIgaaaaacaGLOaaaaiaawMcaa8aa daahaaWcbeqaa8qacqGHsislcaaIWaGaaiOlaiaaicdacaaIXaGaaG inaiaadkhacqGHsislcaaIWaGaaiOlaiaaikdacaaIYaaaaOGaamiA aiaacckaa8aabaWdbiaadYgacaWGUbWaaSaaa8aabaWdbiaaikdaca WGObaapaqaa8qacaWGYbaaaaaaaaa@5376@

Circular tunnel, Homogeneous media.

Consideration on the effects of excavation- induced drawdown.

Su et al.2

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow into tunnel (L/min/m); k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ : hydraulic conductivity; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaaaa@381C@ : initial piezometric head above the tunnel center;   r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : radius of tunnel.

Isotropic permeability. Darcy flow

 

 
Q= a 2π ln r 2h 1 2π ( aln r 2h ) 2 4bh( ln2h 2h lnr r ) b 2 π 2 ( ln2h 2h lnr r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9maalaaapaqaa8qacqGHsisldaWcaaWdaeaapeGa amyyaaWdaeaapeGaaGOmaiabec8aWbaacaWGSbGaamOBamaalaaapa qaa8qacaWGYbaapaqaa8qacaaIYaGaamiAaaaacqGHsisldaWcaaWd aeaapeGaaGymaaWdaeaapeGaaGOmaiabec8aWbaadaGcaaWdaeaape Waaeqaa8aabaWdbiaadggacaWGSbGaamOBamaabiaapaqaa8qadaWc aaWdaeaapeGaamOCaaWdaeaapeGaaGOmaiaadIgaaaaacaGLPaaaai aawIcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGinaiaa dkgacaWGObWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGSbGaamOBai aaikdacaWGObaapaqaa8qacaaIYaGaamiAaaaacqGHsisldaWcaaWd aeaapeGaamiBaiaad6gacaWGYbaapaqaa8qacaWGYbaaaaGaayjkai aawMcaaaWcbeaaaOWdaeaapeWaaSaaa8aabaWdbiaadkgaa8aabaWd biaaikdacqaHapaCpaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaqada WdaeaapeWaaSaaa8aabaWdbiaadYgacaWGUbGaaGOmaiaadIgaa8aa baWdbiaaikdacaWGObaaaiabgkHiTmaalaaapaqaa8qacaWGSbGaam OBaiaadkhaa8aabaWdbiaadkhaaaaacaGLOaGaayzkaaaaaaaa@70BF@

Circular tunnel, homogeneous media. Non-Darcy flow

Atkinson equations are used to determine the experimental constants a, b.

Joo & Shin45

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow into tunnel; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : Tunnel radius; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaaaa@381C@ : initial piezometric head above the tunnel center; a,b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacaGGSa GaamOyaaaa@398B@ : parameters

Q=k( S+C )H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaadUgadaqadaWdaeaapeGaam4uaiabgUcaRiaa doeaaiaawIcacaGLPaaacaWGibaaaa@3EF2@

Deep Horseshoe Tunnels and Cavern (subsea). Homogeneous and isotropic rocky media. Darcy flow.

Semi-analytical equations. Mass conservation is considered.

Xu et al.46

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : Groundwater flow into tunnel; S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofaaaa@37E7@ : coefficient linked to the shape and depth of tunnel; C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeaaaa@37D7@ : another coefficient linked to the shape and depth; k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ : hydraulic conductivity; H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeaaaa@37DC@ : Water head at the upper limit.

Q=2πK e 2bh a I 0 ( br ) I 0 ( ( b+a γ w )r ) e a γ w h K 0 ( br ) I 0 ( br ) K 0 ( 2bh ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGlbWaaSaaa8aabaWdbiaa dwgapaWaaWbaaSqabeaapeGaeyOeI0IaaGOmaiaadkgacaWGObaaaa Gcpaqaa8qacaWGHbaaamaalaaapaqaa8qacaWGjbWdamaaBaaaleaa peGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaWGIbGaamOCaaGaay jkaiaawMcaaiabgkHiTiaadMeapaWaaSbaaSqaa8qacaaIWaaapaqa baGcpeWaaeWaa8aabaWdbmaabmaapaqaa8qacaWGIbGaey4kaSIaam yyaiabeo7aN9aadaWgaaWcbaWdbiaadEhaa8aabeaaaOWdbiaawIca caGLPaaacaWGYbaacaGLOaGaayzkaaGaamyza8aadaahaaWcbeqaa8 qacqGHsislcaWGHbGaeq4SdC2damaaBaaameaapeGaam4DaaWdaeqa aSWdbiaadIgaaaaak8aabaWdbiaadUeapaWaaSbaaSqaa8qacaaIWa aapaqabaGcpeWaaeWaa8aabaWdbiaadkgacaWGYbaacaGLOaGaayzk aaGaeyOeI0Iaamysa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qada qadaWdaeaapeGaamOyaiaadkhaaiaawIcacaGLPaaacaWGlbWdamaa BaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacaaIYaGaam OyaiaadIgaaiaawIcacaGLPaaaaaaaaa@6E4D@

Circular tunnels. Heterogeneous media with different behaviors. Darcy flow

Transient consolidation is considered. Integral solution technique is employed.

El Tani47

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow into tunnel, k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ : hydraulic conductivity; a,b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacaGGSa GaamOyaaaa@398B@ : constant parameter; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaaaa@381C@ : piezometric head above the tunnel centre; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius; γ w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2damaaBaaaleaapeGaam4DaaWdaeqaaaaa@3A2C@ : specific water height; K 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3913@ : modified Bessel function for the 2nd kind of order zero; I 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3911@ : modified Bessel function for the 1st kind of order zero.

Q= 2πK( H h a ) log h 1 + h 1 2 r 2 r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9maalaaapaqaa8qacaaIYaGaeqiWdaNaam4samaa bmaapaqaa8qacaWGibGaeyOeI0IaamiAa8aadaWgaaWcbaWdbiaadg gaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiaadYgacaWGVbGa am4zamaalaaapaqaa8qacaWGObWdamaaBaaaleaapeGaaGymaaWdae qaaOWdbiabgUcaRmaakaaapaqaa8qacaWGObWdamaaDaaaleaapeGa aGymaaWdaeaapeGaaGOmaaaakiabgkHiTiaadkhapaWaaWbaaSqabe aapeGaaGOmaaaaaeqaaaGcpaqaa8qacaWGYbaaaaaaaaa@4F5D@

Circular deep and shallow tunnels, homogeneous media. Isotropic permeability. Darcy flow

Conformal mapping Technique is the basis of this equation. Water table is constant.

Kolymbas & Wagner48

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : Groundwater inflow per m of tunnel length; k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ : Isotropic permeability coefficient; h 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaaaaa@38E3@ : piezometric head above the tunnel center; h α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaeqySdegabeaaaaa@39C7@ : energy head of the tunnel drained perimeter; H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeaaaa@37DC@ : distance from the ground surface and the head of water table; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius.

Q=2π i=1 N h( t t i )× 0 υ( t t i ) K i s i H( L i x ) ln[ 1+ π K i S i r i 2 ( t t i x υ i ) ] dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCdaGfWbqabSWdaeaapeGaamyA aiabg2da9iaaigdaa8aabaWdbiaad6eaa0WdaeaapeGaeyyeIuoaaO GaamiAamaabmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWc baWdbiaadMgaa8aabeaaaOWdbiaawIcacaGLPaaacqGHxdaTdaGfWb qabSWdaeaapeGaaGimaaWdaeaapeGaeqyXdu3aaeWaa8aabaWdbiaa dshacqGHsislcaWG0bWdamaaBaaameaapeGaamyAaaWdaeqaaaWcpe GaayjkaiaawMcaaaqdpaqaa8qacqGHRiI8aaGcdaWcaaWdaeaapeGa am4sa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaWGZbWdamaaBa aaleaapeGaamyAaaWdaeqaaOWdbiaadIeadaqadaWdaeaapeGaamit a8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHsislcaWG4baaca GLOaGaayzkaaaapaqaa8qaciGGSbGaaiOBamaadmaapaqaa8qacaaI XaGaey4kaSYaaOaaa8aabaWdbmaalaaapaqaa8qacqaHapaCcaWGlb WdamaaBaaaleaapeGaamyAaaWdaeqaaaGcbaWdbiaadofapaWaaSba aSqaa8qacaWGPbaapaqabaGcpeGaamOCa8aadaqhaaWcbaWdbiaadM gaa8aabaWdbiaaikdaaaaaaaqabaGcdaqadaWdaeaapeGaamiDaiab gkHiTiaadshapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyOeI0 YaaSaaa8aabaWdbiaadIhaa8aabaWdbiabew8a19aadaWgaaWcbaWd biaadMgaa8aabeaaaaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaa aaaiaadsgacaWG4baaaa@7DB3@

Drilled tunnel, heterogeneous media. Transient flow. Non-Darcy flow

Equations derived by convolution and superposition principles. Consecutive sectors are considered.

Perrochet & Dematteis49

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : Total groundwater inflow into tunnel (L/s); r i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@396E@ : tunnel radius; H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeaaaa@37DC@ : Heaviside step-function ( H( u )=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG1baacaGLOaGaayzkaaGaeyypa0Ja aGymaaaa@3C5F@ if u>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabg6da+iaaicdaaaa@39EB@ ; H( u )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG1baacaGLOaGaayzkaaGaeyypa0Ja aGimaaaa@3C5E@ ,if: u<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabgYda8iaaicdaaaa@39E7@ ) drilling speed; υ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyXdu3damaaBaaaleaapeGaamyAaaWdaeqaaaaa@3A3E@ : drilled speed at sector: i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381D@ ; t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaaaa@3828@  time; t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3970@ : time of sector: i;x: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaacUdacaWG4bGaaiOoaaaa@3A96@ coordinate along the tunnel axis; K i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3947@ : hydraulic conductivity; S i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@394F@ : Specific storage coefficient; S i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@394F@ : Thickness of saturated zone; L i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3948@ : length at a sector

Q={ F( α ) L α d ,                                   α< α d F( α ) L α d F( α α d ) L α d ,  α> α d          MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9maaceaapaqaauaabeqaceaaaeaapeWaaSaaa8aa baWdbiaadAeadaqadaWdaeaapeGaeqySdegacaGLOaGaayzkaaaapa qaa8qacaWGmbWdamaaBaaaleaapeGaeqySde2damaaBaaameaapeGa amizaaWdaeqaaaWcbeaaaaGcpeGaaiilaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaeq ySdeMaeyipaWJaeqySde2damaaBaaaleaapeGaamizaaWdaeqaaaGc baWdbmaalaaapaqaa8qacaWGgbWaaeWaa8aabaWdbiabeg7aHbGaay jkaiaawMcaaaWdaeaapeGaamita8aadaWgaaWcbaWdbiabeg7aH9aa daWgaaadbaWdbiaadsgaa8aabeaaaSqabaaaaOWdbiabgkHiTmaala aapaqaa8qacaWGgbWaaeWaa8aabaWdbiabeg7aHjabgkHiTiabeg7a H9aadaWgaaWcbaWdbiaadsgaa8aabeaaaOWdbiaawIcacaGLPaaaa8 aabaWdbiaadYeapaWaaSbaaSqaa8qacqaHXoqypaWaaSbaaWqaa8qa caWGKbaapaqabaaaleqaaaaak8qacaGGSaGaaiiOaiaacckacqaHXo qycqGH+aGpcqaHXoqypaWaaSbaaSqaa8qacaWGKbaapaqabaGcpeGa aiiOaiaacckacaGGGcaaaaGaay5EaaGaaiiOaiaacckacaGGGcGaai iOaaaa@9785@        F( α )= 2 π ( Ei( 2ln( 1+ πα ) )Ei( ln( 1+ πα ) )ln( 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPaaacqGH9aqp daWcaaWdaeaapeGaaGOmaaWdaeaapeGaeqiWdahaamaabmaapaqaa8 qacaWGfbGaamyAamaabmaapaqaa8qacaaIYaGaciiBaiaac6gadaqa daWdaeaapeGaaGymaiabgUcaRmaakaaapaqaa8qacqaHapaCcqaHXo qyaSqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHsislcaWG fbGaamyAamaabmaapaqaa8qaciGGSbGaaiOBamaabmaapaqaa8qaca aIXaGaey4kaSYaaOaaa8aabaWdbiabec8aWjabeg7aHbWcbeaaaOGa ayjkaiaawMcaaaGaayjkaiaawMcaaiabgkHiTiGacYgacaGGUbWaae Waa8aabaWdbiaaikdaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@5FE6@

Circular tunnels. Homogeneous media. Transient flow is considered. Darcy flow

Progressive drilling excavation. Equations derived by a development of convolution integral.

Perrochet50

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : dimensionless groundwater discharge into tunnel; α d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaamizaaWdaeqaaaaa@3A11@ : dimensionless drilling times; α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CE@ : dimensionless time; Ei MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaadMgaaaa@38E7@ : exponential integral function; L α d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiabeg7aH9aadaWgaaadbaWdbiaadsga a8aabeaaaSqabaaaaa@3B39@ : distance or length measured at a drilling time α d . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaamizaaWdaeqaaOGaaiOlaaaa@3ACD@

Q=2πk λ 2 1 λ 2 +1 h lnλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGRbWaaSaaa8aabaWdbiab eU7aS9aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGymaaWdae aapeGaeq4UdW2damaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaI Xaaaamaalaaapaqaa8qacaWGObaapaqaa8qacaWGSbGaamOBaiabeU 7aSbaaaaa@4A66@   Q=2πk λ 2 1+c ( λ1 ) 2 λ 2 +1 h lnλ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGRbWaaSaaa8aabaWdbiab eU7aS9aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGymaiabgU caRiaadogadaqadaWdaeaapeGaeq4UdWMaeyOeI0IaaGymaaGaayjk aiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqaH7o aBpaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaigdaaaWaaSaa a8aabaWdbiaadIgaa8aabaWdbiaadYgacaWGUbGaeq4UdWgaaaaa@5246@   λ= h r h 2 r 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZaaSaaa8aabaWdbiaadIgaa8aabaWdbiaadkha aaGaeyOeI0YaaOaaa8aabaWdbmaalaaapaqaa8qacaWGObWdamaaCa aaleqabaWdbiaaikdaaaaak8aabaWdbiaadkhapaWaaWbaaSqabeaa peGaaGOmaaaaaaGccqGHsislcaaIXaaaleqaaaaa@4340@

Circular tunnels with lining, homogeneous media. Darcy flow

The first equation is designed without the lining effect. The second takes account of the lining effect.

El Tani51

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow into tunnel ( m 3 . s 1 m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaaiOlaiaadohapaWa aWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaad2gapaWaaWbaaSqabe aapeGaeyOeI0IaaGymaaaaaaa@3FC2@ ): piezometric head above the tunnel centre; k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ : hydraulic conductivity (m/s); r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius (m); λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E3@ : a parameter; c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4yaaaa@3817@ : a proportionality coefficient.

Q=2πKh 13 ( r 2h ) 2   [ 1 ( r 2h ) 2 ]ln 2h r ( r 2h ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGlbGaamiAamaalaaapaqa a8qacaaIXaGaeyOeI0IaaG4mamaabmaapaqaa8qadaWcaaWdaeaape GaamOCaaWdaeaapeGaaGOmaiaadIgaaaaacaGLOaGaayzkaaWdamaa CaaaleqabaWdbiaaikdaaaGccaGGGcaapaqaa8qadaWadaWdaeaape GaaGymaiabgkHiTmaabmaapaqaa8qadaWcaaWdaeaapeGaamOCaaWd aeaapeGaaGOmaiaadIgaaaaacaGLOaGaayzkaaWdamaaCaaaleqaba WdbiaaikdaaaaakiaawUfacaGLDbaacaWGSbGaamOBamaalaaapaqa a8qacaaIYaGaamiAaaWdaeaapeGaamOCaaaacqGHsisldaqadaWdae aapeWaaSaaa8aabaWdbiaadkhaa8aabaWdbiaaikdacaWGObaaaaGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@5B7E@

Square, Elliptical or Circular tunnels. Varied hydraulic conductivity. Darcy flow.

Fourier series is the basis of this equation

El Tani52

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow into tunnel; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgaaaa@37FC@ : depth from the tunnel’s center line and the water head; k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ : hydraulic conductivity; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius.

Q=2πK h ln[ h r + h 2 r 2 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGlbWaaSaaa8aabaWdbiaa dIgaa8aabaWdbiGacYgacaGGUbWaamWaa8aabaWdbmaalaaapaqaa8 qacaWGObaapaqaa8qacaWGYbaaaiabgUcaRmaakaaapaqaa8qadaWc aaWdaeaapeGaamiAa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8 qacaWGYbWdamaaCaaaleqabaWdbiaaikdaaaaaaaqabaGccqGHsisl caaIXaaacaGLBbGaayzxaaaaaaaa@4AC5@

Circular tunnels, homogeneous media. Darcy flow

Total constant water head around the tunnel is considered.

Lei53

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : Tunnel inflow per unit length; K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@37FF@ : hydraulic conductivity of the media; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgaaaa@37FC@ : depth from the tunnel’s center line and the water head.

Q= 2πKexp[ ( A+ a 1 )L ][ exp( a 1 h )1 ] a 1 [ K 0 ( A 4 d ) K 0 ( AL ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9maalaaapaqaa8qacaaIYaGaeqiWdaNaam4saiaa dwgacaWG4bGaamiCamaadmaapaqaa8qacqGHsisldaqadaWdaeaape GaamyqaiabgUcaRiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaaa k8qacaGLOaGaayzkaaGaamitaaGaay5waiaaw2faamaadmaapaqaa8 qaciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaamyya8aadaWgaaWc baWdbiaaigdaa8aabeaak8qacaWGObaacaGLOaGaayzkaaGaeyOeI0 IaaGymaaGaay5waiaaw2faaaWdaeaapeGaamyya8aadaWgaaWcbaWd biaaigdaa8aabeaak8qadaWadaWdaeaapeGaam4sa8aadaWgaaWcba Wdbiaaicdaa8aabeaak8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaa dgeaa8aabaWdbiaaisdaaaGaamizaaGaayjkaiaawMcaaiabgkHiTi aadUeapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWd biaadgeacaWGmbaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaaa@64A1@

Deep circular tunnel. Heterogeneous media. Hydraulic conductivity gradient varied with depth. Darcy flow

Equation derived from mirror method

Zhang and Franklin54

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : groundwater inflow into tunnel; K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@37FF@ : constant hydraulic conductivity; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgaaaa@37FC@ : depth from the tunnel’s center line and the water head; a 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@392A@ : coefficient related to water pressure; A: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyqaiaacQdaaaa@38B3@  hydraulic conductivity gradient; : Function of Bessel; K 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3913@ : rock cover.

Q=2πK h ln( 2h r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGlbWaaSaaa8aabaWdbiaa dIgaa8aabaWdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8 qacaaIYaGaamiAaaWdaeaapeGaamOCaaaaaiaawIcacaGLPaaaaaaa aa@4409@

Deep Circular tunnel. Homogeneous media. Darcy flow

Mirror method used. Inflow increase slowly with increasing of tunnel diameter

Goodman et al.55

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfaaaa@37E5@ : Groundwater inflow per unit length; K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@37FF@ : hydraulic conductivity; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgaaaa@37FC@ : depth from the tunnel’s center line and the water head.

Table 2 Summary of the salient analytical and semi-analytical equations proposed by different authors

Relevant empirical and semi-empirical methods  

Semi-empirical and empirical methods are mostly established for specific situations where the conditions and the estimates of the considered parameters tend to reflect reality to acceptable extent. As a result, they have the features of providing more convenient results than analytical and semi-analytical methods in same situations and under same conditions. They sometimes derive from adaptation or correction of selected analytical method, or from curves interpolations. However, their effectiveness is questionable in some cases. Ordinarily, they are used at the beginning stage of projects for technical feasibility and relevant preludial design. For example, as tunnels excavation in dry conditions is always preferable for safety and economic reasons, dewatering systems are used as much as possible. But the success in these systems depends on the degree of precision of the methods employed to estimate groundwater inflows into tunnel. For quick estimates, empirical or semi-empirical methods, even analytical methods could be employed. The main equations resulting from empirical and semi-empirical methods are presented in Table 3

Governing Equations and Parameters

Applicability

Remarks

Researchers

Q= 2πh ln( 2h r  ) . γ μ [ A 1 s . ( k ) α ( b+sinθ ).( φ 2π +c ). ( e i ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9maalaaapaqaa8qacaaIYaGaeqiWdaNaamiAaaWd aeaapeGaciiBaiaac6gadaqadaWdaeaapeWaaSaaa8aabaWdbiaaik dacaWGObaapaqaa8qacaWGYbGaaiiOaaaaaiaawIcacaGLPaaaaaGa aiOlamaalaaapaqaa8qacqaHZoWza8aabaWdbiabeY7aTbaadaWada WdaeaapeGaamyqamaalaaapaqaa8qacaaIXaaapaqaa8qacaWGZbaa aiaac6cadaqadaWdaeaapeGaam4AaaGaayjkaiaawMcaa8aadaahaa Wcbeqaa8qacqaHXoqyaaGcdaqadaWdaeaapeGaamOyaiabgUcaRiaa dohacaWGPbGaamOBaiabeI7aXbGaayjkaiaawMcaaiaac6cadaqada WdaeaapeWaaSaaa8aabaWdbiabeA8aQbWdaeaapeGaaGOmaiabec8a WbaacqGHRaWkcaWGJbaacaGLOaGaayzkaaGaaiOlamaabmaapaqaa8 qacaWGLbWdamaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaa wMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLBbGaayzxaaaaaa@6931@

Underground openings; Fractured rocks

Non-Darcy flow

Consideration on Effects of hydro-mechanical coupling process.

Wang et al.26

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaaaa@3805@ : groundwater inflow rate ( m 3 /s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaai4laiaadohaaaa@3ADF@ ); H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeaaaa@37DC@ : depth from the opening’s center line and the groundwater head; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : radius of the opening; s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Caaaa@3827@ : spacing of fractures; K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@37FF@ : coefficient of lateral stress; θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E5@ : angle between utmost principal stress and major permeable direction; φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOXdOgaaa@38EC@ : angle of dilation; e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaBaaaleaacaaIXaaabeaaaaa@3900@ : initial equivalent aperture for fractures; A, b, c: associated parameters.

Q=0.004+200πKh( 1.217 ln( 2h r ) 0.741 ln( 2z r ) + 0.739r ( lnz ) 2   ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaicdacaGGUaGaaGimaiaaicdacaaI0aGaey4k aSIaaGOmaiaaicdacaaIWaGaeqiWdaNaam4saiaadIgadaqadaWdae aapeWaaSaaa8aabaWdbiaaigdacaGGUaGaaGOmaiaaigdacaaI3aaa paqaa8qaciGGSbGaaiOBamaabmaapaqaa8qadaWcaaWdaeaapeGaaG OmaiaadIgaa8aabaWdbiaadkhaaaaacaGLOaGaayzkaaaaaiabgkHi Tmaalaaapaqaa8qacaaIWaGaaiOlaiaaiEdacaaI0aGaaGymaaWdae aapeGaciiBaiaac6gadaqadaWdaeaapeWaaSaaa8aabaWdbiaaikda caWG6baapaqaa8qacaWGYbaaaaGaayjkaiaawMcaaaaacqGHRaWkda WcaaWdaeaapeGaaGimaiaac6cacaaI3aGaaG4maiaaiMdacaWGYbaa paqaa8qadaqabaWdaeaapeWaaeGaa8aabaWdbiaadYgacaWGUbGaam OEaaGaayzkaaaacaGLOaaapaWaaWbaaSqabeaapeGaaGOmaaaakiaa cckaaaaacaGLOaGaayzkaaaaaa@6770@

Circular tunnels, rocky media with tuff, limestone and sandstone layers. K[ 5× 10 8 ;2.36× 10 6 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabgIGiopaadmaapaqaa8qacaaI1aGaey41aqRaaGymaiaa icdapaWaaWbaaSqabeaapeGaeyOeI0IaaGioaaaakiaacUdacaaIYa GaaiOlaiaaiodacaaI2aGaey41aqRaaGymaiaaicdapaWaaWbaaSqa beaapeGaeyOeI0IaaGOnaaaaaOGaay5waiaaw2faaaaa@4B1D@
m/s;r [ 2.3 m;2.8 m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiaac+cacaWGZbGaai4oaiaadkhacaGGGcGaeyicI48aamWa a8aabaWdbiaaikdacaGGUaGaaG4maiaacckacaWGTbGaai4oaiaaik dacaGGUaGaaGioaiaacckacaWGTbaacaGLBbGaayzxaaaaaa@4981@

Laminar flow regime for groundwater.

Equation derived by multiple regression Analysis and stepwise algorithm.

Hadi & Homayoon24

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaaaa@3805@ : Groundwater inflow into tunnel ( L/s/m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitaiaac+cacaWGZbGaai4laiaad2gaaaa@3B50@ ); K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@37FF@ : hydraulic conductivity (m/s); r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : Tunnel radius (m); z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaaaa@382E@ : overburden (m); h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaaaa@381C@ : water head (m).

 

Q=2π K sim h 2.3log( 2h/r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGlbWdamaaBaaaleaapeGa am4CaiaadMgacaWGTbaapaqabaGcpeWaaSaaa8aabaWdbiaadIgaa8 aabaWdbiaaikdacaGGUaGaaG4maiaabYgacaqGVbGaae4zamaabmaa paqaa8qacaaIYaGaamiAaiaac+cacaWGYbaacaGLOaGaayzkaaaaaa aa@4ACC@
Q= P n 2π K sim h 2.3log( 2h/r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaadcfapaWaaWbaaSqabeaapeGaamOBaaaakiaa ikdacqaHapaCcaWGlbWdamaaBaaaleaapeGaam4CaiaadMgacaWGTb aapaqabaGcpeWaaSaaa8aabaWdbiaadIgaa8aabaWdbiaaikdacaGG UaGaaG4maiaabYgacaqGVbGaae4zamaabmaapaqaa8qacaaIYaGaam iAaiaac+cacaWGYbaacaGLOaGaayzkaaaaaaaa@4CEA@

Circular tunnel with depth lower than 150 m; Laminar flow, Discontinuous media. The first equation is applied to rocky media with fully interconnected networks of joints. The second one for partially interconnected networks of joints.

Correction to Goodman’s equation for fractured rocks with adapted conditions. Considerations on geostructural setting.

Farhadian et al.56

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaaaa@3805@ : groundwater inflow into tunnel ( m 3 /s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaai4laiaadohaaaa@3ADF@ ); K sim MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadohacaWGPbGaamyBaaWdaeqaaaaa @3B31@ : empirical hydraulic conductivity( m/s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiaac+cacaWGZbaaaa@39CC@ ); h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaaaa@381C@ : tunnel depth from the groundwater table (m); r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : Radius of the tunnel (m); n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3822@ : number total of groups. p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaaaa@3824@ : probability of interconnectivity. 

Q=a Q G b ;Q= p n a Q G b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaadggacaWGrbWdamaaDaaaleaapeGaam4raaWd aeaapeGaamOyaaaak8aacaGG7aWdbiaadgfacqGH9aqpcaWGWbWdam aaCaaaleqabaWdbiaad6gaaaGccaWGHbGaamyua8aadaqhaaWcbaWd biaadEeaa8aabaWdbiaadkgaaaaaaa@45C1@
a={ 3.448 F 0.8834  ; F<0.737 3.2411 F 0.6805 ; F0.737 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg2da9maaceaapaqaauaabeqaceaaaeaapeGaaG4maiaa c6cacaaI0aGaaGinaiaaiIdacaWGgbWdamaaCaaaleqabaWdbiaaic dacaGGUaGaaGioaiaaiIdacaaIZaGaaGinaaaakiaacckacaGG7aGa aiiOaiaadAeacqGH8aapcaaIWaGaaiOlaiaaiEdacaaIZaGaaG4naa WdaeaapeGaaG4maiaac6cacaaIYaGaaGinaiaaigdacaaIXaGaamOr a8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaiAdacaaI4aGaaGimai aaiwdaaaGccaGG7aGaaiiOaiaadAeacqGHLjYScaaIWaGaaiOlaiaa iEdacaaIZaGaaG4naaaaaiaawUhaaaaa@5E40@
b=ln3.463 F 0.0342 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaiabg2da9iaadYgacaWGUbGaaG4maiaac6cacaaI0aGaaGOn aiaaiodacaWGgbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGimai aaiodacaaI0aGaaGOmaaaaaaa@441E@   F= i=1 m cos α i m ( K min K max ) 0,5φ   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabg2da9maalaaapaqaa8qadaqfWaqabSWdaeaapeGaamyA aiabg2da9iaaigdaa8aabaWdbiaad2gaa0WdaeaapeGaeyyeIuoaaO Gaam4yaiaad+gacaWGZbGaeqySde2damaaBaaaleaapeGaamyAaaWd aeqaaaGcbaWdbiaad2gaaaWaaeWaa8aabaWdbmaalaaapaqaa8qaca WGlbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaapaqabaaakeaa peGaam4sa8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaa aaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGimaiaacYca caaI1aGaeqOXdOgaaOGaaiiOaaaa@556E@

 

Circular tunnels with medium-depth. Anisotropic media (rock mass with discontinuities). The first equation is applied to totally interconnected-joints networks; the second for partly interconnected-joints networks.

Correction to Goodman’s equation. Considerations on geostructural setting, and on hydraulic conductivity tensor.

Gattinoni & Scesi57

Q: actual groundwater inflow into tunnel ( m 3 /s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaai4laiaadohaaaa@3ADF@ ); Q G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@392B@ : Tunnel inflow in Goodman’s equation m 3 /s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaaIZaaaaOGaai4laiaadohaaaa@3ADF@ ; a, b: empirical coefficients (dimensionless); m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaaaa@3821@ : number of sets of joints; α i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2aaSbaaSqaaiaadMgaaeqaaaaa@39E8@ : dip for the set of discontinuity i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381D@ . ; K min MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaad2gacaWGPbGaamOBaaWdaeqaaaaa @3B2C@ ; K max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3B2E@ : minimum and maximum hydraulic tensor; n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3822@ : empirical coefficient; α=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaeyOeI0IaaGymaaaa@3B7C@  if θ min >45° MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamyBaiaadMgacaWGUbaapaqabaGc peGaeyOpa4JaaGinaiaaiwdacqGHWcaSaaa@409D@ ; α=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaaaa@3A8F@ if ; θ min 45° MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamyBaiaadMgacaWGUbaapaqabaGc peGaeyizImQaaGinaiaaiwdacqGHWcaSaaa@414A@ : probability of interconnectivity.

Q=2πK h ln( 2h r 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGlbWaaSaaa8aabaWdbiaa dIgaa8aabaWdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8 qacaaIYaGaamiAaaWdaeaapeGaamOCaaaacqGHsislcaaIXaaacaGL OaGaayzkaaaaaaaa@45B1@

Circular deep-seated tunnels ( h/r34 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaiaac+cacaWGYbGaeyyzImRaaG4maiabgkHiTiaaisdaaaa@3DF4@ ); Homogeneous media, constant permeability. Darcy flow

Semi-empirical equation. There is no influence of leakage for the water table.

Karlsrud58

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaaaa@3805@ : groundwater inflow into tunnel; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaaaa@381C@ : piezometric head above the tunnel centre; K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@37FF@ : hydraulic conductivity; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius.

Q=2πK h ln( 2h r ) × 1 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaaikdacqaHapaCcaWGlbWaaSaaa8aabaWdbiaa dIgaa8aabaWdbiGacYgacaGGUbWaaeWaa8aabaWdbmaalaaapaqaa8 qacaaIYaGaamiAaaWdaeaapeGaamOCaaaaaiaawIcacaGLPaaaaaGa ey41aq7aaSaaa8aabaWdbiaaigdaa8aabaWdbiaaiIdaaaaaaa@47EB@

Circular tunnels. Homogeneous media.

Darcy flow

Revision of Goodman’s equation by applying there 1/8 as reduction coefficient

Heuer59

Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaaaa@3805@ : Groundwater inflow into tunnel; h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaaaa@381C@ : piezometric head above the tunnel centre; K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@37FF@ : hydraulic conductivity; r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3806@ : tunnel radius.

Table 3 Summary of the salient empirical and semi-empirical equations proposed by different authors

Relevant mathematical models used in numerical methods 

Mathematical models are usually employed in numerical methods when establishing conceptual models that could describe the studied situation, on the basis of geological and hydrogeological conditions. Table 4 presents some relevant of them.

Numerical
model

Specificity and Applicability

Remarks

References

Discrete Fracture Network (DFN)

Real porous media. Large fractures sparsely distributed. Fractures permeability greater than that of rock mass. Simulate groundwater movements in the fractures.

Variable spatial distribution of groundwater flows in the media is considered. Complex modelling. Limited as hydraulic aperture of fractures not fully reached.

Jiang et al.60, Li et al.61

Javadi et al.23

Equivalent Continuous Model (ECM)

Equivalent Porous media, seepage flow through fractured rock. Darcy flow

Very limited due to the non-consideration of the real properties of the media.

Jiang et al.60

Finite Element Method (FEM)

Modelling groundwater inflows into tunnels. Continuous media

Variable geotechnical and hydrogeological conditions

Hassani et al.40

Boundary Element Method (BEM)

Analysis and Description of groundwater flow. Isotropic and anisotropic Porous Media. Darcy flow.

The dimensionality of the studied problem is reduced. Domain problem is changed to boundary problem.

Rasmussen and Yu62

Distinct Element Method (DEM)

Simulation of stress-flow coupling. Hydromechanical properties of discontinuous rocks can be derived by equivalence.

Good representation of fractures in 3D. Direct treatment of the non-linearity behaviour of materials.

Jing63

Table 4 Some relevant mathematical models used in numerical methods

Relevant numerical methods in predicting groundwater flow into tunnels

Numerical methods are currently become potential tools employed in different fields of engineering and scientific research. They are also widely used in the prediction and calculation of groundwater inflows into tunnels built in different rocky media. As already expressed, numerical methods are based on mathematical models describing the characteristics of the concerned media. According to Chiu and Chia,64 one habitually uses numerical methods to predict groundwater inflow into tunnels when hydrological conditions are complexes. In fact, when geological and hydrogeological are complicated enough, numerical methods are often considered to approximate groundwater inflow into tunnels. Table 5 shows the relevant numerical methods employed to this purpose.

Simulation Method

Applicability and Capabilities

Remarks

Reference

FLAC 2D / FLAC 3D

Simulation of groundwater inflows or bursting in subsurface tunnels or mine in homogeneous media. Darcy’s flow regime is adopted.

Hydromechanical properties of tunnels surrounding rocks are required. FLAC can be used alone, or coupled to mechanical modelling for interactions of fluid-media.

Li et al.19; Wu et al.65 Nikakhtar & Zare66

MODFLOW

Prediction of groundwater inflows into shallow and deep Tunnels.

Porous media. Laminar flow

Hydraulic conductivity, Hydraulic head, and others relevant hydrogeological data are needed.

Surinaidu et al.67,68

Golian et al.69

Conduit Flow Process (CFP) and adapted MODFLOW

Simulation of groundwater inflows into Conveyance Tunnels in heterogeneous media. Laminar and Turbulent flow.

Tunnel diameter, Reynolds Number, Permeability, Sinuosity as requirements for the CFB

Gholizadeh et al.70

Rock Failure Process Analysis code (RFPA), 2D

Prediction of groundwater outburst in underground mine. Heterogeneous media and fractured zones. Darcy flow adopted

Geological and hydrogeological features of the areas are required for the analysis. RFPA is based on Finite Element Method (FEM).

Lianchong et al.37

SEEP/W

Simulation of groundwater inflow into tunnels in saturated and unsaturated zones. Confined or unconfined aquifers. Flow regime can be Steady or Transient.

Hydraulic Conductivity and Volumetric Water Content are required.

Hassani et al.40

Universal Distinct Element Code (UDEC), 2D

Computation of groundwater inflows rate in discontinuous media. Laminar flow

Hydraulic head, tunnel radius and joint spacing are required for optimum accuracy.

Farhadian et al.56

COMSOL Multiphysics

Computation of groundwater inflow into tunnels and mines in both saturated and unsaturated discontinuous media. Darcy flow

Hydromechanical properties of surrounding rocks are required.

Li et al.71 Chen et al.72 Xu et al.73

Table 5 Relevant numerical methods employed in predicting groundwater inflows into rock tunnels

Prediction based on machine learning methods

Machine Learning Methods are recently used in predicting or modelling groundwater inflows into tunnels. Table 6 summarizes the salient machine learning method used for this purpose.

Machine Learning methods

Capabilities and Applicability

Remarks

Authors

Gaussian Process Regression (GPR)

Groundwater inflows quantification into tunnels built in heterogeneous media, based on basic evaluation index and the associated criteria. Maximum Performance of inflows: R 2 =0.9956 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI5aGaaGyoaiaaiwdacaaI2aaaaa@3E8F@

No need to consider the relationship between hydrogeological features and water discharge rate. Large amounts of statistical data are required to obtain accurate results.

Li et al.74

Support Vector Machine (SVM)

Prediction of Groundwater inflows into Tunnels built in karst and faults zones. Maximum Performance of inflows: R 2 =0.9767 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI5aGaaG4naiaaiAdacaaI3aaaaa@3E8F@

Relevant Hydrogeological properties of the concerned media, and the depth of tunnels are required.

Li et al.74

Convolutional Neural Network (CNN)

Prediction of groundwater inflow information in rock tunnels face.

Classification of RMR-based groundwater inflow image datasets based, and associated segmentations.

Chen et al.75

BP Neural Network

Prediction of groundwater inrush risk in Karsts Tunnels using relevant factors

Hydrogeological factors and engineering factors could be combined for the prediction.

Yang and Ma76

Artificial Neural Network (ANN)

Prediction of Groundwater inflows into tunnels. Maximum Performance of inflows: R 2 =0.8331 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI4aGaaG4maiaaiodacaaIXaaaaa@3E81@

Relevant Hydrogeological properties of the media, and Tunnels depth are necessary.

Li et al.74

Bayesian Network (BN) & GIS

Water inrush prediction in coal mine located in faults areas. The accuracy of the prediction is about 83.4%.

BN used a graphical network of probabilistic rationale. GIS is coupled to BN for water inrush quantification, and for encroachment analysis. Relevant features of openings are required.

Donglin et al.77

Long short-term memory (LSTM)

Groundwater prediction in tunnels excavated by DB. Performance: R 2 =0.9866 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI5aGaaGioaiaaiAdacaaI2aaaaa@3E8F@

Data: Tunnel depth, groundwater level, Rock Quality Designation, and Water yield property.

Mahmoodzadeh et al.78

Deep Neural Networks (DNN)

Groundwater prediction in tunnels excavated by Drill-and-Blast. Performance: R 2 =0.9815 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI5aGaaGioaiaaigdacaaI1aaaaa@3E89@

Data: Tunnel depth, groundwater level, Rock Quality Designation, and Water yield property.

Mahmoodzadeh et al.78

K-nearest neighbors (KNN)

Groundwater prediction in tunnels excavated by Drill-and-Blast.
Performance: R 2 = 0.7665 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI3aGaaGOnaiaaiAdacaaI1aaaaa@3E8A@

Data: Tunnel depth, groundwater level, Rock Quality Designation, and Water yield property.

Mahmoodzadeh et al.78

Decision Trees (DT)

Groundwater prediction in tunnels executed by DB. Performance: R 2 =0.7210 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI3aGaaGOmaiaaigdacaaIWaaaaa@3E7C@

Data: Tunnel depth, groundwater level, Rock Quality Designation, and Water yield property.

Mahmoodzadeh et al.78

Integrated model (VMD, ORELM, MOGWO)

Groundwater inflows prediction into deep mines. Prediction Performance: R 2 =0.9685 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI5aGaaGOnaiaaiIdacaaI1aaaaa@3E8E@

Procuration of water inflow series by VMD, Prediction of components by ORELM, Optimization by MOGWO.

Chen and Dong79

Hybrid model (HGWO-SVR)

Prediction of water inrush into Karts Tunnels. Transport Tunnels
Model Performance: R 2 =0.99953 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaaGimaiaa c6cacaaI5aGaaGyoaiaaiMdacaaI1aGaaG4maaaa@3F4F@

Appropriated Rainfall data are required. HGWO algorithm optimizes SVR parameters.

Liu et al.80

Table 6 Machine Learning methods used to predict groundwater inflows into rock tunnels

Other Methods and Approaches for forecasting groundwater inflows into rock tunnels

Due to some limitations of the above-mentioned methods in accurately predicting groundwater inflows into tunnels, other methods and approaches are designed and developed over time. Table 7 indicates the most pertinent of them.

Other methods

Applicability and Capabilities

Remarks

Investigator

Lineament
Analysis

Prediction of groundwater inflows into tunnels by detecting water-bearing structures with lineaments. Crystalline bedrock, glacial zones

Method based on Satellite imagery or aerial photographs. Factors like topography, overburden type, bedrock type, and vicinity to surface water, should complete the analysis.

Mabee et al.81

Site Groundwater Rating (SGR)

Prediction of groundwater inflows into tunnels from the values ranges of the SGR factors. There is high risk for groundwater inflow into tunnels when SGR range is 700-1000 and Q > 0.28 L/sec/min. Groundwater inflow is highly probable when SGR >1000. SGR is computed as follows: SGR = [ ( S 1 + S 2 + S 3 + S 4 )+ S 5 ] S 6 S 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbmaabmaapaqaa8qacaWGtbWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiabgUcaRiaadofapaWaaSbaaSqaa8qacaaIYa aapaqabaGcpeGaey4kaSIaam4ua8aadaWgaaWcbaWdbiaaiodaa8aa beaak8qacqGHRaWkcaWGtbWdamaaBaaaleaapeGaaGinaaWdaeqaaa GcpeGaayjkaiaawMcaaiabgUcaRiaadofapaWaaSbaaSqaa8qacaaI 1aaapaqabaaak8qacaGLBbGaayzxaaGaam4ua8aadaWgaaWcbaWdbi aaiAdaa8aabeaak8qacaWGtbWdamaaBaaaleaapeGaaG4naaWdaeqa aaaa@4C9C@

By dividing tunnels into 6 classes, the considered parameters are aperture joints frequency (S1), schistosity (S2), crashed zones (S3), karstification (S4), Soil permeability (S5), water head above the tunnel (S6), and annual precipitation (S7).

Katibeh and Aalianvari82

Random and Systematic variability of Hydraulic Conductivity

Simulation of groundwater inflows rate into tunnels. Heterogeneous media.

Considerations on the alteration trend of hydraulic conductivity with depth. Detailed characterization of the heterogeneous media is required for accurate prediction.

Jiang et al.20

Geological Features Characterization

Assessment of high local groundwater inflow into rock tunnels executed by DB method. Sedimentary rocks. Inflows mainly measured in open fractures, and in fault zones.

Considerations on main geological features such as faults, dykes and open fractures, where more than 90% of groundwater inflows into tunnel can be measured.

Zarei et al.83

TBM

Prediction of groundwater inflows into urban tunnels. Igneous rocks. Utmost inflows found at the contact rock-TBM and the tunnel face. Transient flow.

Identification of permeable zones by TBM. For lined tunnels, remaining seepage could be occurred. Fault zones and dikes mainly considered.

Font-Capó et al.21

Tunnel Inflow Classification
(TIC)

Prediction of groundwater rate from the values ranges of tunnel rating. Factors describing the permeability of sedimentary rocks and the tunnel inflow are considered.

The TIC correlates tunnel class number, tunnel rating, tunnel inflow description and the tunnel inflow rate. Some correspondences are shown on the figure 6.

Zarei et al.12

ASTER Satellite images

Forecasting of high local groundwater inflow into tunnels. Sedimentary rocks.

Analysis of geological features detected by remote sensing surveys. Data are mainly provided by satellite imagery.

Heidari et al.84

Blasting Vibration

Prediction of water inflow in subsea tunnels excavated by DB method. Porous media.

Comparison between initial permeability coefficient and that of under blasting vibration. Mechanical and deformations features of surrounding rocks are considered.

Liu et al.85

Discontinuities zones and Hydrogeology, Key geological features characterization

Assessment of high groundwater inflows into rock tunnels executed by TBM. Hard rocks. Porous media. Anisotropic and heterogeneous permeability. Darcy flow.

Discontinuous zones are considered. Trends of joints sets are identified by utmost rate of water inflows. The greatest groundwater inflows match to the key lineament lines crossing the tunnels route at an angle about

Zabidi et al.11

Superposition Principle

Prediction of water inflows into Subsea tunnels. Confined aquifer.

Hydrogeological data are needed. Considerations are made on seepage field, and water spurting model.

Zhang et al.86

Table 7 Pertinent other methods and approaches for forecasting groundwater inflows into rock tunnels

Time-dependent groundwater inflow into tunnels

At great depth, groundwater inflows can be depicted by two types: temporary inflows and persistent inflows.87 This could be understood that groundwater inflows into tunnels are time-dependent. As simulated by Liu et al.88 below the safety thickness, groundwater inflows into tunnels evolve with time until they are stable. Owing to many complexity of the rock masses, the majority of researchers only considered the steady stage of groundwater to predict groundwater inflows into tunnels. This is one of the reasons that most of existing methods approximate groundwater inflows into tunnels. Liu et al.88 previously studied the time-dependent groundwater inflows into tunnels and shown the associated complexity. They established an analytical method to predict groundwater inflows into tunnels constructed in anisotropic and isotropic aquifers, considering multiple factors such as conductivities, specific storage, permeability, drawdown of groundwater, etc. Logically, a prediction taking into account the time-dependent behavior of groundwater inflows seems fairer.

Discussion

Considerations on analytical, semi-analytical, empirical and semi-empirical methods

The analysed papers highlight various methods and approaches for predicting and calculating of groundwater inflows into tunnels. This paper presents thus the latest advances in methods for evaluating groundwater inflows into tunnels designed and constructed in rocky media. Most of the employed methods and approaches make assumptions which do not fully reflect the real situations of the rocky areas in which tunnels are built.89 This allows the application of Darcy’s law and the establishment of many analytical, semi-analytical, empirical and semi-empirical equations. In reality, in heterogeneous rocky environments, Darcy’s law should not be used. As a result, accurate groundwater inflows into tunnels are not achieved.  In fact, study of groundwater is uncertain in unrealistic conditions or when basing on assumptions like homogeneity and isotropy.90 Likewise numerical methods approximate the groundwater inflows into tunnels. Indeed, as reported by Zabidi et al.11 analytical, empirical and numerical methods are frequently unsuccessful in providing precise groundwater inflows into tunnels. For example, considering the same in-situ conditions, Gattinoni & Scesi57 and Farhadian et al.56 showed the large variation of groundwater inflows into a tunnel by comparing Goodman’s equation, Empirical formula and observations (Figure 8). It is important to point out that, empirical methods, even that they do not accurately estimate the groundwater inflows into tunnels, as shown by Farhadian et al.56 but they are better than the analytical methods. At least, good precision level in predicting groundwater inflows into tunnels is deeply required to design efficient dewatering systems. 

Figure 8 A comparison between Goodman’s equation, empirical formula and observation for groundwater inflow in Begamo tunnel.57

Considerations on numerical methods

Regarding the numerical methods, they could improve the accurate prediction and calculation of groundwater inflows into rock tunnels. However, all the relevant characteristics of the rocky media are not always fully appreciated. In fact, the necessary data for the full use of these methods are usually numerous. In addition to the mentioned difficulties, we must also consider the time consuming and cost factors.91 The need to quickly estimate an accurate groundwater inflows into tunnels is extremely important.  We also emphasize that numerical methods are usually associated with mathematical models. The latter generally describe rocky environments with simplifying assumptions. Indeed, the exact conditions and properties of said environments are difficult to model. Thereby, as reported by Park et al.92 the discretization provided by numerical methods is habitually rude, then they also exaggerate groundwater inflows into tunnels.  Hence, numerical methods are limited to simplified conceptual models including limited data. Consequently, they could not also accurately estimate groundwater inflows in tunnels, and thus, as Sedghi and Zhan93 reported, they are not always the optimal choice.

Considerations on machines learning methods

In order to improve the accuracy of predicting groundwater inflows into tunnels, many efforts are already made. Many approaches and techniques are considered as shown through this paper. Nowadays, Machine Learning methods are also employed to forecast groundwater inflows into tunnels. Nonetheless, as demonstrated by Mahmoodzadeh et al.78 a good precision of these methods impose huge amounts of relevant data. For this purpose, likewise that numerical methods, costs factors and time-consuming may be regarded as some obstacles in getting precise prediction.  Indeed, we should verify how hybrid ML techniques can improve the prediction precision of groundwater inflows into tunnels.  For instance, Liu et al.80 used a hybrid model to predict groundwater inrush into karts tunnels and found good results. It would therefore be interesting to investigate in-depth the application of these methods in different geological and hydrogeological conditions.

Considerations on other methods or approaches

As presented in this paper, other methods or approaches are also implemented in order to predict groundwater inflows into rock tunnels. Most of them take advantage of the geological characterization of rocks. They identify the geological features most likely to store groundwater and facilitate flow-paths. These methods also require a lot of relevant data and subsurface exploration for high accuracy level. Further studies based on these methods for the accurate assessment of groundwater inflows into tunnels are needed.

Considerations on time-dependency of groundwater inflows

The time-dependency of groundwater inflows is another interesting factor to consider in the search for an accurate estimation of groundwater inflows into tunnels. As studied by Liu et al.94 most of the methods do not take into account this property. This is probably another reason why most of the existing methods overestimate the groundwater inflow into tunnels. Realistic evaluation of groundwater inflows into tunnels could depend on many potential factors including the time-dependent behavior of groundwater inflows into tunnels. It could also help in designing reliable dewatering system facilitating better accessibility and tunnelling operations.92 In fact, as reported by Xia et al.95 the time-dependent trend of groundwater inflow into tunnel depends on the variation of hydraulic conductivity and the water drawdown.  For an illustration, Figure 9 shows the time-dependency of groundwater inflow into tunnels with the variation of water head drawdown, according to Liu et al.88

Figure 9 An illustration of the time-dependency of groundwater inflows into tunnels for a drawdown represented by S1 = 7 m, according to Liu et al.88

Considerations on relevant parameters 

As already mentioned, many potential factors influence the prediction of groundwater inflows into tunnels. Among these factors related to the surrounding rocks or the aquifer, we can quote, according to Bahrami et al.91 hydraulic head, transmissivity, hydraulic conductivity, aquifer thickness, specific storage, porosity, rainfall data, etc. In almost all of the mentioned methods, not all of these factors were fully taken into account. Concerning the hydraulic conductivity, many equations consider it constant. But in reality, tunnels are built in anisotropic medium. Taking into account the variation of such a parameter can improve the precision in the assessment of groundwater inflows into rock tunnels. Regarding the hydraulic head which is usually assumed as constant, but in real situation, groundwater inflows affect it progressively. Then, there is thus drawdown. It is only a few analytical equations that consider the effect of the groundwater table drawdown. The variation of the others factors also influence the groundwater inflows into tunnels. For instance, the variation of rock mass permeability has great effects on groundwater inflows into tunnels. As Perello et al.96 said in the case of crystalline rocks and in mountain areas, the distribution of rock masses permeability is discontinuous and inhomogeneous.  In addition, especially in discontinuous media, geo-structural setting of rock mass influence greatly the groundwater inflow into tunnels, but is almost rarely integrate in the analytical equations.57

Considerations on groundwater flow regime

Another potential factor of interest is the groundwater flow regime in tunnels. In the most of the presented methods and equations, emphasis are put forward on Darcy flow regime. Few of the existing methods and equations take into account the transient flow and the non-Darcian flow. The analysis of groundwater inflow into tunnels reveals that flow regime is initially transient, then it becomes stable Liu et al.38 This is also another reason why many existing equations or methods do not fully estimate the groundwater inflows into tunnels by considering only the stationary flow phase. In fault and karts zones particularly, as reported by Shi et al.97,98 the flow velocity is high, and Darcy flow cannot be considered. Deep tunnels generally cross faults areas where the groundwater flow regime is non-Darcian. As experimented by Shi et al.98 in these zones, water inrush can occur owing to the high permeability and weak strength of rocks. Regarding the turbulent flow, there is almost no consideration about it. However, in the cases of very high groundwater inflows (inrush) and extremely high groundwater inflows (water burst), the flow regime may be turbulent. Therefore, the realistic flow of groundwater should be fully considered for a best prediction of groundwater inflows into rock tunnels. 

Considerations on long-term stability of tunnels

Note that stress field perturbations created by the excavations, generate instability to tunnels. This instability is boosted by the influx of groundwater into tunnels.99 Indeed, as illustrated in the Figure 3, EDZ and EdZ, which are generated by stress redistribution, clearly influence the permeability of surrounding rocks of tunnels. When such a consideration is ignored, the stability and longevity of tunnels are decreased, as the calculated groundwater inflows are lower than the real value.100 Although precise prediction and calculation of groundwater inflows into tunnels or into underground structures remains a challenge, but it is a vital need. Indeed, the long-term stability of tunnels depends on it. Lack of precision on groundwater inflows can cause groundwater leaks in tunnels by designing unsuitable treatment and support systems. Then groundwater leaks provoke severe damages such as: alteration and deformation of tunnels structures, ageing tunnels components, unfavorable environmental effects, and embarrassment of users.101 Accordingly, it affect thus the long-term stability of tunnels, as water greatly influences the time-dependent behavior (creep) of surrounding rocks.102 Figure 10 shows how the lack of precision for groundwater inflows can affect the long-term stability of tunnels.

Figure 10 Effects of precision’s lack for groundwater inflows on long-term stability of tunnels.

Conclusion, recommendation and future
trends

Conclusion

This paper outlines and discusses methods for assessing groundwater inflows into rock tunnels. It constitutes thus a synthesis of the latest progresses in the field concerning the prediction of groundwater inflows into tunnels. Precise predictions or evaluations of groundwater inflows into tunnels are still unsolved problems in hydrogeology and all allied sciences. Nevertheless, this review shows that scholars and researchers developed many methods and almost all techniques to solve this significant issue. This may therefore inspire them to apply or develop newest techniques or ideas in this exciting topic. Thus, the prediction of groundwater inflows in rock tunnels will be further enriched, while further improving their accuracy. Nonetheless, some other conclusions are summarized as follows:

  1. Analytical, semi-analytical, empirical or semi-empirical methods must be adapted as close as possible according to the realistic conditions of the rocks media traversed by tunnels.
  2. Numerical methods cannot fully replace the aforementioned methods. They can be used for comparison purposes by seeking to improve as much as possible the accuracy of the calculation for groundwater inflows into tunnels.
  3. Other methods employed to predict groundwater inflows into rock tunnels require huge relevant data and engineering judgements in order to improve the accuracy of the prediction.
  4. A better prediction of groundwater inflows into rock tunnels must take into account the time-dependent behavior of groundwater inflows with the associated salient characteristics of the concerned media.

Recommendations and future trends

Research on groundwater inflows into rock tunnels would be much more beneficial scientifically, technically and economically, and fructuous precisions could be achieved through the following recommendations:     

  1. Increase the advantage of more reliable particular models and reduce their limitations. Close monitoring of relevant data is mandatory for accurate experimental results.
  2. Determine the influence of all relevant parameters for different methods employed and obtain efficient and strong models but easy to use for groundwater inflows prediction.
  3. Develop databases as much as possible by accumulating accurate and adequate historical data for different cases of groundwater inflows into rock tunnels.
  4. Investigate more on machines learning techniques, and strong and efficient App may be established for data collection and for fast computations.

Despite numerous studies already conducted, there are still several areas of research which deserve further studies in order to support accurate predictions of groundwater inflows into rock tunnels. Although it remains as challenging tasks, but it is of tremendous importance that the future trends may focus on the following points:

  1. Multi-parameters analysis for precise evaluations of groundwater inflows into rock tunnels based on Analytical, Empirical and Numerical methods.
  2. The exact assessment of groundwater inflows into tunnels based on the time-dependency of groundwater and on rock masses geo-structural setting.
  3. Prediction of groundwater inflows into deep rock tunnels based on realistic flow regime and Machines Learning Techniques.

Acknowledgments

The authors gratefully acknowledge the financial support from the Chinese Scholarship Council (CSC), CSC No.2019GBJ008203.

Conflicts of interest

The authors declare that they are no conflicts of interest.

References

  1. Butscher C. Steady‒state groundwater inflow into a circular tunnel. Tunnelling and Underground Space Technology. 2012;32:158‒167.
  2. Su K, Zhou Y, Wu H, et al. An Analytical Method for Groundwater Inflow into a Drained Circular Tunnel. Groundwater, 2017;55(5):712‒721.
  3. Ivars MD. Water inflow into excavations in fractured rock—a three‒dimensional hydro‒mechanical numerical study. International Journal of Rock Mechanics & Mining Sciences. 2006;43(5):705‒725.
  4. Stille H, Palmström A. Ground behaviour and rock mass composition in underground excavations. Tunnelling and Underground Space Technology. 2008;23(1):46‒64.
  5. Hwang JH, Lu CC. A semi‒analytical method for analyzing the tunnel water inflow. Tunnelling and Underground Space Technology. 2007;22(1):39‒46.
  6. Huang Y, Yu Z, Zhou Z. Simulating Groundwater Inflow in the Underground Tunnel with a Coupled Fracture‒Matrix Model. J Hydrol Eng. 2013; 18(11):1557‒1561.
  7. Sammarco O. Spontaneous inrushes of water in underground mines. International Journal of Mine Water. 1986;5(2):29‒42.
  8. Huang XJ. Influence factors of water bursting and mud bursting of karst tunnels and its countermeasures. J Railw Eng Soc. 2013;30:45–53.
  9. Li SC, Zhou ZQ, Li LP, et al. Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system. Tunnelling and Underground Space Technology. 2013;38:50‒58.
  10. Liu XX, Shen SL, Xu YS, et al. Analytical approach for time‐dependent groundwater inflow into shield tunnel face in confined aquifer. Int J Numer Anal Methods Geomech. 2018;42(4):655‒673.
  11. Zabidi H, Rahim A, and Trisugiwo M. Structural controls on groundwater inflow analysis of hard rock TBM. Cogent Geoscience. 2019;5(1):1637556.
  12. Zarei HR, Uromeihy A, Sharifzadeh M. A new tunnel inflow classification (TIC) system through sedimentary rock masses. Tunnelling and Underground Space Technology. 2013;34:1‒12.
  13. Okoli C, Schabram K. A Guide to Conducting a Systematic Literature Review of Information Systems Research. Working Papers on Information Systems. 2010;1‒51.
  14. Meiri D. Unconfined groundwater flow calculation into a tunnel. Journal of Hydrology. 1985;82(2):69‒75.
  15. Singh RN, Reed SM. Mathematical modelling for estimation of mine water inflow to a surface mining operation. International journal of mine water. 1988;7:1‒33.
  16. Cesano D, Olofsson B, Bagtzoglou AC. Parameters regulating groundwater inflows into hard rock tunnels—a statistical study of the Bolmen tunnel in Southern Sweden. Tunnelling and Underground Space Technology. 2000;15(2):153‒165.
  17. Molinero J, Sampera J, Juanes R. Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Engineering Geology. 2002; 64(4):369‒386.
  18. Lipponen A, Airo ML. Linking regional‒scale lineaments to local‒scale fracturing and groundwater inflow into the Päijänne water‒conveyance tunnel, Finland. Near Surface Geophysics. 2006; 4(2):97‒111.
  19. Li D, Li X, Li CC, et al. Case studies of groundwater flow into tunnels and an innovative water‒gathering system for water drainage. Tunnelling and Underground Space Technology. 2009; 24(3):260‒268.
  20. Jiang XW, Wan L, Yeh TJ, et al. Steady‒state discharge into tunnels in formations with random variability and depth–decaying trend of hydraulic conductivity. Journal of Hydrology. 2010;387(3):320‒327.
  21. Font‒Capó J, Vázquez‒Suñé E, Carrera J, et al. Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM). Engineering Geology. 2011;121(1):46‒54.
  22. Holmøy KH, Nilsen B. Significance of Geological Parameters for Predicting Water Inflow in Hard Rock Tunnels. Rock Mech Rock Eng. 2014;47:853‒868.
  23. Javadi M, Sharifzadeh M, Shahriar K. Uncertainty analysis of groundwater inflow into underground excavations by stochastic discontinuum method: Case study of Siah Bisheh pumped storage project, Iran. Tunnelling and Underground Space Technology. 2016;51:424‒438.
  24. Hadi F, Homayoon K. New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis. International Journal of Mining Science and Technology. 2017;27(3):415‒421.
  25. Maleki MR. Groundwater Seepage Rate (GSR); a new method for prediction of groundwater inflow into jointed rock tunnels. Tunnelling and Underground Space Technology. 2018;71:505–517.
  26. Wang Z, Bi L, Kwon S, et al. The effects of hydro‒mechanical coupling in fractured rock mass on groundwater inflow into underground openings. Tunnelling & Underground Space Technology. 2020;103:103489.
  27. Zhang K, Xue Y, Xu Z, et al. Numerical study of water inflow into tunnels in stratified rock masses with a dual permeability model. Environmental Earth Sciences. 2021;80:260.
  28. Qiu SL, Feng XT, Xiao JQ, et al. An Experimental Study on the Pre‒Peak Unloading Damage Evolution of Marble. Rock Mech Rock Eng. 2014;47: 401‒419.
  29. Niu L, Zhu W, Cheng Z, et al. Numerical simulation on excavation‒induced damage of rock under quasi‒static unloading and dynamic disturbance. Environ Earth Sci. 2017;76 :614.
  30. Cai M, Kaiser PK. Assessment of excavation damaged zone using a micromechanics model. Tunnelling and Underground Space Technology. 2005;20: 301‒310.
  31. Wu Z, Jiang Y, Liu Q, et al. Investigation of the excavation damaged zone around deep TBM tunnel using a Voronoi‒element based explicit numerical manifold method. International Journal of Rock Mechanics and Mining Sciences. 2018;112:158‒170.
  32. Tian M, Han L, Meng Q, et al. In situ investigation of the excavation‒loose zone in surrounding rocks from mining complex coal seams. Journal of Applied Geophysics. 2019;168: 90‒100.
  33. Li T, Cai MF, Cai M. A review of mining‒induced seismicity in China. International Journal of Rock Mechanics & Mining Sciences. 2007;44:1149‒1171.
  34. Sun JS, Zhu QH, Lu WB. Numerical Simulation of Rock Burst in Circular Tunnels Under Unloading Conditions. J China Univ Mining & Technology. 2007; 17 (4) :552‒556.
  35. Xiao YX, Feng XT, Li SJ, et al. Rock Mass Failure Mechanisms During The Evolution Process of rockburst in tunnels. International Journal of Rock Mechanics & Mining Sciences. 2016;83:174‒181.
  36. Gao C, Zhou Z, Li Z, et al. Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation. Tunnelling and Underground Space Technology. 2020;97:103289.
  37. Lianchong L, Tianhong Y, Zhengzhao L, et al. Numerical investigation of groundwater outbursts near faults in underground coal mines. International Journal of Coal Geology. 2011;85(3):276‒288.
  38. Liu JQ, Chen WZ, Yuen KV, et al. Groundwater‒mud control and safety thickness of curtain grouting for the Junchang Tunnel: A case study. Tunnelling and Underground Space Technology. 2020;103:103429.
  39. Sharifzade M, Javadi M, Zarei HR. The Role of Geological Structures to Tunnel Inflow, Modelling, Strategies and Predictions. World Tunnel Congress. 2012, May 20‒23, Bangkok, Thailand. 2012.
  40. Hassani AN, Farhadian H, Katibeh H. A comparative study on evaluation of steady‒state groundwater inflow into a circular shallow tunnel. Tunnelling and Underground Space Technology. 2018;73:15–25.
  41. Jiang C, Han H, Xie H, et al. Karst Aquifer Water Inflow into Tunnels: An Analytical Solution. Geofluids. 2021;
  42. Xu Z, Wang X, Li S, et al. Parameter Optimization for the Thickness and Hydraulic Conductivity of Tunnel Lining and Grouting Rings. KSCE Journal of Civil Engineering. 2019;23(6):2772‒2783
  43. Cheng P, Zhao LH, Li Q, et al. Water inflow prediction and grouting design for tunnel considering nonlinear hydraulic conductivity. KSCE J Civ Eng. 2019;23(9):4132‒4140.
  44. Ying HW, Zhu CW, Shen HW, et al. Semi‒analytical solution for groundwater ingress into lined tunnel. Tunnelling and Underground Space Technology. 2018;76:43‒47.
  45. Joo EJ, Shin JH. 2014. Relationship between water pressure and inflow rate in underwater tunnels and buried pipes. Geotechnique. 2014;64(3):226‒231.
  46. Xu Z, Zhao Z, Sun J. Determination of water flow rate into subsea deep rock cavern with horseshoe cross‒section. In: Wu F, et al., editors. Global view of engineering geology and the environment. CRC Press, Beijing, China, 2013;345‒349.
  47. El Tani M. Helmholtz evolution of a semi‒infinite aquifer drained by a circular tunnel. Tunnelling and Underground Space 2010;25(1):54‒62.
  48. Kolymbas D, Wagner P. Groundwater ingress to tunnels – The exact analytical solution. Tunnelling and Underground Space Technology. 2007;22(1):23‒27.
  49. Perrochet P, Dematteis A. Modeling Transient Discharge into a Tunnel Drilled in a Heterogeneous Formation. Ground Water. 2007;45(6):786‒790.
  50. Perrochet P. Confined Flow into a Tunnel during Progressive Drilling: An Analytical Solution. Groundwater. 2005;43(6):943‒946.
  51. El Tani M. Circular tunnel in a semi‒infinite aquifer. Tunnelling and Underground Space Technology. 2003;18(1):49‒55.  
  52. El Tani M. Water inflow into tunnels. Proceedings of the World Tunnel Congress ITA‒AITES. International Tunneling and Underground Space Association, Switzerland. 1999;61‒70.
  53. Lei S. An analytical solution for Steady flow into a tunnel. Groundwater. 1999;37(1):23‒26.
  54. Zhang L, Franklin JA. Prediction of water flow into rock tunnels: an analytical solution assuming a hydraulic conductivity gradient. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1993;30(1):37‒46.
  55. Goodman RE, Moye DG, Schalkwyk A, et al. Ground water inflows during tunnel driving. Engineering Geology. 1965;2(1):29‒56.
  56. Farhadian H, Katibeh H, Huggenberger P. Empirical model for estimating groundwater flow into tunnel in discontinuous rock masses. Environ Earth Sci. 2016;75:471.
  57. Gattinoni P, Scesi L. An empirical equation for tunnel inflow assessment: application to sedimentary rock masses. Hydrogeology Journal. 2010; 18:1797‒1810.
  58. Karlsrud K. Water control when tunneling under urban areas in the Olso region. NFF Publ. 2001;12(4):27‒33.
  59. Heuer RE. Estimating rock tunnel water inflow. Rapid Excavation and Tunneling Conference. 1995;41‒60.
  60. Jiang Q, Yao C, Ye A, et al. Seepage flow with free surface in fracture networks. Water Resources Research. 2013;49:176‒186.
  61. Li X, Li D, Xu Y, et al. A DFN based 3D numerical approach for modeling coupled groundwater flow and solute transport in fractured rock mass. International Journal of Heat and Mass Transfer. 2020;149:119179.
  62. Rasmussen TC, Yu G. Determination of groundwater flownets, fluxes, velocities, and travel times using the complex variable boundary element method. Engineering Analysis with Boundary Elements. 2006;30:1030‒1044.
  63. Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics & Mining Sciences. 2003;40(3):283‒353.
  64. Chiu YC, Chia Y. The impact of groundwater discharge to the Hsueh‒Shan tunnel on the water resources in northern Taiwan. Hydrogeology Journal. 2012;20:1599‒1611.
  65. Wu Q, Wang M, Wu X. Investigations of groundwater bursting into coal mine seam floors from fault zones. International Journal of Rock Mechanics & Mining Sciences. 2004;41:557‒571.
  66. Nikakhtar L, Zare S. Evaluation of Underground Water Flow into Tabriz Metro Tunnel First Line by Hydro‒Mechanical Coupling Analysis. International Journal of Geotechnical and Geological Engineering. 2020;14 (1):1‒7.
  67. Surinaidu L, Rao VVSG, Rao NS, et al. Hydrogeological And groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India. Water Resources and Industry. 2014;7‒8:49‒65.
  68. L Surinaidu, Rao VVSG, Nandan MJ, et al. Application of MODFLOW for groundwater Seepage Problems in the Subsurface Tunnels. J Ind Geophys Union. 2015;19(4):422‒432.
  69. Golian M, Teshnizi ES, Mohammad Nakhaei. Prediction of water inflow to mechanized tunnels during tunnel‒boring‒machine advance using numerical simulation. Hydrogeology Journal. 2018;26:2827‒2851.
  70. Gholizadeh H, Peely AB, Karney BW, et al. Assessment of groundwater ingress to a partially pressurized water‒conveyance tunnel using a conduit‒flow process model: a case study in Iran. Hydrogeology Journal. 2020;28:2573‒2585.
  71. Li Q, Ito K, Wu Z, et al. COMSOL Multiphysics: A Novel Approach to Ground Water Modeling. Groundwater. 2009;47(4).
  72. Chen Y, Selvadurai APS, Liang W. Computational Modelling of Groundwater Inflow During a Longwall Coal Mining Advance: A Case Study from the Shanxi Province, China. Rock Mechanics and Rock Engineering. 2019;52:917–934.
  73. Xu ZH, Bu ZH, Gao B. Sensitivity Analysis and Prediction Method for Water Inflow of Underground Oil Storage Caverns in Fractured Porous Media. Int J Geomech. 2021;21(2):04020251.
  74. Li SC, He P, Li LP. Gaussian process model of water inflow prediction in tunnel construction and its engineering applications. Tunnelling and Underground Space Technology. 2017;69:155‒161.
  75. Chen J, Zhou M, Zhang D. Quantification of water inflow in rock tunnel faces via convolutional neural network approach. Automation in Construction. 2021;123:103526.
  76. Yang Z, Ma C. Risk Prediction of Water Inrush of Karst Tunnels Based on BP Neural Network. Tunnel Construction. 2016;36:11.
  77. Donglin D, Wenjie S, Sha X. Water‒inrush Assessment Using a GIS‒based Bayesian Network for the 12‒2 Coal Seam of the Kailuan Donghuantuo Coal Mine in China. Mine Water in the Environment. 2012;31:138‒146.
  78. Mahmoodzadeh A, Mohammadi M, Noori KMG, et al. Presenting the best prediction model of water inflow into drill and blast tunnels among several machine learning techniques. Automation in Construction. 2021;127:103719.
  79. Chen S, Dong S. A Sequential Structure for Water Inflow Forecasting in Coal Mines Integrating Feature Selection and Multi‒Objective Optimization. IEEE Access. 2020;8:183619‒183632.
  80. Liu D, Xu Q, Tang Y, et al. Prediction of Water Inrush in Long‒Lasting Shutdown Karst Tunnels Based on the HGWO‒SVR Model. IEEE Access. 2021;9:6368‒6378.
  81. Mabee SB, Curry PJ, Hardcastle KC. Correlation of Lineaments to ground Water inflows in a Bedrock Tunnel. Ground Water. 2002;40(1):37‒43.
  82. Katibeh H, Aalianvari A. Development of a New Method for Tunnel Site Rating from Groundwater Hazard Point of View. J Appl Sci. 2009;9 (8):1496‒1502.
  83. Zarei HR, Uromeihy A, Sharifzadeh M. Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features. Tunnelling & Underground Space Technology. 2011;26:364‒373.
  84. Heidari M, Sharafi M, Khazaei S. Study of Morphology Fractures in Prediction of High Local Groundwater Flow into Tunnels using ASTER Satellite Images. J Indian Soc Remote Sens. 2016;44(2):253‒268.
  85. Liu R, Liu Y, Xin D, et al. Prediction of Water Inflow in Subsea Tunnels under Blasting Vibration. Water. 2018;10(10):1336.
  86. Zhang L, Zhao D, Wu J, et al. Prediction of water inflow in Tsingtao subsea tunnel based on the superposition principle. Tunnelling and Underground Space Technology. 2020;97:103243.
  87. Aston TRC, MacLeod Lafosse H. Analysis of water inflows in the Donkin‒Morien No. 3 tunnel, Sydney Coalfield, Nova Scotia. International Journal of Mine Water. 1985;4(3):11‒23.
  88. Liu XX, Shen SL, Xu YS, et al. Analytical approach for time‐dependent groundwater inflow into shield tunnel face in confined aquifer. Int J Numer Anal Methods Geomech. 2018;42:655‒673.
  89. Kong WK. Water Ingress Assessment for Rock Tunnels: A Tool for Risk Planning. Rock Mech Rock Eng. 2011;44:755‒765.
  90. Atangana A, Vermeulen PD. Analytical Solutions of a Space‒Time Fractional Derivative of Groundwater Flow Equation. Hindawi Publishing Corporation. 2014;381753.
  91. Bahrami S, Ardejani FD, Baafi E. Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine. Journal of Hydrology. 2016;536:471‒484.
  92. Park YJ, Hwang HT, Suzuki S, et al. Improving precision in regional scale numerical simulations of groundwater flow into underground openings. Engineering Geology. 2020; 274:105727.
  93. Sedghi MM, Zhan H. On Inflow to a Tunnel in a Fractured Double‒Porosity Aquifer. Groundwater. 2021;59(4): 562‒
  94. Liu XX, Shen SL, Zhou A, et al. Evaluation of foam conditioning effect on groundwater inflow at tunnel cutting face. Int J Numer Anal Methods Geomech. 2019;43:463‒481.
  95. Xia Q, Xu M, Zhang H, et al. A Dynamic Modeling Approach to Simulate Groundwater Discharges into a Tunnel from Typical Heterogenous Geological Media During Continuing Excavation. KSCE Journal of Civil Engineering. 2018;22(1):341‒350.
  96. Perello P, Baietto A, Ulrich Burger et al. Excavation of the Aica‒Mules pilot tunnel for the Brenner base tunnel: information gained on water inflows in tunnels in granitic massifs. Rock Mech Rock Eng. 2014;47:1049‒1071.
  97. Shi W, Yang T, Liu H, et al. Numerical Modeling of Non‒Darcy Flow Behavior of Groundwater Outburst through Fault Using the Forchheimer Equation. J Hydrol Eng. 2018;23(2):04017062.
  98. Shi W, Yang T, Yu S. Experimental Investigation on Non‒Darcy Flow Behavior of Granular Limestone with Different Porosity. J Hydrol Eng. 2020;25(8):06020004.
  99. Shrestha PK, Panthi KK. Groundwater Effect on Faulted Rock Mass: An Evaluation of Modi Khola Pressure Tunnel in the Nepal Himalaya. Rock Mech Rock Eng. 2014;47:1021‒1035.
  100. Fu H, An P, Chen L, et al. Analysis of Tunnel Water Inrush Considering the Influence of Surrounding Rock Permeability Coefficient by Excavation Disturbance and Ground Stress. Appl Sci. 2021;11:3645.
  101. Wu HN, Huang RQ, Sun WJ, et al. Leaking behavior of shield tunnels under the Huangpu River of Shanghai with induced hazards. Nat Hazards. 2014;70:1115‒1132.
  102. Tang SB, Yu CY, Heap MJ, et al. The Influence of Water Saturation on the Short‒ and Long‒Term Mechanical Behavior of Red Sandstone. Rock Mechanics and Rock Engineering. 2018;51:2669‒2687.
Creative Commons Attribution License

©2021 Frenelus, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.