Submit manuscript...
International Journal of
eISSN: 2576-4454

Hydrology

Research Article Volume 8 Issue 5

A persistent cyclical pattern in the SOI and EQSOI series

Luis Alberiko Gil-Alana,1 María Fátima Romero-Rojo2

1Department of Economics, University of Navarra and University Francisco de Vitoria, Spain
2Ciencias Juridicas y Empresariales, University Francisco de Vitoria, Spain

Correspondence: Luis Alberiko Gil-Alana, Department of Economics, University of Navarra and University Francisco de Vitoria, Spain

Received: November 02, 2024 | Published: November 18, 2024

Citation: Gil-Alana LA, Romero-Rojo MF. A persistent cyclical pattern in the SOI and EQSOI series. Int J Hydro. 2024;8(5):195-200. DOI: 10.15406/ijh.2024.08.00391

Download PDF

Abstract

This paper deals with the analysis of the SOI and EQSOI series and their statistical properties, focussing in particular in their cyclical pattern and its persistence across time. For this purpose, a long memory model was used that is characterized because the spectral density function is unbounded at a frequency away from zero. Our results indicate that the two series display a long memory pattern, with the order of integration in the interval (0, 0.5) and the length of the cycles ranging between three and four years.

Keywords: SOI; EQSOI; cycles; fractional integration

Introduction

The Southern Oscillation Index (SOI) is a normalized index based on the sea level pressure differences between Tahiti and Darwin in Australia. It measures air pressure fluctuations in large scale that takes place between the Western and Eastern tropical Pacific. Hence, SOI provides information about the intensity and development of El Niño and La Niña weather patterns. In general, a smooth behaviour of the SOI time series is associated with changes in ocean temperatures across the Eastern tropical Pacific. For instance, persistent negative values of the SOI are usually linked to abnormally warm in the Central and Eastern tropical Pacific Ocean and is typically known as El Niño episode. In contrast, sustained periods of positive SOI values correspond to La Niña and is associated with cooling of the Central and Eastern tropical Pacific Ocean.

It is worth mentioning that both Tahiti and Darwin are well South of the Equator and thus, the surface air pressure in these two locations may not be directly related to El Niño Southern Oscillation (ENSO). To sort out this issue, a new indicator has been proposed denominated the Equatorial SOI (EQSOI), which is calculated as the standardized anomaly of the difference between the area-average monthly sea level pressure in an area of the Eastern Equatorial Pacific (80°W - 130°W, 5°N - 5°S) and an area over Indonesia (90°E - 140°E, 5°N - 5°S). 

In this paper the persistence and cyclicity of these two well know series (SOI and EQSOI) were examined by using long memory models, and in particular, employed a fractionally integrated model where the singularity in the spectrum occurs at a frequency away from zero. The model is based on the Gegenbauer processes and the results indicate that the orders of integration of the series are in the interval (0, 0.5) displaying a long memory pattern. In addition, it is observed that cycles have a periodicity of about 37-42 periods (months), which is consistent with the literature that suggest oscillations between 3 and 7 years.

The rest of the paper is organized as follows: Section 2 briefly presents a review of the statistical modelling of the metric of the ENSO cycle throughout the SOI and EQSOI data; Section 3 describes the model used in the paper, while Section 4 is devoted to the methodology used and based on long memory processes. Section 4 displays the data and Section 5 contains the main empirical results. Finally, Section 6 concludes the paper.

Literature review

The term El Niño/La Niña refers to the process of the irregular weather patterns associated with abnormally heating/cooling of the Central and Eastern tropical Pacific.1 This phenomenon is related, among others, to the increased convection (e.g. changing Walker circulation), that alters cloudiness in the Central Pacific Ocean and causing a weaker or stronger than normal trade winds along the Pacific (Figure 1 (b), (c)).

It is well-established that the El Niño/La Niña phenomenon is linked to an oscillation of the surface air pressure between the Eastern and Western South Pacific, which is known as the Southern Oscillation (SO). The strength of this oscillating is measured by the Southern Oscillation Index (SOI), which is one of the key atmospheric indices for gauging the strength of the El Niño and La Niña events and their potential impacts on the Australian region (Bureau of Meteorology, Australian Government). SOI is a normalized index which is defined as the difference in the monthly surface air pressure between Tahiti (17º 40’S, 149º 25’ W) and Darwin (12º 27’ S, 130º 50’ E), as follows:

SOI= ( Stardardized TahitiStardarized Darwin ) MSD , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaad+eaca WGjbGaeyypa0ZaaSaaaeaadaqadaqaaabaaaaaaaaapeGaam4uaiaa dshacaWGHbGaamOCaiaadsgacaWGHbGaamOCaiaadsgacaWGPbGaam OEaiaadwgacaWGKbGaaeiiaiaadsfacaWGHbGaamiAaiaadMgacaWG 0bGaamyAaiabgkHiTiaadofacaWG0bGaamyyaiaadkhacaWGKbGaam yyaiaadkhacaWGPbGaamOEaiaadwgacaWGKbGaaeiiaiaadseacaWG HbGaamOCaiaadEhacaWGPbGaamOBaaWdaiaawIcacaGLPaaaaeaaca WGnbGaam4uaiaadseaaaGaaiilaaaa@61E1@

where,

Stardardized Tahiti= ( Actual Tahiti SLPMean Tahiti SLP ) Standard Deviation Tahiti , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGtbGaamiDaiaadggacaWGYbGaamizaiaadggacaWGYbGaamizaiaa dMgacaWG6bGaamyzaiaadsgacaqGGaGaamivaiaadggacaWGObGaam yAaiaadshacaWGPbGaeyypa0ZaaSaaaeaadaqadaqaaiaadgeacaWG JbGaamiDaiaadwhacaWGHbGaamiBaiaabccacaWGubGaamyyaiaadI gacaWGPbGaamiDaiaadMgacaqGGaGaam4uaiaadYeacaWGqbGaeyOe I0IaamytaiaadwgacaWGHbGaamOBaiaabccacaWGubGaamyyaiaadI gacaWGPbGaamiDaiaadMgacaqGGaGaam4uaiaadYeacaWGqbaacaGL OaGaayzkaaaabaGaam4uaiaadshacaWGHbGaamOBaiaadsgacaWGHb GaamOCaiaadsgacaqGGaGaamiraiaadwgacaWG2bGaamyAaiaadgga caWG0bGaamyAaiaad+gacaWGUbGaaeiiaiaadsfacaWGHbGaamiAai aadMgacaWG0bGaamyAaaaacaGGSaaaaa@7E92@

and N is the number of months.

Standard Deviation Tahiti= ( actual Tahiti SLPmean Tahiti SLP ) 2 /N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGtbGaamiDaiaadggacaWGUbGaamizaiaadggacaWGYbGaamizaiaa bccacaWGebGaamyzaiaadAhacaWGPbGaamyyaiaadshacaWGPbGaam 4Baiaad6gacaqGGaGaamivaiaadggacaWGObGaamyAaiaadshacaWG PbGaeyypa0ZaaOaaaeaadaaeabqaamaabmaabaGaamyyaiaadogaca WG0bGaamyDaiaadggacaWGSbGaaeiiaiaadsfacaWGHbGaamiAaiaa dMgacaWG0bGaamyAaiaabccacaWGtbGaamitaiaadcfacqGHsislca WGTbGaamyzaiaadggacaWGUbGaaeiiaiaadsfacaWGHbGaamiAaiaa dMgacaWG0bGaamyAaiaabccacaWGtbGaamitaiaadcfaaiaawIcaca GLPaaaaSqabeqaniabggHiLdGcdaahaaWcbeqaaiaaikdaaaGccaGG VaGaamOtaaWcbeaakiaacYcaaaa@723D@

Where

Standard Deviation Darwin= ( actual Tahiti SLPmean Tahiti SLP ) 2 /N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGtbGaamiDaiaadggacaWGUbGaamizaiaadggacaWGYbGaamizaiaa bccacaWGebGaamyzaiaadAhacaWGPbGaamyyaiaadshacaWGPbGaam 4Baiaad6gacaqGGaGaamiraiaadggacaWGYbGaam4DaiaadMgacaWG UbGaeyypa0ZaaOaaaeaadaaeabqaamaabmaabaGaamyyaiaadogaca WG0bGaamyDaiaadggacaWGSbGaaeiiaiaadsfacaWGHbGaamiAaiaa dMgacaWG0bGaamyAaiaabccacaWGtbGaamitaiaadcfacqGHsislca WGTbGaamyzaiaadggacaWGUbGaaeiiaiaadsfacaWGHbGaamiAaiaa dMgacaWG0bGaamyAaiaabccacaWGtbGaamitaiaadcfaaiaawIcaca GLPaaaaSqabeqaniabggHiLdGcdaahaaWcbeqaaiaaikdaaaGccaGG VaGaamOtaaWcbeaaaaa@7185@

And

MSD ( Monthly Standard Deviation ) = ( Standarized TahitiStandarized Darwin ) 2 N . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaa Wdbiaad2eacaWGtbGaamiraiaabccapaWaaeWaaeaapeGaamytaiaa d+gacaWGUbGaamiDaiaadIgacaWGSbGaamyEaiaabccacaWGtbGaam iDaiaadggacaWGUbGaamizaiaadggacaWGYbGaamizaiaabccacaWG ebGaamyzaiaadAhacaWGPbGaamyyaiaadshacaWGPbGaam4Baiaad6 gaa8aacaGLOaGaayzkaaaabaWdbiabg2da9maaqaeabaWaaSaaaeaa daqadaqaaiaadofacaWG0bGaamyyaiaad6gacaWGKbGaamyyaiaadk hacaWGPbGaamOEaiaadwgacaWGKbGaaeiiaiaadsfacaWGHbGaamiA aiaadMgacaWG0bGaamyAaiabgkHiTiaadofacaWG0bGaamyyaiaad6 gacaWGKbGaamyyaiaadkhacaWGPbGaamOEaiaadwgacaWGKbGaaeii aiaadseacaWGHbGaamOCaiaadEhacaWGPbGaamOBaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaOqaaiaad6eaaaaaleqabeqdcqGH ris5aOGaaiOlaaaaaa@7C3B@

El Niño events are associated with negative values of the SOI (below about -8), while La Niña events are associated with positive SOI values (above about +8). The El Niño/La Niña Southern Oscillation (ENSO) is a quasi-periodic oceanic-atmospheric phenomenon with a typical periodicity of 3-7 years, and it is featured by three phases: neutral, El Niño and La Niña, as shown in Figure 1a, 1b and 1c, respectively (Bureau of Meteorology, Australian Government).

Figure 1 Phases of the ENSO: (a) Neutral, (b) El Niño, and (c) La Niña. [http://www.bom.gov.au/climate/enso/history/ln-2010-12/three-phases-of-ENSO.shtml]

In the neutral state (neither El Niño nor La Niña) (Figure 1a), trade winds blow across the surface of the tropical Pacific Ocean from East to West, hence bringing warm moist air and warmer surface waters towards the Western Pacific and keeping the Central Pacific Ocean relatively cool. (Bureau of Meteorology, Australian Government).

During El Niño (Figure 1b), the area of warmer than normal water moves into the central and Eastern tropical Pacific Ocean, leading to an increase of rainfall in the region of Peru and other nations nearby. However less rainfall is observed over Australia, in particular over inland Eastern Australia. (Bureau of Meteorology, Australian Government).

During La Niña (Figure 1c), strong trade winds and high convention is observed over the Western Pacific due the intense Walker Circulation, leading to the Australian monsoon. Hence, it may increase humidity and rainfall inland over Australia, in particular, over much of Northern and Eastern Australia. (Bureau of Meteorology, Australian Government).

It is worth mention that ENSO is not just the result of the interaction of the ocean and atmosphere in the tropical Pacific, but also in many regions of the world.2 Interestingly, Tudhope et al.3 showed also that ENSO has existed for the past 130,000 years, based on annually banded corals from Papua New Guinea, hence operating even during ‘glacial’ times. They also found that during the twentieth century, ENSO has been strongly compared with ENSO of previous cool (glacial) and warm (interglacial) times.

In fact, ENSO events are usually linked to major flood and drought episodes,4 so that they have the potential to cause devastating impacts on humans and the environment.5–9 For example, Beherenfeld et al. (2001) showed that phytoplankton biomass increased by 10% globally during the 1997–1999 El Niño/La Niña transition period. On the other hand, several studies have been carried out to find the relationship between ENSO events and droughts10–13 as it is the main natural dangers affecting agriculture, water resources, ecology, society and hence the economy.14–17

Hence, drought early detection helps to implement drought mitigation strategies or tactical adaptations before they occur.18–20 For instance, Zhen et al.21 assessed the value of fixed adaptation (no distinction between the years) and tactical adaptations based on pre-sowing plant available water (PAW) and/or SOI forecasts to increase wheat productivity at given sites. They showed that the benefits of PAW and SOI tactical adaptation could be useful for farmers to adjust farm management practices according to the season, but it may be improved further with new forecasting climate methods. On the other hand, some studies recently showed that the ENSO also affects the volatility of the oil price,22–24 since disaster risks contribute to jump risk in oil prices.25

As mentioned in the introduction, the reliability of the SOI, however, is considered limited due to the location of both Darwin and Tahiti to be well South of the Equator, (Tahiti at ~18˚S, Darwin at ~12˚S), while the ENSO phenomenon is focused more closely along the Equator. To overcome this issue, a new index named the Equatorial Southern Oscillation Index (EQSOI) was defined as it uses the average sea level pressure over two large regions centered on the Equator (5˚S to 5˚N) over Indonesia and the Eastern equatorial Pacific. (See the discussion of Anthony Barnston, made in January 29, 2015, of the National Oceanic and Atmospheric Administration here: https://www.climate.gov/newsfeatures/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-one for further details).

The model

It is supposed that {xt, t = 0, ±1, …} is a covariance (or second order) stationary process. Long memory is a property of time series processes that is characterized, in the frequency domain, because the spectral density function displays at least one pole or singularity in the spectrum, i.e.,

f  (λ)     ,   λ    [0,     π), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbyacaWGMbGcqa aaaaaaaaWdbiaacckacaGGGcWdaiaacIcacqaH7oaBcaGGPaWdbiaa cckacaGGGcGaaiiOa8aacqGHsgIRpeGaaiiOaiaacckapaGaeyOhIu Qaaiila8qacaGGGcGaaiiOaiaacckapaGaeq4UdW2dbiaacckacaGG GcWdaiabgIGio=qacaGGGcGaaiiOa8aacaGGBbGaaGimaiaacYcape GaaiiOaiaacckacaGGGcGaaiiOaiaacckapaGaeqiWdaNaaiykaiaa cYcaaaa@5F1D@                    (1)

where f(λ) is the spectral density function, defined as the Fourier transform of the autocovariances,

 f(λ)    =    1 2 π u= γ u   e i λ u , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcqcLbyapaGaamOzaOGaaiikaiabeU7aSjaacMcapeGaaiiOaiaa cckacaGGGcGaaiiOa8aacqGH9aqppeGaaiiOaiaacckacaGGGcWdam aalaaabaGaaGymaaqaaiaaikdapeGaaiiOa8aacqaHapaCaaWaaabC aeaacqaHZoWzdaWgaaWcbaGaamyDaaqabaGcpeGaaiiOa8aacaWGLb WaaWbaaSqabeaacaWGPbWdbiaacckapaGaeq4UdW2dbiaacckapaGa amyDaaaaaeaacaWG1bGaeyypa0JaeyOeI0IaeyOhIukabaGaeyOhIu kaniabggHiLdGccaGGSaaaaa@5F0C@    (2)

and where γu = Cov(xt, xt+u) = E(xt-Ext)(xt+u-Ext).

In many cases, the singularity or pole in the spectrum occurs at the zero frequency,

 f(λ)         ,      as     λ        0 + , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcqcLbyapaGaamOzaOGaaiikaiabeU7aSjaacMcapeGaaiiOaiaa cckacaGGGcGaaiiOa8aacqGHsgIRpeGaaiiOaiaacckacaGGGcGaai iOa8aacqGHEisPpeGaaiiOa8aacaGGSaWdbiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOa8aacaWGHbGaam4Ca8qacaGGGcGaaiiOai aacckacaGGGcGaaiiOa8aacqaH7oaBpeGaaiiOaiaacckacaGGGcWd aiabgkziU+qacaGGGcGaaiiOaiaacckacaGGGcWdaiaaicdadaahaa WcbeqaaiabgUcaRaaakiaacYcaaaa@68E7@   (3)

and in such a case, a very popular model to describe this behaviour is the fractionally integrated model expressed as:

  (1     L) d   x t    =    u t  ,        t   =   1 ,  2 , ... ,     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcWdaiaacIcacaaIXaWdbiaacckacaGGGcGaaiiOa8aacqGHsisl peGaaiiOaiaacckapaGaamitaiaacMcadaahaaWcbeqaaiaadsgaaa GcpeGaaiiOa8aacaWG4bWaaSbaaSqaaiaadshaaeqaaOWdbiaaccka caGGGcGaaiiOa8aacqGH9aqppeGaaiiOaiaacckacaGGGcWdaiaadw hadaWgaaWcbaGaamiDaaqabaGcpeGaaiiOa8aacaGGSaWdbiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWdaiaads hapeGaaiiOaiaacckacaGGGcWdaiabg2da98qacaGGGcGaaiiOaiaa cckapaGaaGyma8qacaGGGcWdaiaacYcapeGaaiiOaiaacckapaGaaG Oma8qacaGGGcWdaiaacYcapeGaaiiOa8aacaGGUaGaaiOlaiaac6ca peGaaiiOa8aacaGGSaWdbiaacckacaGGGcGaaiiOaiaacckaaaa@76D0@                              (4)

where L is the lag operator (Lxt =xt-1) and ut is an integrated of order 0 (or I(0)) process, and indicating a covariance stationary process with a spectral density function that is positive and bounded at all frequencies in the spectrum.

The specification in (4) has been widely used in the analysis of many climatological and geophysical time series.26–35 However, there are many time series that present a cyclical pattern and that show in the estimated spectrum the highest values at a frequency away from zero. Examples might be the series examined in this work. In such circumstances, an alternative modelling approach, still based on a long memory framework, can be the one based on the Gegenbauer processes36 and described as follows:

( 12cos w r L+ L 2 ) d x t = u t   ,   t=1,2, .., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaaigdacqGHsislcaaIYaGaci4yaiaac+gacaGGZbGaam4D amaaBaaaleaacaWGYbaabeaakiaadYeacqGHRaWkcaWGmbWaaWbaaS qabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGKbaa aOGaamiEamaaBaaaleaacaWG0baabeaakiabg2da9iaadwhadaWgaa WcbaGaamiDaaqabaGccaGGGcGaaiiOaiaacYcacaGGGcGaaiiOaiaa cckacaWG0bGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaacckaca GGUaGaaiOlaiaacYcaaaa@585B@   (5)

where wr = 2πr/T with r = T/j, where j indicates the number of periods per cycle and r the frequency with a singularity or pole in the spectrum. Note that if r = 0, the fractional polynomial in equation (5) becomes ( 1L ) 2d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaaigdacqGHsislcaWGmbaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaGaamizaaaaaaa@3CE2@ , which is the polynomial associated with the classical I(d) model in (4). Letting μ=cos w r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH8oqBcqGH9aqpciGGJbGaai4BaiaacohacaWG3bWaaSbaaSqaaiaa dkhaaeqaaaaa@3EBC@ , Gray et al. (1989, 1994)37,38 show that x t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG4bWaaSbaaSqaaiaadshaaeqaaaaa@3930@ in equation (5) is stationary if | μ |<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada abdaqaaiabeY7aTbGaay5bSlaawIa7aiabgYda8iaaigdaaaa@3DA5@ and d < 0.50 or if | μ |<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada abdaqaaiabeY7aTbGaay5bSlaawIa7aiabgYda8iaaigdaaaa@3DA5@ and d < 0.25, where μ=cos w r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH8oqBcqGH9aqpciGGJbGaai4BaiaacohacaWG3bWaaSbaaSqaaiaa dkhaaeqaaOGaaiOlaaaa@3F78@ Moreover, the polynomial in L in equation (5) can be expressed in terms of the orthogonal Gegenbauer polynomials C j,d ( μ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGdbWaaSbaaSqaaiaadQgacaGGSaGaamizaaqabaGcdaqadaqaaiab eY7aTbGaayjkaiaawMcaaiaacYcaaaa@3E83@ , such that for all d 0,

( 12μL+ L 2 ) d = j=0 C j,d ( μ ) Lj , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaqaaiaaigdacqGHsislcaaIYaGaeqiVd0MaamitaiabgUcaRiaa dYeadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaadsgaaaGccqGH9aqpdaaeWbqaaiaadoeadaWgaaWc baGaamOAaiaacYcacaWGKbaabeaakmaabmaabaGaeqiVd0gacaGLOa GaayzkaaWaaWbaaSqabeaacaWGmbGaamOAaaaaaeaacaWGQbGaeyyp a0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaaiilaaaa@52FE@                           (6)

where they are defined recursively as:

C 0,d (μ)   =   1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaale aacaaIWaGaaiilaiaadsgaaeqaaOGaaiikaiabeY7aTjaacMcaqaaa aaaaaaWdbiaacckacaGGGcGaaiiOa8aacqGH9aqppeGaaiiOaiaacc kacaGGGcWdaiaaigdacaGGSaaaaa@46E5@        C 1,d (μ)   =   2 μ d, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaale aacaaIXaGaaiilaiaadsgaaeqaaOGaaiikaiabeY7aTjaacMcaqaaa aaaaaaWdbiaacckacaGGGcGaaiiOa8aacqGH9aqppeGaaiiOaiaacc kacaGGGcWdaiaaikdapeGaaiiOa8aacqaH8oqBpeGaaiiOa8aacaWG KbGaaiilaaaa@4C0C@     

C j,d (μ)   =   2 μ ( d1 j +1 )  C j1,d (μ)       ( 2  d1 j  + 1 )  C j2,d (μ) ,      j   =   2,  3, .... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaale aacaWGQbGaaiilaiaadsgaaeqaaOGaaiikaiabeY7aTjaacMcaqaaa aaaaaaWdbiaacckacaGGGcGaaiiOa8aacqGH9aqppeGaaiiOaiaacc kacaGGGcWdaiaaikdapeGaaiiOa8aacqaH8oqBpeGaaiiOa8aadaqa daqaamaalaaabaGaamizaiabgkHiTiaaigdaaeaacaWGQbaaaiabgU caRiaaigdaaiaawIcacaGLPaaapeGaaiiOa8aacaWGdbWaaSbaaSqa aiaadQgacqGHsislcaaIXaGaaiilaiaadsgaaeqaaOGaaiikaiabeY 7aTjaacMcapeGaaiiOaiaacckacaGGGcWdaiabgkHiT8qacaGGGcGa aiiOaiaacckacaGGGcWdamaabmaabaGaaGOma8qacaGGGcWdamaala aabaGaamizaiabgkHiTiaaigdaaeaacaWGQbaaa8qacaGGGcWdaiab gUcaR8qacaGGGcWdaiaaigdaaiaawIcacaGLPaaapeGaaiiOa8aaca WGdbWaaSbaaSqaaiaadQgacqGHsislcaaIYaGaaiilaiaadsgaaeqa aOGaaiikaiabeY7aTjaacMcapeGaaiiOa8aacaGGSaWdbiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOa8aacaWGQbWdbiaacckacaGG GcGaaiiOa8aacqGH9aqppeGaaiiOaiaacckacaGGGcWdaiaaikdaca GGSaWdbiaacckacaGGGcWdaiaaiodacaGGSaWdbiaacckapaGaaiOl aiaac6cacaGGUaGaaiOlaaaa@9400@ .

This process implies the existence of a pole or singularity at a non-zero frequency which corresponds to the cyclical pattern. Special cases of this model were analysed by Athola and Tiao39,40 and Bierens41 setting d = 1, and by Gil-Alana,42 Phillip et al.,43 Dissanayake et al.44 and others allowing d to take fractional values.

In this paper the specification in (5) is used to describe the cyclical pattern in the SOI and EQSOI series. Our approach allows not only to determine the cyclical pattern in the data but also the degree of persistence in its behaviour.

Methodology

We use a version of a testing procedure developed in Robinson45 that allows us to consider many differencing long memory specifications including the one described in the previous section. Robinson45 proposed a Lagrange Multiplier (LM) test of the null hypothesis:

H o :    d   =     d o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBaaale aacaWGVbaabeaakiaacQdaqaaaaaaaaaWdbiaacckacaGGGcGaaiiO aiaacckapaGaamiza8qacaGGGcGaaiiOaiaacckapaGaeyypa0Zdbi aacckacaGGGcGaaiiOaiaacckapaGaamizamaaBaaaleaacaWGVbaa beaaaaa@4A94@  (7)

where do is a (mx1) vector of given real values in the following set-up:

(1  L) d 1 (1 + L) d 2 j=3 m (1    2 cos  w r L  +   L 2 ) d j x t   =    u t ,          t   =   1 ,  2  ,  .... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaigdaqa aaaaaaaaWdbiaacckapaGaeyOeI0YdbiaacckapaGaamitaiaacMca daahaaWcbeqaaiaadsgadaWgaaadbaGaaGymaaqabaaaaOGaaiikai aaigdapeGaaiiOa8aacqGHRaWkpeGaaiiOa8aacaWGmbGaaiykamaa CaaaleqabaGaamizamaaBaaameaacaaIYaaabeaaaaGcdaqeWbqaai aacIcacaaIXaWdbiaacckacaGGGcWdaiabgkHiT8qacaGGGcGaaiiO a8aacaaIYaWdbiaacckapaGaci4yaiaac+gacaGGZbWdbiaacckapa Gaam4DamaaBaaaleaacaWGYbaabeaakiaadYeapeGaaiiOaiaaccka paGaey4kaSYdbiaacckacaGGGcWdaiaadYeadaahaaWcbeqaaiaaik daaaGccaGGPaWaaWbaaSqabeaacaWGKbWaaSbaaWqaaiaadQgaaeqa aaaaaSqaaiaadQgacqGH9aqpcaaIZaaabaGaamyBaaqdcqGHpis1aO GaamiEamaaBaaaleaacaWG0baabeaak8qacaGGGcGaaiiOa8aacqGH 9aqppeGaaiiOaiaacckacaGGGcWdaiaadwhadaWgaaWcbaGaamiDa8 qacaGGGcWdaiaacYcapeGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaaWdaeqaaOWdbiaacckacaGGGcWdaiaadshapeGaai iOaiaacckacaGGGcWdaiabg2da98qacaGGGcGaaiiOaiaacckapaGa aGyma8qacaGGGcWdaiaacYcapeGaaiiOaiaacckapaGaaGOma8qaca GGGcGaaiiOaiaacYcacaGGGcGaaiiOa8aacaGGUaGaaiOlaiaac6ca caGGUaaaaa@96E6@  (8)

and where xt is the observed data and ut is an I(0) process. He shows that his test statistic has a standard χ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaiaad2gaaeaacaaIYaaaaaaa@3A80@ limit distribution, which holds independently of the values of do and the specification of the I(0) error term.

In this paper we particularize his model to the case where d1 = d2 = 0, and the product in m contains a single component, such that m = 1, and dj = d. In doing so, the model in (8) becomes simply (5) and we can test Ho (7) for scalar values do, the limit distribution being in this case χ 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaiaaigdaaeaacaaIYaaaaOGaaiOlaaaa@3B05@ The functional form of the test statistic is then as follows (see, Robinson, 1994):45

R ^    =    T σ ^ 4   a ^ '  A ^ 1   a ^  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaajaaeaa aaaaaaa8qacaGGGcGaaiiOaiaacckapaGaeyypa0ZdbiaacckacaGG GcGaaiiOa8aadaWcaaqaaiaadsfaaeaacuaHdpWCgaqcamaaCaaale qabaGaaGinaaaaaaGcpeGaaiiOa8aaceWGHbGbaKaacaGGNaWdbiaa cckapaGabmyqayaajaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWdbi aacckapaGabmyyayaajaWdbiaacckapaGaaiilaaaa@4EBA@                             (9)

where T is the sample size, and

a ^    =    2π T   j * ψ( λ j )  g u ( λ j ;  τ ^ ) 1  I( λ j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyyayaajaaeaa aaaaaaa8qacaGGGcGaaiiOaiaacckapaGaeyypa0ZdbiaacckacaGG GcGaaiiOa8aadaWcaaqaaiabgkHiTiaaikdacqaHapaCaeaacaWGub aaa8qacaGGGcWdamaaqahabaGaeqiYdKNaaiikaiabeU7aSnaaBaaa leaacaWGQbaabeaakiaacMcapeGaaiiOa8aacaWGNbWaaSbaaSqaai aadwhaaeqaaOGaaiikaiabeU7aSnaaBaaaleaacaWGQbaabeaakiaa cUdapeGaaiiOa8aacuaHepaDgaqcaiaacMcadaahaaWcbeqaaiabgk HiTiaaigdaaaGcpeGaaiiOa8aacaWGjbGaaiikaiabeU7aSnaaBaaa leaacaWGQbaabeaakiaacMcaaSqaaiaadQgaaeaacaGGQaaaniabgg HiLdaaaa@630B@ ; σ ^ 2    =    σ 2 ( τ ^ )   =    2π T j = 1 T  1 g u ( λ j ;  τ ^ ) 1  I( λ j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaKaada ahaaWcbeqaaiaaikdaaaGcqaaaaaaaaaWdbiaacckacaGGGcGaaiiO a8aacqGH9aqppeGaaiiOaiaacckacaGGGcWdaiabeo8aZnaaCaaale qabaGaaGOmaaaakiaacIcacuaHepaDgaqcaiaacMcapeGaaiiOaiaa cckacaGGGcWdaiabg2da98qacaGGGcGaaiiOaiaacckapaWaaSaaae aacaaIYaGaeqiWdahabaGaamivaaaadaaeWbqaaiaadEgadaWgaaWc baGaamyDaaqabaGccaGGOaGaeq4UdW2aaSbaaSqaaiaadQgaaeqaaO Gaai4oa8qacaGGGcWdaiqbes8a0zaajaGaaiykamaaCaaaleqabaGa eyOeI0IaaGymaaaak8qacaGGGcWdaiaadMeacaGGOaGaeq4UdW2aaS baaSqaaiaadQgaaeqaaOGaaiykaaWcbaGaamOAa8qacaGGGcWdaiab g2da98qacaGGGcWdaiaaigdaaeaacaWGubWdbiaacckapaGaeyOeI0 YdbiaacckapaGaaGymaaqdcqGHris5aaaa@7208@ ,

A ^    =    2 T  ( j * ψ( λ j ) ψ( λ j )'        j * ψ( λ j )  ε ^ ( λ j )'    ( j * ε ^ ( λ j )  ε ^ ( λ j )'  ) 1 j * ε ^ ( λ j ) ψ( λ j ) '  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaceWGbbGbaK aaqaaaaaaaaaWdbiaacckacaGGGcGaaiiOa8aacqGH9aqppeGaaiiO aiaacckacaGGGcaabaWdamaalaaabaGaaGOmaaqaaiaadsfaaaWdbi aacckapaWaaeWaaeaadaaeWbqaaiabeI8a5jaacIcacqaH7oaBdaWg aaWcbaGaamOAaaqabaGccaGGPaWdbiaacckapaGaeqiYdKNaaiikai abeU7aSnaaBaaaleaacaWGQbaabeaakiaacMcacaGGNaWdbiaaccka caGGGcGaaiiOaiaacckapaGaeyOeI0YdbiaacckacaGGGcGaaiiOaa WcpaqaaiaadQgaaeaacaGGQaaaniabggHiLdGcdaaeWbqaaiabeI8a 5jaacIcacqaH7oaBdaWgaaWcbaGaamOAaaqabaGccaGGPaWdbiaacc kapaGafqyTduMbaKaacaGGOaGaeq4UdW2aaSbaaSqaaiaadQgaaeqa aOGaaiykaiaacEcapeGaaiiOaiaacckacaGGGcWdamaabmaabaWaaa bCaeaacuaH1oqzgaqcaiaacIcacqaH7oaBdaWgaaWcbaGaamOAaaqa baGccaGGPaWdbiaacckapaGafqyTduMbaKaacaGGOaGaeq4UdW2aaS baaSqaaiaadQgaaeqaaOGaaiykaiaacEcapeGaaiiOaaWcpaqaaiaa dQgaaeaacaGGQaaaniabggHiLdaakiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaaigdaaaGcdaaeWbqaaiqbew7aLzaajaGaaiikaiab eU7aSnaaBaaaleaacaWGQbaabeaakiaacMcapeGaaiiOa8aacqaHip qEcaGGOaGaeq4UdW2aaSbaaSqaaiaadQgaaeqaaOGaaiykaaWcbaGa amOAaaqaaiaacQcaa0GaeyyeIuoakiaacEcapeGaaiiOaaWcpaqaai aadQgaaeaacaGGQaaaniabggHiLdaakiaawIcacaGLPaaaaaaa@9E08@

ψ( λ j )   =   log  |  2( cos  λ j      cos  w r )  |, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaiikai abeU7aSnaaBaaaleaacaWGQbaabeaakiaacMcaqaaaaaaaaaWdbiaa cckacaGGGcGaaiiOa8aacqGH9aqppeGaaiiOaiaacckacaGGGcWdai GacYgacaGGVbGaai4za8qacaGGGcGaaiiOa8aadaabdaqaa8qacaGG GcWdaiaaikdadaqadaqaaiGacogacaGGVbGaai4Ca8qacaGGGcWdai abeU7aSnaaBaaaleaacaWGQbaabeaak8qacaGGGcGaaiiOa8aacqGH sislpeGaaiiOaiaacckacaGGGcWdaiGacogacaGGVbGaai4Ca8qaca GGGcWdaiaadEhadaWgaaWcbaGaamOCaaqabaaakiaawIcacaGLPaaa peGaaiiOaaWdaiaawEa7caGLiWoacaGGSaaaaa@66FB@ ; ε ^ ( λ j )   =     τ  log  g u ( λ j ;  τ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbaKaaca GGOaGaeq4UdW2aaSbaaSqaaiaadQgaaeqaaOGaaiykaabaaaaaaaaa peGaaiiOaiaacckacaGGGcWdaiabg2da98qacaGGGcGaaiiOaiaacc kapaWaaSaaaeaacqGHciITaeaacqGHciITpeGaaiiOa8aacqaHepaD aaWdbiaacckapaGaciiBaiaac+gacaGGNbWdbiaacckapaGaam4zam aaBaaaleaacaWG1baabeaakiaacIcacqaH7oaBdaWgaaWcbaGaamOA aaqabaGccaGG7aWdbiaacckapaGafqiXdqNbaKaacaGGPaaaaa@5A62@ ;

where j = 2j/T, and the summation in * in the above equations is over all frequencies which are bounded in the spectrum. I(j) is the periodogram of u ^ t    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaajaWaaS baaSqaaiaadshaaeqaaOaeaaaaaaaaa8qacaGGGcGaaiiOaaaa@3B8F@ defined as:

u ^ t   =    (1    2 cos  w r L  +   L 2 ) d o x t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaajaWaaS baaSqaaiaadshaaeqaaOaeaaaaaaaaa8qacaGGGcGaaiiOa8aacqGH 9aqppeGaaiiOaiaacckacaGGGcWdaiaacIcacaaIXaWdbiaacckaca GGGcWdaiabgkHiT8qacaGGGcGaaiiOa8aacaaIYaWdbiaacckapaGa ci4yaiaac+gacaGGZbWdbiaacckapaGaam4DamaaBaaaleaacaWGYb aabeaakiaadYeapeGaaiiOaiaacckapaGaey4kaSYdbiaacckacaGG GcWdaiaadYeadaahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabe aacaWGKbWaaSbaaWqaaiaad+gaaeqaaaaakiaadIhadaWgaaWcbaGa amiDaaqabaaaaa@5CE4@ .

Also τ ^     = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiXdqNbaKaaqa aaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckapaGaeyypa0daaa@3E88@  arg   min τ   T *   σ 2 (τ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaWfeqaaaaaaaaa WdbiaacckapaGaciyyaiaackhacaGGNbWdbiaacckacaGGGcWdaiGa c2gacaGGPbGaaiOBamaaBaaaleaacqaHepaDpeGaaiiOa8aacqGHii IZpeGaaiiOa8aacaWGubWaaWbaaWqabeaacaGGQaaaaaWcbeaak8qa caGGGcWdaiabeo8aZnaaCaaaleqabaGaaGOmaaaakiaacIcacqaHep aDcaGGPaWdbiaacckapaGaaiilaaaa@5180@ , with T* as a suitable subset of the Rq Euclidean space. Finally, gu is a known function coming from the spectral density of ut:

sd f u (λ)   =     σ 2 2 π   g u (λ; τ),              π   <   λ       π. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaadsgaca WGMbWaaSbaaSqaaiaadwhaaeqaaOGaaiikaiabeU7aSjaacMcaqaaa aaaaaaWdbiaacckacaGGGcGaaiiOa8aacqGH9aqppeGaaiiOaiaacc kacaGGGcGaaiiOa8aadaWcaaqaaiabeo8aZnaaCaaaleqabaGaaGOm aaaaaOqaaiaaikdapeGaaiiOa8aacqaHapaCaaWdbiaacckapaGaam 4zamaaBaaaleaacaWG1baabeaakiaacIcacqaH7oaBcaGG7aWdbiaa cckapaGaeqiXdqNaaiykaiaacYcapeGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOa8aacqGHsislpeGaaiiOa8aacqaHapaCpeGaaiiOaiaacc kacaGGGcWdaiabgYda88qacaGGGcGaaiiOaiaacckapaGaeq4UdW2d biaacckacaGGGcGaaiiOaiaacckapaGaeyizIm6dbiaacckacaGGGc GaaiiOa8aacqaHapaCcaGGUaaaaa@81B8@

Note that the test is parametric and, therefore, we must specify the functional form of the error term. Thus, if ut is a white noise, gu 1, whilst if it is an AR process of the form (L)ut = t, gu = (ei)-2, with 2 = V(t), with the AR coefficients being a function of.

The point estimates were obtained by choosing over a grid the values of do and r that minimise Robinson’s45 test statistic. They were found to be almost the same as those obtained by maximising the Whittle function in the frequency domain. The confidence intervals were calculated by choosing the values of the differencing parameters for which the null hypothesis could not be rejected at the 5% level.

Data

Consistently with authors such as Demirer, Gupta, Nei and Pierdzioch (2020) and others on the metric of the ENSO cycle, the Southern Oscillation Index (SOI) was firstly used. It was obtained from the Bureau of Meteorology, Government of Australia. In addition, data of the Equatorial SOI (EQSOI) was used. It was obtained from the Climate Prediction Center (National Weather Service) at the National Oceanic and Atmospheric Administration from the US Department of Commerce.

Figure 2 displays in the upper part the plots of the two series and its cyclical pattern is clear from the data, which may be better viewed throughout the correlagrams (2nd row) and periodograms (3rd row). The last row displays the first 100 values in the periodogram. It was observed that the highest values in the periodograms are far away from zero in the two series examined. In fact, we display in Table 1 the first five values in the periodograms of the SOI (left hand side) and EQSOI (right hand side panel). For SOI, the highest value occurs at frequency 41 that corresponds to approximately 42 periods (months) per cycle. For EQSOI the frequency with the highest value is 20, corresponding to 43 months per cycle. We observe that the zero frequency (j = 1) does not appear in the table for any of the two series.

Figure 2 Time series plots, correlograms and periodograms.

SOI

EQSOI

Value

J

T / j

Value

J

T / j

549.288

41

42.43

4.927

20

43.2

368.863

23

75.65

3.063

2

432

353.617

50

34.8

2.776

13

66.46

329.315

16

108.75

2.656

15

57.6

302.223

11

158.18

2.36

25

34.56

Table 1 Highest values in the periodograms of the time series

Results

It was considered the model given by Equation (5) where xt refers to the original data (and its mean-substracted values) and ut is described in terms of a white noise process or by employing the model of Bloomfield46 that allows for non-parametric autocorrelation, approximating highly parameterized AR structures with very few parameters. Table 2 displays the estimates of d and their associated 95% confidence intervals

Series

Original data

 

Mean substrated data

SOI

d

j

T / j

d

j

T / j

Uncorrelation

0.29

(0.24, 0.34)

47

37.02

0.28

(0.23, 0.34)

43

40.46

Autocorrelation

0.28

(0.20, 0.36)

43

40.46

0.27

(0.21, 0.36)

43

40.46

EQSOI

d

J

T / j

d

j

T / j

Uncorrelation

0.22

(0.09, 0.31)

21

41.14

0.23

(0.11, 0.30)

21

41.14

Autocorrelation

0.21

(0.08, 0.32)

20

43.2

0.23

(0.10, 0.32)

22

39.27

Table 2 Estimated coefficietns in the model given by equation (5)

Starting with the SOI, it was observed that the estimated values of d are 0.29 and 0.28, respectively, with uncorrelated and autocorrelated (Bloomfield) errors when using the original data, and the values are slightly smaller (0.28 and 0.27) with the mean substracted data. In any case, in all cases the results support the hypothesis of long memory with the values of d in the interval (0, 0.5). Looking now at the numbers related with the cycles, it is observed that j is equal to 47 in one case (original data with uncorrelated errors) and 43 in the remaining three, corresponding to cycles of approximate length of 27 and 40 periods. Looking now at the EQSOI (in the lower part of the table) the length of the cycles is approximately the same (around 40 periods) while the order of integration is now somehow smaller, with values between 0.21 and 0.23 and thus showing a lower degree of persistence though still displaying a long memory pattern.47–52

Conclusion

In this article the time series properties of the SOI and EQSOI series has been examined by using statistical techniques based on long memory, and in particular, taking into account the fact that the periodograms of the series display the highest peaks at values away from zero. Using a model based on Gegenbauer polynomials it is shown that the order of integration of the series are in the interval (0, 0.5) and thus showing a long memory mean reverting pattern, with the length of the cycles being approximately around 40 periods, which is consistent with the literature that claims that the SOI and EQSOI series have a periodicity of about 3-7 years.

It We should have been taken into account that the approach employed in this paper is simply one of the many modelling frameworks that can be used to describe these series. One advantage of our model is clearly its simplicity and its consistency with the values observed in the periodograms of the series. Note, however, that other alternatives, allowing for example non-linear deterministic trends like those based on Chebyshev polynomials in time,49 Fourier functions51 or neural networks52 can also be used to describe these and other geophysical quasi-periodic data.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflicts of interest.

References

  1. Varotsos CA, Cracknell AP, Efstathiou MN. The global signature of the El Niño/La Niña Southern Oscillation. International Journal of Remote Sensing. 2018;39:5965–5977.
  2. Roberts A, Guckenheimer J, Widiasih E, et al. Mixed-Mode Oscillations of El Nino–Southern Oscillation. Journal of the Atmospheric Sciences. 2016;73:1755– 1766.
  3. Tudhope AW, Chilcott CP, McCulloch MT, et al. Variability in the El Niño-Southern Oscillation through a Glacial-Interglacial Cycle. Science. 2001;291(5508):1511–1517.
  4. Barlow M, Nigam S, Berbery EH. ENSO, Pacific decadal variability, and US summertime precipitation, drought, and stream flow. Journal of Climate. 2001;14:2105–2128.
  5. Pielke RA, Landsea CN. La Niña, El Niño and Atlantic Hurricane Damages in the United States. Bulletin of the American Meteorological Society. 1999;80:2027–2034.
  6. Cane MA. El Niño in history: storming through the ages. Journal of World History. 2004;15(1):87–88.
  7. Alajo SO, Nakavuma J, Erume J. Cholera in endemic districts in Uganda during El Niño rains: 2002–2003. Afr Health Sci. 2006;6(22):93–97.
  8. Miyakawa T, Yashiro H, Suzuki T, et al. A madden-julian oscillation event remotely accelerates ocean upwelling to abruptly terminate the 1997/1998 super El Niño. Geophysical Research Letters. 2017;44:9489–9495.
  9. Gómez-Martínez G, Pérez-Martín MA, Estrela-Monreal T, et al. North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Júcar River, Spain). Water Resources Management. 2018;32:2717–2734.
  10. Verbist K, Robertson AW, Cornelis WM, et al. Seasonal Predictability of Daily Rainfall Characteristics in Central Northern Chile for Dry-Land Management. Journal of Applied Meteorology and Climatology. 2010;49:1938–1955.
  11. Meza FJ. Recent trends and ENSO influence on droughts in Northern Chile: An application of the Standardized Precipitation Evapotranspiration Index. Weather Climate Extremes. 2013;1:51–58.
  12. Wang H, Kumar A. Assessing the impact of ENSO on drought in the U.S. Southwest with NCEP climate model simulations. Journal of Hydrology. 2015;526:30–41.
  13. Zolotokrylin AN, Titkova TB, Brito-Castillo L. Wet and dry patterns associated with ENSO events in the Sonoran Desert from, 2000–2015. Journal of Arid Environments. 2016;134:21–32.
  14. Mishra AK, Singh VP. A review of drought concepts. Journal of Hydrology. 2010;391:202– 216.
  15. Arndt DS, Baringer MO, Johnson MR. State of the Climate in 2009. Bulletin of the American Meteorological Society. 2010;91(7):S1–S224.
  16. Wong G, Lanen HAJ van, Torfs PJJF. Probabilistic analysis of hydrological drought characteristics using meteorological drought. Hydrological Sciences Journal. 2013;58:253–270.
  17. Shiferaw B, Tesfaye K, Kassie M, et al. Managing vulnerability to drought and enhancing livelihood resilience in sub Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes. High Level Meeting on National Drought Policy. 2014;3:67–79.
  18. Haile M. Weather patterns, food security and humanitarian response in sub Saharan Africa. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1994;360:2169–2182.
  19. Barua S, Ng AWM, Perera BJC. Drought Assessment and Forecasting: A Case Study on the Yarra River Catchment in Victoria, Australia. Australasian Journal of Water Resources. 2015;15:95–108.
  20. Zambrano Mera YE, Rivadeneira Vera JF, Pérez-MartínMÁ. Linking El Niño Southern Oscillation for early drought detection in tropical climates: The Ecuadorian coast. The Science of The Total Environment. 2018;643:193–207.
  21. Zheng B, Chapman S, Chenu K. The Value of Tactical Adaptation to El Niño–Southern Oscillation for East Australian Wheat. Climate. 2018;6:77.
  22. Hu S, Fedorov AV. The extreme El Nino of 2015–2016: the role of westerly and easterly wind bursts and preconditioning by the failed 2014 event. Climate Dynamics. 2019;52:7339–7357.
  23. Demirer R, Gupta R, Nel J, et al. Effect of rare disaster risks on crude oil: evidence from El Nino from over 140 years of data. Working Papers 2020104, University of Pretoria, Department of Economics. 2020.
  24. Bouri E, Gupta R, Pierdzioch C, et al. El Niño and forecastability of oil-price realized volatility. Theoretical and Applied Climatology. 2021;144:1173–1180.
  25. Demirer R, Gupta R, Suleman MT, et al. Time varying rare disaster risks, oil returns and volatility. Energy Economics. 2018;75:239–248.
  26. Gil-Alana LA. Statistical model for the temperatures in the Northern hemisphere using fractional integration techniques. Journal of Climate. 2005;18(24):5537–5369.
  27. Gil-Alana LA. Cyclical long‐range dependence and the warming effect in a long temperature time series. International Journal of Climatology. 2008;28(11):1435–1443.
  28. Gil-Alana LA. Linear and segmented trends in sea surface temperature data. Journal of Applied Statistics. 2015;42(7):1531–1546.
  29. Ercan A, Kavvas ML, Abbasov RK. Long-range dependence and sea level forecasting. Springer International Publishing. 2013;1–51.
  30. Bunde A. Long-term memory in climate: Detection, extreme events and significance of trends, Chapter 11 in Nonlinear and Stochastic Climate Dynamics, edited by Christian L. E. Franzke and Terence O'Kane: Cambridge University Press. 2017.
  31. Yuan N, Fu Z, Liu S. Long-term memory in climate variability: A new look based on fractional integral techniques. Journal of Geophysical Research: Atmospheres. 2013;118(12):962–969
  32. Yuan N, Huang Y, Duan J, et al. On climate prediction; how much can we expect from climate memory? Climate Dynamics. 2019;52(1–2):855–864.
  33. Wu H, Peiris S. An introduction to vector Gegenbauer processes with long memory, Stat (The ISI’s Journal for the Rapid Dissmination of Statistics Research). 2018;7(1):e197.
  34. Barani S, Cristofaro L, Taroni M, et al. Long Memory in Earthquake Time Series: The Case Study of the Geysers Geothermal Field. Frontiers in Earth Science. 2021;9:563649.
  35. Li XX, Song YF, Sivakuman BY, et al. Detection of trends types in surface air temperatures in China. Journal of Hydrology. 2021;596:126061.
  36. Magnus W, Oberhettinger F, Soni RP. Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin. 1966.
  37. Gray H L, Yhang N, Woodward WA. On generalized fractional processes. Journal of Time Series Analysis. 1989;10:233–257.
  38. Gray HL, Yhang N, Woodward WA. On generalized fractional processes. A correction. Journal of Time Series Analysis. 1994;15:561–562.
  39. Ahtola J, Tiao GC. Distributions of least squares estimators of autoregressive parameters for a process with complex roots on the unit circle. Journal of Time Series Analysis. 1987a;8(1):1–14.
  40. Ahtola J, Tiao GC. A note on asymptotic inference in autoregressive models with roots on the unit circle. Journal of Time Series Analysis. 1987b;8(1):15–18.
  41. Bierens H. Complex unit roots and business cycles: Are they real? Econometric Theory. 2001;17:962–983.
  42. Gil-Alana LA. Testing Stochastic Cycles in Macroeconomic Time Series. Journal of Time Series Analysis. 2001;22(4):411–430.
  43. Phillip A, Chan J, Peiris S. On generalized bivariate student-t Gegenbauer long memory stochastic volatility models with leverage: Bayesian forecasting of cryptocurrencies with a focus on Bitcoin. Econometrics and Statistics. 2020;16:69–90.
  44. Dissanayake G, Peiris S, Proietti T. Fractionally Differenced Gegenbauer Processes with Long Memory: A Review. Statistical Science. 2020;33(3):413–426.
  45. Robinson PM. Efficient tests of nonstationary hypotheses, Journal of the American Statistical Association. 1994;89:1420–1437.
  46. Bloomfield P. An exponential model in the spectrum of a scalar time series. Biometrika. 1973;60:217–226.
  47. Behrenfeld MJ, Randerson JT, McClain CR, et al. Biospheric Primary Production during an ENSO Transition. Science. 2001;291(5513):2594–2597.
  48. Bureau of Meteorology, Australian Government.
  49. Cuestas FJ, Gil-Alana LA. A nonlinear approach with long range dependence based on Chebyshev polynomials in time. Studies in Nonlinear Dynamics and Econometrics. 2016;23.
  50. Gil-Alana LA, Romero-Rojo F. A persistent cyclical pattern in the SOI and EQSOI series, Research Square. 2022.
  51. Gil-Alana LA, Yaya OS. Testing fractional unit roots with non-linear smooth break approximations using Fourier functions. Journal of Applied Statistics. 2021;48(13-15):2542–2559.
  52. Yaya OS, Ogbonna OE, Furuoka F, et al. New Unit Root Test for Unemployment Hysteresis Based on the Autoregressive Neural Network. Oxford Bulletin of Economics and Statistics. 2021;83(4):960–981.
Creative Commons Attribution License

©2024 Gil-Alana, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.