Submit manuscript...
eISSN: 2576-4462

Horticulture International Journal

Research Article Volume 2 Issue 4

Determinants of seed variety selection among cowpea farmers in Osun state, Nigeria

Baruwa Olayinka Isiaka

Department of Agricultural Economics, Obafemi Awolowo University, Nigeria

Correspondence: Baruwa Olayinka Isiaka, Department of Agricultural Economics, Obafemi Awolowo University, Ile Ife. Nigeria

Received: May 30, 2018 | Published: July 2, 2018

Citation: Isiaka BO. Determinants of seed variety selection among cowpea farmers in Osun state, Nigeria. Horticult Int J. 2018;2(4):141-143. DOI: 10.15406/hij.2018.02.00042

Download PDF

Abstract

Appropriate seed selection enhances farm productivity, profitable production system and optimizes the cost of cultivation. The study analysed the socio-economic factors influencing farmers’ choices of cowpea seed for cultivation in Osun State. Cross-sectional survey data of four local government areas of Osun State was obtained. Evidence from Multinomial Logit showed that years of farmer’s education, experience in cowpea farming methods, and were statistically significant associated with farmers’ choices relative to the reference group. The finding indicates a need to consider farmers economic climate in seed technology development process.

Key words: seed technology, adoption, cowpea, multinomial logit

Introduction

The importance of cowpea (Vigna unguiculata L. Walp) in bridging the food gap in Nigeria cannot be overemphasized. Nutritionally, cowpea is a good source of protein for both human and livestock. It is also a source of income to farmers, serves as nitrogen fixation and cover crops thus improving the soil fertility of the marginal lands.1 The prospect for reducing hunger, malnutrition and food insecurity through increase in cowpea productivity is significant.2 In other to realise the goal, there is need to increase the output of cowpea. Among ways of achieving the goal is selection of appropriate seed input to enhance farm productivity, profitable production system and optimal return to farmers. For sustainability of smallholder farmers, increased use of inputs (seeds, chemicals and fertilizers) is of paramount importance. In sub-Saharan Africa, purchased input use is very low and static over the last 20 years or so.3

Due to strong correlation between farmers’ output and the input utilization, there is need to improve the hybrid seed utilization of the smallholder farmers over time and there ought to exist a relationship between the input utilization of the farmer and socio–economic factors,4 which is significant in the micro environment which the farmer operates. This study therefore examined the socio-economic factors influencing the selection of seed varieties by cowpea farmers in order for research and extension to take adequate advantage of the socio-economic environment of the farmers, their cultural diversities and uniqueness in enhancing farm productivity, profitable production system and optimal return to farmers.

Materials and methods

The area of study is Osun State, Nigeria, and lies within latitude 7.00 and 9.00N, and longitude 2.80 and 6.80E. with land area of 8,602km2. The mean rainfall ranges from 1125mm to 1475mm while the average annual temperature ranges from 27.20C to 39.00C. Majority of the respondents are farmers, both food crops and permanent crops were grown either as mixed or intercropped. Random sampling technique was used to collect a sample of 200 cowpea farmers in four selected areas of Osun State, Southwestern Nigeria, for the 2013/2014 agricultural growing seasons. In each of the four purposively selected Local Governments Areas notable for cowpea production in the state, 50 cowpea farmers were selected. A structured questionnaire was used to collect information on input–output cowpea production activities. Descriptive statistics was used to describe socio-economic characteristics of the respondents while multinomial logit was used to establish relationship to likelihood of selection of cowpea seed varieties and socio-economic factors affecting it. The Multinomial Logit Model (MNLM) was used for analyzing unordered qualitative variables. It deals with truly nominal and mutually exclusive categories. Suppose a dependent variable (DV), y, has m categories that are y=1, 2 …m with P1, P2…Pm as associated probabilities, such that P1+P2+…+Pm =1. One value (typically the first, the last or the value with highest frequency) of the DV is designated as the reference category. The probability of membership in other categories is then compared to the probability of membership in the reference category. Consequently, for a DV with M categories, this requires the calculation of M-1 equations, one for each category relative to the reference category, to describe the relationship between the DV and the independent variables (IVs). The generalized form of probabilities for an outcome variable with M categories is:

Pr ( y i =m x i ) =  P im =  exp( x i ' β m ) 1+ m=2 m exp( x i . β m )         MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbGaaeiiaKqba+aadaqadaGcbaqcLbsapeGa amyEaSWdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaey ypa0JaamyBamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuaacaWF cuIaamiEaSWdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaaakiaawI cacaGLPaaajugib8qacaqGGaGaeyypa0Jaaeiiaiaadcfal8aadaWg aaqaaKqzadWdbiaadMgacaWGTbaal8aabeaajugib8qacqGH9aqpca GGGcqcfa4damaalaaakeaajugibiGacwgacaGG4bGaaiiCaKqbaoaa bmaakeaajuaGdaqfWaGcbeWcbaqcLbmacaWGPbaaleaajugibiaacE caa0qaaKqzGeGaamiEaaaacqaHYoGyjuaGdaWgaaWcbaqcLbmacaWG TbaaleqaaaGccaGLOaGaayzkaaaabaqcLbsacaaIXaGaey4kaSscfa 4aaabCaOqaaKqzGeGaciyzaiaacIhacaGGWbqcfa4aaeWaaOqaaKqz GeGaamiEaSWaa0baaeaajugWaiaadMgaaSqaaKqzadGaaiOlaaaaju gibiabek7aILqbaoaaBaaaleaajugWaiaad2gaaSqabaaakiaawIca caGLPaaaaSqaaKqzadGaamyBaiabg2da9iaaikdaaSqaaKqzadGaam yBaaqcLbsacqGHris5aaaapeGaaiiOaiaacckacaGGGcGaaiiOaOGa aiiOaiaacckacaGGGcaaaa@8D2C@ m > 1........................ (1)

Where,

Pr (yi=m) is the probability of choosing either TVS variety, Oloyin, Ife Bimpe with Ife brown as the reference category.

M is the number of varieties in the choice set.

m = 0 is Ife brown

Xi is a vector of the predictor (exogenous) social factors (variables)

βm is a vector of the estimated parameters

For the reference category,

Pr ( y i =1 x i ) = P i1 = 1 1+ m=2 M exp( X i , β m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbGaaeiiaKqba+aadaqadaGcbaqcLbsapeGa amyEaSWdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaey ypa0JaaGymamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuaacaWF cuIaamiEaSWdamaaBaaabaqcLbmapeGaamyAaaWcpaqabaaakiaawI cacaGLPaaajugib8qacaqGGaGaeyypa0JaamiuaSWdamaaBaaabaqc LbmapeGaamyAaiaaigdaaSWdaeqaaKqzGeWdbiabg2da9Kqbaoaala aakeaajugibiaaigdaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaaqaha keaajugibiGacwgacaGG4bGaaiiCaiaacIcacaGGybqcfa4aaSbaaS qaaKqzadGaaiyAaaWcbeaajuaGcaGGSaqcLbsacqaHYoGylmaaBaaa baqcLbmacaGGTbaaleqaaKqzGeGaaiykaaWcbaqcLbmacaWGTbGaey ypa0JaaGOmaaWcbaqcLbmacaWGnbaajugibiabggHiLdaaaaaa@7269@  ………………………….(2)

for K covariates, a total of (K+1)*(M-1) parameters will be estimated.
The odds and odds-ratios for a variable with M categories and baseline, M=1:

P im P i1 = η im η i1 =exp ( x i , β m )log P im P i1 = x i , β m     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeaeaaaaaaaaa8qacaWGqbWcpaWaaSbaaeaajugWa8qacaWG PbGaamyBaaWcpaqabaaakeaajugib8qacaWGqbWcpaWaaSbaaeaaju gWa8qacaWGPbGaaGymaaWcpaqabaaaaKqzGeGaeyypa0tcfa4aaSaa aOqaaKqzGeWdbiabeE7aOLqba+aadaWgaaWcbaqcLbmapeGaamyAai aad2gaaSWdaeqaaaGcbaqcLbsapeGaeq4TdG2cpaWaaSbaaeaajugW a8qacaWGPbGaaGymaaWcpaqabaaaaKqzGeGaeyypa0Zdbiaadwgaca WG4bGaamiCaiaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadIhal8aa daWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqzGeGaaiila8qacqaHYo Gyl8aadaWgaaqaaKqzadWdbiaad2gaaSWdaeqaaaGccaGLOaGaayzk aaqcLbsapeGaeyOKH4QaamiBaiaad+gacaWGNbqcfa4aaSaaaOqaaK qzGeGaamiuaSWdamaaBaaabaqcLbmapeGaamyAaiaad2gaaSWdaeqa aaGcpeqaaKqzGeGaamiuaSWdamaaBaaabaqcLbmapeGaamyAaiaaig daaSWdaeqaaaaajugib8qacqGH9aqpcaWG4bWcpaWaaSbaaeaajugW a8qacaWGPbaal8aabeaajugibiaacYcapeGaeqOSdi2cpaWaaSbaae aajugWa8qacaWGTbaal8aabeaajugWa8qacaGGGcqcLbsacaGGGcGc caGGGcaaaa@7ECA@  ................................. (3)

Log ( Pm X k =1 )( P 1 X k =1 ) ( P m X k =0 )  ( P 1 X k =0 ) =    β mk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeacaWGVbGaam4zaKqbaoaalaaakeaajuaGpaWaaeWa aOqaaKqzGeWdbiaadcfajugWaiaad2gatCvAUfeBSn0BKvguHDwzZb qegiuy0fMBNbacfaqcLbsacaWFcuIaamiwaSWdamaaBaaabaqcLbma peGaam4AaaWcpaqabaqcLbsapeGaeyypa0JaaGymaaGcpaGaayjkai aawMcaaKqzGeWdbiaa=jqjjuaGpaWaaeWaaOqaaKqzGeWdbiaadcfa juaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiaa=j qjcaWGybWcpaWaaSbaaeaajugWa8qacaWGRbaal8aabeaajugib8qa cqGH9aqpcaaIXaaak8aacaGLOaGaayzkaaaapeqaaKqba+aadaqada GcbaqcLbsapeGaamiuaSWdamaaBaaabaqcLbmapeGaamyBaaWcpaqa baqcLbsapeGaa8NaLiaadIfal8aadaWgaaqaaKqzadWdbiaadUgaaS WdaeqaaKqzGeWdbiabg2da9iaaicdaaOWdaiaawIcacaGLPaaajugi b8qacaqGGaGaa8NaLiaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadc fal8aadaWgaaqaaKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiaa=jqj caWGybWcpaWaaSbaaeaajugWa8qacaWGRbaal8aabeaajugib8qacq GH9aqpcaaIWaaak8aacaGLOaGaayzkaaaaaKqzGeWdbiabg2da9iaa cckacaGGGcGaaiiOaiabek7aILqba+aadaWgaaWcbaqcLbmapeGaam yBaiaadUgaaSWdaeqaaaaa@859A@  .......................... (4)

Log ( P m X k = X k 0 +1 )/ ( P 1 X k = X k 0 +1 ) ( P m X k = X k 0 )/ ( P 1 X k = X k 0 ) = β mk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeacaWGVbGaam4zaKqbaoaalaaakeaajuaGpaWaaeWa aOqaaKqzGeWdbiaadcfajuaGpaWaaSbaaSqaaKqzadWdbiaad2gaaS WdaeqaamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuaajugib8qa caWFcuIaamiwaSWdamaaBaaabaqcLbmapeGaam4AaaWcpaqabaqcLb sapeGaeyypa0JaamiwaKqbaoaaDaaabaqcLbmacaWGRbaajuaGbaqc LbmacaaIWaaaaKqzGeGaey4kaSIaaGymaaGcpaGaayjkaiaawMcaaK qzGeWdbiaac+cacaqGGaqcfa4damaabmaakeaajugib8qacaWGqbWc paWaaSbaaeaajugWa8qacaaIXaaal8aabeaajugib8qacaWFcuIaam iwaKqba+aadaWgaaWcbaqcLbmapeGaam4AaaWcpaqabaqcLbsapeGa eyypa0JaamiwaKqbaoaaDaaabaqcLbmacaWGRbaajuaGbaqcLbmaca aIWaaaaKqzGeGaey4kaSIaaGymaaGcpaGaayjkaiaawMcaaaWdbeaa juaGpaWaaeWaaOqaaKqzGeWdbiaadcfajuaGpaWaaSbaaSqaaKqzad Wdbiaad2gaaSWdaeqaaKqzGeWdbiaa=jqjcaWGybqcfa4damaaBaaa leaajugWa8qacaWGRbaal8aabeaajugib8qacqGH9aqpcaWGybqcfa 4aa0baaeaajugWaiaadUgaaKqbagaajugWaiaaicdaaaaak8aacaGL OaGaayzkaaqcLbsapeGaai4laiaabccajuaGpaWaaeWaaOqaaKqzGe WdbiaadcfajuaGpaWaaSbaaSqaaKqzadWdbiaaigdaaSWdaeqaaKqz GeWdbiaa=jqjcaWGybqcfa4damaaBaaaleaajugWa8qacaWGRbaal8 aabeaajugib8qacqGH9aqpcaWGybqcfa4aa0baaeaajugWaiaadUga aKqbagaajugWaiaaicdaaaaak8aacaGLOaGaayzkaaaaaKqzGeWdbi abg2da9iabek7aILqba+aadaWgaaWcbaqcLbmapeGaamyBaiaadUga aSWdaeqaaaaa@9F71@ ..................... (5)

Specifically, the standard MNLM for model with m= 6 categories become

Pr( y i =1 x i )= P i1 =  1 1+ exp ( x i , β 2 ) +exp ( x i , β n ) = η i1 η i1 + η i2 + η i6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbqcfa4damaabmaakeaajugib8qacaWG5bqc fa4damaaBaaaleaajugWa8qacaWGPbaal8aabeaajugib8qacqGH9a qpcaaIXaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGqbaiaa=jqj caWG4bqcfa4aaSbaaeaajugWaiaadMgaaKqbagqaaaGcpaGaayjkai aawMcaaKqzGeWdbiabg2da9iaadcfajuaGpaWaaSbaaSqaaKqzadWd biaadMgacaaIXaaal8aabeaajugib8qacqGH9aqpcaGGGcqcfa4aaS aaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaey4kaSIaaeiiaiaa dwgacaWG4bGaamiCaiaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadI hajuaGpaWaaSbaaSqaaKqzadWdbiaadMgaaSWdaeqaaKqzGeGaaiil a8qacqaHYoGyjuaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaa GccaGLOaGaayzkaaqcLbsapeGaaeiiaiabgUcaRiaadwgacaWG4bGa amiCaiaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadIhal8aadaWgaa qaaKqzadWdbiaadMgaaSWdaeqaaKqzadGaaiilaKqzGeWdbiabek7a ITWdamaaBaaabaqcLbmapeGaamOBaaWcpaqabaaakiaawIcacaGLPa aaaaqcLbsapeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeq4TdGwcfa4d amaaBaaaleaajugWa8qacaWGPbGaaGymaaWcpaqabaaak8qabaqcLb sacqaH3oaAjuaGpaWaaSbaaSqaaKqzadWdbiaadMgacaaIXaaal8aa beaajugib8qacqGHRaWkcqaH3oaAjuaGpaWaaSbaaSqaaKqzadWdbi aadMgacaaIYaaal8aabeaajugib8qacqGHRaWkcqaH3oaAjuaGpaWa aSbaaSqaaKqzadWdbiaadMgacaaI2aaal8aabeaaaaaaaa@9C06@ ....................... (6)

Pr( y i =2 x i )= P i2 = exp ( x i , β m ) 1+ exp ( x i , β 2 ) +exp ( x i β n ) = η i2 η i1 + η i2 + η i6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbqcfa4damaabmaakeaajugib8qacaWG5bqc fa4damaaBaaaleaajugWa8qacaWGPbaal8aabeaajugib8qacqGH9a qpcaaIYaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGqbaiaa=jqj caWG4bqcfa4damaaBaaaleaajugWa8qacaWGPbaal8aabeaaaOGaay jkaiaawMcaaKqzGeWdbiabg2da9iaadcfajuaGpaWaaSbaaSqaaKqz adWdbiaadMgacaaIYaaal8aabeaajugib8qacqGH9aqpjuaGdaWcaa GcbaqcLbsacaWGLbGaamiEaiaadchacaqGGaqcfa4damaabmaakeaa jugib8qacaWG4bqcfa4damaaBaaaleaajugWa8qacaWGPbaal8aabe aajuaGcaGGSaqcLbsapeGaeqOSdiwcfa4damaaBaaaleaajugWa8qa caWGTbaal8aabeaaaOGaayjkaiaawMcaaaWdbeaajugibiaaigdacq GHRaWkcaqGGaGaamyzaiaadIhacaWGWbGaaeiiaKqba+aadaqadaGc baqcLbsapeGaamiEaKqba+aadaWgaaWcbaqcLbmapeGaamyAaaWcpa qabaqcfaOaaiilaKqzGeWdbiabek7aILqba+aadaWgaaWcbaqcLbma peGaaGOmaaWcpaqabaaakiaawIcacaGLPaaajugib8qacaqGGaGaey 4kaSIaamyzaiaadIhacaWGWbGaaeiiaKqba+aadaqadaGcbaqcLbsa peGaamiEaKqba+aadaWgaaWcbaqcLbmapeGaamyAaiaacMbiaSWdae qaaKqzGeWdbiabek7aILqba+aadaWgaaWcbaqcLbmapeGaamOBaaWc paqabaaakiaawIcacaGLPaaaaaqcLbsapeGaeyypa0tcfa4aaSaaaO qaaKqzGeGaeq4TdGMcdaWgaaWcbaqcLbmacaWGPbGaaGOmaaWcbeaa aOqaaKqzGeGaeq4TdGwcfa4damaaBaaaleaajugWa8qacaWGPbGaaG ymaaWcpaqabaqcLbsapeGaey4kaSIaeq4TdGwcfa4damaaBaaaleaa jugWa8qacaWGPbGaaGOmaaWcpaqabaqcLbsapeGaey4kaSIaeq4TdG wcfa4damaaBaaaleaajugWa8qacaWGPbGaaGOnaaWcpaqabaaaaaaa @AA93@ ................ (7)

Pr( y i =n x i )= P in = exp ( x i , β n ) 1+ exp ( x i β 2 )+exp( x i , β n ) =   η i6 η i1 + η i2 + η i6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadcfacaWGYbqcfa4damaabmaakeaajugib8qacaWG5bqc fa4damaaBaaaleaajugWa8qacaWGPbaal8aabeaajugib8qacqGH9a qpcaWGUbWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGqbaiaa=jqj caWG4bqcfa4damaaBaaaleaajugWa8qacaWGPbaal8aabeaaaOGaay jkaiaawMcaaKqzGeWdbiabg2da9iaadcfajuaGpaWaaSbaaSqaaKqz adWdbiaadMgacaWGUbaal8aabeaajugib8qacqGH9aqpjuaGdaWcaa GcbaqcLbsacaWGLbGaamiEaiaadchacaqGGaqcfa4damaabmaakeaa jugib8qacaWG4bqcfa4damaaBaaaleaajugWa8qacaWGPbaal8aabe aajugibiaacYcapeGaeqOSdiwcfa4damaaBaaaleaajugWa8qacaWG Ubaal8aabeaaaOGaayjkaiaawMcaaaWdbeaajugibiaaigdacqGHRa WkcaqGGaGaamyzaiaadIhacaWGWbGaaeiiaKqba+aadaqadaGcbaqc LbsapeGaamiEaKqba+aadaWgaaWcbaqcLbmapeGaamyAaaWcpaqaba qcLbsapeGaaiygGiabek7aILqba+aadaWgaaWcbaqcLbmapeGaaGOm aaWcpaqabaaakiaawIcacaGLPaaajugib8qacqGHRaWkcaWGLbGaam iEaiaadchajuaGpaWaaeWaaOqaaKqzGeWdbiaadIhajuaGpaWaaSba aSqaaKqzadWdbiaadMgaaSWdaeqaaKqzGeGaaiila8qacqaHYoGyju aGpaWaaSbaaSqaaKqzadWdbiaad6gaaSWdaeqaaaGccaGLOaGaayzk aaaaaKqzGeWdbiabg2da9KqbaoaalaaakeaajugibiaacckacqaH3o aAjuaGpaWaaSbaaSqaaKqzadWdbiaadMgacaaI2aaal8aabeaaaOWd beaajugibiabeE7aOLqba+aadaWgaaWcbaqcLbmapeGaamyAaiaaig daaSWdaeqaaKqzGeWdbiabgUcaRiabeE7aOLqba+aadaWgaaWcbaqc LbmapeGaamyAaiaaikdaaSWdaeqaaKqzGeWdbiabgUcaRiabeE7aOL qba+aadaWgaaWcbaqcLbmapeGaamyAaiaaiAdaaSWdaeqaaaaaaaa@AA8A@ .................. (8)

Empirical model

The model is specified as:

Y i =  β o +  β 1 X 1 +  β 2 X 2 +  β 3 X 3 +  β 4 X 4 +  β 5 X 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMfal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabg2da9iaabccacqaHYoGyl8aadaWgaaqaaKqzadWdbiaad+ gaaSWdaeqaaKqzGeWdbiabgUcaRiaabccacqaHYoGyl8aadaWgaaqa aKqzadWdbiaaigdaaSWdaeqaaKqzGeWdbiaadIfal8aadaWgaaqaaK qzadWdbiaaigdaaSWdaeqaaKqzGeWdbiabgUcaRiaabccacqaHYoGy juaGpaWaaSbaaSqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiaadI fal8aadaWgaaqaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabgUca RiaabccacqaHYoGyl8aadaWgaaqaaKqzadWdbiaaiodaaSWdaeqaaK qzGeWdbiaadIfal8aadaWgaaqaaKqzadWdbiaaiodaaSWdaeqaaKqz GeWdbiabgUcaRiaabccacqaHYoGyl8aadaWgaaqaaKqzadWdbiaais daaSWdaeqaaKqzGeWdbiaadIfajuaGpaWaaSbaaSqaaKqzadWdbiaa isdaaSWdaeqaaKqzGeWdbiabgUcaRiaabccacqaHYoGyjuaGpaWaaS baaSqaaKqzadWdbiaaiwdaaSWdaeqaaKqzGeWdbiaadIfal8aadaWg aaqaaKqzadWdbiaaiwdaaSWdaeqaaaaa@7383@ ................................................... (9)

Where Yi, (dependent Variable) is the method of adaptation chosen by the farmer,

Xis (explanatory variables). Yi is defined as 1 for TVS variety, 2 for Ife brown (base outcome), 3 for ‘Oloyin’ and 4 for ‘Ife Bimpe’. The independent variables are:

X1 = farmers’ age (years)

X2 = access to credit

X3= formal education (years)

X4= number of years of experience in farming

X5 = farm size

Results and discussion

Mean age of the respondents was 45.4 implied that farmers were still in their active age bracket (Table 1). About 14.3 per cent had no formal education compared to 38.5 per cent who had primary education. However, majority (97.2%) of the farmers were male. Years of education was statistically significant at 10% and positively related to TVS seed variety selection by farmers relative to ‘Ife brown’ which is the base outcome. Similarly, years of education (P ≤0.05) and farming experience (P ≤0.10) were significantly related to ‘Oloyin’ variety selection but found to be negative while age is the only significant variable influencing the decision to select ‘Ife bimpe’ by cowpea farmers (Table 2). However age is negative indicating that the variety appeals to younger farmers than older cowpea farmers. The significance of education follows a priori expectation, given that education is an important factor in technology adoption. Farming experience was also negative and significant. This implies that the decision to adopt improved cowpea seeds decreases as experience in farming, measured by the number of years put into farming activities increases. This is not in line with a priori expectation because more experienced farmers may have better skills and access to new information about improved technologies. This could be due to the fact that farmers become adapted to certain ways of doing things and the tendency to adopt a new innovation is always difficult.

Item

Frequency

Distribution (%)

Mean

Education level

No formal schooling

10

14.3

 

Primary school

27

38.5

 

Secondary school

22

31.5

 

Post-secondary school

11

15.7

 

Age group

21-29

9

12.9

 

30-38

10

14.3

45.4

39-47

21

30

 

48-56

19

27.1

 

57-65

9

12.9

 

66 and above

2

2.8

 

Sex

Male

68

97.2

 

Female

2

2.8

 

Table 1 Socio-economic demographics of respondents

Source- Field survey, 2014

Varieties

Variables

Coefficient

Standard error

z

TVS

 

 

 

 

 

Age (X1)

0.022

0.039

0.57

 

Credit access (X2)

15.22

1800.9

0.01

 

Farm size (X3)

-0.33

0.43

-0.77

 

Education (X4)

0.5296

0.316

 1.73**

 

Experience (X5)

-0.09

0.075

-1.22

 

Constant (β)

-16.54

1800.92

-0.01

Ife brown (base Outcome)

 

 

 

 

Oloyin

 

 

 

 

 

Age

-0.11

-0.08

-1.31

 

Credit access

16.21

1800.927

0.01

 

Farm size

1.15

1.134

1.02

 

Education

-1.5826

0.7938

 -1.99*

 

Experience

-0.344

0.205

 -1.67**

 

Constant

-9.67

1800.93

-0.01

Ife Bimpe

 

 

 

 

 

Age

-0.096

0.057

 -1.68**

 

Credit access

-0.676

3529.407

0

 

Farm size

-0.905

0.8655

-1.05

 

Education

0.215

0.3451

0.62

 

Experience

0.114

0.088

1.29

 

Constant

3.73

3529.4

0

LR Chi2 = 40.35

 

 

 

 

Prob > Chi2 =

0.0019

 

 

 

R2 = 0.218

 

 

 

 

Table 1 Study animal information: ID, gender, age, and dates of data collection for each study animal

Summary conclusion and policy recommendations

The study examined the socio-economic factors influencing the selection of seed varieties by cowpea farmers in Osun State, Southwest, Nigeria. The descriptive analysis of the socio economic characteristics of the respondents revealed that the respondents were young, averagely educated and comprising more men. Evidence from Multinomial Logit showed that years of farmers education, experience in cowpea farming methods, were statistically significant associated with farmers’ choices relative to the reference group. However farmers’ age was negative indicating that the variety appeals to younger farmers than older cowpea farmers. In conclusion, desirable increase in productivity, national and households’ food security, reduction in hunger, poverty and malnutrition are products of improved agricultural technology adoption in developing countries, including Nigeria. From the findings, it was recommended that since socio-economic factors influencing the selection of seed varieties by cowpea farmers in Osun some policy should be put in place in form of enlightment campaign, toward increase in farmer’s education. The implication of this is that costs of obtaining new technical and related information by the farmers will be reduced substantially when they can read and understand published materials and simplified farm journals which are increasingly becoming the modern vehicle of disseminating information.

Acknowledgements

None.

Conflict of Interest

Author declares that there is no conflict of interest.

References

  1. Fatokun AC. Breeding cowpea for resistance to insect pests; attempted crosses between cowpea and vigna vexillata. In : challenges and opportunities for enhancing sustainable cowpea production. Fatokun CA, Tarawali SA, Singh BB, editors. International Institute for Tropical Agriculture (IITA); Ibadan, Nigeria: 2002;52–61.
  2. Coulibaly O, Lowenberg Debber J. The economics of cowpea in West Africa. In: Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA); Ibadan, Nigeria: 2000.
  3. Abayomi YA, Ajibade TV, Samuel OF, et al. Growth and yield responses of cowpea (Vigna unguiculata L. Walp) genotypes to nitrogen fertilizer (N.P.K.) application in the Southern Guinea Savannah zone of Nigeria. Asian Journal of Plant Sciences. 2008;7(2):170–176.
  4. Nwagbo EC, Achoja FO. Correlates of sustainable fertilizer consumption among smallholder farmers: an econometric approach. A paper presented at the annual conference of Nigeria association of agricultural economists at the University of Nigeria; Nsukka: 2001.
Creative Commons Attribution License

©2018 Isiaka. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.