Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Research Article Volume 2 Issue 5

High order accurate numerical simulation of flow past an oscillating circular cylinder

Sonawane CR, More YB

Department of Mechanical Engineering, Symbiosis Institute of Technology(SIT), India

Correspondence: Sonawane CR, Department of Mechanical Engineering, Symbiosis Institute of Technology(SIT), Pune, India

Received: October 25, 2018 | Published: November 29, 2018

Citation: Sonawane CR, More WB. High order accurate numerical simulation of flow past an oscillating circular cylinder. Fluid Mech Res Int J. 2018;2(5):230-232. DOI: 10.15406/fmrij.2018.02.00042

Download PDF

Introduction

Over the years, flow past circular cylinder has been studied1‒11 extensively due to its academic and practical significance. Periodic lift and drag forces are generated over the cylinder due to separation and vortex shedding leading to structural vibration also known as vortex induced vibrations (VIV). This fluid-structure interaction (FSI) may result in serious engineering problems such as fatigue failure of the off-shore riser and sub-sea pipelines. Therefore, prediction of fluid forces on the cylinder has great importance from the point of view of structural design. Often, two types of FSI problems involving cylinder are studied. In one case, cylinder oscillates due to the in-line and transverse forces generated by vortex shedding.1‒10 In the second case, the cylinder is forced to oscillate in a transverse direction with prescribed oscillating amplitude and excitation frequency, known as force induced vibration (FIV).11 In this paper, the FSI problems are studied using a numerical method. An accurate Harten Lax and van Leer with contact for artificial compressibility (HLLC-AC) Riemann solver12‒14 developed for solving incompressible flows in artificial compressibility formulation have been used for flow computation. The Riemann solver is modified to incorporate Arbitrarily Lagrangian-Eulerian (ALE)15 formulation in order to take care of mesh movement in the computation, where radial basis function16 is used for dynamically moving the mesh. Higher order accuracy is achieved using quadratic solution reconstruction based on solution dependent weighted least squares (SDWLS).17 The results obtained by the present method is validated those reported in the literature.1‒11

Arbitrarily Lagrangian-Eulerian (ALE)15 formulation

 An artificial compressibility18 based, with dual-time stepping, the unsteady Navier-Stokes incompressible equations is modified here to take care of moving boundaries using the Arbitrarily Lagrangian-Eulerian (ALE)15 formulation. The integral form of the two-dimensional governing equation in arbitrarily Lagrangian-Eulerian form can be written as

Ω W τ dxdy+ I M Ω W t dxdy+ Θ M A [ ( E c + E v ) n x +( F c + F v ) n y ] dA=  Ω S 0 dxdy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWdsbqaamaalaaapaqaaKqzGeWdbiabgkGi2kaabEfaaKqb a+aabaqcLbsapeGaeyOaIyRaeqiXdqhaaaqcfayaaKqzadGaeuyQdC fajuaGbeqcLbsacqGHRiI8cqGHRiI8aiaabsgacaqG4bGaaeizaiaa bMhacqGHRaWkcaqGjbqcfa4damaaCaaaleqabaqcLbmapeGaaeytaa aajuaGpaWaa8GuaeaapeWaaSaaa8aabaqcLbsapeGaeyOaIyRaae4v aaqcfa4daeaajugib8qacqGHciITcaqG0baaaaqcfa4daeaajugWai abfM6axbqcfayabKqzGeGaey4kIiVaey4kIipapeGaaeizaiaabIha caqGKbGaaeyEaiabgUcaRiabfI5arLqba+aadaahaaWcbeqaaKqzad Wdbiaab2eaaaqcfa4damaapufabaWdbmaadmaapaqaa8qadaqadaWd aeaajugib8qacaqGfbWcpaWaaWbaaKqbagqabaqcLbmapeGaae4yaa aajugibiabgUcaRiaabweajuaGpaWaaWbaaeqabaqcLbmapeGaaeOD aaaaaKqbakaawIcacaGLPaaajugibiaab6gajuaGpaWaaSbaaeaaju gWa8qacaqG4baajuaGpaqabaqcLbsapeGaey4kaSscfa4aaeWaa8aa baqcLbsapeGaaeOraKqba+aadaahaaqabeaajugWa8qacaqGJbaaaK qzGeGaey4kaSIaaeOraKqba+aadaahaaqabeaajugWa8qacaqG2baa aaqcfaOaayjkaiaawMcaaKqzGeGaaeOBaKqba+aadaWgaaqaaKqzad WdbiaabMhaaKqba+aabeaaa8qacaGLBbGaayzxaaaapaqaaKqzadGa amyqaaqcfayabKqzGeGaeSyeUhTaey4kIipapeGaaeizaiaabgeacq GH9aqpcaqGGcqcfa4aa8Guaeaajugibiaabofal8aadaWgaaqcfaya aKqzadWdbiaaicdaaKqba+aabeaajugib8qacaqGKbGaaeiEaiaabs gacaqG5baajuaGbaqcLbmacqqHPoWvaKqbagqajugibiabgUIiYlab gUIiYdaaaa@AB7D@ (1)

W= { p ρ u v };  E c = { U Uu+ p ρ Uv };  G c = { V uV vV+ p ρ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEfacqGH9aqpcaGGGcqcfa4aaiWaaOWdaeaajugibuaa beqaceaaaOqaaKqba+qadaWccaGcpaqaaKqzGeWdbiaadchaaOWdae aajugib8qacqaHbpGCaaaak8aabaqcLbsafaqabeGabaaakeaajugi b8qacaWG1baak8aabaqcLbsapeGaamODaaaaaaaakiaawUhacaGL9b aajugibiaacUdacaGGGcGaamyraSWdamaaCaaabeqaaKqzadWdbiaa dogaaaqcLbsacqGH9aqpcaGGGcqcfa4aaiWaaOWdaeaajugibuaabe qaceaaaOqaaKqzGeWdbiaadwfaaOWdaeaajugibuaabeqaceaaaOqa aKqzGeWdbiaadwfacaWG1bGaey4kaSscfa4aaSGaaOWdaeaajugib8 qacaWGWbaak8aabaqcLbsapeGaeqyWdihaaaGcpaqaaKqzGeWdbiaa dwfacaWG2baaaaaaaOGaay5Eaiaaw2haaKqzGeGaai4oaiaacckaca WGhbWcpaWaaWbaaeqabaqcLbmapeGaam4yaaaajugibiabg2da9iaa cckajuaGdaGadaGcpaqaaKqzGeqbaeqabiqaaaGcbaqcLbsapeGaam OvaaGcpaqaaKqzGeqbaeqabiqaaaGcbaqcLbsapeGaamyDaiaadAfa aOWdaeaajugib8qacaWG2bGaamOvaiabgUcaRKqbaoaaliaak8aaba qcLbsapeGaamiCaaGcpaqaaKqzGeWdbiabeg8aYbaaaaaaaaGccaGL 7bGaayzFaaaaaa@7795@ ; E v = { 0 σ xx σ xy };  G v = { 0 σ yx σ yy } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadweal8aadaahaaqabeaajugWa8qacaWG2baaaKqzGeGa eyypa0JaaiiOaKqbaoaacmaak8aabaqcLbsafaqabeGabaaakeaaju gib8qacaaIWaaak8aabaqcLbsafaqabeGabaaakeaajugib8qacqaH dpWCjuaGpaWaaSbaaSqaaKqzadWdbiaadIhacaWG4baal8aabeaaaO qaaKqzGeWdbiabeo8aZLqba+aadaWgaaWcbaqcLbmapeGaamiEaiaa dMhaaSWdaeqaaaaaaaaak8qacaGL7bGaayzFaaqcLbsacaGG7aGaai iOaiaadEeajuaGpaWaaWbaaSqabeaajugWa8qacaWG2baaaKqzGeGa eyypa0JaaiiOaKqbaoaacmaak8aabaqcLbsafaqabeGabaaakeaaju gib8qacaaIWaaak8aabaqcLbsafaqabeGabaaakeaajugib8qacqaH dpWCl8aadaWgaaqaaKqzadWdbiaadMhacaWG4baal8aabeaaaOqaaK qzGeWdbiabeo8aZLqba+aadaWgaaWcbaqcLbmapeGaamyEaiaadMha aSWdaeqaaaaaaaaak8qacaGL7bGaayzFaaaaaa@6A76@ (2)

I M ={ 1 0 0 0 1 0 0 0 1 };      Θ M ={ β 2 0 0 0 1 0 0 0 1 } ;   S 0 = { 0 f e,x f e,y } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMeal8aadaahaaqabeaajugWa8qacaWGnbaaaKqzGeGa eyypa0tcfa4aaiWaaOWdaeaajugibuaabeqadmaaaOqaaKqzGeWdbi aaigdaaOWdaeaajugib8qacaaIWaaak8aabaqcLbsapeGaaGimaaGc paqaaKqzGeWdbiaaicdaaOWdaeaajugib8qacaaIXaaak8aabaqcLb sapeGaaGimaaGcpaqaaKqzGeWdbiaaicdaaOWdaeaajugib8qacaaI Waaak8aabaqcLbsapeGaaGymaaaaaOGaay5Eaiaaw2haaKqzGeGaai 4oaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaeiMdKqba+aadaah aaWcbeqaaKqzadWdbiaad2eaaaqcLbsacqGH9aqpjuaGdaGadaGcpa qaaKqzGeqbaeqabmWaaaGcbaqcLbsapeGaeqOSdi2cpaWaaWbaaeqa baqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaaIWaaak8aabaqcLb sapeGaaGimaaGcpaqaaKqzGeWdbiaaicdaaOWdaeaajugib8qacaaI Xaaak8aabaqcLbsapeGaaGimaaGcpaqaaKqzGeWdbiaaicdaaOWdae aajugib8qacaaIWaaak8aabaqcLbsapeGaaGymaaaaaOGaay5Eaiaa w2haaKqzGeGaaiiOaiaacUdacaGGGcGaaiiOaiaadofajuaGpaWaaS baaSqaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiabg2da9iaaccka juaGdaGadaGcpaqaaKqzGeqbaeqabiqaaaGcbaqcLbsapeGaaGimaa GcpaqaaKqzGeqbaeqabiqaaaGcbaqcLbsapeGaamOzaKqba+aadaWg aaWcbaqcLbmapeGaamyzaiaacYcacaWG4baal8aabeaaaOqaaKqzGe WdbiaadAgajuaGpaWaaSbaaSqaaKqzadWdbiaadwgacaGGSaGaamyE aaWcpaqabaaaaaaaaOWdbiaawUhacaGL9baaaaa@8971@ (3)

Where U=u x t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwfacqGH9aqpcaWG1bGaeyOeI0IaamiEaKqba+aadaWg aaWcbaqcLbmapeGaamiDaaWcpaqabaaaaa@3E84@ and V=v y t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfacqGH9aqpcaWG2bGaeyOeI0IaamyEaSWdamaaBaaa baqcLbmapeGaamiDaaWcpaqabaaaaa@3DF9@ are the convective velocities in referential frame with x t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhal8aadaWgaaqaaKqzadWdbiaadshaaSWdaeqaaaaa @3A2F@ and y t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhal8aadaWgaaqaaKqzadWdbiaadshaaSWdaeqaaaaa @3A30@ are the velocities of the moving grid in X and Y directions respectively. Note that, equation (1) does not exhibit any physical meaning until pseudo time steady state, i.e. ( p τ = u τ = v τ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiabgkGi 2kaabchaaOWdaeaajugib8qacqGHciITcaqGepaaaiabg2da9Kqbao aalaaak8aabaqcLbsapeGaeyOaIyRaaeyDaaGcpaqaaKqzGeWdbiab gkGi2kaabs8aaaGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqGHci ITcaqG2baak8aabaqcLbsapeGaeyOaIyRaaeiXdaaacqGHfjcqcaaI WaaakiaawIcacaGLPaaaaaa@51AA@ is reached. As the pseudo-steady state is reached, the equations are identical to the original unsteady incompressible Navier-Stokes equations in ALE form. Now splitting the convective fluxes ( E c and G c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacaWGfbWcpaWaaWbaaeqabaqcLbmapeGaam4yaaaa jugibiaadggacaWGUbGaamizaiaadEeal8aadaahaaqabeaajugWa8 qacaWGJbaaaKqzGeGaaiykaaaa@4238@ of equation (1) into stationary reference flux and ale flux part as,

Ω W τ dxdy + I M Ω W t dxdy + Θ M A [ ( E St c + E v ) n x +( F st c + F v ) n y ] dA A [ ( E ale c ) n x +( F ale c ) n y ] dA= Ω S 0 dxdy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8GuaO qaaKqbacbaaaaaaaaapeWaaSaaaOWdaeaajugib8qacqGHciITcaqG xbaak8aabaqcLbsapeGaeyOaIyRaaeiXdaaacaqGKbGaaeiEaiaabs gacaqG5baal8aabaqcLbmacqqHPoWvaSqabKqzGeGaey4kIiVaey4k IipacqGHRaWkcaWGjbqcfa4aaWbaaSqabeaajugWaiaad2eaaaqcfa 4aa8GuaOqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiabgkGi2kaabEfa aOWdaeaajugib8qacqGHciITcaqG0baaaiaabsgacaqG4bGaaeizai aabMhaaSWdaeaajugWaiabfM6axbWcbeqcLbsacqGHRiI8cqGHRiI8 aiabgUcaRiabfI5arLqbaoaaCaaaleqabaqcLbmacaWGnbaaaKqbao aapufakeaajuaGpeWaamWaaOWdaeaajuaGpeWaaeWaaOWdaeaajugi b8qacaqGfbWcpaWaa0baaeaajugWa8qacaqGtbGaaeiDaaWcpaqaaK qzadWdbiaabogaaaqcLbsacqGHRaWkcaqGfbWcpaWaaWbaaeqabaqc LbmapeGaaeODaaaaaOGaayjkaiaawMcaaKqzGeGaaeOBaKqba+aada WgaaWcbaqcLbmapeGaaeiEaaWcpaqabaqcLbsapeGaey4kaSscfa4a aeWaaOWdaeaajugib8qacaqGgbWcpaWaa0baaeaajugWa8qacaqGZb GaaeiDaaWcpaqaaKqzadWdbiaabogaaaqcLbsacqGHRaWkcaqGgbqc fa4damaaCaaaleqabaqcLbmapeGaaeODaaaaaOGaayjkaiaawMcaaK qzGeGaaeOBaKqba+aadaWgaaWcbaqcLbmapeGaaeyEaaWcpaqabaaa k8qacaGLBbGaayzxaaaal8aabaqcLbmacaWGbbaaleqajugibiablg H7rlabgUIiYdGaamizaiaadgeacqGHsisljuaGdaWdvbGcbaqcfa4d bmaadmaak8aabaqcfa4dbmaabmaak8aabaqcLbsapeGaaeyraSWdam aaDaaabaqcLbmapeGaaeyyaiaabYgacaqGLbaal8aabaqcLbmapeGa ae4yaaaaaOGaayjkaiaawMcaaKqzGeGaaeOBaSWdamaaBaaabaqcLb mapeGaaeiEaaWcpaqabaqcLbsapeGaey4kaSscfa4aaeWaaOWdaeaa jugib8qacaqGgbWcpaWaa0baaeaajugWa8qacaqGHbGaaeiBaiaabw gaaSWdaeaajugWa8qacaqGJbaaaaGccaGLOaGaayzkaaqcLbsacaqG UbWcpaWaaSbaaeaajugWa8qacaqG5baal8aabeaaaOWdbiaawUfaca GLDbaaaSWdaeaajugWaiaadgeaaSqabKqzGeGaeSyeUhTaey4kIipa caWGKbGaamyqaiabg2da9Kqbaoaapifakeaajugib8qacaqGtbqcfa 4damaaBaaaleaajugWa8qacaaIWaaal8aabeaajugib8qacaqGKbGa aeiEaiaabsgacaqG5baal8aabaqcLbmacqqHPoWvaSqabKqzGeGaey 4kIiVaey4kIipaaaa@D518@ (4)

Now equation (4) can be discretized in a very similar manner to that for unsteady Navier-Stokes equation for stationary boundary problem.12‒14 The additional effort need to be added for ale flux vector. This additional term, ale flux, is nothing but the volumetric increment along the face and can be evaluated by considering the Geometric Conservations Law (GCL).19 The radial basis function:16 Thin-Plate Spline (TPS) with global support is used for mesh movement. The Thin Plate Spline with global support generates meshes of high quality after deformation along with the computational efficiency. The fluxes at cell interface, that is, the stationary reference convective fluxes are evaluated using the Harten Lax and van Leer with contact for artificial compressibility (HLLC-AC)12‒14Riemann solver where interface values are reconstructed based on solution dependent weighted least squares (SDWLS).17 In the present case, Higher order accuracy is achieved using quadratic solution reconstruction. For viscous fluxes, a central differencing method based on Green-Gauss approach is used.

Results and discussion

In the present paper, following two different cases for an oscillating circular cylinder is simulated. Figure 1 shows the domain considered as well as boundary conditions applied. Based on the mesh convergence study, a quad grid having 13840 mesh element and 13620 nodes is selected for the simulation. Case (1) Vortex-induced vibration (VIV) at Reynolds number (Re) 150: Here, an equation of motion is used to represent VIV of a cylinder oscillating in the transverse direction (normal to the flow) as: m y¨+c y˙+k y=F  where, m = structural mass, c = structural damping coefficient, k = spring constant, and F = fluid force acting in the transverse direction (lift force). Figure 2 shows the comparison of the results obtained with the literature7,8,10 against the displacement amplitude of the cylinder which is free to vibrate in the transverse direction for various reduced velocities ( U r = U Df n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaGcpaqaaKqzGeWdbiaabwfal8aadaWgaaqaaKqzadWd biaabkhaaSWdaeqaaKqzGeWdbiabg2da9Kqbaoaaliaak8aabaqcLb sapeGaaeyvaaGcpaqaaKqzGeWdbiaabseacaqGMbqcfa4damaaBaaa leaajugWa8qacaqGUbaal8aabeaaaaaak8qacaGLOaGaayzkaaaaaa@45AF@ at Re =150. From Figure 2, it can be seen that the simulation results produced using present formulation agree well with the literature data.7,8,10 The maximum transverse amplitude occurs at a reduced velocity . with Ymax= 0.5316. Hence we can infer that the lock-in region for Re=150, m=8/π lies at . Case (2) Forced induced vibrations (FIV) at Reynolds number (Re) 100: simulation of the forcefully oscillating cylinder having diameter D=1 is performed here. The transverse motion, y(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhacaGGOaGaamiDaiaacMcaaaa@39F5@ is given by the harmonic oscillation equation: y( t )= A sin(2π  f 0  t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMhajuaGdaqadaGcpaqaaKqzGeWdbiaadshaaOGaayjk aiaawMcaaKqzGeGaeyypa0JaaiiOaiaadgeacaGGGcGaae4CaiaabM gacaqGUbGaaiikaiaaikdacqaHapaCcaGGGcGaamOzaSWdamaaBaaa baqcLbmapeGaaGimaaWcpaqabaqcLbsapeGaaiiOaiaadshacaGGPa aaaa@4DD5@ where, maximum amplitude, A=0.25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadgeacqGH9aqpcaaIWaGaaiOlaiaaikdacaaI1aaaaa@3B58@ with oscillation frequency, f 0 =0.084 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqa aKqzGeWdbiabg2da9iaaicdacaGGUaGaaGimaiaaiIdacaaI0aaaaa@3FB6@ is used, which is similar to that of literature.11 Figure 3 shows the comparison of the results obtained with the literature data11 against the Lift co-efficient and time. It can be seen that the results agree well with the results of Placzek et al.11

Figure 1 Domain and mesh used for an Oscillating circular cylinder problem.

Figure 2 Comparison of maximum Transverse.

Figure 3 Time series of the fluctuating lift amplitude of single circular cylinder undergoing coefficient at f0=0.084VIV with m=8/π at Re=150.

Conclusions and contribution

An accurate Harten Lax and van Leer with contact for artificial compressibility (HLLC-AC) Riemann solver with Arbitrarily Lagrangian-Eulerian (ALE)15 formulation has been developed and used for computing flow past an oscillating cylinder. The results obtained by the present solver matches well with that reported in the literature.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflicts of interest.

References

  1. Bishop R, Hassan A. The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1964;277(1368):51‒75.
  2. Griffin OM, Ramberg SE. The vortex‒street wakes of vibrating cylinders. Journal of Fluid Mechanics. 1974;66(3):553‒576.
  3. Khalak A, Williamson C. Dynamics of a hydro elastic cylinder with very low mass and damping. Journal of Fluids and Structures. 1996;10(5):455‒472.
  4. Mittal S, Kumar V. Finite element study of vortex‒induced cross‒flow and in‒line oscillations of a circular cylinder at low Reynolds numbers. International Journal for Numerical Methods in Fluids. 1999;31(7):1087‒1120.
  5. Zhou C, So R, Lam K. Vortex‒induced vibrations of an elastic circular cylinder. Journal of Fluids and Structures. 1999;13(2): 165‒189.
  6. Williamson C, Govardhan G. Vortex‒induced vibrations. Annual Review of Fluid Mechanics. 2004;36:413‒455.
  7. Ahn HT, Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. Journal of Computational Physics. 2006;219(2):671–696.
  8. Borazjani I, Sotiropoulos F. Vortex‒induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region. Journal of Fluid Mechanics. 2009;621:321–364.
  9. Raghavan K, Bernitsas M. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports. Ocean Engineering. 2011;38(5):719‒731.
  10. Bao Y, Huang Cheng, Zhou Dai, et al. Two‒degree‒of‒freedom flow‒induced vibrations on isolated and tandem cylinders with varying natural frequency ratios. Journal of Fluids and Structures. 2012;35:50‒75.
  11. Placzek A, Sigrist JF, Hamdouni A. Numerical simulation of an oscillating cylinder in a cross‒flow at low Reynolds number: Forced and free oscillations. Computers & Fluids. 2009;38(1):80‒100.
  12. Mandal JC, Sonawane CR, Iyer AS, et al. Incompressible flow computations over moving boundary using a novel upwind method. Computers & Fluids. 2011;46(1):348‒352.
  13. Sonawane CR, Mandal JC. Numerical simulation of flow inside differentially heated rotating cavity. International Journal of Numerical Methods for Heat and Fluid Flow. 2013;23(1):23‒54.
  14. Sonawane CR, Mandal JC. Simulation of moderator flow and temperature inside calandria of CANDU reactor using artificial compressibility method. Journal of Heat Transfer Engineering. 2014;35(11):1254‒1266.
  15. Cook JL, Hirt CW, Amsden AA. An arbitrary Lagrangian‒Eulerian computing method for all flow speeds. Journal of Computational Physics. 1974;14(3):227‒253.
  16. Bijl H, de Boer A, van der Schoot MS. Mesh deformation based on radial basis function interpolation. Computers and Structures. 2007;85(11):784–795.
  17. Sonawane CR, Mandal JC, Roa SP. High‒Resolution Incompressible Flow Computations over Unstructured Mesh using SDWLS Gradients. Journal of The Institution of Engineers(India):Series C. 2017:1‒14.
  18. Chorin AJ. Numerical solution of Navier‒Stokes equations. Math Comput. 1968;22:745‒762.
  19. Lombard CK, Thomas PD. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal. 1979;17:1030–1037.
Creative Commons Attribution License

©2018 Sonawane, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.