High order accurate numerical simulation of flow past an oscillating circular cylinder

Introduction

Over the years, flow past circular cylinder has been studied extensively due to its academic and practical significance. Periodic lift and drag forces are generated over the cylinder due to separation and vortex shedding leading to structural vibration also known as vortex induced vibrations (VIV). This fluid-structure interaction (FSI) may result in serious engineering problems such as fatigue failure of the off-shore riser and sub-sea pipelines. Therefore, prediction of fluid forces on the cylinder has great importance from the point of view of structural design. Often, two types of FSI problems involving cylinder are studied. In one case, cylinder oscillates due to the in-line and transverse forces generated by vortex shedding. In the second case, the cylinder is forced to oscillate in a direction prescribed by oscillating amplitude and excitation frequency, known as forced vibration (FIV). In this paper, FSI problems are studied using a numerical method. An accurate Harten Lax and van Leer with contact for artificial compressibility (HLLC-AC) Riemann solver developed for solving incompressible flows in artificial compressibility formulation have been used for flow computation. The Riemann solver is modified to incorporate Arbitrarily Lagrangian-Eulerian (ALE) formulation in order to take care of mesh movement in the computation, where radial basis function is used for dynamically moving the mesh. Higher order accuracy is achieved using quadratic solution reconstruction based on solution dependent weighted least squares (SDWLS). The results obtained by the present method is validated those reported in the literature.

Arbitrarily Lagrangian-Eulerian (ALE) formulation

An artificial compressibility based, with dual-time stepping, the unsteady Navier-Stokes incompressible equations is modified here to take care of moving boundaries using the Arbitrarily Lagrangian-Eulerian (ALE) formulation. The integral form of the two-dimensional governing equation in arbitrary Lagrangian-Eulerian formulation can be written as

\[
\int_{\Omega} \frac{\partial W}{\partial t} \, d\Omega + \int_{\Gamma} \frac{\partial W}{\partial \hat{t}} \, d\Gamma + \Theta \int_{\Gamma} \frac{\partial}{\partial \hat{t}} \left(E + E^* \right) n_x \, d\Gamma + \Theta \int_{\Gamma} \frac{\partial}{\partial \hat{t}} \left(F + F^* \right) n_y \, d\Gamma \, dA = \int_{\Omega} S_1 d\Omega \, dA
\]

Now equation (4) can be discretized in a very similar manner to that for unsteady Navier-Stokes equation for stationary boundary problem. The additional effort need to be added for ale flux vector. This additional term, ale flux, is nothing but the volumetric increment after deformation along with the computational efficiency. The fluxes at cell interface, that is, the stationary reference convective fluxes are evaluated using the Harten Lax and van Leer with contact for artificial compressibility (HLLC-AC) Riemann solver where interface values are reconstructed based on solution dependent weighted least squares (SDWLS). In the present case, Higher order accuracy is achieved using quadratic solution reconstruction. For viscous fluxes, a central differencing method based on Green-Gauss approach is used.
Results and discussion

In the present paper, following two different cases for an oscillating circular cylinder is simulated. Figure 1 shows the domain considered as well as boundary conditions applied. Based on the mesh convergence study, a quad grid having 13840 mesh elements and 13620 nodes is selected for the simulation. Case (1) Vortex-induced vibration (VIV) at Reynolds number (Re) 150: Here, an equation of motion is used to represent VIV of a cylinder oscillating in the transverse direction (normal to the flow) as:

\[m \ddot{y} + c \dot{y} + k y = F \]

where, \(m = \) structural mass, \(c = \) structural damping coefficient, \(k = \) spring constant, and \(F = \) fluid force acting in the transverse direction (lift force). Figure 2 shows the comparison of the results obtained with the literature\(^7,8,10\) against the displacement amplitude of the cylinder which is free to vibrate in the transverse direction for various reduced velocities \(\left(\frac{U_r}{U_D} \right) \) at Re =150. From Figure 2, it can be seen that the simulation results produced using present formulation agree well with the literature data\(^7,8,10\). The maximum transverse amplitude occurs at a reduced velocity \(U_r = 4 \) . with \(y_{max} = 0.5316 \). Hence we can infer that the lock-in region for Re=150, \(m=8/\pi \) lies at \(U_r = 4 \). Case (2) Forced induced vibrations (FIV) at Reynolds number (Re) 100: simulation of the forcefully oscillating cylinder having diameter \(D=1 \) is performed here. The transverse motion, \(y(t) \) is given by the harmonic oscillation equation:

\[y(t) = A \sin(2\pi f_0 t) \]

where, maximum amplitude, \(A = 0.25 \) with oscillation frequency, \(f_0 = 0.084 \) is used, which is similar to that of literature.\(^11\) Figure 3 shows the comparison of the results obtained with the literature data\(^11\) against the Lift co-efficient and time. It can be seen that the results agree well with the results of Placzek et al.\(^11\)

Conclusions and contribution

An accurate Harten Lax and van Leer with contact for artificial compressibility (HLLC-AC) Riemann solver with Arbitrarily Lagrangian-Eulerian (ALE)\(^15\) formulation has been developed and used for computing flow past an oscillating cylinder. The results obtained by the present solver matches well with that reported in the literature.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflicts of interest.

References

4. Mittal S, Kumar V. Finite element study of vortex–induced cross–
flow and in–line oscillations of a circular cylinder at low Reynolds

7. Ahn HT, Kallinderis Y. Strongly coupled flow/structure interactions with
a geometrically conservative ALE scheme on general hybrid meshes.

8. Borazjani I, Sotiropoulos F. Vortex–induced vibrations of two cylinders
in tandem arrangement in the proximity–wake interference region.

9. Raghavan K, Bernitsas M. Experimental investigation of Reynolds
number effect on vortex induced vibration of rigid circular cylinder on

induced vibrations on isolated and tandem cylinders with varying natural

oscillating cylinder in a cross–flow at low Reynolds number: Forced and

computations over moving boundary using a novel upwind method.

differentially heated rotating cavity. *International Journal of Numerical

14. Sonawane CR, Mandal JC. Simulation of moderator flow and temperature
inside calandria of CANDU reactor using artificial compressibility

16. Bijl H, de Boer A, van der Schoot MS. Mesh deformation based on radial
795.

17. Sonawane CR, Mandal JC, Roa SP. High–Resolution Incompressible
Flow Computations over Unstructured Mesh using SDWLS Gradients.

19. Lombard CK, Thomas PD. Geometric conservation law and its
application to flow computations on moving grids. *AIAA Journal.*
1979;17:1030–1037.