Processing math: 97%
Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Review Article Volume 1 Issue 2

Global wellposedness of a free boundary problem for the Navier-stokes equations in an exterior domain

Yoshihiro Shibata

Department of Mathematics and Research Institute of Science and Engineering, Waseda University, Japan

Correspondence: Yoshihiro Shibata, Department of Mathematics and Research Institute of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

Received: May 29, 2017 | Published: October 18, 2017

Citation: Shibata Y. Global wellposedness of a free boundary problem for the navier-stokes equations in an exterior domain. Fluid Mech Res Int. 2017;1(2):56-72. DOI: 10.15406/fmrij.2017.01.00008

Download PDF

Abstract

In this paper, we prove a unique existence theorem of globally in time strong solutions to free boundary problem for the Navier-Stokes equations in an exterior domain in the case that initial data are small enough. The key step is to prove decay properties of locally in time solutions, which is derived by combination of maximal Lp-Lq regularity with Lp-Lq decay estimates for solutions of slightly perturbed Stokes equations with free boundary condition in an exterior domain.

Keywords: navier-stokes equations, free boundary problem, global well-posedness, exterior domain, polynomial decay, maximal lp-lq regularity

Introduction

This paper deals with global well-posedness of the following free boundary problem for the Navier-Stokes equations. Let Ω be an exterior domain in the N dimensional Eucledian space RN occupied by an incompressible viscous fluid. Let Γ be the boundary of Ω that is a C2 compact hyper surface with the unit outer normal n. Let Ωt be the evolution of Ω at time t. Let Γt be the boundary of Ωt with the unit outer normal nt. Let ρ and µ be positive numbers denoting the mass density and the viscosity coefficient, respectively. Let u =(u1, . . . , uN) be an N-vector of functions describing the velocity field, where M denotes the the transposed M, and let p be a scalar function describing the pressure field. We consider the initial boundary value problem for the Navier-Stokes equations in Ωt given by

ρ(tu+u·u)Div(µD(u)ΡI)=0, divu=0in 0<t<TΩt×{t},(µD(u)ΡI)nt  =0, VΓt  =nt.uon0<t<TΓt×{t},u|t=0  =u0,   Ωt|t=0  =Ω (1)

Here, D(u) =u +u denotes the doubled deformation tensor, I the N × N identity matrix, and VΓt the evolution speed of the surface Γt in the nt direction. Moreover, for any matrix field K with (i, j) componentKij, the quantity Div K is an N vector of functions whose ith component is  Nj=1jKij  ,j=/xj and for any N vector of function w=(w1,...,wN),divw=Nj=1jwi  and the quantity w·w is an N -vector of functions whose ith component is Nj=1jwi 

One phase problem for the Navier-Stokes equations formulated in (1) with (µD(u) ΡI)nt=cσHnt in place of (µD(u) ΡI)nt=0 has been received wide attention for many years, where H is the doubledmean curvature of Γt and cσ is a non-negative constant describing the coefficient of surface tension. Inparticular, the following two cases have been studied by many mathematicians: (1) the motion of an isolated liquid mass and (2) the motion of a viscous incompressible fluid contained in an ocean of infinite extent. In case (1), the initial domain Ω0 is bounded and local well posedness in the case that cσ>0 was proved by Solonnikov1-4 in the L2 Sobolev-Slobodetskii space, by Schweizer5 in the semi group setting, and by Moglievskii and Solonnikov6 in the Holder spaces. And, in the case that cσ=0 , local wellposedness was proved by Solonnikov,7 Mucha and Zaja¸czkowski8,9 in the LpSobolev-Slobodetskii space, and by Shibata and Shimizu10,11 in the Lpin time and Lqin space setting. Global wellposedness in the case that cσ=0 for small initial data by Solonnikov4,7 in the LpSobolev-Slobodetskii space and by Shibata12 in the Lpin time and Lqin space setting. Global wellposedness in the case that cσ>0 was proved under the assumption that the initial domain Ω0 is sufficiently close to a ball and initial data are very small by Solonnikov13 in the L2 Sobolev-Slobodetskii space, by Padula and Solonnikov14 in the Holder spaces, and by Shibata15 in the Lpin time and Lqin space setting.

In case (2), the initial domain Ω0 is a perturbed layer like:
Ω0 ={x 3 | b < x3 <η(x),x = (x1,x2)2} and local wellposed was proved by Allain,16 Beale17 and Tani18 in the L2 Sobolev-Slobodetskii space when cσ>0 and by Abels19 in the LpSobolev-Slobodetskii space when cσ=0 .

Global wellposedness for small initial velocity was proved in the L2 Sobolev-Slobodetskii space by Beale20 and Tani and Tanaka21 in the case that cσ>0 and by Sylvester22 in the case that cσ=0 . The
decay rate was studied by Beale and Nishida,23 Sylvestre,24 Hataya25 and Hataya and Kawashima.26 In the case of the Ocean problem without bottom, Ω0 =  {x 3 |x3 <η(x),x=(x1,x2)    2} .

In this case, global well posedness for small initial data and the decay properties of solutions have been studied by Saito and Shibata.28,29 Recently, local well-posedness for the one phase problem of the Navie-Stokes equations was proved in the general unbounded domain case by Shibata12 in the cσ=0 case and by Shibata29,30 in the case cσ>0 .

We remark that two phase problem of the Navier-Stokes equations has been studied by many math- ematicians,31-46 and references therein. Although many papers dealt with global well-posend, as far as the author knows, global well-posedness of free boundary problem for the Navier-Stokes equations in an exterior domain has never be treated, and the purpose of this paper is to prove global well-posedness of problem (1) in the Lpin time and Lqin space setting. Since only polynomial decays are obtained for solutions of Stokes equations with free boundary conditions in the exterior domain case;47,48 it is necessary to choose a large exponent p to guarantees Lpintegrability of solutions, so that the maximal Lp- Lqregularity for the Stokes equations with free boundary consition proved in Shibata30,49,50 and also in Pruess and Simonett40 in the dfferent p and q case are one of essential tools.

Now we consider the transformation that transforms Ωt to a fixed domain. If Ω is a bounded domain, then we have the exponential stability of the corresponding Stokes equations with free boundary conditions in some quotient space, so that we can use the Lagrange transformation to transform ΩttoΩ.7,12 But, is now an exterior domain, so that solutions of the Stokes equations with free boundary conditions decay polynomially as mentioned above. Thus, the Lagrange transformation is not available, because the polynomial decay does not seem to be enough to control the term t0uds . Another known transformation is the Hanzawa one. But, this transformation requires at least the W31/qq(N< q) regularity of the height function representing Γ , and such regularity is usually derived from surface tension. In our case, surface tension is not taken into account, so that such regularity is unable to be obtained. To overcome such difficulty, our idea is to use the Lagrange transformation only near Γ .

Let R be a positive number such that Ο=N\ΩBR/2 , where BL  ={xN||x|<L} , and let κbeaC function such that κ(ξ)=1 for|ξ|Randκ(ξ)=0 for|ξ|2R . Let v(ξ,t) andq(ξ, t) be the velocity field and the pressure field in Lagrange coordinates {ξ} . Let us consider a transformation,

x=L(ξ,t):=ξ+t0κ(ξ)v(ξ,s)ds (2)

Let δ be a positive number such that the transformation: x=L(ξ, t) is bijective from Ω on to Ωt={x=L(ξ, t)|ξ Ω} for each t (0, T) provided that

T0(κ(·)v(·,s))L(Ω) dsδ (3)

Since δ will be chosen as a small positive number eventually, we may assume that 0< δ 1 . Let

lij (t)=δij  +t0ξj(κ(ξ)vi(ξ,s))ds(v=(v1=,...,vN)),   A(t) (lij(t))1=(aij(t)) (4)

where δij  are the Kronecker delta symbols, that is δii =1 and δij =0 for i j . Here and hereafter, a function a=a(ξ, t) is written simply by a(t) and (aij) denotes the N × N matrix whose (i, j) component is aij, unless confusion may occur. For a while, we assume that the N × N matrix (lij(t)) is invertible.
Let

Ωt={x=L(ξ, t)|ξΩ},Γt={x=L(ξ, t)|ξ Γ},

u(x, t) =v(L1(x, t), t)andp(x, t) =q(L1(x, t), t) in Eq. (1), and then, v and q satisfy the following equations:

{tvDiv(µD(v)qI)=f(v),inΩ×(0,T),divv=g(v) =divg(v)in Ω×(0,T),(µD(v)qI)n=h(v)onΓ×(0,T),v|t=0  =u0         inΩ. (5)

Here, f (v) is consisting of some linear combinations of nonlinear functions of the forms

V0(t0(κv)ds)2v,V1(t0(κv)ds)tv,V2(t0(κv)ds)(t02(κv)ds)v,(1 κ)(A1){v·(Av)}; (6)

and g(v) and g(v) and h(v) are nonlinear functions of the forms:

g(v) =V3(to(κv)ds)v;    g(v) =V4(t0(κv)ds)v;    h(v) =V5(t0(κv)ds)v (7)

with some nonlinear functions Visuch that Vi(0) = 0 except for i = 2.

The main result of this paper is the following theorem that shows the unique existence theorem of global in time solutions of Eq. (5) and asymptotics as t   .

Theorem 1

Let N  3 and let q1 and q2 be exponents such that max(N,  2NN2) <q2<and1/q1=1/q2+1/N . Let b and p be numbers defined by

b=3N2q2+12,p=2q2(1+σ)q2N (8)

with some very small positive number σ . Then, there exists an > 0  such that if initial data u0B2(11/p)q2,p()N B2(11/p)q1/2,p()N    satisfies the compatibility condition:

div u0 = 0in Ω,D(u0)n<D(u0)n,n>n=0    onΓ (9)

and the smallness condition: with I = u0B2(11/p)q2,p + u0B2(11/p)q1/2,p , then Eq. (5) admits unique solutions v and q with

vLp((0,),H2q2  (Ω) N)H1p ((0,),Lq2  (Ω) N),             qLp((0,),H1q2(Ω)+ˆH1q2,0(Ω)) ,

possessing the estimate [v]  Cϵ with

[v]T={T0(< s >bv(·,s)H1  (Ω))pds+T0(< s >(bN2q1)v(·,s)H1q1(Ω))pds+(sup0<s<T<s>N2q1   v(·,s)Lq1(Ω))p+T0(< s >(bN2q2)v(·,s)H2q2(Ω)+tv(·,s)Lq2(Ω))pds}1p.

Here, < s >= (1 + s2)1/2 and C is a constant that is independent of .

Remark 2

Let p = p/(p1), that is 1/p = 11/p. And then,

1p=(1+2σ)q2+N2q2(1+σ)

We choose σ>0 small enough in such a way that the following relations hold,

1<q1<2,Nq1>b>1p,(Nq1b)p>1,(bN2q2)p>1,bN2q1,bNq2,(N2q2+12)p<1,(bN2q2)p>1,Nq2+2p<1. (11)

Remark 3

The exponent q2 is used to control the nonlinear terms, so that q2 is chosen as N<q2<.

Let

1q1=1N+1q2,1q3=1q1+1q2. (12)

And the condition: q2>2NN2 implies that q1 > 2 and q3 > 1 which is necessary to prove Theorem 1.

Thus, we assume that

max(N,2NN2)<q2< .

Remark 4

We can choose δ > 0 so small that x = L(ξ, t) is a diffeomorphism with suitable regularity from Ω onto Ωt , so that the original problem (1) is globally well-posed.

Finally, we explain several symbols used in this paper. We use bold small letters to denote N -vectors of functions and bold capital letters to denote N × N matrix of functions. For a scalor function h = h(x), h is an N vector whose ith component is ih = h/xi . For v(x) = (v1(x), . . . , vN (x)), v is an N × N matrix of functions whose (i, j) component is ivj . Given exponent 1< q<  , let q′ = q/(q − 1).

Let Lq (Ω),Hmq(Ω)andBsq,p (Ω) be the standard Lebesgue, Sobolev, and Besov spaces on Ω , while Lq (Ω), Hmq(Ω), Bsq,p (Ω) denote their norms, respectively. For a Banach space X with norm X,

Let {(f1, . . . , fd) | fi X (i = 1, . . . , d)} , while the norm of Xd is written simply by X , which is defined by fX =dj=1fjX  for  f = (f1, . . . , fd)Xd . Let ˆH1q,0(Ω)={θLq,loc(Ω)|θLq(Ω)N , θ|Γ= 0}

ˆH1q(Ω)=ˆH1q,0(Ω)+{p=p1+p2|p1H1q(Ω),p2ˆH1q,0(Ω)}

For 1  p  , Lp((a, b), X) and Hpm((a, b), X) denote the standard Lebesgue and Sobolev spaces of X-valued functions defined on an interval (a, b), while Lp((a,b),X)   and Hpm((a,b),X)  denote their norms, respectively. The letter C denotes generic constants and Ca,b,c,… means that the constant Ca,b,c,… depends on a, b, c... The values of C and Ca,b,c… may change from line to line.

After Introduction (Sect. 1), the paper is organized as follows: In Sect. 2, we reformulate problem (5) by using the formula:

t0(κ(ξ)v(ξ, s)ds=T0(κ(ξ)v(ξ, s)dsT0(κ(ξ)v(ξ, s)ds .

In Sect. 3, we give estimations of the nonlinear terms. In Sect. 4, we explain how to prolong local in time solutions to the infinite time interval (0,) . Finally, in Sect. 5, we prove Theorem 1 by using maximal Lp-Lq regularity and Lp-Lq decay estimate for solutions of the perturbed Stokes equations with free boundary condition in an exterior domain, which was proved in Shibata.30,47

Another formulation of Eq. (5)

Let T > 0 and let vH1p ((0,T),Lq (Ω )N )Lp((0,T),H2q (Ω )) ,qLp((0,T),H1q (Ω )+ˆH1q,0 (Ω )) (13)

be solutions of Eq. (5) satisfying the condition (3). In what follows, we rewrite Eq. (5) in order that the nonlinear terms have suitable decay properties.

Let A(t) = (aij(t)) be the N×N matrix given in (4), and let nt = (nt1, . . . , ntN) andn=(n1, . . . , nN), and then by the transformation (2), we have

aji(t)ξj,xj=Nj=1nti=d(t)Nj=1aji(t)nj (14)

where d(t)=|T A(t)n|.

aji(t)=δij+˜aij (t),  J(t)=1+˜J(t),lij(t)=δij+˜lij(t) ,     (15)

Where lij are given in (4) and J is the Jacobian of the transformation (2), that is J = J= det(lij), and then

˜aij (t)=bij (t0(κ(ξ)v(ξ, s))ds),˜J(t) =K(t0(κ(ξ)v(ξ, s))ds),

˜lij (t)=mij (t0(κ(ξ)v(ξ, s))ds):=t0ξj(κ(ξ)vi(ξ, t))ds) (16)

With some smooth functions bijand K defined on {w | |w| ≤ 1} such that bij(0) = K(0) = 0, where w is the corresponding variable to t0(κ(ξ)v(ξ, s))ds Let u(x, t) =v(ξ, t) andp(x, t) =q(ξ, t) and then u and p satisfy Eq. (1). By (14),

uixj+ujxi=Dij,t(v):=Dij(v)+˜Dij(t)Δv

With

Dij(v)=viξj+vjξj,˜Dij(t)Δv=NK=1˜akj(t)viξk+˜aki(t)vjξk (17)

We also have an important formula:

divu=Nj=1ujxj=Nj,k=1J(t)akj(t)vjξk=Nj,k=1ξk(J(t)akj(t)vj) (18)

which implies that

Nj,k=1˜akj(t)=˜J(t)akj(t)vjξk=Nj,k=1ξk{(˜akj(t)+˜J(t)akj(t))vj} (19)

And then, Eq. (5) is written as follows:

{Ni=1lis(t)(tvi+ (1κ)Nj,k=1vjakj(t)viξk)μNi,j,k=1lis(t)akj(t)ξkDi,j,t(v)qξs=0inΩ×(0,T),Nj,k=1J(t)akj(t)vjξk=Nj,k=1ξk(J(t)akj(t)vj)=0inΩ×(0,T)μNi,j,k=1lis(t)akj(t)Di,j,t(v)nkqns=0onΓ×(0,T),v|t=0=u0inΩ (20)

Where s runs from 1 through N. Here, we have used the fact that (lij)=A1 which follows from (4).

In order to get some decay properties of the nonlinear terms, we write

t0(κ(ξ)v(ξ, s)ds=T0(κ(ξ)v(ξ, s)dsT0(κ(ξ)v(ξ, s)ds .

In (16), by the Taylor formula we write

aij(t)=aij(T)+Aij(t),lij(t)=lij(T)+Lij(t),Dij,t=Dij,T(v)+Dij(t)ΔvJ(t)=J(T)+J(t) (21)

With

Aij(t)=10bijT0(κ(ξ)v(ξ, s)dsθTt(κ(ξ)v(ξ, s)ds)dθTt(κ(ξ)v(ξ, s)ds,Lij(t)=Ttξjκ(ξ)vi(ξ, s)ds,Dij(t)Δv=Nκ=1(Akj(t)viξk+Akivjξk),J(t)=10K(T0(κ(ξ)v(ξ, s)dsθTt(κ(ξ)v(ξ, s)ds)dθTt(κ(ξ)v(ξ, s)ds

Where bij and K are derivatives of bij and K with respect to w. By the relation:

Ns=1lis(T)asm(T) =δim, (22)

the first equation in (20) is rewritten as follows:

tvmμNj,k=1ajk(T)ξk(μDmj,T(v)δmjq=fm(v)

With

fm(v)=Ns=1asm(T){Ni=1Lis(t)tvi+Ni,j,k=1(1κ)lis(t)akj(t)viviξk}+μNs=1asm(T){Ni,j,k=1lis(T)akj(T)ξk(Dij(t)v)+Ni,j,k=1lis(T)Akj(t)ξkDij,t(v)}+Ni,j,k=1Lis(t)akj(t)ξkDij,t(v) (23)

Next, by (18)

˜div v= g(v) = div g(v)

With

˜div v= Nj,k=1J(T)akj(T)viξk=Nj,k=1ξkJ(T)akj(T)vjg(v)=Nj,k=1(J(T)Akj(t)+J(t)akj(t))vjξkgk(v)=Nj=1(J(T)Akj(t)+J(t)akj(t)vj,g(v)=(g1(v)....gN(v)) (24)

Finally, we consider the boundary condition. Let ˜n be an N -vector defined on N such that ˜n=n on Γ and˜nH2  (N )  C . In what follows, ˜n is simply written by n=(n1, . . . , nN ) . By (14) and (22)

Nj,k=1ajk(T)(μDmj,T(v)δmjq)nk=hm(v)

with

hm(v)=μNj,k=1(akj(T)Dmj(t)v+Akj(t)Dmj,t(v))nkμNi,j,k,s=1asm(T)Lis(t)akj(t)Dij,t(v)nk (25)

By (18),

μNj,k=1akj(T)ξk(μDmj,T(v)δmjq)=J(T)1Nj,k=1ξk{J(T)ajk(T)(Dmj,T(v)δmjq)}

And

Nj,k=1akj(T)Dmj,T(v)nk(Ns=1asm(T)ns)q=Nk=1[Nj=1{J(T)akj(T)(Dmj,T(v)δmjq}]nk

Thus, letting

Smk(v,q)=Nj=1J(T)akj (T)(µDmj,T (v)δmjq),˜S(v,q)=(Sij (v,q)),

f(v)=(f1(v),...,fN(v)),      h(v)=(h1(v),...,hN(v)),

and using (18), we see that v and q satisfy the following equations:

{tvJ(T1)Div˜S(v,q)=f(v)inΩ×(0,T),˜div v= g(v) = div g(v)inΩ×(0,T),˜S(v,q)n=h(v)onΓ×(0,T),v|t=0=u0inΩ. (26)

Estimates for the nonlinear terms

Let f (v), g(v), and h(v) are functions defined in Sect. 2. In this section, we estimate these functions. In what follows we write

< t > αwLp((0,T),X) ={T0(< t>αw(·,t)X )pdt}1p1p<,< t > αwL((0,T),X)=esssup0<t<T< t>αw(·,t)Xp=.

First, we prove that

<t>bf Lp((0,T),Lq1/2(Ω) +  < t >f Lp((0,T ),Lq2 (Ω))   C(I + [v]2T ). (27)

with I=u0B2(11/p)q1/2,p(Ω)  +u0B2(11/p)q2,p(Ω)   . Here and in what follows, C denotes generic constants independent of I, [v]T , δ, and T . The value of C may change from line to line. Since we choose I small enough eventually, we may assume that 0<I 1 . Especially, we use the estimates:

I2 I,       I[v]T12(I2+[v]2T)I+[v]2T

Since

βα(κv(·,s))L(Ω)C(1 +α)b+1p(βα(<s>bv(·,s)H1  (Ω))pds)1pβα2(κv(·,s))Lq(Ω)C(1 +α)b+N2q2+1p(βα(<s>bN2q2v(·,s)H2q2(Ω))pds)1p

for any 0α<βT , where q[1, q2] , we have

βα(κv(·,s))L(Ω)dsC[v]T(1+α)b+1pβα2(κv(·,s))Lq(Ω)C[v]T (28)

for any 0 α<β T , where q[1, q ] , because b>N2q2+1p as follows from (11). By real interpolation theorem, we have

sup t(0,T)<t>b N2q2v(·,t)B2(11/p)q2,p(Ω)Cu0B2(11/p)q2,p(Ω)+ < t >b N2q2vLp((0,T),H2q2  (Ω))  +<t >b N2q2tvLp((0,T)Lq2(Ω)) (29)

To prove (29), we introduce an operator T(t) acting of gB2(11/p)q2,pN defined by

T(t)g=F1[e(|ξ|  +1)tF[g](ξ)], (30)

where FandF1 denote the Fourier transform in N and its inverse transform. We have

eγtT(t)gLp((0,),H2q( N)) +eγttT(t)gLp((0,),Lq( N))C||g||B2(11/p)q2,p(N) (31)

Given f(t) defned on (0, T) with f|t=0= 0 , let

[eTf](t)={0(t <0),f(t)       (0<t<T),f(2Tt) (T < t <2T),0            (2T <t), (32)

and then [eTf](t)=f(t)   for t(0, T) and

t[eTf](t)={0(t <0),tf(t)       (0<t<T),(tf)(2Tt) (T < t <2T),0            (2T <t), (33)

Let ˜u0 be an N-vector of functions in B2(11/p)q2,p(N)N such that ˜u0=u0 in Ω and ˜u0B2(11/p)q1/2,p N <Cu0B2(11/p)q2,p(Ω)   .

Let z=eT[<t>b N2q2vT(|t|)˜u0]+T(|t|)˜u0fort . Since <t>b N2q2vT(|t|)˜u0|t=0=0inΩ by (31), (32) and (33),

zLp((0,),H2q2(Ω))+ tzLp((0,),Lq2  (Ω))<C(||<t>b N2q2vLp((0,T),H2q2  (Ω)) +< t >b N2q2tvLp((0,T)Lq2(Ω))+u0B2(11/p)q2,p(Ω)   (34)

It is known (Tanabe51) that Lp((0, ), E1)  H1p((0, ), E0) is continuously imbedded into BUC((0, ), (E0,E1)11/p,p) , where E0 and E1 are two Banach spaces such that E1 is a dense subset of E0, and BUC denotes the set of all uniformly bounded continuous functions . Noting that
z(t) =< t >b N2q2v(t) for t  (0, T ) , we have

sup 0<t<T)<t>b N2q2v(t)B2(11/p)q2,p(Ω)sup t(0,)z(t)B2(11/p)q2,p(Ω)CzLp((0,),H2q2  (Ω)) +tzLp((0,),Lq2(Ω)) 

which, combined with (34), furnishes (29).

Since 2p+Nq2<1,B2(11/p)q2,p(Ω) is continuously imbedded into H1(Ω) so that by (29)

<t>b N2q2v(t)L((0,T),H1  (Ω)) C(I+[v]T) (35)

Applying (3), (28) and (29) to the formulas in (15) and (16) and using the fact that b+1pN2q2N2q2 and b+N2q2N2q2 ,which follows from (11), give

(aij(t),J(t),lij(t),Aij(t),J(t),Lij(t)L (Ω)C ,

(Aij(t),J(t),Lij(t)L (Ω)CTt(κv(·,s))L(Ω)dsC[v]T+<t>b+1pC[v]T<t>N2q2,

(aij(t),J(t),lij(t),Aij(t),J(t),Lij(t)Lq (Ω)CT02(κv(·,s))LqC[v]T, (36)

t(aij(t),J(t),lij(t),Aij(t),J(t),Lij(t)L (Ω)C(κv(·,t)),L(Ω)C(I+[vT])<t>b+ N2q2C(I+[vT])<t>N2q2

for any t  (0, T] , where q  [1, q2] . Moreover, we have

(˜aij,˜J,˜lij,˜Aij,J,Lij)(x,t)=0forxB2Randt[0,T] (37)

By (36) and (37),

(asm(T)Lis(t)tvi)Lq (Ω)C[v]T+<t>b+1ptvi(t)Lq2 (Ω)

for any q  [1, q2] . Since 1p<bN2q2 as follows from (11), we have

<t>basm(T)Lis(t)tvi)Lp((0,T),Lq (Ω)) C(I+[v]2T)

for any q  [1, q2]

Next, by Holder’s inequality,

<t>bv·v(·,t)Lq1/2(Ω)<t>N2q1v(·,t)Lq1(Ω)

so that by (36), we have

<t>basm(T)lisakjvjviξkLp((0,T),Lq1/2(Ω)) C[v]2T.

Since

<t>bv·v(·,t)Lq2(Ω)<t>N2q2v(·,t)L(Ω)<t>b N2q2v(·,t)Lq2(Ω),

by (36)

<t>basm(T)lisakjvjviξkLp((0,T),Lq2 (Ω)) C(I+[v]T)[v]TC(I+[v]2T)

Since

ξk(Dij(t)v)=Nm=1(Amj(t)2viξkξm+Ami(t)2vjξkξm)+Nm=1((ξmAmj(t)viξm+ξkAmi(t))vjξm)

by (36)

<t>bξk(Dij(.)v)Lq(Ω)C[v]T{<t>b N2q22v(.t)Lq(Ω)+<t>bv(·,t)L(Ω)} (38)

for any q  [1, q2] and therefore

<t>basm(T)lis(T)akj(T)ξk(Dij(.)v)Lp((0,T),Lq (Ω))C[v]2T

for any q  [1, q2] . Since

ξk(Dij,T(v))=Nm=1(amj(T)2viξkξm+ami(T)2vjξkξm)+Nm=1((ξmamj(T)viξm+ξkami(T))vjξm),

by (36)

<t>basm(T)lis(T)Akj(t)ξk(Dij,T(v)Lq (Ω)C[v]T{<t>b N2q22v(.t)Lq(Ω)+<t>bv(·,t)L(Ω)} ,

so that

<t>basm(T)lis(T)Akj(T)ξk(Dij,T(v)Lp((0,T),Lq (Ω))C[v]2T

for any q  [1, q2] . Analogously, we have

<t>basm(T)Lisakjξk(Dij,T(v)Lp((0,T),Lq (Ω))C[v]2T

for any q  [1, q2] . Summing up, we have obtained (27).

Next, we consider 𝔤 and g. To estimate the H12p norm, we use the following lemma.

Lemma 5.

Let fH1(, L(Ω)) and gH12p(, Lq(Ω)) . Assume that f(x, t) = 0for (x, t)BR× .

Then,

fgH12p(, Lq(Ω))CfH1(, L(Ω))gH12p(, Lq2(Ω)) (39)

Proof: To prove the lemma, we use the fact that

H12p(, Lq(Ω))=(Lp(, Lq(Ω)),H1p(, Lq(Ω)))[12], (40)

where (·,·)[σ] denotes a complex interpolation functor. Let q  [1, q2] . Noting that f(x, t) = 0 for (x, t)BR× , we have

t(fg)Lq(Ω)tfL(Ω)gLq2(Ω)+fL(Ω)+tgLq2(Ω),

and therefore

t(fg)Lp(, Lq(Ω))CfH1(, L(Ω))gH1p(, Lq2(Ω)) .

for any q  [1, q2] . Moreover, we easily see that

(fg)Lp(, Lq(Ω))CfL(, L(Ω))gLp(, Lq2(Ω)).

Thus, by (40), we have (39), which completes the proof of Lemma 5.

To use the maximal Lp-Lq estimate, we have to extend 𝔤, g and h to R. For this purpose, we introduce an extension operator ˜eT . Let f be a function defined on (0, T ) such that f|t=T = 0 , and then ˜eT is an operator acting on f defined by

[˜eTf](t)={0(t>T),f(t)(0<t<T),f(t)(T<t<0),0(t<T). (41)

Lemma 6

Let 1 < p < , 1  q  q2 and 0  a  b . Let fH1(0,T, L(Ω)) and gH1p((0,T),Lq2(Ω))Lp((0,T)H2q(Ω)) . Assume f|t=T = 0 and f=0for(x, t)BR× . Let <t>=(1+t2)1/2 . Then we have

˜eT (<t>afg)H12p(, Lq(Ω))C<t>N2q2fH1((0,),L(Ω))×(<gLp((0,T)H2q(Ω))+<t>b N2q2tgLp((0,T),Lq2(Ω))+g|t=0B2(11/p)q2,p(Ω)) (42)

Proof: Let f0(t)=<t>ab+N2q2f(t) and g0 (t) =< t >b+N2q2g (t)  , and then < t >a  fg =f0g0 . Let  T (t)  be the operator given in (30) and let h be a function in B2(11/p)q2,p(N) such that h=g|t=0inΩ and h=g|t=0hB2(11/p)q2,p(Ω)g|t=0B2(11/p)q2,p(Ω) . Recall the operator eT defined in (32) and note that  g0 |t=0=g |t=0=T(t)h|t=0inΩ . Let ˜g(t)=eT [g0  T(·)h](t)+T(t)h

for t > 0 and let

[ιg](t)={˜g(t)(t>0),˜g(t)(t<0),[ιf](t)={0(t>T),f0(t)(0<t<T),f0(t)(T<t<0),0(t<T).

Since ˜g(t) = g0 (t) for 0< t<T , we have

˜eT [<t>a  fg](t)={0(t>T),f0(t)g0(t)(0<t<T),f0(t)g0(t)(T<t<0),0(t<T).={0(t>T),f0(t)˜g(t)(0<t<T),f0(t)˜g(t)(T<t<0),0(t<T).=[ιf](t)[ιg](t).

By Lemma 5,

˜eT [<t>a  fg]H12p(, Lq(Ω))=[ιf][ιg]H12p(, Lq(Ω))C[ιf]H1(, Lq(Ω))(ιg)H12p(, Lq(Ω))

Since, f0|t=T = 0 we have

[ιf]H1(, Lq(Ω))=2[f0]H1((0,T),L(Ω))<t>N2q2fH1((0,T),L(Ω)),

Because a b0 .

To estimate (ιg)H12p(, Lq(Ω)) , we use the fact that H1p(, Lq2(Ω)) Lp(, H2q2(Ω)) is continuously imbedded into H12p(, H1q2(Ω)) which was proved by Meyries and Schnaubelt52 in case of p = q2 and by Shibata30 for any 1<p, q2 < . Using this fact and (31), we have

(ιg)H12p(, Lq2(Ω))C(ιg)H1p(, Lq2(Ω))+(ιg)Lp(, H2q2(Ω))

C(˜gH1p((0,),Lq2(Ω))=˜gLp((0,),H2q2(Ω)))

C(g0-T(·)hH1p((0,T),Lq2(Ω))+g0-T(·)hLp((0,T),H2q2(Ω))+T(·)hH1p((0,T),Lq2(Ω))+T(·)hLp((0,),H2q2(Ω)))

C(<t>b N2q2tgLp((0,T),Lq2(Ω)))+<t>b N2q2tgLp((0,T)H2q(Ω))+g|t=0B2(11/p)q2,p(Ω)

This completes the proof of Lemma 6.

Recall the definitions of g(v) and hm(v) given in (24) and (25). By Lemma 6 and (36)

˜eT (<t>ag(v)H12p(, Lq(Ω))

Nj,k=1<t>N2q2(J(T)Akj (·)+T(·)akj (·))H1  ((0,T ),L(Ω))×(<t>b N2q2vLp((0,T)H2q2(Ω))+<t>b N2q2tvLp((0,T),Lq2(Ω))+u0B2(11/p)q2,p(Ω)C(I+[v]2T) (43)

for any a[0, b] and q  [1, q2] . Analogously, we have

˜eT (<t>ah(v)H12p(, Lq(Ω))C(I+[v]2T) (44)

for any a[0, b] and q  [1, q2] . Analogously, we have

Next, by (36), (37) and (41),

˜eT [<t>ag(v)]Lp(, H1q(Ω))Nj,k=1<t>N2q2(J(T)Akj(·)+J(·)akj (·))L((0,T),L(Ω))<t>b N2q2vLp((0,T)H2q2(Ω))C[v]2T (45)

for any a[0, b] and q  [1, q2] . Analogously, we have

˜eT (<t>bh(v)Lp((0,T)H1q(Ω))C[v]2T (46)

for any a[0, b] and q  [1, q2] . Since

tgk(v)=Nj=1(J(T)tAkj(t)+(tJ(t)akj (t)+J(t)takj (t))vj+Nj=1(J(T)Akj(t)+J(t)akj (t))vj

and since J(T)akj(t)J(t)L(Ω)C as follows from (36), by (37) we have

˜eT [<t>atgk(v)]Lp((0,T),Lq(Ω))Nj=1(<t>N2q2t(Akj,J,akj)L((0,T),L(Ω))<t>b N2q2vLp((0,T)Lq2(Ω)+(<t>N2q2(Akj,J)L((0,T),L(Ω))<t>b N2q2tvLp((0,T)Lq2(Ω),

which, combined with (36), furnishes that

˜eT [<t>ag(v)]Lp(,Lq(Ω))C(I+[v]2T) (47)

for any a[0, b] and q  [1, q2] .

Prolongation of local in time solutions

Before proving Theorem 1, we state a unique existence theorem of locally in time solutions to Eq. (5), which can be proved by a standard argumentation based on maximal Lp-Lq regularity theorem for the Stokes equations with free boundary condition.29,40

Theorem 7

Let N<q2< and 2<p< . Assume that 2/p + N/q2 < 1. Then, given T > 0, there exists an 0> 0 depending on T such that if initial data u0B2(11/p)q2,p(Ω) satisfies the condition:

u0B2(11/p)q2,p(Ω)0                 (48)

and the compatibility condition (9), then Eq. (5) admits unique solutions v and q with

vH1p((0,T),Lq2(Ω)N)Lp((0,T),H2q2(Ω)N),   qLp((0,T),H1q2  (Ω)+ˆH1q2,0)

Let T be a positive number > 2 and let v and q be solutions of Eq. (5) satisfying (13) and (3). In
view of Theorem 7, such solutions v and q exist uniquely provided that

u0B2(11/p)q2,p(Ω)0 (49)

Thus, we assume that 0< 0 in Theorem 1. Let [v]T and I be the quantities defined in Theorem 1 in Sect. 1 Introduction. And then, if we prove that there exists a constant M > 0 independent of ϵ and T such that

[v]TM(I+ [v]2T) (50)

then we can prolong v and q beyond T. Namely, there exist v1 and q1 with

v1H1p ((T,T+1),Lq2(Ω)N)Lp((T,T+1)H2q2 (Ω)N),q1Lp((T,T+1),H1q2  (Ω)ˆH1q2,0(Ω))

such that v1 and q1 are solutions to the equations:

{tv1Div(µD(v1)qI)=f(v1),inΩ×(T,T+1),divv1=g(v1) =divg(v1)in Ω×(T,T+1),(µD(v1)qI)n=h(v1)onΓ×(0,T),v1|t=T  =v(·,T)         inΩ. (51)

Here, f (v1) is consisting of some linear combinations of nonlinear terms of the forms

V0(T0((κv)ds+tT((κv1)ds))2v1,V1(T0((κv)ds+tT((κv1)ds)2v1))tv1

V1(T0((κv)ds+tT((κv1)ds))(T0((κv)ds+tT((κv1)ds)2v1))v1,(1κ)(A)1{v1 (Av1)};

and g(v1) , g(v1) and h(v1) have the following forms:

g(v1)=V3(T0((κv)ds+tT((κv1)ds))v1;g(v1)=V4(T0((κv)ds+tT((κv1)ds))v1;h(v1)=V5(T0((κv)ds+tT((κv1)ds))v1,

where Vi are the same nonlinear functions as in (6) and (7).

In fact, the inequality (50) yields that there exists a small constant ε(0,ε0] such that if Iε , then

[v]T  (2M)1  (2M)2  I=2MI+O(I2).

Thus, we may assume that

[v]T  3MI (52)

By (29) and (52) we have

v(·, T )B2(11/p)q2,p(Ω)M1ε

with some positive constant M1 independent of T . Thus, noting that

T0v(·,t)L(Ω) dtC(T0< t>bpds)1/p[v]T M2ϵ

with some positive constant M2 independent of T, choosing ϵ >0 smaller if necessary, we can show the existence of v1 and q1. Thus, setting

v2(,t)={v(,t)      0< t <T,v1(·,t)   T < t < T+1,q2={q(,t)      0< t<T,q2(·,t)   T< t< T+1,

we see that v2 and q2 satisfy the regularity condition:

v2  H1p  ((0,T+1),Lq2(Ω)N)Lp((0,T+1),H2q2  (Ω)),q2  Lp((0,T+1),H1q2  (Ω)+ˆH1q2,0 (Ω))

and Eq. (5) replacing T by T + 1. Repeating this argument, we can prolong v to time interval (0,) .

This completes the proof of Theorem 1. Therefore, we prove (50).

A Proof of Theorem 1

Let v and q be the same N-vector of functions and the function as in Sect. 4. We prove that v satisfies (50). And, we recall that T > 2. As was seen in Sect. 2, v and q satisfy Eq. (26). To estimate v, we write v by, v = w + u where w is a solution to the equations:

{tw+λ0wJ(T1)Div˜s(w,r)=f(v)inΩ×(0,T),divw=˜eT [g(v)]=div˜eT[g(v)]      inΩ×(0,T),˜s(w,r)=˜eT[h]               onΓ×(0,T),w|t=0  =u0              inΩ (53)

with some pressure term r, and u is a solution to the equations:

{tuJ(T1)Div˜S(u,p)=λ0winΩ×(0,T),divu=0      inΩ×(0,T),˜S(u,p)=0       onΓ×(0,T),u|t=0  =0     inΩ (54)

To estimate w, we quote the maximal Lp-Lq regularity theorem due to Shibata.33 Let us consider the equations:

{tw+λ0wJ(T1)Div˜S(w,r)=finΩ×(0,T),˜divw=g=divg     inΩ×(0,T),˜S(w,r)=h       onΓ×(0,T),w|t=0  =w0     inΩ (55)

And then, we have

Theorem 8

Let Ω be an exterior domain in N whose boundary Γ is a C2 hyper surface. Let 1< p, q< and T > 0. Assume that

w0B2(11/p)q,p(Ω),fLp((0,T),Lq(ΩN)),gH12p(, Lq(Ω))Lp(, H1q (Ω)),gH1p(, Lq(ΩN)),hH12p(, Lq(ΩN))Lp(, H1q (ΩN))

and that w0 satisfies the compatibility condition:

w0g|t=0B2(11/p)q,p(Ω)

and in addition

(µD(w0)h|t=0)τ  =0   onΓ

If 2/p+ 1/q< 1 , where dτ = d <d, n>n . Then, there exists a positive number λ0 such that Eq. (55) admits unique solutions w and r with

wLp((0,T),H2q(Ω)N)H1p ((0,T),Lq (Ω)N),  rLp((0,T),H1q(Ω)+ˆH2q,0(Ω))

Possessing the estimate:

wLp((0,T ),H2q(Ω))  +tw Lp((0,T ),Lq(Ω))  Cq{w0B2(11/p)q,p(Ω)+f Lp((0,T ),Lq(Ω))+(g,h)H12p(, Lq(Ω))(g, h)Lp(,Lq (Ω)) + tgLp(,Lq (Ω))},

where Cq is a constant that depends on q but is independent of T. Applying Theorem 8 yields that there exists a large λ0>0 such that Eq. (53) admits unique solutions w and r with

wH1p((0,T),Lq(Ω)N)Lp ((0,T),H2q(Ω)N)  (qq12,q2)

Possessing the estimate:

(<t>btwLp((0,T)Lq1/2(Ω)Lq2(Ω))+<t>btwLp((0,T),H2q1/2(Ω)H2q2(Ω)C(I+[v]2T) .                 (56)

In fact, f(v), ˜eT [g(v)], ˜eT [g(v)] and ˜eT [h(v)] satisfy (27), (43), (44), (45), (46), and (47), so that we know the existence of w possessing the estimate:

twLp((0,T)Lq1/2(Ω)Lq2(Ω))+<t>btwLp((0,T),H2q1/2(Ω)H2q2(Ω)C(I+[v]2T)

with some constant C depending on q>sub>1

/2 and q2. Let a = min(1, b), and then ˜w:=<t>aw  satisfies the equations:

{t˜w+λ0˜wJ(T1)Div˜S(˜w,<t>ar)=<t>af+λ0at<t>a2winΩ×(0,T),˜div˜w= ˜eT[<t>ag(v)] =div˜eT[<t>ag(v)]  inΩ×(0,T),˜S(˜w,<t>ar)=˜eT[<t>ah]       onΓ×(0,T),˜w|t=0  =u0     inΩ (57)

Since

t<t>a2wLp((0,T),Lq(Ω))wLp((0,T),Lq(Ω))C(I+[v]2T)

as follows from the fact that a10 , we have

(<t>atwLp((0,T)Lq1/2(Ω)Lq2(Ω))+<t>awLp((0,T),H2q1/2(Ω)H2q2(Ω)C(I+[v]2T) .

Repeating this argument finite times yields (56). In particular, by (56) we have

[w]TC(I+[v]2T) (58)

Next, we consider g. Let {T(t)}t0 be a C0 analytic semigroup associated with problem (54). Shibata33 proved the existence of {T(t)}t0 satisfying the estimates:

T(t)fLp(Ω)CtN2(1q1p)fLq(Ω),ΔT(t)fLp(Ω)Ct12N2(1q1p)fLq(Ω) (59)

for any t > 0 and f Lq(Ω)N provided that 1 < q  p   and q  q2 . To represent u by using {T(t)}t0 , we introduce the solenoidal space Jq(Ω) defined by

Jq(Ω)={f Lq(Ω)N|(f,JATφ)Ω=0foranyφˆH1q,0(Ω)} (60)

Here, A is the matrix defined in (4) and J the function given in (15), and

ˆH1q,0(Ω)={φLq,loc(Ω)|φLq(Ω)N,φ|Γ=0} .

As was proved by Shibata,30 we know that for any f Lq(Ω)N there exists a unique solution ψˆH1q,0(Ω) of the variational equation

(Aψ,JATφ)Ω=(f,JATφ)Ω=0foranyφˆH1q,0(Ω) .          (61)

which possesses the estimate ψLq (Ω)  CqfLq (Ω) . Here Cq is a constant that is independent of v and T in view of (36). Given f Lq(Ω)N let ψˆH1q,0(Ω) be a unique solution of Eq.(61), and let Pqbe an operator acting on f defined Pqf=fψ . And then, PqfJq(Ω) and

Pq fLq(Ω)  CqfLq(Ω) (62)

with some constant Cq that is independent of v and T. By Proposition 21 in Shibaata,33 we have

u(·, t)=λ0t0T(ts)(Pw)(·,s)ds .                               (63)

Combining (59) and (62) yields that

ju(·,t)Lr (Ω)Cr,˜q1t10(tsj2N2(1˜q11r))w(·,s)L˜q1 (Ω)ds+Cr,˜q2t10(tsj2N2(1˜q21r))w(·,s)L˜q2 (Ω)ds (64)

for j=0, 1, for any t > 1 and for any indices r, ˜q1 and ˜q2 such that 1 < ˜q1, ˜q2  r   and ˜q1 , ˜q2  q2, where 0u = u and1u =u .

Recall that T > 2. In what follows, we prove that

(T2(<t>bu(·,t)H1(Ω))pdt)1pC(I+[v]2T) (65)

Sup2tT(<t>N2q1u(·,t)Lq1C(I+[v]2T) (66)

(T2(<t>bN2q1u(·,t)H1q1(Ω))pdt)1pC(I+[v]2T) (67)

(T2(<t>bN2q2u(·,t)H1q2(Ω))pdt)1pC(I+[v]2T) (68)

By (64) with r =  , ˜q1 = q1/2 and ˜q2 = q2 ,

u(·,t)H1(Ω)Ct0T(ts)w(·,s)H1(Ω)ds=C(I(t)+II(t)+III(t))

With

I(t)=t/20(tsNq1)w(·,s)Lq1/2 (Ω)ds,II(t)=t1t/2(tsNq1)w(·,s)Lq1/2 (Ω)ds,III(t)=tt1(tsN2q212)w(·,s)Lq2/2 (Ω)ds.

Since

I(t)(t/2Nq1)(t/20< s >bpds)1/p(t/20< s >bw(·,s)Lq1/2 (Ω)pds)1/pC(bp11/p)(I+[v]2T)tNq1

as follows from the condition: bp> 1 in (11), by the condition: (Nq1 b)p > 1 in (11), we have

T2(<t>bI(t))pdtCT2<t>(Nq1 b)pdt(I+[v]2T)pC((Nq1 b)p1)1(I+[v]2T)p .

By Holder’s inequality

<t>bII(t)Ct1t/2(ts)Nq1<s>bw(·,s)Lq1/2 (Ω)dsC(t1t/2(ts)Nq1ds1/p)(t1t/2(tsNq1)<s>bw(·,s)Lq1/2 (Ω)ds1/p)C(Nq1 1)1/p(t1t/2(ts)Nq1<s>bw(·,s)Lq1/2 (Ω)ds1/p)

Because N/q1 = N/q2 + 1 > 1 . By the change of integration order and (56),

T2(<t>bII(t))pC(Nq1 1)ppT2dtt1t/2(tsNq1)(<s>bw(·,s)Lq1/2 (Ω)p)dsC(Nq1 1)ppT11(<s>bw(·,s)Lq1/2 (Ω))pds2ss+1(ts)Nq1dtC(Nq1 1)p(I+[v]2T)p.

Since N2q2+12<1 as follows from q2 > N, by Holder’s inequality,

<t>bIII(t)Ctt1(ts)N2q212<s>bw(·,s)Lq2 (Ω)dsC(tt1(ts)N2q212ds1/p)(tt1(ts)N2q212(<s>bw(·,s)Lq2 (Ω)p)ds1/p)C(N2q212)1/p(tt1(ts)N2q212(<s>bw(·,s)Lq2 (Ω)p)ds1/p).

By the change of integration order, we have

T2(<t>bIII(t)p)dtC(1N2q2)ppT2dttt1(tsN2q212)(<s>bw(·,s)Lq2 (Ω)p)dsC(1N2q2)ppT1(<s>bw(·,s)Lq2 (Ω)p)dss+1s(tsN2q212)dtC(1N2q2)p(I+[v]2T)p.

Summing up, we have obtained (65). Next, we prove (66).

By (64) with r=q1, ˜q1=q1/2 and ˜q2=q1 ,

u(·,t)Lq1 (Ω)C(Iq1,(t)+IIq1,1(t)+IIIq1,1(t))

With

Iq1,1(t)=t/20(ts)N2q1w(·,s)Lq1/2 (Ω)ds,IIq1,1(t)=t1t/2(ts)N2q1w(·,s)Lq1/2 (Ω)ds,IIIq1,1(t)=tt1w(·,s)Lq1 (Ω)ds.

By (56)

Iq1,1(t)(t/2N2q1)(t/20<s>bpds)1/p(t/20<s>bw(·,s)Lq1/2 (Ω))pds)1/pCtN2q1(I+[v]2T)p.

Analogously, by Holder’s inequality and (56),

IIq1,1(t)=t1t/2(tsN2q1)<s>b<s>bw(·,s)Lq1/2 (Ω)ds,C<t>b(t1t/2(tsNp2q1)ds1/p)(T0(<s>bw(·,s)Lq1/2 (Ω)p)ds1/p)=C(1Np2q11/p)<t>bN2q1+1p(I+[v]2T)C(1Np2q11/p)<t>N2q1(I+[v]2T)

because b>1p . Finally, by (56),

IIIq1,1(t)Ctbtt1<s>bw(·,s)Lq1/2 (Ω)dsCtb(tt1ds1/p))(T0<s>bw(·,s)Lq1/2 (Ω)p)ds)1/pCtb(I+[v]2T).

Summing up, we have obtained (66). Next, we prove (67). By (64),

u(·,t)H1q1 (Ω)C(Iq1,2(t)+IIq1,2(t)+IIIq1,2(t))

with

Iq1,2(t)=t/20(ts)N2q1w(·,s)Lq1/2 (Ω)ds,IIq1,2(t)=t1t/2(ts)N2q1w(·,s)Lq1/2 (Ω)ds,IIIq1,2(t)=tt1(ts)12w(·,s)Lq1 (Ω)ds.

By (56),

Iq1,2(t)(t/2N2q1)(t/20<s>bpds)1/p(t/20<s>bw(·,s)Lq1/2 (Ω))pds)1/pCtN2q1(I+[v]2T).

so that by the condition: (Nq1b)p>1 in (11)

(T2(<t>bN2q1Iq1,2(t))pdt)1/pC((Nq1b)p1)1/p(I+[v]2T).

By Holder’s inequality,

<t>bN2q1IIq1,2(t)C<t>N2q1t1t/2(ts)N2q1<s>bw(·,s)Lq1/2 (Ω)dsC<t>N2q1(t1t/2(ts)Np2q1ds1/p)(To(<s>bw(·,s)Lq1/2 (Ω)p)ds1/p)C(1+t)(Nq11p)(I+[v]2T).

Since (Nq11p)p>1 as follows from Nq1=1+Nq2>1=1p+1p , we have

(T2(<t>bNq1IIq1,2(t))pdt)1/pC((Nq1b)p1)1/p(I+[v]2T)

Since q1/2 < q1 < q2 , we have

w(·,t)Lq1 (Ω)w(·,t)q2N+2q2Lq1/2 (Ω)w(·,t)N+q2N+2q2Lq2 (Ω).

Let α=q2N+2q2 and β=N+q2N+2q2 then α+β =1 , so that by (56) and Holder’s inequality

<t>bwLp((0,T),Lq1(Ω))(T0(<t>bw(·,t)Lq1/2 (Ω))pα(<t>bw(·,t)Lq2 (Ω))pβdt)1/p(T0(<t>bw(·,t)Lq1/2 (Ω))pdt)α/p(T0(<t>bw(·,t)Lq2 (Ω))pdt)β/pC(I+[v]2T) (69)

Since

<t>bN2q1IIIq1,2(t)tt1(ts)12<s>bN2q1w(·,s)Lq1 (Ω)ds(tt1(ts)12ds1/p)(tt1(ts12)ds(<s>bw(·,s)Lq1 (Ω)p)ds1/p),

by the change of integration order, we have

T2(<t>bN2q1IIIq1,2(t)p)dt2ppT2dttt1(ts)12(<s>bw(·,s)Lq1 (Ω)p)ds2ppT0(<s>bw(·,s)Lq1 (Ω)p)dss+1s(ts)12dt=2p<t>bwLp((0,T),Lq1(Ω)),

which, combined with (69), furnishes that

(T2(<t>bN2q1IIIq1,2(t))pdt)1/pC(I+[v]2T)

Summing up, we have obtained (67).

Finally, we prove (68). By (64) with r = q2, ˜q1 = q1/2 and  ˜q2= q2 ,

u(·,t)Lq2 (Ω)C(Iq2(t)+IIq2(t)+IIIq2(t))

with

Iq2(t)=t/20(ts)N2(2q1+1q2)w(·,s)Lq1/2 (Ω)ds,IIq2(t)=t1t/2(ts)N2(2q1+1q2)w(·,s)Lq1/2 (Ω)ds,IIIq2(t)=tt1w(·,s)Lq2 (Ω)ds.

By Holder’s inequality,

Iq2(t)(t/2N2(2q1+1q2))(t/20<s>bpds)1/p(t/20<s>bw(·,s)Lq1/2 (Ω))pds)1/pC<t>N2(2q1+1q2)(I+[v]2T).

for t  2 . Since N2(2q1+1q2)(bN2q2)=Nq1b

by the condition: (Nq1b)p>1 in (11),

(T2(<t>bN2q2Iq2(t))pdt)1/pC(T2t(Nq1b)pdt)1/p(I+[v]2T)C((Nq1b)p1)1/p(I+[v]2T).

Since

N2(2q11q2)=N2(1q2+2N)=N2q2+1>1,

by Holder’s inequality

< t > b N 2 q 2 I I q 2 ( t ) C t / 2 t 1 ( t s ) ( N 2 q 2 + 1 ) < s > b N 2 q 2 w ( · , s ) L q 1 / 2   ( Ω ) d s C ( t / 2 t 1 ( t s ) ( N 2 q 2 + 1 ) d s ) 1 / p ( t / 2 t 1 ( t - s ) ( N 2 q 2 + 1 ) ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p C ( N 2 q 2 ) 1 / p ( t / 2 t 1 ( t - s ) ( N 2 q 2 + 1 ) ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeyipaWJaaGPaVlaaykW7caWG0bGaaGPaVlaaykW7 cqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyaiabgkHiTSWdam acaI2caaqcbasaiaiAjugWaiacaY4GobaajeaibGaGOLqzadGaiail ikdacGaGSmyCaSWaiailBaaajiaibGaGSKqzadGaiailikdaaKGaGe qcaYcaaaaaaKqzGeWdbiaadMeacaWGjbqcfa4aaSbaaKqbGeaacaWG Xbqcfa4aaSbaaKazfa4=baGaaGOmaaqcfasabaaajuaGbeaajugib8 aacaGGOaWdbiaadshapaGaaiykaiaaykW7caaMc8UaeyizImQaaGPa VlaaykW7caaMc8+dbiaadoeacaaMc8UaaGPaVRWaa8qmaKqbagaaca GGOaGaamiDaiabgkHiTiaadohacaGGPaaajqwbG8FaaKqzadGaamiD aiaac+cacaaIYaaajqwbG8FaaKqzadGaamiDaiabgkHiTiaaigdaaK qzagGaey4kIipajuaGdaahaaqabKqbGeaajuaGpaGaeyOeI0Iaaiik aSWaiaiAlaaajuaibGaGOLqzadGaiaiJd6eaaKqbGeacaIwcLbmacG aGSGOmaiacaYYGXbWcdGaGSSbaaKazfa2=bGaGSKqzGcGaiailikda aKqbGeqcaYcaaaqcLbmacqGHRaWkcaaIXaqcfaOaaiykaaaajugib8 qacaaMc8UaeyipaWJaaGPaVlaaykW7caWGZbGaeyOpa4tcfa4aaWba aeqabaqcLbmacaWGIbGaeyOeI0YcpaWaiaiAlaaajuaGbGaGOLqzad GaiaiJd6eaaKqbagacaIwcLbmacGaGSGOmaiacaYYGXbWcdGaGSSba aKqbGfacaYscLbkacGaGSGOmaaqcfayajailaaaaaaWdbmaafmaaba qcLbsacaWH3bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMca aKqba+qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaa qcfasaaKqzadGaamyCaSWaaSbaaKazfa0=baqcLbmacaaIXaaajuai beaajugWaiaac+cacaaIYaaajuaGbeaajugibiaacckajuaGpaWaae Waaeaajugib8qacqqHPoWvaKqba+aacaGLOaGaayzkaaaapeqabaqc LbsacaWGKbGaam4CaaqcfayaaKqzGeWdaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey izImQaaGPaVlaaykW7caaMc8EcfaOaaGPaV=qacaWGdbGaaGPaVlaa ykW7caaMc8UaaGPaVNqzagGaaiikaOWaa8qmaKqbagaajugibiaacI cacaWG0bGaeyOeI0Iaam4CaiaacMcaaKazfaY=baqcLbmacaWG0bGa ai4laiaaikdaaKazfaY=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcLb yacqGHRiI8aOWaaWbaaSqabeaapaGaeyOeI0IaaiikamacaI2caaqa iaiAcGaGmoOtaaqaiaiAcGaGSGOmaiacaYYGXbWaiailBaaameacaY IaiailikdaaeqcaYcaaaWccqGHRaWkcaaIXaGaaiykaaaajugib8qa caWGKbGaam4CaKqzagGaaiykaOWaaWbaaSqabeaajugWa8aacaaIXa Gaai4laiqadchagaqbaaaajugib8qacaaMc8EcLbyacaGGOaGcdaWd XaqcfayaaKqzafGaaiikaKqzGeGaamiDaiaac2cacaWGZbqcLbuaca GGPaqcfa4aaWbaaeqajuaibaWdaiabgkHiTiaacIcajuaGdGaGOTaa aKqbGeacaIMaiaiJd6eaaeacaIMaiailikdacGaGSmyCaKqbaoacaY YgaaqcKvaG=hacaYIaiailikdaaKqbGeqcaYcaaaGaey4kaSIaaGym aiaacMcaaaqcLbuapeGaaiikaaqcKvai=haajugWaiaadshacaGGVa GaaGOmaaqcKvai=haajugWaiaadshacqGHsislcaaIXaaajugGbiab gUIiYdqcLbsacqGH8aapcaaMc8UaaGPaVlaadohacaaMc8UaeyOpa4 tcfa4aaWbaaeqajuaibaqcLbmacaWGIbaaaKqbaoaafmaabaqcLbsa caWH3bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaaKqba+ qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcfasa aKqzadGaamyCaKqbaoaaBaaajqwba+FaaKqzGcGaaGymaaqcfasaba qcLbmacaGGVaGaaGOmaaqcfayabaqcLbsacaGGGcqcfa4damaabmaa baqcLbsapeGaeuyQdCfajuaGpaGaayjkaiaawMcaaaWdbeqaaKqzaf GaaiykaSWaaWbaaWqabeaacaWGWbaaaKqzGeGaamizaiaadohajugG biaacMcajuaGpaWaaWbaaeqajuaibaqcLbmacaaIXaGaai4laiaadc haaaaajuaGbaWdbiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVN qzGeGaaGPaVlaaykW7caaMc8+daiaaykW7cqGHKjYOcaaMc8UaaGPa VlaaykW7peGaam4qaKqbaoaabmaabaWaaSaaaeaacaWGobaabaGaaG OmaiaadghadaWgaaqcfasaaiaaikdaaKqbagqaaaaaaiaawIcacaGL PaaadaahaaqabKqbGeaajugWaiabgkHiTiaaigdacaGGVaGabmiCay aafaaaaKqbakaaykW7jugGbiaacIcakmaapedajuaGbaqcLbuacaGG OaqcLbsacaWG0bGaaiylaiaadohajugqbiaacMcajuaGdaahaaqabK qbGeaapaGaeyOeI0IaaiikaKqbaoacaI2caaqcfasaiaiAcGaGmoOt aaqaiaiAcGaGSGOmaiacaYYGXbqcfa4aiailBaaajqwba+FaiailcG aGSGOmaaqcfasajailaaaacqGHRaWkcaaIXaGaaiykaaaajugqb8qa caGGOaaajqwbG8FaaKqzadGaamiDaiaac+cacaaIYaaajqwbG8FaaK qzadGaamiDaiabgkHiTiaaigdaaKqzagGaey4kIipajugibiabgYda 8iaaykW7caaMc8Uaam4CaiaaykW7cqGH+aGpjuaGdaahaaqabKqbGe aajugWaiaadkgaaaqcfa4aauWaaeaajugibiaahEhapaGaaiika8qa caGG3cGaaiilaiaadohapaGaaiykaaqcfa4dbiaawMa7caGLkWoada WgaaqaaKqzGeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbqcfa4a aSbaaKazfa4=baqcLbkacaaIXaaajuaibeaajugWaiaac+cacaaIYa aajuaGbeaajugibiaacckajuaGpaWaaeWaaeaajugib8qacqqHPoWv aKqba+aacaGLOaGaayzkaaaapeqabaqcLbuacaGGPaWcdaahaaadbe qaaiaadchaaaqcLbsacaWGKbGaam4CaKqzagGaaiykaKqba+aadaah aaqabKqbGeaajugWaiaaigdacaGGVaGaamiCaaaajugib8qacaaMc8 UaaiOlaaaaaa@5180@

so that by the change of integration order and (56)

2 T ( < t > b N 2 q 1 I I q 2 ( t ) ) p d t C ( N 2 q 2 ) p p 2 T d t t / 2 t 1 ( t s ) ( N 2 q 2 + 1 ) ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s C ( N 2 q 2 ) p p 0 T ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s s + 1 2 s ( t s ) ( N 2 q 2 + 1 ) d t C ( N 2 q 2 ) p ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedajuaGbaaajqwba9FaaKqzadGaaGOmaaqcKvaq=haa jugWaiaadsfaaKqzagGaey4kIipacaGGOaqcLbsacqGH8aapcaaMc8 UaamiDaiaaykW7cqGH+aGpjuaGdaahaaqabKqbGeaajugWaiacCX7G IbGamWfVgkHiTiacCXlMc8+cpaWaiWfPlaaajuaibGaxKMqzadGaiW fYd6eaaKqbGeacCrAcLbmacGaxOHOmaiacCH2GXbWcdGaxOTbaaKqb GeacCHwcLbmacGaxOHymaaqcfasajWfAaaaaaaqcLbsapeGaamysai aadMeajuaGdaWgaaqcfasaaKqzadGaamyCaKqbaoaaBaaajuaibaGa aGOmaaqcfayabaaabeaajugibiaacIcacaWG0bGaaiykaKqzagGaai ykaKqbaoaaCaaabeqcfasaaKqzadGaamiCaaaajugibiaadsgacaWG 0bGaaGPaVlabgsMiJkaaykW7caaMc8Uaam4qaKqbaoaabmaabaWaaS aaaeaacaWGobaabaGaaGOmaiaadghadaWgaaqaaiaaikdaaeqaaaaa aiaawIcacaGLPaaajugibiaaykW7juaGdaahaaqabKqbGeaaliabgk HiTmaalaaajuaibaqcLbmacaWGWbaajuaibaqcLbmacKaGGmiCayac acsbaaaaaaGcdaWdXaqcfayaaiaadsgacaWG0baajqwba9FaaKqzad GaaGOmaaqcKvaq=haajugWaiaadsfaaKqzagGaey4kIipacaaMc8Ua aGPaVlaaykW7kmaapedajuaGbaGaaiikaiaadshacqGHsislcaWGZb GaaiykaaqcKvaq=haajugWaiaadshacaGGVaGaaGOmaaqcKvaq=haa jugWaiaadshacqGHsislcaaIXaaajugGbiabgUIiYdqcfa4aaWbaae qajuaibaqcLbmacqGHsisllmaabmaabaWaaSaaaeaacaWGobaabaGa aGOmaiaadghadaWgaaadbaGaaGOmaaqabaaaaSGaey4kaSIaaGymaa GaayjkaiaawMcaaaaajugGbiaacIcajugibiabgYda8iaaykW7caWG ZbGaeyOpa4tcfa4aaWbaaeqajuaibaqcLbmacaWGIbaaaKqbaoaafm aabaqcLbsacaWH3bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaa cMcaaKqba+qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGda WgaaqcfasaaKqzadGaamyCaSWaaSbaaKqbGeaajugWaiaaigdaaKqb GeqaaSGaai4laiaaikdaaKqbagqaaKqzGeGaaiiOaKqba+aadaqada qaaKqzGeWdbiabfM6axbqcfa4daiaawIcacaGLPaaaa8qabeaajugG biaacMcakmaaCaaaleqabaGaamiCaaaajugibiaadsgacaWGZbaake aajugibiabgsMiJkaaykW7caaMc8Uaam4qaKqbaoaabmaabaWaaSaa aeaacaWGobaabaGaaGOmaiaadghadaWgaaqaaiaaikdaaeqaaaaaai aawIcacaGLPaaajugibiaaykW7juaGdaahaaqabKqbGeaaliabgkHi TmaalaaajuaibaqcLbmacaWGWbaajuaibaqcLbmacKaGGmiCayacac sbaaaaaaGcdaWdXaqcfayaaaqcKvaq=haajugWaiaaicdaaKazfa0= baqcLbmacaWGubaajugGbiabgUIiYdGaaiikaKqzGeGaeyipaWJaaG PaVlaadohacqGH+aGpjuaGdaahaaqabKqbGeaajugWaiaadkgaaaqc fa4aauWaaeaajugibiaahEhapaGaaiika8qacaGG3cGaaiilaiaado hapaGaaiykaaqcfa4dbiaawMa7caGLkWoadaWgaaqaaKqzGeGaamit aKqbaoaaBaaajuaibaqcLbmacaWGXbqcfa4aaSbaaKazfa4=baqcLb kacaaIXaaajuaibeaalmaaBaaabaGaai4laiaaikdaaeqaaaqcfaya baqcLbsacaGGGcqcfa4damaabmaabaqcLbsapeGaeuyQdCfajuaGpa GaayjkaiaawMcaaaWdbeqaaKqzagGaaiykaKqbaoaaCaaabeqcfasa aKqzadGaamiCaaaajugibiaadsgacaWGZbGaaGPaVRWaa8qmaKqbag aacaGGOaGaamiDaiabgkHiTiaadohacaGGPaaajqwba9FaaKqzadGa am4CaiabgUcaRiaaigdaaKGbagaajugWaiacaYcIYaGaiaildohaaK qzagGaey4kIipajuaGdaahaaqabKqbGeaajugWaiabgkHiTSWaaeWa aeaadaWcaaqaaiaad6eaaeaacaaIYaGaamyCamaaBaaameaacaaIYa aabeaaaaWccqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaKqzGeGaaGPa VlaadsgacaWG0bGaeyizImQaaGPaVlaadoeajuaGdaqadaqaamaala aabaGaamOtaaqaaiaaikdacaWGXbWaaSbaaKqbGeaacaaIYaaajuaG beaaaaaacaGLOaGaayzkaaqcLbsacaaMc8Ecfa4aaWbaaeqajuaiba GaeyOeI0IaamiCaaaajuaGdaqadaqaamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8heHKKaae4kaiaacUfacaWH2bGaai yxamaaDaaajuaibaGaamivaaqaaiaaikdaaaaajuaGcaGLOaGaayzk aaGccaaMc8UaaiOlaaaaaa@727C@

Analogously, by Holder’s inequality

< t > b N 2 q 2 I I I q 2 ( t ) C t 1 t < s > b N 2 q 2 w ( · , s ) L q 2   ( Ω ) d s , C ( t 1 t d s ) 1 / p ( t 1 t ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s ) 1 / p ( t 1 t ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s ) 1 / p , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeyipaWJaaGPaVlaaykW7caWG0bGaaGPaVlaaykW7 cqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyaiabgkHiTSWdam acaI2caaqcbasaiaiAjugWaiacaY4GobaajeaibGaGOLqzadGaiail ikdacGaGSmyCaSWaiailBaaajiaibGaGSKqzadGaiailikdaaKGaGe qcaYcaaaaaaKqzGeWdbiaadMeacaWGjbGaamysaKqbaoaaBaaajuai baGaamyCaKqbaoaaBaaajuaibaGaaGOmaaqcfayabaaabeaajugib8 aacaGGOaWdbiaadshapaGaaiykaiaaykW7caaMc8UaeyizImQaaGPa VlaaykW7caaMc8+dbiaadoeacaaMc8UaaGPaVRWaa8qmaKqbagaacq GH8aapcaaMc8Uaam4CaiaaykW7cqGH+aGpaKazfaY=baqcLbmacaWG 0bGaeyOeI0IaaGymaaqcKvai=haajugWaiaadshaaKqzagGaey4kIi pajuaGdaahaaqabKqbGeaajugWa8aacaWGIbqcfaOaeyOeI0YaiaiA laaajuaibGaGOjacaY4GobaabGaGOjacaYcIYaGaiaildghajuaGdG aGSSbaaKazfa4=bGaGSiacaYcIYaaajuaibKaGSaaaaaaajugib8qa caaMc8Ecfa4aauWaaeaajugibiaahEhapaGaaiika8qacaGG3cGaai ilaiaadohapaGaaiykaaqcfa4dbiaawMa7caGLkWoadaWgaaqaaKqz GeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbqcfa4aaSbaaKqbGe aacaaIYaaajuaGbeaaaeqaaKqzGeGaaiiOaKqba+aadaqadaqaaKqz GeWdbiabfM6axbqcfa4daiaawIcacaGLPaaaa8qabeaajugibiaads gacaWGZbGaaiilaaqcfayaaKqzGeWdaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyiz ImQaaGPaVlaaykW7caaMc8EcfaOaaGPaV=qacaWGdbGaaGPaVlaayk W7caaMc8EcLbyacaGGOaGcdaWdXaqcfayaaKqzGeGaamizaiaadoha aKazfaY=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcKvai=haajugWai aadshaaKqzagGaey4kIipacaGGPaGcdaahaaWcbeqaaKqzadWdaiaa igdacaGGVaGabmiCayaafaaaaKqzGeWdbiaaykW7jugGbiaacIcakm aapedajuaGbaqcLbuacaGGOaaajqwbG8FaaKqzadGaamiDaiabgkHi TiaaigdaaKazfaY=baqcLbmacaWG0baajugGbiabgUIiYdqcLbsacq GH8aapcaaMc8UaaGPaVlaadohacaaMc8UaeyOpa4tcfa4aaWbaaeqa juaibaqcLbmacaWGIbaaaKqbaoaafmaabaqcLbsacaWH3bWdaiaacI capeGaai4TaiaacYcacaWGZbWdaiaacMcaaKqba+qacaGLjWUaayPc SdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcfasaaKqzadGaamyCaK qbaoaaBaaajuaibaGaaGOmaaqcfayabaaabeaajugibiaacckajuaG paWaaeWaaeaajugib8qacqqHPoWvaKqba+aacaGLOaGaayzkaaaape qabaqcLbuacaGGPaWcdaahaaadbeqaaiaadchaaaqcLbsacaWGKbGa am4CaKqzagGaaiykaKqba+aadaahaaqabKqbGeaajugWaiaaigdaca GGVaGaamiCaaaaaKqbagaapeGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8EcLbsacaaMc8UaaGPaVlaaykW7caaMc8+daiaaykW7cqGH KjYOcaaMc8UaaGPaVlaaykW7jugGb8qacaGGOaGcdaWdXaqcfayaaK qzafGaaiikaaqcKvai=haajugWaiaadshacqGHsislcaaIXaaajqwb G8FaaKqzadGaamiDaaqcLbyacqGHRiI8aKqzGeGaeyipaWJaaGPaVl aaykW7caWGZbGaaGPaVlabg6da+KqbaoaaCaaabeqcfasaaKqzadGa amOyaaaajuaGdaqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacElaca GGSaGaam4Ca8aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaabaqc LbsacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghajuaGdaWgaaqcfa saaiaaikdaaKqbagqaaaqabaqcLbsacaGGGcqcfa4damaabmaabaqc LbsapeGaeuyQdCfajuaGpaGaayjkaiaawMcaaaWdbeqaaKqzafGaai ykaSWaaWbaaWqabeaacaWGWbaaaKqzGeGaamizaiaadohajugGbiaa cMcajuaGpaWaaWbaaeqajuaibaqcLbmacaaIXaGaai4laiaadchaaa qcLbsapeGaaGPaVlaaykW7caGGSaaaaaa@C75E@

so that by the change of integration order and (56)

2 T ( < t > b N 2 q 2 I I I q 2 ( t ) ) p d t C 2 T d t t 1 t ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s C 0 T ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s s s + 1 d t C ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedajuaGbaaajqwba9FaaKqzadGaaGOmaaqcKvaq=haa jugWaiaadsfaaKqzagGaey4kIipacaGGOaqcLbsacqGH8aapcaaMc8 UaamiDaiaaykW7cqGH+aGpjuaGdaahaaqabKqbGeaajugWaiacCX7G IbGamWfVgkHiTiacCXlMc8+cpaWaiWfPlaaajuaibGaxKMqzadGaiW fYd6eaaKqbGeacCrAcLbmacGaxOHOmaiacCH2GXbWcdGaxOTbaaKqb GeacCHwcLbmacGaxOHOmaaqcfasajWfAaaaaaaqcLbsapeGaamysai aadMeacaWGjbqcfa4aaSbaaKqbGeaajugWaiaadghajuaGdaWgaaqc fasaaiaaikdaaKqbagqaaaqabaqcLbsacaGGOaGaamiDaiaacMcaju gGbiaacMcajuaGdaahaaqabKqbGeaajugWaiaadchaaaqcLbsacaWG KbGaamiDaiaaykW7cqGHKjYOcaaMc8UaaGPaVlaadoeakmaapedaju aGbaGaamizaiaadshaaKazfa0=baqcLbmacaaIYaaajqwba9FaaKqz adGaamivaaqcLbyacqGHRiI8aiaaykW7caaMc8UaaGPaVRWaa8qmaK qbagaacaGGOaaajqwba9FaaKqzadGaamiDaiabgkHiTiaaigdaaKaz fa0=baqcLbmacaWG0baajugGbiabgUIiYdqcLbsacqGH8aapcaaMc8 Uaam4Caiabg6da+KqbaoaaCaaabeqcfasaaKqzadGaamOyaaaajuaG daqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaam4Ca8 aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaabaqcLbsacaWGmbqc fa4aaSbaaKqbGeaajugWaiaadghajuaGdaWgaaqcfasaaiaaikdaaK qbagqaaaqabaqcLbsacaGGGcqcfa4damaabmaabaqcLbsapeGaeuyQ dCfajuaGpaGaayjkaiaawMcaaaWdbeqaaKqzagGaaiykaOWaaWbaaS qabeaacaWGWbaaaKqzGeGaamizaiaadohaaOqaaKqzGeGaeyizImQa aGPaVlaaykW7caWGdbGcdaWdXaqcfayaaaqcKvaq=haajugWaiaaic daaKazfa0=baqcLbmacaWGubaajugGbiabgUIiYdGaaiikaKqzGeGa eyipaWJaaGPaVlaadohacqGH+aGpjuaGdaahaaqabKqbGeaajugWai aadkgaaaqcfa4aauWaaeaajugibiaahEhapaGaaiika8qacaGG3cGa aiilaiaadohapaGaaiykaaqcfa4dbiaawMa7caGLkWoadaWgaaqaaK qzGeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbqcfa4aaSbaaKqb GeaacaaIYaaajuaGbeaaaeqaaKqzGeGaaiiOaKqba+aadaqadaqaaK qzGeWdbiabfM6axbqcfa4daiaawIcacaGLPaaaa8qabeaajugGbiaa cMcajuaGdaahaaqabKqbGeaajugWaiaadchaaaqcLbsacaWGKbGaam 4CaiaaykW7kmaapedajuaGbaGaamizaaqcKvaq=haajugWaiaadoha aKGbagaajugWaiacacYGZbGamaiigUcaRiacaccIXaaajugGbiabgU IiYdqcLbsacaWG0bGaeyizImQaaGPaVlaadoeajuaGdaqadaqaamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8heHKKaae 4kaiaacUfacaWH2bGaaiyxamaaDaaajuaibaGaamivaaqaaiaaikda aaaajuaGcaGLOaGaayzkaaGccaaMc8UaaiOlaaaaaa@224A@

Summing up, we have obtained (68).

Recalling that T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubGaeyyzImRaaGOmaaaa@39FF@ , applying the maximal Lp-Lq regularity theorem due to Shibata33 to Eq. (54) and using (56) give that

u L p ( ( 0 , 2 ) , H q 2 ( Ω ) ) + t u L p ( ( 0 , 2 ) , L q ( Ω ) ) C q λ 0 w L p ( ( 0 , 2 ) , L q ( Ω ) ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaiaahwhaaiaawMa7caGLkWoadaWgaaqaaiaadYea daWgaaqcfasaaiaadchaaKqbagqaamaabmaabaGaaiikaiaaicdaca GGSaGaaGOmaiaacMcacaGGSaGaamisamaaDaaajuaibaGaamyCaaqa aiaaikdaaaqcfaOaaiikaiabfM6axjaacMcaaiaawIcacaGLPaaaae qaaiabgUcaRiaaykW7caaMc8+aauWaaeaacqGHciITjuaicaWG0bGa aGPaVNqbakaahwhaaiaawMa7caGLkWoadaWgaaqaaiaadYeadaWgaa qcfasaaiaadchaaKqbagqaamaabmaabaGaaiikaiaaicdacaGGSaGa aGOmaiaacMcacaGGSaGaamitamaaBaaajuaibaGaamyCaaqcfayaba GaaiikaiabfM6axjaacMcaaiaawIcacaGLPaaaaeqaaiaaykW7caaM c8UaeyizImQaaGPaVlaaykW7caWGdbqcfaIaamyCaKqbaoaafmaaba Gaae4UdmaaBaaajuaibaGaaeimaaqcfayabaGaaC4DaaGaayzcSlaa wQa7amaaBaaabaGaamitamaaBaaajuaibaGaamiCaaqcfayabaWaae WaaeaacaGGOaGaaGimaiaacYcacaaIYaGaaiykaiaacYcacaWGmbWa aSbaaKqbGeaacaWGXbaajuaGbeaacaGGOaGaeuyQdCLaaiykaaGaay jkaiaawMcaaaqabaGaaGPaVNqzGeWdaiabgsMiJkaaykW7caaMc8Ua aGPaV=qacaWGdbWdaiaaykW7juaGpeWaaeWaaeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbcKqzGeGae8heHKKaae4kaiaa cUfacaWH2bGaaiyxaSWaa0baaKqbGeaajugWaiaadsfaaKqbGeaaju gWaiaaikdaaaaajuaGcaGLOaGaayzkaaqcLbsacaaMc8oaaa@A66E@ (70)

For any q     [ q 1 / 2 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbGaaeiiaiabgIGiolaabccapaWaamWaaeaapeGaamyC amaaBaaajuaibaGaaGymaaqcfayabaGaai4laiaaikdacaGGSaGaae iiaiaadghadaWgaaqaaKqbGiaaikdaaKqbagqaaaWdaiaawUfacaGL Dbaaaaa@4463@ . Employing the same argumentation as that in proving (29), by real interpolation,we have

sup 0 < t < 2 u ( · , t ) B q , p 2 ( 1 1 / p ) ( Ω ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuae qajuaibaGaiaiGaaaF=JimaiaaykW7cWaGacaa89VH8aapcGaGacaa 89=G0bGaaGPaVladaciaaW3=gYda8iaaykW7cGaGacaa89pIYaaaju aGbeqaaiGacohacaGG1bGaaiiCaaaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7qaaaaaaaaaWdbmaafmaabaGaaCyDa8aacaGGOa WdbiaacElacaGGSaGaamiDa8aacaGGPaaapeGaayzcSlaawQa7amaa BaaabaGaamOqamaaDaaajuaibaGaamyCaiaacYcacaWGWbaabaGaaG OmaiaacIcacaaIXaGaeyOeI0IaaGymaiaac+cacaGGWbGaaiykaaaa juaGcaGGOaGaeuyQdCLaaiykaaqabaWdaiabgsMiJkaaykW7caaMc8 UaaGPaV=qacaWGdbWdaiaaykW7peWaaeWaaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=brijjaabUcacaGGBbGaaC ODaiaac2fadaqhaaqcfasaaiaadsfaaeaacaaIYaaaaaqcfaOaayjk aiaawMcaaaaa@8A80@ (71)

for any q     [ q 1 / 2 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbGaaeiiaiabgIGiolaabccapaWaamWaaeaapeGaamyC amaaBaaajuaibaGaaGymaaqcfayabaGaai4laiaaikdacaGGSaGaae iiaiaadghadaWgaaqaaKqbGiaaikdaaKqbagqaaaWdaiaawUfacaGL Dbaaaaa@4463@ . Combining (65), (66), (67), (68), (70), (71) and the Sobolev imbedding theorem, we have

< t > b u L p ( ( 0 , T ) H 1 ( Ω ) ) + < t > N 2 q 1 u L ( ( 0 , T ) , L q 1 ( Ω ) ) + < t > b   N 2 q 1 u L p ( ( 0 , T ) H q 1 1 ( Ω ) ) + < t > b   N 2 q 2 u L p ( ( 0 , T ) , L q 2 ( Ω ) ) C ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafeaabaGaeyipaWdacaGLjWoacaWG0bGaeyOpa4Za aWbaaeqajuaibaGaamOyaaaajuaGdaqbcaqaaiaahwhaaiaawQa7a8 aadaWgaaqaa8qacaWGmbWaaSbaaKqbGeaacaWGWbaajuaGbeaapaGa aiikaiaacIcacaaIWaGaaiilaiaadsfacaGGPaGaamisamaaDaaaju aibaGaeyOhIukabaGaaGymaaaajuaGpeGaaiikaiabfM6axjaacMca caGGPaaapaqabaGaey4kaSIaaGPaVpaafeaabaWdbiabgYda8aWdai aawMa7a8qacaWG0bGaeyOpa4ZaaWbaaeqajuaibaqcfa4aaSaaaKqb GeaacaWGobaabaGaaGOmaiaadghajuaGdaWgaaqcKvaG=haacaaIXa aajuaibeaaaaaaaKqbaoaafiaabaGaaCyDaaGaayPcSdWaaSbaaeaa caWGmbWaaSbaaKqbGeaapaGaeyOhIukajuaGpeqabaWdaiaacIcaca GGOaGaaGimaiaacYcacaWGubGaaiykaiaacYcacaWGmbWaaSbaaKqb GeaacaWGXbqcfa4aaSbaaKqbGeaajuaGdaWgaaqcKvaG=haacGaAeH ymaaqcfasabaaabeaaaKqbagqaamaabmaabaGaeuyQdCfacaGLOaGa ayzkaaGaaiykaaWdbeqaaaGcbaqcfaOaey4kaSYaauqaaeaacqGH8a apaiaawMa7aiaadshacqGH+aGpdaahaaqabKqbGeaacGaAyoOyaiad OHPHsislcGaAykiOaKqbaoacOH5caaqcfasaiGgMcGaAyoOtaaqaiG gMcGaA0HOmaiacOr3GXbqcfa4aiGgDBaaajuaibGaA0jacOrhIXaaa bKaA0baaaaaajuaGdaqbcaqaaiaahwhaaiaawQa7a8aadaWgaaqaa8 qacaWGmbWaaSbaaKqbGeaacaWGWbaajuaGbeaapaGaaiikaiaacIca caaIWaGaaiilaiaadsfacaGGPaGaamisamaaDaaajuaibaGaamyCaK qbaoaaBaaajqwba+FaaiaaigdaaKqbGeqaaaqaaiaaigdaaaqcfa4d biaacIcacqqHPoWvcaGGPaGaaiykaaWdaeqaaiabgUcaRmaafeaaba WdbiabgYda8aWdaiaawMa7a8qacaWG0bGaeyOpa4ZaaWbaaeqajuai baGaiGgYdkgacWaAiBOeI0IaiGgYcckajuaGdGaAiVaaaKqbGeacOH SaiGgYd6eaaeacOHSaiGgJikdacGaAmoyCaKqbaoacOX4gaaqcfasa iGgJcGaAmIOmaaqajGgJaaaaaaqcfa4aauGaaeaacaWH1baacaGLkW oadaWgaaqaaiaadYeadaWgaaqcfasaaiaadchaaKqbagqaa8aacaGG OaGaaiikaiaaicdacaGGSaGaamivaiaacMcacaGGSaGaamitamaaBa aajuaibaGaamyCaKqbaoaaBaaajuaibaqcfa4aaSbaaKazfa4=baGa iGguikdaaKqbGeqaaaqabaaajuaGbeaadaqadaqaaiabfM6axbGaay jkaiaawMcaaiaacMcaa8qabeaacqGHKjYOcaWGdbGaaiikamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8heHKKaae4kai aacUfacaWH2bGaaiyxamaaDaaajuaibaGaamivaaqaaiaaikdaaaqc faOaaiykaiaac6caaaaa@EB85@ (72)

From (54), u satisfies the equations:

{ t u + λ 0 v- J ( T ) 1 Div S ˜ ( u , p ) = λ 0 w+ λ 0 u in Ω × ( 0 , T ) , div u ˜ = 0           in Ω × ( 0 , T ) , S ˜ ( u , p ) = 0               on Γ × ( 0 , T ) , u | t = 0     = 0          in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaq aabeqaaKqzGeaeaaaaaaaaa8qacqGHciITjuaGdaWgaaqcfasaaKqz adGaamiDaaqcfayabaqcLbsacaWH1bGaey4kaSIaeq4UdWwcfa4aaS baaKqbGeaajugWaiaaicdaaKqbagqaaiaabAhacaqGTaqcLbsacaWG kbWdaiaacIcapeGaamiva8aacaGGPaqcfa4dbmaaCaaabeqcfasaaK qzadGaeyOeI0IaaGymaaaajugibiaabseacaqGPbGaaeODaiaaykW7 ceWHtbGbaGaapaGaaiika8qacaWH1bWdaiaacYcatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaqcfa4dbiab=Lc8WLqzGeWd aiaacMcapeGaeyypa0ZdaiabgkHiTiabeU7aSLqbaoaaBaaajuaiba qcLbmacaaIWaaajuaGbeaajugibiaabEhacaqGRaWdbiabeU7aSLqb aoaaBaaajuaibaqcLbmacaaIWaaajuaGbeaajugibiaahwhapaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaV=qacaqGPbGaaeOBaiaaykW7cq qHPoWvcaaMc8Uaey41aqRaaGPaV=aacaGGOaWdbiaaicdacaGGSaGa amiva8aacaGGPaWdbiaacYcaaKqba+aabaqcLbsapeGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVNqbaoaaGaaabaqcLbsacaqGKbGaaeyAaiaabAhacaaM c8UaaCyDaaqcfaOaay5adaqcLbsacaaMc8UaaeypaiaaykW7caqGWa GaaeiOaiaabckacaGGGcGaaiiOaiaacckacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaiiOaiaabMgacaqGUbGaaGPaVlabfM6axjaaykW7cqGHxdaT caaMc8+daiaacIcapeGaaGimaiaacYcacaWGubWdaiaacMcapeGaai ilaaqcfa4daeaajugib8qacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7ceWHtbGbaGaapaGaaiika8qacaWH1bWdaiaa cYcajuaGpeGae8xkWdxcLbsapaGaaiykaiaaykW7peGaeyypa0JaaG PaVlaaykW7juaGpaGaaGimaKqzGeWdbiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaacckacaGGGcGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaae4Baiaab6gacaaMc8UaaGPa Vlabfo5ahjaaykW7cqGHxdaTcaaMc8UaaGPaV=aacaGGOaWdbiaaic dacaGGSaGaamiva8aacaGGPaWdbiaacYcaaKqbagaajugibiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahwhapaGa aiiFaKqba+qadaWgaaqaaKqzGeGaamiDaiabg2da9iaaicdaaKqbag qaaKqzGeGaaiiOaiaacckacqGH9aqpcaaIWaGaaiiOaiaacckacaGG GcGaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaeiOaiaabMga caqGUbGaaGPaVlaaykW7caaMc8UaeuyQdCfaaKqba+aacaGL7baaaa a@62CE@

so that by Theorem 8,

< t > b   N 2 q 2 u L p ( ( 0 , T ) H q 2 2 ( Ω ) ) + < t > b   N 2 q 2 t u L p ( ( 0 , T ) , L q 2 ( Ω ) ) + C < t > b   N 2 q 2 ( u , w ) L p ( ( 0 , T ) L q 2 ( Ω ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafeaabaGaeyipaWdacaGLjWoacaWG0bGaeyOpa4Za aWbaaeqajuaibaGaiGgYdkgacWaAiBOeI0IaiGgYcckajuaGdGaAiV aaaKqbGeacOHSaiGgYd6eaaeacOHSaiGgJikdacGaAmoyCaKqbaoac OX4gaaqcfasaiGgJcGaAmIOmaaqajGgJaaaaaaqcfa4aauGaaeaaca WH1baacaGLkWoapaWaaSbaaeaapeGaamitamaaBaaajuaibaGaamiC aaqcfayabaWdaiaacIcacaGGOaGaaGimaiaacYcacaWGubGaaiykai aadIeadaqhaaqcfasaaiaadghajuaGdaWgaaqcKvaG=haacaaIYaaa juaGbeaaaKqbGeaacaaIYaaaaKqba+qacaGGOaGaeuyQdCLaaiykai aacMcaa8aabeaacqGHRaWkcaaMc8+aauqaaeaapeGaeyipaWdapaGa ayzcSdWdbiaadshacqGH+aGpdaahaaqabKqbGeaacGaAipOyaiadOH SHsislcGaAiliOaKqbaoacOH8caaqcfasaiGgYcGaAipOtaaqaiGgY cGaAmIOmaiacOX4GXbqcfa4aiGgJBaaajuaibGaAmkacOXiIYaaabK aAmcaaaaaajuaGdaqbcaqaaiabgkGi2oaaBaaajuaibaGaamiDaaqc fayabaGaaCyDaaGaayPcSdWaaSbaaeaacaWGmbWaaSbaaKqbGeaapa GaamiCaaqcfa4dbeqaa8aacaGGOaGaaiikaiaaicdacaGGSaGaamiv aiaacMcacaGGSaGaamitamaaBaaajuaibaGaamyCaKqbaoaaBaaaju aibaqcfa4aiGgrBaaajqwba+FaiGgrcGaAeHOmaaqcfasajGgraaqa baaajuaGbeaadaqadaqaaiabfM6axbGaayjkaiaawMcaaiaacMcaa8 qabeaaaOqaaKqbakaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaado eadaqbbaqaaiabgYda8aGaayzcSdGaamiDaiabg6da+maaCaaabeqc fasaaiacOH5GIbGamGgMgkHiTiacOHPGGcqcfa4aiGgMlaaajuaibG aAykacOH5GobaabGaAykacOrhIYaGaiGgDdghajuaGdGaA0TbaaKqb GeacOrNaiGgDikdaaeqcOrhaaaaaaKqbaoaafiaabaGaaiikaiaahw hacaGGSaGaaC4DaiaacMcaaiaawQa7a8aadaWgaaqaa8qacaWGmbWa aSbaaKqbGeaacaWGWbaajuaGbeaapaGaaiikaiaacIcacaaIWaGaai ilaiaadsfacaGGPaGaamitamaaBaaajuaibaGaamyCaKqbaoaaBaaa juaibaqcfa4aaSbaaKazfa4=baGaiWfuikdaaKqbGeqaaaqabaaaju aGbeaapeGaaiikaiabfM6axjaacMcacaGGPaaapaqabaGaaiilaaaa aa@E8F2@

which, combined with (72), furnishes that

[ u ] T C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGBbGaaCyDaiaac2fadaWgaaqcfasaaiaadsfaaKqbagqa aiabgsMiJkaadoeacaGGOaWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuGacqWFqesscaqGRaGaai4waiaahAhacaGGDbWaa0ba aKqbGeaacaWGubaabaGaaGOmaaaajuaGcaGGPaaaaa@4F59@ (73)

Since v = w+u, by (58) and (73), we see that v satisfies the inequality (50), which completes the proof of Theorem 1.53-56

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Solonnikov VA. Solvability of the problem of evolution of an isolated amount of a viscous incom-pressible capillary fluid. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI. 1984;140:179‒186.
  2. Solonnikov VA. On nonstationary motion of a finite isolated mass of self-gravitating fluid. Algebra I Analiz. 1990;1(1):207‒249.
  3. Solonnikov VA. Solvability of the problem of evolution of a viscous incompressible fluid bouded by a free surface on a finite time interval. Algebra i Analiz. 1991;3(1):222‒257.
  4. Solonnikov VA. Lectures on evolution free boundary problems: classical solutions. Mathematical aspects of evolving interfaces, Lecture Notes in Math. 2003;1812:123‒175.
  5. Schweizer B. Free boundary fluid systems in a semigroup approach and oscillatory behavior. SIAM J Math Anal. 1997;28(5):1135‒1157.
  6. Moglievskii SH, Solonnikov VA. On the solvability of a free boundary problem for the Navier-Stokes equations in the Holder space of functions. Nonlinear Analysis Sc Norm Super di Pisa Quaderni Scuola Norm. 1991. p. 257‒271.
  7. Solonnikov VA. On the transient motion of an isolated volume of viscous incompressible fluid. USSR Izvestiya. 1988;31(2):381‒405.
  8. Mucha PB, Zajaczkowski W. On the existence for the Cauchy-Neumann problem for the Stokes system in the Lp-framework. Studia Math. 2000;143(1):75‒101.
  9. Mucha PB, Zajaczkowski W. On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion. Appl Math. 2000;27(3):319‒333.
  10. Shibata Y, Shimizu S. On a free boundary problem for the Navier-Stokes equations. Dierential Integral Equations. 2007;20(3):241‒276.
  11. Shibata Y, Shimizu S. On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J Reine Angew Math. 2008;61:157‒209.
  12. Shibata Y. On some free boundary problem of the Navier-Stokes equations in the maximal Lp-Lq regularity class. J Dierential Equations. 2015;258(12):4127‒4155.
  13. Solonnikov VA. Unsteady flow of a finite mass of a fluid bounded by a free surface. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI. 1986;152:137‒157.
  14. Padula M, Solonnikov VA. On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation. Quad Mat. 2002;10:185‒218.
  15. Shibata Y. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. 2002.
  16. Allain G. Small-time existence for Navier-Stokes equations with a free surface. Appl Math Optim. 1987;16(1):37‒50.
  17. Beale JT. The initial value problem for the Navier-Stokes equations with a free surface. Commun Pure Appl Math. 1981;34(3):359‒392.
  18. Tani A. Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface. Arch Rational Mech Anal. 1996;133(4):299‒331.
  19. Abels H. The initial-value problem for the Navier-Stokes equations with a free surface in Lq-Sobolev spaces. Adv Dierential Equations. 2005;10(1):45‒64.
  20. Beale T. Large-time regularity of viscous surface waves. Arch Rational Mech Anal. 1984;84(4):307‒352.
  21. Tani I, Tanaka N. Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch Rational Mech anal. 1995;130(4):303‒314.
  22. Donna Lynn, Gates Sylvester. Large time existence of small viscous surface waves without surface tension. Partial Dierential Equations. 1990;15(6):823‒903.
  23. Beale JT, Nishida T. Large-time behaviour of viscous surface waves. Recent topics in nonlinear PDE, North-Holland Math. Stud, Amsterdam, Netherlands; 1985. p. 1‒14.
  24. Sylvester DLG. Decay rate for a two-dimensional viscous ocean of finite depth. J Math Anal Appl. 1996;202(0340):659‒666.
  25. Hataya Y. Decaying solution of a Navier-Stokes flow without surface tension. J Math Kyoto Univ. 2009;49(4):691‒717.
  26. Hataya Y, Kawashima S. Decaying solution of the Navier-Stokes flow of infinite volume without surface tension. Nonlinear Analysis. 2009;71:2535‒2539.
  27. Saito H, Shibata Y. On decay properties of solutions to the Stokes equations with surface tension and gravity in the half space. J Math Soc Japan. 2016;68(4):1559‒1614.
  28. Saito H, Shibata Y. Global existence and large-time behavior of solutions to the Navier-Stokes equations with a free surface.
  29. Shibata Y. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems Series S. 2016;9(1):315‒342.
  30. Shibata Y. Local well-posedness for the free boundary problem of the Navier-Stokes equations in an exterior domain.
  31. Abels H. On generalized solutions of two-phase flows for viscous incompressible fluids. Interfaces Free Bound. 2007;9(1):31‒65.
  32. Denisova V. A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium. Proc Steklov Inst Math. 1991;188:1‒24.
  33. Denisova V. Problem of the motion of two viscous incompressible fluids separated by a closed free interface. Acta Appl Math. 1994;37(1‒2):31‒40.
  34. Denisova V, Solonnikov VA. Classical solvability of the problem on the motion of two viscous incompressible fluids. Petersburg Math. 1996;7(5):755‒786.
  35. Giga Y, Takahashi SH. On global weak solutions of the nonstationary two-phase Stokes flow. SIAM J Math Anal. 1994;25(3):876‒893.
  36. Köhne M, Pruss J, Wilke M. Qualitative behavior of solutions for the two-phase Navier-Stokes equations with surface tension. Math Ann. 2013;356(2):737‒792.
  37. Maryani S, Saito H. On the R-boundedness of solution operator families for two-phase Stokes resolvent equations. Di Int Eqs. 2017;30(1/2):1‒52.
  38. Nouri A, Poupaud F. An existence theorem for the multifluid Navier-Stokes problem. J Deferential Equations. 1995;122:71‒88.
  39. Pruess J, Simonett G. On the two-phase Navier-Stokes equations with surface tension. Interfaces and Free Boundaries. 2010;12(3):311‒345.
  40. Pruess J, Simonett G. Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity, Progress in Nonlinear Dierential Equations and Their Applications. 2011;80:507‒540.
  41. Pruess J, Simonett G. Moving Interfaces and Quasilinear Parabolic Evolution Equations. Birkhauser Monographs in Mathematics. USA: Springer International Publishing; 2016. 609 p.
  42. Shibata Y, Shimizu S. On the resolvent estimate of the interface problem for the Stokes system in a bounded domain. J Dierential Equations. 2003;191:408‒444.
  43. Shibata Y, Shimizu S. Maximal Lp-Lq regularity for the two-phase Stokes equations; Model problems. J Dierential Equations. 2011;251(2):373‒419.
  44. Simonett G, Wilke V. Stability of equilibrium shapes in some free boundary problems involving fluids. Handbook of Mathematical Analysis in Mechanics Viscous Fluids. 2017:1‒46.
  45. Takahashi SH. On global weak solutions of the nonstationary two-phase Navier-Stokes flow. Adv Math Sci Appl. 1995;5(1):321‒342.
  46. Tanaka N. Two-phase free boundary problem for viscous incompressible thermocapillary convection. Japan J Math (New Series). 1995;21(1):1‒42.
  47. Shibata Y. On Lp-Lq decay estimate for Stokes equations with free boudary condition in an exterior domain. 2001.
  48. Shibata Y, Shimizu S. Decay properties of the Stokes semigroup in exterior domains with Neumann boundary condition. J Math Soc Japan. 2007;59(1):1‒34.
  49. Shibata Y. On the R-boundedness of solution operators for the Stokes equations with free boundary condition. Di Int Eqns. 2014;27(3/4):313‒368.
  50. Shibata Y. On the R-bounded solution opeator and the maximal Lp-Lq regularity of the Stokes equations with free boundary condition. Mathamtical Fluid Dynamics, Present and Future. 2016;183:203‒285.
  51. Tanabe H. Functional Analytic Methods for Parital Dierential Equations. Pure and Applied Mathematics. New York: A Series of Monographs and Textbooks, Marcel Dekker; 1997. 414 p.
  52. Meyries M, Schnaubelt R. Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights. J Func Anal. 2012;262:1200‒1229.
  53. Shibata Y, Shimizu S. On the maximal Lp-Lq regularity of the Stokes problem with first order boundary condition; model problems. J Math Soc Japan. 2012;64(2):561‒626.
  54. Shimizu S. Local solvability of free boundary problems for two-phase Navier-Stokes equations with surface tension in the whole space. Progr Nonlinear Dierential Equations Appl. 2011;80:647‒686.
  55. Solonnikov VA. Estimates of solutions of an initial-boundary value problem for the linear non-stationary Navier-Stokes system. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI. 1976;59:178‒254.
  56. Solonnikov VA. Unsteady flow of a finite mass of a fluid bounded by a free surface. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI. 1986;152:137‒157.
Creative Commons Attribution License

©2017 Shibata. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.