Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Research Article Volume 2 Issue 3

Effect of a time dependent stenosis on flow of a second order fluid through constricted tube with velocity slip at wall using integral method

NZ Khan,1 MA Rana,1 AM Siddiqui2

1Riphah International University, Pakistan
2Pennsylvania State University, York campus, USA

Correspondence: Nosheen Zareen Khan, Assistant Professor, Ripah International University, Islamabad, Pakistan, Tel (+)923325549737

Received: April 30, 2018 | Published: June 5, 2018

Citation: Khan NZ, Rana MA, Siddiqui AM. Effect of a time dependent stenosis on flow of a second order fluid through constricted tube with velocity slip at wall using integral method. Fluid Mech Res Int. 2018;2(3):118-126. DOI: 10.15406/fmrij.2018.02.00027

Download PDF

Abstract

The effect of time dependent, axially symmetric constriction in a tube of constant cross section, through which a non-Newtonian fluid is flowing steadily; is modeled and the analysis was made using integral approach. The present article is stationed on second order fluid model. The study is made applicable for mild constriction by using an order of magnitude analysis. The effect of different parameters, non-Newtonian characteristics, Reynolds number and time looming in the model on velocity distribution, wall shear stress, separation and reattachment and pressure gradient are reviewed graphically. It is observed that Reynolds number gives a mechanism to oversight the attachment and de-attachment data. Constricted tube Non-Newtonian fluids Time dependent stenosis Slip velocity Shear stress.

Keywords: integral method, non-Newtonian fluid, Reynolds number, viscometric flows, Rivlin-Ericksen tensors, Karman-Pohlhausen method

Introduction

Constriction is the development of arteriosclerotic plaques in the luman of an artery which produce major circulatory derangement.1−3 Fluid dynamic characteristics of blood flow are the curtain-raiser to understand and diagnosis the diseases and their treatment.4−9 Blood flow model through constricted tubes are analyzed by many researchers.10−17

The experimental studies on the steady and unsteady fluid flow through constricted channels are reported by DF Young et al.4,18 The fluid flow through infected artery is considered theoretically.15 At less shear rate blood is treated as Newtonian fluid.19 Non-Newtonian and steady blood flow through sicked artery is presented by D Biswas20 analytically and by SR Verma21 numerically studies the fluid flow through tepid obstructed tube analytically. Few studies considered the no slip property at uniform and constricted walls.11−15 A Mirza et al.,22 discussed the steady, non-Newtonian and incompressible fluid flowing through constricted artery. AM Siddiqui et al.,23 has discussed the blood flow through tepid obstructed artery where the slip is neglected and analytic technique is used to find the solution by considering the constant volume flow rate. In the above mentioned research papers the usual time independent constriction has been taken. Experimental observations24,25 and theoretical observations26−28 on blood flow reveals that there exist slip velocity at boundary. P Brunn29 has analyzed the velocity slip at the boundaries analytically and compared the result with the experimental data of five different viscometric flows. JC Misra et al.,30 developed a mathematical model to study the blood flow characteristic through constricted vessels by considering the slip velocity at wall of the vessels. D Biswas20 studied the effect of slip on velocity side view, pressure drop and wall shear. Different stages of constriction such as mild, moderate and sever for non-Newtonian fluids with slip property are presented by JC Misra et al.,31 The developments in non-Newtonian fluids is contributed by many authors studied the non-Newtonian Bingham plastic blood flow through the constricted artery with slip velocity at wall and solved the non-linear differential equation analytically.32−35 A Bhatnagar et al.,36 reported the effect of slip velocity on non-Newtonian (Herschel-Bulkely) fluid flow through constricted artery. They derived the non-dimensional results for skin friction, flow resistance, flow rate and axial velocity. NZ khan et al.,37 extended the work of JH Forrester et al.,38 for second order fluid through constricted tube with slip velocity at wall. DF Young10 & PN Tandon39 considered the time rate of change of radius. The aim of this work is to study the effect of time dependent constriction with slip effects at wall for second order fluid flow.

Governing equations

 The governing equations for an incompressible fluid, where body forces are neglected, given as40
. V ˜ =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaey4bIe TaaGOlaKqbaoaaGaaakeaajugibiaahAfaaOGaay5adaqcLbsacaaI 9aGaaGimaiaaiYcaaaa@3E50@                                                                (1)
ρ( ˜ ( V ˜ ) 2 2 V ˜ ×( ˜ × V ˜ ) )= ˜ p+( α 1 + α 2 ). A ˜ 1 2 +μ ˜ . A ˜ 1 + α 1 (( V ˜ . ˜ ) ˜ . A ˜ 1 + ( ˜ V ˜ ) T ˜ . A ˜ 1 + A ˜ 1 . ˜ ( ˜ V ˜ ) T ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyWdi xcfa4aaeWaaOqaaKqbaoaalaaakeaajuaGdaaiaaGcbaqcLbsacqGH his0aOGaay5adaqcLbsacaaIOaqcfa4aaacaaOqaaKqzGeGaaCOvaa GccaGLdmaajugibiaaiMcajuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaaaOqaaKqzGeGaaGOmaaaacqGHsisljuaGdaaiaaGcbaqcLbsaca WHwbaakiaawoWaaKqzGeGaey41aqRaaGikaKqbaoaaGaaakeaajugi biabgEGirdGccaGLdmaajugibiabgEna0MqbaoaaGaaakeaajugibi aahAfaaOGaay5adaqcLbsacaaIPaaakiaawIcacaGLPaaajugibiaa i2dacqGHsisljuaGdaaiaaGcbaqcLbsacqGHhis0aOGaay5adaqcLb sacaWGWbGaey4kaSIaaGikaiabeg7aHLqbaoaaBaaajeaibaqcLbma caaIXaaaleqaaKqzGeGaey4kaSIaeqySdewcfa4aaSbaaKqaGeaaju gWaiaaikdaaSqabaqcLbsacaaIPaGaey4bIeTaaGOlaKqbaoaaGaaa keaajugibiaadgeaaOGaay5adaqcfa4aa0baaKqaGeaajugWaiaaig daaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaH8oqBjuaGdaai aaGcbaqcLbsacqGHhis0aOGaay5adaqcLbsacaaIUaqcfa4aaacaaO qaaKqzGeGaamyqaaGccaGLdmaajuaGdaWgaaqcbasaaKqzadGaaGym aaWcbeaajugibiabgUcaRiabeg7aHLqbaoaaBaaajeaibaqcLbmaca aIXaaaleqaaKqzGeGaaGikaiaaiIcajuaGdaaiaaGcbaqcLbsacaWH wbaakiaawoWaaKqzGeGaaGOlaKqbaoaaGaaakeaajugibiabgEGird GccaGLdmaajugibiaaiMcajuaGdaaiaaGcbaqcLbsacqGHhis0aOGa ay5adaqcLbsacaaIUaqcfa4aaacaaOqaaKqzGeGaamyqaaGccaGLdm aajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiabgUcaRiaa iIcajuaGdaaiaaGcbaqcLbsacqGHhis0aOGaay5adaqcfa4aaacaaO qaaKqzGeGaaCOvaaGccaGLdmaajugibiaaiMcajuaGdaahaaWcbeqc basaaKqzadGaamivaaaajuaGdaaiaaGcbaqcLbsacqGHhis0aOGaay 5adaqcLbsacaaIUaqcfa4aaacaaOqaaKqzGeGaamyqaaGccaGLdmaa juaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiabgUcaRKqbao aaGaaakeaajugibiaadgeaaOGaay5adaqcfa4aaSbaaKqaGeaajugW aiaaigdaaSqabaqcLbsacaaIUaqcfa4aaacaaOqaaKqzGeGaey4bIe nakiaawoWaaKqzGeGaaGikaKqbaoaaGaaakeaajugibiabgEGirdGc caGLdmaajuaGdaaiaaGcbaqcLbsacaWHwbaakiaawoWaaKqzGeGaaG ykaKqbaoaaCaaaleqajeaibaqcLbmacaWGubaaaKqzGeGaaGykaiaa iYcaaaa@D019@  (2)
where V ˜ ,ρ,μ, α 1 , α 2 , A ˜ 1 and A ˜ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaake aajugibiaahAfaaOGaay5adaqcLbsacaGGSaGaeqyWdiNaaiilaiab eY7aTjaacYcacqaHXoqyjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbe aajugibiaacYcacqaHXoqyjuaGdaWgaaqcbasaaKqzadGaaGOmaaWc beaajugibiaacYcajuaGdaaiaaGcbaqcLbsacaWHbbaakiaawoWaaK qbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaaGPaVlaaykW7 qaaaaaaaaaWdbiaadggacaWGUbGaamizaiaaykW7juaGpaWaaacaaO qaaKqzGeGaaCyqaaGccaGLdmaajuaGdaWgaaqcbasaaKqzadGaaGOm aaWcbeaaaaa@5D5F@ are the velocity vector, constant density, dynamic viscosity, material constants, first and second Rivlin-Ericksen tensors. The Rivlin-Ericksen tensors are exemplify as
A ˜ 1 = ( ˜ V ˜ ) T + ˜ V ˜ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaake aajugibiaahgeaaOGaay5adaqcfa4aaSbaaKqaGeaajugWaiaaigda aSqabaqcLbsacaaI9aqcfa4aaeWaaOqaaKqbaoaaGaaakeaajugibi abgEGirdGccaGLdmaajuaGdaaiaaGcbaqcLbsacaWHwbaakiaawoWa aaGaayjkaiaawMcaaKqbaoaaCaaaleqajeaibaqcLbmacaWGubaaaK qzGeGaey4kaSscfa4aaacaaOqaaKqzGeGaey4bIenakiaawoWaaKqb aoaaGaaakeaajugibiaahAfaaOGaay5adaqcLbsacaaISaaaaa@5124@                                              (3)
And
A ˜ 2 = d A ˜ 1 dt + ( A ˜ 1 ( ˜ V ˜ ) ) T + A ˜ 1 ( ˜ V ˜ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaake aajugibiaahgeaaOGaay5adaqcfa4aaSbaaKqaGeaajugWaiaaikda aSqabaqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaamizaKqbaoaaGa aakeaajugibiaahgeaaOGaay5adaqcfa4aaSbaaKqaGeaajugWaiaa igdaaSqabaaakeaajugibiaadsgacaWG0baaaiabgUcaRKqbaoaabm aakeaajuaGdaaiaaGcbaqcLbsacaWHbbaakiaawoWaaKqbaoaaBaaa leaajugibiaaigdaaSqabaqcfa4aaeWaaOqaaKqbaoaaGaaakeaaju gibiabgEGirdGccaGLdmaajuaGdaaiaaGcbaqcLbsacaWHwbaakiaa woWaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaKqbaoaaCaaaleqaje aibaqcLbmacaWGubaaaKqzGeGaey4kaSscfa4aaacaaOqaaKqzGeGa aCyqaaGccaGLdmaajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaju aGdaqadaGcbaqcfa4aaacaaOqaaKqzGeGaey4bIenakiaawoWaaKqb aoaaGaaakeaajugibiaahAfaaOGaay5adaaacaGLOaGaayzkaaqcLb sacaaIUaaaaa@6AC6@              (4)
For the model (2) the material constraints are defined as41
α 1 0,μ0,and α 1 + α 2 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGHKjYOcaaI WaGaaGilaiabeY7aTjabgwMiZkaaicdacaaISaGaaeyyaiaab6gaca qGKbGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsa cqGHRaWkcqaHXoqyjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaju gibiabgwMiZkaaicdacaaIUaaaaa@5453@                              (5)

Problem formulation
A steady, laminar and incompressible flow of a second order fluid through constricted tube having transient cosine framed symmetric constriction of height δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq gaaa@381F@  is considered. R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajuaibaqcLbmacaaIWaaajuaGbeaaaaa@3AA4@ , R( z ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaKOuaK qbaoaabmaakeaajuaGdaaiaaGcbaqcLbsacaqI6baakiaawoWaaaGa ayjkaiaawMcaaaaa@3C70@ are the radii of the normal and constricted tube. The z ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaaba GaamOEaaGaay5adaGaeyOeI0caaa@3927@  and r ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaake aajugibiaadkhaaOGaay5adaqcLbsacqGHsislaaa@3A51@ axis are taken along the flow direction and normal to it and t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaa aa@3773@  is time. Following the tube boundary is defined as10
R( z ˜ )={ R 0 δ 2 (1 e t/T )(1+cos( π z ˜ z 0 )), z 0 < z ˜ < z 0 R 0 . otherwise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuai aaiIcajuaGdaaiaaGcbaqcLbsacaWG6baakiaawoWaaKqzGeGaaGyk aiaai2dajuaGdaGabaGcbaqcLbsafaqabeGacaaakeaajugibiaadk fajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiabgkHiTKqb aoaalaaakeaajugibiabes7aKbGcbaqcLbsacaaIYaaaaiaaiIcaca aIXaGaeyOeI0IaamyzaKqbaoaaCaaaleqajeaibaqcLbmacqGHsisl caWG0bGaaG4laiaadsfaaaqcLbsacaaIPaGaaGikaiaaigdacqGHRa WkciGGJbGaai4BaiaacohacaaIOaqcfa4aaSaaaOqaaKqzGeGaeqiW daxcfa4aaacaaOqaaKqzGeGaamOEaaGccaGLdmaaaeaajugibiaadQ hajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaaqcLbsacaaIPaGa aGykaiaaiYcaaOqaaKqzGeGaeyOeI0IaamOEaKqbaoaaBaaajeaiba qcLbmacaaIWaaaleqaaKqzGeGaaGipaKqbaoaaGaaakeaajugibiaa dQhaaOGaay5adaqcLbsacaaI8aGaamOEaKqbaoaaBaaajeaibaqcLb macaaIWaaaleqaaaGcbaqcLbsacaWGsbqcfa4aaSbaaKqaGeaajugW aiaaicdaaSqabaqcLbsacaaIUaaakeaajugibiaad+gacaWG0bGaam iAaiaadwgacaWGYbGaam4DaiaadMgacaWGZbGaamyzaaaaaOGaay5E aaaaaa@836D@                 (6)
In Eq. (6), T is the time constant and z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOEaK qbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaa@3A45@  is the length of the constricted part as shown in the Figure 1. Radius of normal tube can be obtained by taking t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDai aai2dacaaIWaaaaa@38F4@ .

Figure 1 Geometry of the problem.

The velocity vector V ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaake aajugibiaahAfaaOGaay5adaaaaa@38BD@  for axisymmetric and time independent is taken of the form
V ˜ =[ u ˜ ( r ˜ , z ˜ ),0, w ˜ ( r ˜ , z ˜ ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaake aajugibiaahAfaaOGaay5adaqcLbsacaWH9aqcfa4aamWaaOqaaKqz GeGabmyDayaaiaqcfa4aaeWaaOqaaKqzGeGabmOCayaaiaGaaGilai qadQhagaacaaGccaGLOaGaayzkaaqcLbsacaaISaGaaGimaiaaiYca ceWG3bGbaGaajuaGdaqadaGcbaqcLbsaceWGYbGbaGaacaaISaGabm OEayaaiaaakiaawIcacaGLPaaaaiaawUfacaGLDbaajugibiaai6ca aaa@4E43@                                                                                  (7)
Where u ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyDay aaiaaaaa@3783@  and w ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabm4Day aaiaaaaa@3785@  are the velocity components in r ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOCay aaiaGaeyOeI0caaa@386D@ , z ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmOEay aaiaGaeyOeI0caaa@3875@ directions respectively. According to the geometry of the problem the boundary conditions are
u ˜ = w ˜ = v s at r ˜ =R( z ˜ ), w ˜ r ˜ =0at r ˜ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmyDay aaiaGaaGypaiqadEhagaacaiaai2dacaWG2bqcfa4aaSbaaKqaGeaa jugWaiaadohaaSqabaqcLbsacaaMe8UaaGjbVlaabggacaqG0bGaaG jbVlqadkhagaacaiaai2dacaWGsbqcfa4aaeWaaOqaaKqzGeGabmOE ayaaiaaakiaawIcacaGLPaaajugibiaaiYcajuaGdaWcaaGcbaqcLb sacqGHciITjuaGdaaiaaGcbaqcLbsacaWG3baakiaawoWaaaqaaKqz GeGaeyOaIyRabmOCayaaiaaaaiaai2dacaaIWaGaaGjbVlaaysW7ca qGHbGaaeiDaiaaysW7caaMe8UabmOCayaaiaGaaGypaiaaicdacaaI Uaaaaa@6239@                                        (8)
In view of Eq. (8) the Eqs. (1) and (2) become
u ˜ r ˜ + w ˜ z ˜ + u ˜ r ˜ =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kqadwhagaacaaGcbaqcLbsacWaGyAOaIyRabmOC ayaaiaaaaiabgUcaRKqbaoaalaaakeaajugibiabgkGi2kqadEhaga acaaGcbaqcLbsacWaGmAOaIyRabmOEayaaiaaaaiabgUcaRKqbaoaa laaakeaajugibiqadwhagaacaaGcbaqcLbsaceWGYbGbaGaaaaGaaG ypaiaaicdacaaISaaaaa@4D59@                                                                                  (9)
h ˜ r ˜ ρ w ˜ Ω=μ Ω z ˜ α 1 w ˜ ( 2 Ω Ω r ˜ 2 )+( α 1 + α 2 )( 2 r ˜ ( u ˜ Ω) z ˜ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kqadIgagaacaaGcbaqcLbsacWaGWAOaIyRabmOC ayaaiaaaaiabgkHiTiabeg8aYjqadEhagaacaiaaykW7cqqHPoWvca aI9aGaeyOeI0IaeqiVd0wcfa4aaSaaaOqaaKqzGeGaeyOaIyRaeuyQ dCfakeaajugibiadasQHciITjuaGdGaGKccaaOqaiaiPjugibiacas 6G6baakiacasQLdmaaaaqcLbsacqGHsislcqaHXoqyjuaGdaWgaaqc Kfay=haajugWaiaaigdaaSqabaqcLbsaceWG3bGbaGaacaaIOaGaey 4bIeDcfa4aaWbaaSqabKazba2=baqcLbmacaaIYaaaaKqzGeGaeuyQ dCLaeyOeI0scfa4aaSaaaOqaaKqzGeGaeuyQdCfakeaajugibiqadk hagaacaKqbaoaaCaaabeqcfasaaKqzadGaaGOmaaaaaaqcLbsacaaI PaGaey4kaSIaaGikaiabeg7aHLqbaoaaBaaajqwaG9FaaKqzadGaaG ymaaWcbeaajugibiabgUcaRiabeg7aHLqbaoaaBaaajqwaG9FaaKqz adGaaGOmaaWcbeaajugibiaaiMcacaaIOaqcfa4aaSaaaOqaaKqzGe GaaGOmaaGcbaqcLbsaceWGYbGbaGaaaaqcfa4aaSaaaOqaaKqzGeGa eyOaIyRaaGikaiqadwhagaacaiabfM6axjaaiMcaaOqaaKqzGeGama iSgkGi2MqbaoacacliaaGcbGaGWMqzGeGaiaiSdQhaaOGaiaiSwoWa aaaajugibiaaiMcacaaISaaaaa@9A7F@       (10)
h ˜ z ˜ +ρ u ˜ Ω=μ( Ω r ˜ + Ω r ˜ )+ α 1 u ˜ ( 2 Ω Ω r ˜ 2 )( α 1 + α 2 )( 2 r ˜ ( u ˜ Ω) r ˜ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kqadIgagaacaaGcbaqcLbsacqGHciITceWG6bGb aGaaaaGaey4kaSIaeqyWdiNabmyDayaaiaGaeuyQdCLaaGypaiabeY 7aTjaaiIcajuaGdaWcaaGcbaqcLbsacqGHciITcqqHPoWvaOqaaKqz GeGaeyOaIyRabmOCayaaiaGaaGPaVdaacqGHRaWkjuaGdaWcaaGcba qcLbsacqqHPoWvaOqaaKqzGeGabmOCayaaiaGaaGPaVdaacaaIPaGa ey4kaSIaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLb saceWG1bGbaGaacaaIOaGaey4bIeDcfa4aaWbaaSqabKqaGeaajugW aiaaikdaaaqcLbsacqqHPoWvcqGHsisljuaGdaWcaaGcbaqcLbsacq qHPoWvaOqaaKqzGeGabmOCayaaiaGaaGPaVNqbaoaaCaaaleqajeai baqcLbmacaaIYaaaaaaajugibiaaiMcacqGHsislcaaIOaGaeqySde wcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGHRaWkcqaH XoqyjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaaiMcaca aIOaqcfa4aaSaaaOqaaKqzGeGaaGOmaaGcbaqcLbsaceWGYbGbaGaa caaMc8oaaKqbaoaalaaakeaajugibiabgkGi2kaaiIcaceWG1bGbaG aacqqHPoWvcaaIPaaakeaajugibiabgkGi2kqadkhagaacaiaaykW7 aaGaaGykaiaaiYcaaaa@8DBB@  (11)
Where
Ω= w ˜ r ˜ u ˜ z ˜ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuyQdC LaaGypaKqbaoaalaaakeaajugibiabgkGi2kqadEhagaacaaGcbaqc LbsacqGHciITceWGYbGbaGaaaaGaeyOeI0scfa4aaSaaaOqaaKqzGe GaeyOaIyRabmyDayaaiaaakeaajugibiabgkGi2kqadQhagaacaaaa caaISaaaaa@47D2@                                                                                       (12)
h ˜ = ρ 2 ( u ˜ 2 + w ˜ 2 ) α 1 ( u ˜ 2 ( u ˜ u ˜ r ˜ 2 )+ w ˜ 2 w ˜ ) 1 4 (3 α 1 +2 α 2 ) | A ˜ 1 | 2 +p, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGabmiAay aaiaGaaGypaKqbaoaalaaakeaajugibiabeg8aYbGcbaqcLbsacaaI YaaaaKqbaoaabmaakeaajugibiqadwhagaacaKqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaKqzGeGaey4kaSIabm4Dayaaiaqcfa4aaWba aSqabKqaGeaajugWaiaaikdaaaaakiaawIcacaGLPaaajugibiabgk HiTiabeg7aHLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqbaoaa bmaakeaajugibiqadwhagaacaiabgEGirNqbaoaaCaaaleqajeaiba qcLbmacaaIYaaaaKqbaoaabmaakeaajugibiqadwhagaacaiabgkHi TKqbaoaalaaakeaajuaGdaaiaaGcbaqcLbsacaWG1baakiaawoWaaa qaaKqzGeGabmOCayaaiaqcfa4aaWbaaSqabKqaGeaajugWaiaaikda aaaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkceWG3bGbaGaacqGHhi s0juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiqadEhagaac aaGccaGLOaGaayzkaaqcLbsacqGHsisljuaGdaWcaaGcbaqcLbsaca aIXaaakeaajugibiaaisdaaaGaaGikaiaaiodacqaHXoqyjuaGdaWg aaqcbasaaKqzadGaaGymaaWcbeaajugibiabgUcaRiaaikdacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaaiMcajuaG daabdaGcbaqcLbsaceWHbbGbaGaajuaGdaWgaaqcfasaaiaaigdaaK qbagqaaaGccaGLhWUaayjcSdqcfa4aaWbaaSqabKqaGeaajugWaiaa ikdaaaqcLbsacqGHRaWkcaWGWbGaaGilaaaa@8B33@  (13)
| A ˜ 1 | 2 =4( u ˜ r ˜ ) 2 +4( w ˜ z ˜ ) 2 +4( u ˜ r ˜ ) 2 +2( w ˜ r ˜ + u ˜ z ˜ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGiFai qahgeagaacaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGa aGiFaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaaGypai aaisdacaaIOaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRabmyDayaaiaaa keaajugibiadaYLHciITcKaGCnOCayacaYfcaaaacaaIPaqcfa4aaW baaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaI0aGaaGik aKqbaoaalaaakeaajugibiabgkGi2MqbaoaaGaaakeaajugibiaadE haaOGaay5adaaabaqcLbsacWaGqzOaIyRajaiudQhagGaGqHaaaaGa aGykaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaS IaaGinaiaaiIcajuaGdaWcaaGcbaqcLbsaceWG1bGbaGaaaOqaaKqz GeGajaiodkhagGaG4GaaaaGaaGykaKqbaoaaCaaaleqajeaibaqcLb macaaIYaaaaKqzGeGaey4kaSIaaGOmaiaaiIcajuaGdaWcaaGcbaqc LbsacqGHciITjuaGdaaiaaGcbaqcLbsacaWG3baakiaawoWaaaqaaK qzGeGamaiugkGi2kqcac1GYbGbiaiuiaaaaiabgUcaRKqbaoaalaaa keaajugibiabgkGi2kqadwhagaacaaGcbaqcLbsacWaGqzOaIyRaja iudQhagGaGqHaaaaGaaGykaKqbaoaaCaaaleqajeaibaqcLbmacaaI YaaaaKqzGeGaaGilaaaa@8937@                                           (14)
and the Laplacian, generalized pressure are expressed as 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaey4bIe Dcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaa@3ACF@ and h ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaake aajugibiaadIgaaOGaay5adaaaaa@38CB@ . Introducing the dimensionless variables
r= r ˜ R 0 ,z= z ˜ z 0 ,w= w ˜ U 0 ,u= u ˜ z 0 U 0 δ ,h= h ˜ ρ U 0 2 ,p= p ˜ ρ U 0 2 , R e = U 0 R 0 ρ μ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOCai aai2dajuaGdaWcaaGcbaqcLbsaceWGYbGbaGaaaOqaaKqzGeGaiaix dkfajuaGdGaGCTbaaKqaGeacaYvcLbmacGaGCHimaaWcbKaGCbaaaK qzGeGaaGilaiaadQhacaaI9aqcfa4aaSaaaOqaaKqzGeGabmOEayaa iaaakeaajugibiacaIZG6bqcfa4aiaioBaaajeaibGaG4KqzadGaia ioicdaaSqajaioaaaajugibiaaiYcacaWG3bGaaGypaKqbaoaalaaa keaajugibiqadEhagaacaaGcbaqcLbsacGaGenyvaKqbaoacas0gaa qcbasaiairjugWaiacaseIWaaaleqcaseaaaqcLbsacaaISaGaamyD aiaai2dajuaGdaWcaaGcbaqcLbsaceWG1bGbaGaacaWG6bqcfa4aaS baaKqaGeaajugWaiaaicdaaSqabaaakeaajugibiacaI2Gvbqcfa4a iaiABaaajeaibGaGOLqzadGaiaiAicdaaSqajaiAaKqzGeGamaiAes 7aKbaacaaISaGaamiAaiaai2dajuaGdaWcaaGcbaqcLbsaceWGObGb aGaaaOqaaKqzGeGaeqyWdiNaamyvaKqbaoaaDaaajeaibaqcLbmaca aIWaaajeaibaqcLbmacaaIYaaaaaaajugibiaaiYcacaWGWbGaaGyp aKqbaoaalaaakeaajugibiqadchagaacaaGcbaqcLbsacqaHbpGCca WGvbqcfa4aa0baaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaikda aaaaaKqzGeGaaGilaiaadkfajuaGdaWgaaqcbasaaKqzadGaamyzaa Wcbeaajugibiaai2dajuaGdaWcaaGcbaqcLbsacaWGvbqcfa4aaSba aKqaGeaajugWaiaaicdaaSqabaqcLbsacaWGsbqcfa4aaSbaaKqaGe aajugWaiaaicdaaSqabaqcLbsacqaHbpGCaOqaaKqzGeGaeqiVd0ga aiaaiYcaaaa@A1FE@     (15)
where U 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaK qbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaa@3A20@  is the average velocity. Order-of-magnitude reasoning is used to determine the imperceptible effects which are given in Eqs. (9) -(14). Now Eq. (9) becomes
w z + δ R 0 1 r u r =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadEhaaOqaaKqzGeGaeyOaIyRaamOEaaaacqGH RaWkjuaGdaWcaaGcbaqcLbsacqaH0oazaOqaaKqzGeGaamOuaKqbao aaBaaajeaibaqcLbmacaaIWaaaleqaaaaajuaGdaWcaaGcbaqcLbsa caaIXaaakeaajugibiaadkhaaaqcfa4aaSaaaOqaaKqzGeGaeyOaIy RaamyDaaGcbaqcLbsacqGHciITcaWGYbaaaiaai2dacaaIWaGaaGOl aaaa@50C4@                                                                                                (16)
From Eq. (15) using order of magnitude technique, which is also suitable for non-Newtonian fluids10, it is notable that 1 R e δ R 0 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaBaaajeaibaqcLbma caWGLbaaleqaaaaajuaGdaWcaaGcbaqcLbsacqaH0oazaOqaaKqzGe GaamOuaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaarqqr1ngB PrgifHhDYfgaiuaajugibiab=PMi9iaaigdacaaISaaaaa@4B4B@   uw MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyDae bbfv3ySLgzGueE0jxyaGqbaiab=PMi9iaadEhaaaa@3E5A@ , δ z 0 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabes7aKbGcbaqcLbsacaWG6bqcfa4aaSbaaKqaGeaajugW aiaaicdaaSqabaaaaebbfv3ySLgzGueE0jxyaGqbaKqzGeGae8NAI0 JaaGymaiaaiYcaaaa@4515@   R 0 z 0 O(1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadkfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaOqa aKqzGeGaamOEaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaarq qr1ngBPrgifHhDYfgaiuaajugibiab=XJi6iaad+eacaaIOaGaaGym aiaaiMcaaaa@4865@  then normal axial stress component 2 w z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2MqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaam4DaaGcbaqcLbsacqGHciITcaWG6bqcfa4aaWbaaSqabKqaGe aajugWaiaaikdaaaaaaaaa@42AF@  is imperceptible as compared to the gradient of shear. So Eqs. (9) and (13) becomes
h r =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadIgaaOqaaKqzGeGaeyOaIyRaamOCaaaacaaI 9aGaaGimaiaai6caaaa@3EA4@ (17)
h z = 1 R e [ 2 w r 2 + 1 r w r ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadIgaaOqaaKqzGeGaeyOaIyRaamOEaaaacaaI 9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGsbqcfa4aaS baaKqaGeaajugWaiaadwgaaSqabaaaaKqbaoaadmaakeaajuaGdaWc aaGcbaqcLbsacqGHciITjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiaadEhaaOqaaKqzGeGaeyOaIyRaamOCaKqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaaaajugibiabgUcaRKqbaoaalaaakeaaju gibiaaigdaaOqaaKqzGeGaamOCaaaajuaGdaWcaaGcbaqcLbsacqGH ciITcaWG3baakeaajugibiabgkGi2kaadkhaaaaakiaawUfacaGLDb aajugibiaaiYcaaaa@5FAF@                                                                                     (18)
h= w 2 2 α w( 2 w r 2 + 1 r w r ) α 1 2 ( w r ) 2 β * ( w r ) 2 +p. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiAai aai2dajuaGdaWcaaGcbaqcLbsacaWG3bqcfa4aaWbaaSqabKqaGeaa jugWaiaaikdaaaaakeaajugibiaaikdaaaGaeyOeI0IaeqySdewcfa 4aaWbaaSqabeaajugibiabgEHiQaaacaWG3bqcfa4aaeWaaOqaaKqb aoaalaaakeaajugibiabgkGi2MqbaoaaCaaaleqajeaibaqcLbmaca aIYaaaaKqzGeGaam4DaaGcbaqcLbsacqGHciITcaWGYbqcfa4aaWba aSqabKqaGeaajugWaiaaikdaaaaaaKqzGeGaey4kaSscfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcLbsacaWGYbaaaKqbaoaalaaakeaajugi biabgkGi2kaadEhaaOqaaKqzGeGaeyOaIyRaamOCaaaaaOGaayjkai aawMcaaKqzGeGaeyOeI0IaeqySdewcfa4aaWbaaSqabeaajugibiab gEHiQaaajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaa qcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabgkGi2kaadEhaaOqa aKqzGeGaeyOaIyRaamOCaaaaaOGaayjkaiaawMcaaKqbaoaaCaaale qajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaeqOSdiwcfa4aaWba aSqabeaajugibiaaiQcaaaqcfa4aaeWaaOqaaKqbaoaalaaakeaaju gibiabgkGi2kaadEhaaOqaaKqzGeGaeyOaIyRaamOCaaaaaOGaayjk aiaawMcaaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaey 4kaSIaamiCaiaai6caaaa@8695@                     (19)
where α = α 1 R 0 2 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaWbaaSqabeaajugibiabgEHiQaaacaaI9aqcfa4aaSaaaOqa aKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaake aajugibiaadkfajuaGdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqz adGaaGOmaaaajugibiabeg8aYbaaaaa@4951@  and β = α 1 + α 2 R 0 2 ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabeaajugibiabgEHiQaaacaaI9aqcfa4aaSaaaOqa aKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLb sacqGHRaWkcqaHXoqyjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaa aOqaaKqzGeGaamOuaKqbaoaaDaaajeaibaqcLbmacaaIWaaajeaiba qcLbmacaaIYaaaaKqzGeGaeqyWdihaaaaa@4F31@ . The non-dimensional form of time dependent cosine shape obstruction profile is
R(z)={ 1 δ * 2 (1 e t * )(1+cos(πz)), 1<z<1 1. otherwise MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuai aaiIcacaWG6bGaaGykaiaai2dajuaGdaGabaGcbaqcLbsafaqabeGa caaakeaajugibiaaigdacqGHsisljuaGdaWcaaGcbaqcLbsacqaH0o azjuaGdaahaaWcbeqaaKqzGeGaaGOkaaaaaOqaaKqzGeGaaGOmaaaa caaIOaGaaGymaiabgkHiTiaadwgajuaGdaahaaWcbeqaaKqzGeGaey OeI0IaamiDaKqbaoaaCaaaleqabaqcLbsacaaIQaaaaaaacaaIPaGa aGikaiaaigdacqGHRaWkciGGJbGaai4BaiaacohacaaIOaGaeqiWda NaamOEaiaaiMcacaaIPaGaaGilaaGcbaqcLbsacqGHsislcaaIXaGa aGipaiaadQhacaaI8aGaaGymaaGcbaqcLbsacaaIXaGaaGOlaaGcba qcLbsacaWGVbGaamiDaiaadIgacaWGLbGaamOCaiaadEhacaWGPbGa am4CaiaadwgaaaaakiaawUhaaaaa@69CB@                                         (20)
where δ =δ/ R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq wcfa4aaWbaaSqabeaajugibiabgEHiQaaacaaI9aGaeqiTdqMaaG4l aiaadkfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaaa@4120@  and t * =t/T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK qbaoaaCaaaleqabaqcLbsacaaIQaaaaiaai2dacaWG0bGaaG4laiaa dsfaaaa@3CC3@ . Eq. (18) can be integrated from r=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOCai aai2dacaaIWaaaaa@38F2@  to r=R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOCai aai2dacaWGsbaaaa@390F@  to get
0 R r h z dr= R R e ( w r ) R . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxacake aajuaGdaWfqaGcbaqcfa4aa8qaaOqabSqabeqajugibiabgUIiYdaa jeaibaqcLbmacaaIWaaaleqaaaqabKqaGeaajugWaiaadkfaaaqcLb sacaWGYbqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamiAaaGcbaqcLbsa cqGHciITcaWG6baaaiaadsgacaWGYbGaaGypaKqbaoaalaaakeaaju gibiaadkfaaOqaaKqzGeGaamOuaKqbaoaaBaaajeaibaqcLbmacaWG LbaaleqaaaaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIy Raam4DaaGcbaqcLbsacqGHciITcaWGYbaaaaGccaGLOaGaayzkaaqc fa4aaSbaaSqaaKqzGeGaamOuaaWcbeaajugibiaai6caaaa@5C44@                                                                                       (21)
Exact solution of Eq. 21 is not possible. We can find the approximate solution by assuming fourth order polynomial which is called Karman-Pohlhausen method.42 Therefore
w U = A 1 + A 2 ( 1 r R )+ A 3 ( 1 r R ) 2 + A 4 ( 1 r R ) 3 + A 5 ( 1 r R ) 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadEhaaOqaaKqzGeGaamyvaaaacaaI9aGaamyqaKqbaoaa BaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaamyqaKqbao aaBaaajeaibaqcLbmacaaIYaaaleqaaKqbaoaabmaakeaajugibiaa igdacqGHsisljuaGdaWcaaGcbaqcLbsacaWGYbaakeaajugibiaadk faaaaakiaawIcacaGLPaaajugibiabgUcaRiaadgeajuaGdaWgaaqc basaaKqzadGaaG4maaWcbeaajuaGdaqadaGcbaqcLbsacaaIXaGaey OeI0scfa4aaSaaaOqaaKqzGeGaamOCaaGcbaqcLbsacaWGsbaaaaGc caGLOaGaayzkaaqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLb sacqGHRaWkcaWGbbqcfa4aaSbaaKqaGeaajugWaiaaisdaaSqabaqc fa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTKqbaoaalaaakeaajugibi aadkhaaOqaaKqzGeGaamOuaaaaaOGaayjkaiaawMcaaKqbaoaaCaaa leqajeaibaqcLbmacaaIZaaaaKqzGeGaey4kaSIaamyqaKqbaoaaBa aajeaibaqcLbmacaaI1aaaleqaaKqbaoaabmaakeaajugibiaaigda cqGHsisljuaGdaWcaaGcbaqcLbsacaWGYbaakeaajugibiaadkfaaa aakiaawIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaGinaaaa jugibiaaiYcaaaa@7BBA@              (22)
Where U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadwfaaa a@3753@  is the centerline velocity and   A 1 , A 2 , A 3 , A 4 and  A 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaGGGcWdaiaadgeakmaaBaaajeaibaqcLbmacaaIXaaaleqa aKqzGeGaaGilaiaadgeakmaaBaaajeaibaqcLbmacaaIYaaaleqaaK qzGeGaaGilaiaadgeakmaaBaaajeaibaqcLbmacaaIZaaaleqaaKqz GeGaaGilaiaadgeakmaaBaaajeaibaqcLbmacaaI0aaaleqaaKqzGe WdbiaadggacaWGUbGaamizaiaacckapaGaamyqaOWaaSbaaKqaGeaa jugWaiaaiwdaaSqabaaaaa@4FE0@  are the unknown coefficients which can be found by using the five conditions given below
w= v s atr=R, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Dai aai2dacaWG2bqcfa4aaSbaaSqaaKqzGeGaam4CaaWcbeaajugibiaa ysW7caaMe8UaaeyyaiaabshacaaMc8UaamOCaiaai2dacaWGsbGaaG ilaaaa@45DE@                                                                    (23)
w=Uatr=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Dai aai2dacaWGvbGaaGjbVlaaysW7caqGHbGaaeiDaiaaykW7caaMc8Ua aGPaVlaadkhacaaI9aGaaGimaiaaiYcaaaa@45DB@                                                                    (24)
w r =0atr=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadEhaaOqaaKqzGeGaeyOaIyRaamOCaaaacaaI 9aGaaGimaiaaysW7caaMe8UaaeyyaiaabshacaaMc8UaaGPaVlaadk hacaaI9aGaaGimaiaaiYcaaaa@4934@                                                                   (25)
dh dz = 1 R e ( 2 w r 2 + 1 r w r )atr=R, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadsgacaWGObaakeaajugibiaadsgacaWG6baaaiaai2da juaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadkfajuaGdaWgaa qcbasaaKqzadGaamyzaaWcbeaaaaqcfa4aaeWaaOqaaKqbaoaalaaa keaajugibiabgkGi2MqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaK qzGeGaam4DaaGcbaqcLbsacqGHciITcaWGYbqcfa4aaWbaaSqabKqa GeaajugWaiaaikdaaaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGe GaaGymaaGcbaqcLbsacaWGYbaaaKqbaoaalaaakeaajugibiabgkGi 2kaadEhaaOqaaKqzGeGaeyOaIyRaamOCaaaaaOGaayjkaiaawMcaaK qzGeGaaGjbVlaaysW7caaMe8UaaeyyaiaabshacaaMc8UaamOCaiaa i2dacaWGsbGaaGilaaaa@68EE@                                     (26)
2 w r 2 =2 U R 2 atr=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2MqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaam4DaaGcbaqcLbsacqGHciITcaWGYbqcfa4aaWbaaSqabKqaGe aajugWaiaaikdaaaaaaKqzGeGaaGypaiabgkHiTiaaikdajuaGdaWc aaGcbaqcLbsacaWGvbaakeaajugibiaadkfajuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaaaaqcLbsacaaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaabggacaqG0bGaaGPaVlaadkhacaaI9aGaaGimaiaai6caaa a@5ADC@                                                      (27)
The velocity slip at the boundary and centerline velocity U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaa aa@3754@ is defined by Eqs. (23) and (24) condition (24) is a simple definition, (26) is attained from equation (18). The assumption for the velocity of the fluid is parabolic can be expressed as ( w=U[ 1 r 2 R 2 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibiaadEhacaaI9aGaamyvaKqbaoaadmaakeaajugibiaaigda cqGHsisljuaGdaWcaaGcbaqcLbsacaWGYbqcfa4aaWbaaSqabKqaGe aajugWaiaaikdaaaaakeaajugibiaadkfajuaGdaahaaWcbeqcbasa aKqzadGaaGOmaaaaaaaakiaawUfacaGLDbaaaiaawIcacaGLPaaaaa a@493F@  at the center (r=0) of the tube, so that the second derivative of w with respect to r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@36E2@ , we get the condition (26). Thus Eq. (22) becomes
w U =( λ+1012 v s U ) η 7 +( 3λ+56 v s U ) η 2 7 +( 3λ12+20 v s U ) η 3 7 +( λ+49 v s U ) η 4 7 + v s U , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadEhaaOqaaKqzGeGaamyvaaaacaaI9aqcfa4aaeWaaOqa aKqzGeGaeyOeI0Iaeq4UdWMaey4kaSIaaGymaiaaicdacqGHsislca aIXaGaaGOmaKqbaoaalaaakeaajugibiaadAhajuaGdaWgaaqcbasa aKqzadGaam4CaaWcbeaaaOqaaKqzGeGaamyvaaaaaOGaayjkaiaawM caaKqbaoaalaaakeaajugibiabeE7aObGcbaqcLbsacaaI3aaaaiab gUcaRKqbaoaabmaakeaajugibiaaiodacqaH7oaBcqGHRaWkcaaI1a GaeyOeI0IaaGOnaKqbaoaalaaakeaajugibiaadAhajuaGdaWgaaqc basaaKqzadGaam4CaaWcbeaaaOqaaKqzGeGaamyvaaaaaOGaayjkai aawMcaaKqbaoaalaaakeaajugibiabeE7aOLqbaoaaCaaaleqajeai baqcLbmacaaIYaaaaaGcbaqcLbsacaaI3aaaaiabgUcaRKqbaoaabm aakeaajugibiabgkHiTiaaiodacqaH7oaBcqGHsislcaaIXaGaaGOm aiabgUcaRiaaikdacaaIWaqcfa4aaSaaaOqaaKqzGeGaamODaKqbao aaBaaajeaibaqcLbmacaWGZbaaleqaaaGcbaqcLbsacaWGvbaaaaGc caGLOaGaayzkaaqcfa4aaSaaaOqaaKqzGeGaeq4TdGwcfa4aaWbaaS qabKqaGeaajugWaiaaiodaaaaakeaajugibiaaiEdaaaGaey4kaSsc fa4aaeWaaOqaaKqzGeGaeq4UdWMaey4kaSIaaGinaiabgkHiTiaaiM dajuaGdaWcaaGcbaqcLbsacaWG2bqcfa4aaSbaaKqaGeaajugWaiaa dohaaSqabaaakeaajugibiaadwfaaaaakiaawIcacaGLPaaajuaGda WcaaGcbaqcLbsacqaH3oaAjuaGdaahaaWcbeqcbasaaKqzadGaaGin aaaaaOqaaKqzGeGaaG4naaaacqGHRaWkjuaGdaWcaaGcbaqcLbsaca WG2bqcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaaakeaajugibiaa dwfaaaGaaGilaaaa@9E86@        (28)
Where
λ= R 2 R e U dh dz . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4UdW MaaGypaKqbaoaalaaakeaajugibiaadkfajuaGdaahaaWcbeqcbasa aKqzadGaaGOmaaaajugibiaadkfajuaGdaWgaaqcbasaaKqzadGaam yzaaWcbeaaaOqaaKqzGeGaamyvaaaajuaGdaWcaaGcbaqcLbsacaWG KbGaamiAaaGcbaqcLbsacaWGKbGaamOEaaaacaaIUaaaaa@49ED@                                                                                       (29)
and η=( 1 r R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4TdG MaaGypaKqbaoaabmaakeaajugibiaaigdacqGHsisljuaGdaWcaaGc baqcLbsacaWGYbaakeaajugibiaadkfaaaaakiaawIcacaGLPaaaaa a@40ED@ . It is notable that λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaOSqcLbsacq aH7oaBaaa@3864@  is dependent only on z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOEaa aa@3779@ , since R,U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuai aaiYcacaWGvbaaaa@38E1@ and h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiAaa aa@3767@  are function of z. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOEai aai6caaaa@3831@ In Eq. (29) U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaa aa@3754@  and h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiAaa aa@3767@  are undetermined. The flux Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyuaa aa@3750@  through the tube is defined as
Q= 0 R 2πrwdr. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyuai aai2dajuaGdaWfGaGcbaqcfa4aaCbeaOqaaKqbaoaapeaakeqaleqa beqcLbsacqGHRiI8aaqcbasaaKqzadGaaGimaaWcbeaaaeqajeaiba qcLbmacaWGsbaaaKqzGeGaaGOmaiabec8aWjaadkhacaWG3bGaamiz aiaadkhacaaIUaaaaa@48A8@                                                                                       (30)
Using Eq. (28) in (30) we obtain
Q= π R 2 U 210 ( 2λU+97U+51 v s ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyuai aai2dajuaGdaWcaaGcbaqcLbsacqaHapaCcaWGsbqcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaqcLbsacaWGvbaakeaajugibiaaikdaca aIXaGaaGimaaaajuaGdaqadaGcbaqcLbsacqGHsislcaaIYaGaeq4U dWMaamyvaiabgUcaRiaaiMdacaaI3aGaamyvaiabgUcaRiaaiwdaca aIXaGaamODaKqbaoaaBaaajeaibaqcLbmacaWGZbaaleqaaaGccaGL OaGaayzkaaqcLbsacaaISaaaaa@54BB@                                                      (31)
And centerline velocity U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvaa aa@3754@  is defined as
U= 210 97 . 1 π R 2 [ Q+ π R 4 R e 105 dh dz 17 70 v s π R 2 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyvai aai2dajuaGdaWcaaGcbaqcLbsacaaIYaGaaGymaiaaicdaaOqaaKqz GeGaaGyoaiaaiEdaaaGaaGOlaKqbaoaalaaakeaajugibiaaigdaaO qaaKqzGeGaeqiWdaNaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaI YaaaaaaajuaGdaWadaGcbaqcLbsacaWGrbGaey4kaSscfa4aaSaaaO qaaKqzGeGaeqiWdaNaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaI 0aaaaKqzGeGaamOuaKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaa GcbaqcLbsacaaIXaGaaGimaiaaiwdaaaqcfa4aaSaaaOqaaKqzGeGa amizaiaadIgaaOqaaKqzGeGaamizaiaadQhaaaGaeyOeI0scfa4aaS aaaOqaaKqzGeGaaGymaiaaiEdaaOqaaKqzGeGaaG4naiaaicdaaaGa amODaKqbaoaaBaaajeaibaqcLbmacaWGZbaaleqaaKqzGeGaeqiWda NaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGccaGLBbGa ayzxaaqcLbsacaaIUaaaaa@6F6C@                                                  (32)
Using Eq. (19) in (21) to get
1 2 d dz 0 R r w 2 dr α * d dz ( R v s ( w r ) R 1 2 0 R r ( w r ) 2 dr ) β * d dz 0 R r ( w r ) 2 dr+ R 2 2 dP dz = 1 R e ( w r ) R , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaaigdaaOqaaKqzGeGaaGOmaaaajuaGdaWcaaGcbaqcLbsa caWGKbaakeaajugibiaadsgacaWG6baaaKqbaoaaxacakeaajuaGda WfqaGcbaqcfa4aa8qaaOqabSqabeqajugibiabgUIiYdaajeaibaqc LbmacaaIWaaaleqaaaqabKqaGeaajugWaiaadkfaaaqcLbsacaWGYb Gaam4DaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamiz aiaadkhacqGHsislcqaHXoqyjuaGdaahaaWcbeqaaKqzGeGaaGOkaa aajuaGdaWcaaGcbaqcLbsacaWGKbaakeaajugibiaadsgacaWG6baa aKqbaoaabmaakeaajugibiaadkfacaWG2bqcfa4aaSbaaKqaGeaaju gWaiaadohaaSqabaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiab gkGi2kaadEhaaOqaaKqzGeGaeyOaIyRaamOCaaaaaOGaayjkaiaawM caaKqbaoaaBaaajeaibaqcLbmacaWGsbaaleqaaKqzGeGaeyOeI0sc fa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaKqbaoaaxa cakeaajuaGdaWfqaGcbaqcfa4aa8qaaOqabSqabeqajugibiabgUIi YdaajeaibaqcLbmacaaIWaaaleqaaaqabKqaGeaajugWaiaadkfaaa qcLbsacaWGYbqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabgkGi 2kaadEhaaOqaaKqzGeGaeyOaIyRaamOCaaaaaOGaayjkaiaawMcaaK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamizaiaadkha aOGaayjkaiaawMcaaKqzGeGaeyOeI0IaeqOSdiwcfa4aaWbaaSqabe aajugibiaaiQcaaaqcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsa caWGKbGaamOEaaaajuaGdaWfGaGcbaqcfa4aaCbeaOqaaKqbaoaape aakeqaleqabeqcLbsacqGHRiI8aaqcbasaaKqzadGaaGimaaWcbeaa aeqajeaibaqcLbmacaWGsbaaaKqzGeGaamOCaKqbaoaabmaakeaaju aGdaWcaaGcbaqcLbsacqGHciITcaWG3baakeaajugibiabgkGi2kaa dkhaaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaG OmaaaajugibiaadsgacaWGYbGaey4kaSscfa4aaSaaaOqaaKqzGeGa amOuaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsaca aIYaaaaKqbaoaalaaakeaajugibiaadsgacaWGqbaakeaajugibiaa dsgacaWG6baaaiaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaaju gibiaadkfajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaqcfa4a aeWaaOqaaKqbaoaalaaakeaajugibiabgkGi2kaadEhaaOqaaKqzGe GaeyOaIyRaamOCaaaaaOGaayjkaiaawMcaaKqbaoaaBaaajeaibaqc LbmacaWGsbaaleqaaKqzGeGaaGilaaaa@CB03@  (33)
And in order to get closed form of solution it is assumed that velocity profile is parabolic, i.e
w=U[ 1 r 2 R 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Dai aai2dacaWGvbqcfa4aamWaaOqaaKqzGeGaaGymaiabgkHiTKqbaoaa laaakeaajugibiaadkhajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aaaOqaaKqzGeGaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aaaaaOGaay5waiaaw2faaKqzGeGaaGilaaaa@4863@ (34)
As discussed by JH Forrester et al.,38 if we neglect the non-linear terms the flow through obstruction becomes Poiseuille. Substitution of Eqs. (34) and (29) into Eq. (19) and ( 33) yields generalized pressure and pressure gradient
dh dz =48 α Q 2 π 2 1 R 7 dR dz 28 α v s Q 2 π 2 1 R 5 dR dz +24 β Q 2 π 2 1 R 7 dR dz + dp dz , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadsgacaWGObaakeaajugibiaadsgacaWG6baaaiaai2da caaI0aGaaGioaiabeg7aHLqbaoaaCaaaleqabaqcLbsacqGHxiIkaa qcfa4aaSaaaOqaaKqzGeGaamyuaKqbaoaaCaaaleqajeaibaqcLbma caaIYaaaaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbeqcbasaaKqzad GaaGOmaaaaaaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWG sbqcfa4aaWbaaSqabKqaGeaajugWaiaaiEdaaaaaaKqbaoaalaaake aajugibiaadsgacaWGsbaakeaajugibiaadsgacaWG6baaaiabgkHi TiaaikdacaaI4aGaeqySdewcfa4aaWbaaSqabeaajugibiabgEHiQa aacaWG2bqcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaqcfa4aaSaa aOqaaKqzGeGaamyuaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaa GcbaqcLbsacqaHapaCjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa aaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGsbqcfa4aaW baaSqabKqaGeaajugWaiaaiwdaaaaaaKqbaoaalaaakeaajugibiaa dsgacaWGsbaakeaajugibiaadsgacaWG6baaaiabgUcaRiaaikdaca aI0aGaeqOSdiwcfa4aaWbaaSqabeaajugibiabgEHiQaaajuaGdaWc aaGcbaqcLbsacaWGrbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaa aakeaajugibiabec8aWLqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aaaajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadkfajuaGda ahaaWcbeqcbasaaKqzadGaaG4naaaaaaqcfa4aaSaaaOqaaKqzGeGa amizaiaadkfaaOqaaKqzGeGaamizaiaadQhaaaGaey4kaSscfa4aaS aaaOqaaKqzGeGaamizaiaadchaaOqaaKqzGeGaamizaiaadQhaaaGa aGilaaaa@9A4F@                                                          (35)
dp dz = 388 225 1 R 5 Q π dR dz 8 R 4 R e + 2608 75 Q 2 π 2 α * R 7 dR dz + 5216 75 Q 2 π 2 β * R 7 dR dz + v s 25 ( α * R 5 Q 2 π 2 dR dz + Q 2 π 2 436 R 2 R e ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadsgacaWGWbaakeaajugibiaadsgacaWG6baaaiaai2da juaGdaWcaaGcbaqcLbsacaaIZaGaaGioaiaaiIdaaOqaaKqzGeGaaG OmaiaaikdacaaI1aaaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqz GeGaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaI1aaaaaaajuaGda WcaaGcbaqcLbsacaWGrbaakeaajugibiabec8aWbaajuaGdaWcaaGc baqcLbsacaWGKbGaamOuaaGcbaqcLbsacaWGKbGaamOEaaaacqGHsi sljuaGdaWcaaGcbaqcLbsacaaI4aaakeaajugibiaadkfajuaGdaah aaWcbeqcbasaaKqzadGaaGinaaaajugibiaadkfajuaGdaWgaaqcba saaKqzadGaamyzaaWcbeaaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqc LbsacaaIYaGaaGOnaiaaicdacaaI4aaakeaajugibiaaiEdacaaI1a aaaKqbaoaalaaakeaajugibiaadgfajuaGdaahaaWcbeqcbasaaKqz adGaaGOmaaaaaOqaaKqzGeGaeqiWdaxcfa4aaWbaaSqabKqaGeaaju gWaiaaikdaaaaaaKqbaoaalaaakeaajugibiabeg7aHLqbaoaaCaaa leqabaqcLbsacaaIQaaaaaGcbaqcLbsacaWGsbqcfa4aaWbaaSqabK qaGeaajugWaiaaiEdaaaaaaKqbaoaalaaakeaajugibiaadsgacaWG sbaakeaajugibiaadsgacaWG6baaaiabgUcaRKqbaoaalaaakeaaju gibiaaiwdacaaIYaGaaGymaiaaiAdaaOqaaKqzGeGaaG4naiaaiwda aaqcfa4aaSaaaOqaaKqzGeGaamyuaKqbaoaaCaaaleqajeaibaqcLb macaaIYaaaaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbeqcbasaaKqz adGaaGOmaaaaaaqcfa4aaSaaaOqaaKqzGeGaeqOSdiwcfa4aaWbaaS qabeaajugibiaaiQcaaaaakeaajugibiaadkfajuaGdaahaaWcbeqc basaaKqzadGaaG4naaaaaaqcfa4aaSaaaOqaaKqzGeGaamizaiaadk faaOqaaKqzGeGaamizaiaadQhaaaGaey4kaSscfa4aaSaaaOqaaKqz GeGaamODaKqbaoaaBaaajeaibaqcLbmacaWGZbaaleqaaaGcbaqcLb sacaaIYaGaaGynaaaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGa eqySdewcfa4aaWbaaSqabeaajugibiaaiQcaaaaakeaajugibiaadk fajuaGdaahaaWcbeqcbasaaKqzadGaaGynaaaaaaqcfa4aaSaaaOqa aKqzGeGaamyuaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcba qcLbsacqaHapaCjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqc fa4aaSaaaOqaaKqzGeGaamizaiaadkfaaOqaaKqzGeGaamizaiaadQ haaaGaey4kaSscfa4aaSaaaOqaaKqzGeGaamyuaKqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaaGcbaqcLbsacqaHapaCjuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcfa4aaSaaaOqaaKqzGeGaaGinaiaa iodacaaI2aaakeaajugibiaadkfajuaGdaahaaWcbeqcbasaaKqzad GaaGOmaaaajugibiaadkfajuaGdaWgaaqcbasaaKqzadGaamyzaaWc beaaaaaakiaawIcacaGLPaaajugibiaai6caaaa@D956@       (36)
In order to get velocity w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhaaaa@36E7@ , we put Eqs. (32) and (33) in Eq. (29) and (28) to get
w= 2 R 2 Q π [ 2η η 2 ]+ 1 R 3 dR dz [ 11η+43 η 2 45 η 3 +15 η 4 ] [ 4 225 R e Q π dR dz 4 25 R e α * v s Q 2 π 2 + 64 75 R e α * R 2 Q 2 π 2 + 128 75 β * R e R 2 Q 2 π 2 ] + v s [ 1 1 16975 (75422η110311 η 2 +73540 η 3 18855 η 4 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WG3bGaaGypaKqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaamOu aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajuaGdaWcaaGcba qcLbsacaWGrbaakeaajugibiabec8aWbaajuaGdaWadaGcbaqcLbsa caaIYaGaeq4TdGMaeyOeI0Iaeq4TdGwcfa4aaWbaaSqabKqaGeaaju gWaiaaikdaaaaakiaawUfacaGLDbaajugibiabgUcaRKqbaoaalaaa keaajugibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaCaaaleqajeaiba qcLbmacaaIZaaaaaaajuaGdaWcaaGcbaqcLbsacaWGKbGaamOuaaGc baqcLbsacaWGKbGaamOEaaaajuaGdaWadaGcbaqcLbsacqGHsislca aIXaGaaGymaiabeE7aOjabgUcaRiaaisdacaaIZaGaeq4TdGwcfa4a aWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHsislcaaI0aGaaG ynaiabeE7aOLqbaoaaCaaaleqajeaibaqcLbmacaaIZaaaaKqzGeGa ey4kaSIaaGymaiaaiwdacqaH3oaAjuaGdaahaaWcbeqcbasaaKqzad GaaGinaaaaaOGaay5waiaaw2faaaqaaKqbaoaadmaakeaajuaGdaWc aaGcbaqcLbsacaaI0aaakeaajugibiaaikdacaaIYaGaaGynaaaaca WGsbqcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaqcfa4aaSaaaOqa aKqzGeGaamyuaaGcbaqcLbsacqaHapaCaaqcfa4aaSaaaOqaaKqzGe GaamizaiaadkfaaOqaaKqzGeGaamizaiaadQhaaaGaeyOeI0scfa4a aSaaaOqaaKqzGeGaaGinaaGcbaqcLbsacaaIYaGaaGynaaaacaWGsb qcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaqcLbsacqaHXoqyjuaG daahaaWcbeqaaKqzGeGaaGOkaaaacaWG2bqcfa4aaSbaaKqaGeaaju gWaiaadohaaSqabaqcfa4aaSaaaOqaaKqzGeGaamyuaKqbaoaaCaaa leqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacqaHapaCjuaGdaahaa WcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkjuaGdaWcaaGc baqcLbsacaaI2aGaaGinaaGcbaqcLbsacaaI3aGaaGynaaaacaWGsb qcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaqcfa4aaSaaaOqaaKqz GeGaeqySdewcfa4aaWbaaSqabeaajugibiaaiQcaaaaakeaajugibi aadkfajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcfa4aaSaa aOqaaKqzGeGaamyuaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaa GcbaqcLbsacqaHapaCjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa aaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIXaGaaGOmaiaaiI daaOqaaKqzGeGaaG4naiaaiwdaaaGaeqOSdiwcfa4aaWbaaSqabeaa jugibiaaiQcaaaqcfa4aaSaaaOqaaKqzGeGaamOuaKqbaoaaBaaaje aibaqcLbmacaWGLbaaleqaaaGcbaqcLbsacaWGsbqcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaaaaKqbaoaalaaakeaajugibiaadgfaju aGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaeqiWdaxc fa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaaGccaGLBbGaayzxaa aabaqcLbsacqGHRaWkcaWG2bqcfa4aaSbaaKqaGeaajugWaiaadoha aSqabaqcfa4aamWaaOqaaKqzGeGaaGymaiabgkHiTKqbaoaalaaake aajugibiaaigdaaOqaaKqzGeGaaGymaiaaiAdacaaI5aGaaG4naiaa iwdaaaGaaGikaiaaiEdacaaI1aGaaGinaiaaikdacaaIYaGaeq4TdG MaeyOeI0IaaGymaiaaigdacaaIWaGaaG4maiaaigdacaaIXaGaeq4T dGwcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkca aI3aGaaG4maiaaiwdacaaI0aGaaGimaiabeE7aOLqbaoaaCaaaleqa jeaibaqcLbmacaaIZaaaaKqzGeGaeyOeI0IaaGymaiaaiIdacaaI4a GaaGynaiaaiwdacqaH3oaAjuaGdaahaaWcbeqcbasaaKqzadGaaGin aaaajugibiaaiMcaaOGaay5waiaaw2faaKqzGeGaaGilaaaaaa@1922@                                                               (37)
where η=1r/R, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeq4TdG MaaGypaiaaigdacqGHsislcaWGYbGaaG4laiaadkfacaaISaaaaa@3DD2@ . Velocity for normal tube can be obtained by substituting t * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshada ahaaqcfasabeaacaaIQaaaaKqbakaai2dacaaIWaaaaa@3A85@  . The volume flow flux in normal tube is Q ˜ =π R 0 2 U 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaGaaake aajugibiaadgfaaOGaay5adaqcLbsacaaI9aGaeqiWdaNaamOuaKqb aoaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaIYaaaaKqzGe GaamyvaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaGil aaaa@46EE@  which gives non-dimensional flux Q= Q ˜ / R 0 2 U 0 =π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyuai aai2dajuaGdaaiaaGcbaqcLbsacaWGrbaakiaawoWaaKqzGeGaaG4l aiaadkfajuaGdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaG OmaaaajugibiaadwfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaa jugibiaai2dacqaHapaCaaa@491D@ which is same for obstructed tube.43−44 So the expressions for the velocity w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Daa aa@3776@  and pressure gradient dP dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadsgacaWGqbaakeaajugibiaadsgacaWG6baaaaaa@3B61@  becomes
w= 2 R 2 [2η η 2 ]+ 1 R 3 dR dz [11η+43 η 2 45 η 3 +15 η 4 ] [ 4 225 R e dR dz 4 25 R e α * v s + 64 75 R e α * R 2 + 128 75 β * R e R 2 ] + v s [1 1 16975 ( 75422η110311 η 2 +73540 η 3 18855 η 4 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WG3bGaaGypaKqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaamOu aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiaaiUfaca aIYaGaeq4TdGMaeyOeI0Iaeq4TdGwcfa4aaWbaaSqabKqaGeaajugW aiaaikdaaaqcLbsacaaIDbGaey4kaSscfa4aaSaaaOqaaKqzGeGaaG ymaaGcbaqcLbsacaWGsbqcfa4aaWbaaSqabKqaGeaajugWaiaaioda aaaaaKqbaoaalaaakeaajugibiaadsgacaWGsbaakeaajugibiaads gacaWG6baaaiaaiUfacqGHsislcaaIXaGaaGymaiabeE7aOjabgUca RiaaisdacaaIZaGaeq4TdGwcfa4aaWbaaSqabKqaGeaajugWaiaaik daaaqcLbsacqGHsislcaaI0aGaaGynaiabeE7aOLqbaoaaCaaaleqa jeaibaqcLbmacaaIZaaaaKqzGeGaey4kaSIaaGymaiaaiwdacqaH3o aAjuaGdaahaaWcbeqcbasaaKqzadGaaGinaaaajugibiaai2faaOqa aKqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacaaI0aaakeaajugibi aaikdacaaIYaGaaGynaaaacaWGsbqcfa4aaSbaaKqaGeaajugWaiaa dwgaaSqabaqcfa4aaSaaaOqaaKqzGeGaamizaiaadkfaaOqaaKqzGe GaamizaiaadQhaaaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGinaaGc baqcLbsacaaIYaGaaGynaaaacaWGsbqcfa4aaSbaaKqaGeaajugWai aadwgaaSqabaqcLbsacqaHXoqyjuaGdaahaaWcbeqcbasaaKqzadGa aGOkaaaajugibiaadAhajuaGdaWgaaqcbasaaKqzadGaam4CaaWcbe aajugibiabgUcaRKqbaoaalaaakeaajugibiaaiAdacaaI0aaakeaa jugibiaaiEdacaaI1aaaaiaadkfajuaGdaWgaaqcbasaaKqzadGaam yzaaWcbeaajuaGdaWcaaGcbaqcLbsacqaHXoqyjuaGdaahaaWcbeqc basaaKqzadGaaGOkaaaaaOqaaKqzGeGaamOuaKqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaaaajugibiabgUcaRKqbaoaalaaakeaajugi biaaigdacaaIYaGaaGioaaGcbaqcLbsacaaI3aGaaGynaaaacqaHYo GyjuaGdaahaaWcbeqcbasaaKqzadGaaGOkaaaajuaGdaWcaaGcbaqc LbsacaWGsbqcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaaakeaaju gibiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaa wUfacaGLDbaaaeaajugibiabgUcaRiaadAhajuaGdaWgaaqcbasaaK qzadGaam4CaaWcbeaajugibiaaiUfacaaIXaGaeyOeI0scfa4aaSaa aOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXaGaaGOnaiaaiMdacaaI3a GaaGynaaaajuaGdaqcWaGcbaqcLbsacaaI3aGaaGynaiaaisdacaaI YaGaaGOmaiabeE7aOjabgkHiTiaaigdacaaIXaGaaGimaiaaiodaca aIXaGaaGymaiabeE7aOLqbaoaaCaaaleqajeaibaqcLbmacaaIYaaa aKqzGeGaey4kaSIaaG4naiaaiodacaaI1aGaaGinaiaaicdacqaH3o aAjuaGdaahaaWcbeqcbasaaKqzadGaaG4maaaajugibiabgkHiTiaa igdacaaI4aGaaGioaiaaiwdacaaI1aGaeq4TdGwcfa4aaWbaaSqabK qaGeaajugWaiaaisdaaaqcLbsacaaIPaaakiaawIcacaGLDbaajugi biaaiYcaaaaa@F47F@                                           (38)
dp dz = 388 225 1 R 5 dR dz 8 R 4 R e + 2608 75 α * R 7 dR dz + 5216 75 β * R 7 dR dz + v s 25 ( α * R 5 dR dz + 436 R 2 R e ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadsgacaWGWbaakeaajugibiaadsgacaWG6baaaiaai2da juaGdaWcaaGcbaqcLbsacaaIZaGaaGioaiaaiIdaaOqaaKqzGeGaaG OmaiaaikdacaaI1aaaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqz GeGaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaI1aaaaaaajuaGda WcaaGcbaqcLbsacaWGKbGaamOuaaGcbaqcLbsacaWGKbGaamOEaaaa cqGHsisljuaGdaWcaaGcbaqcLbsacaaI4aaakeaajugibiaadkfaju aGdaahaaWcbeqcbasaaKqzadGaaGinaaaajugibiaadkfajuaGdaWg aaqcbasaaKqzadGaamyzaaWcbeaaaaqcLbsacqGHRaWkjuaGdaWcaa GcbaqcLbsacaaIYaGaaGOnaiaaicdacaaI4aaakeaajugibiaaiEda caaI1aaaaKqbaoaalaaakeaajugibiabeg7aHLqbaoaaCaaaleqaba qcLbsacaaIQaaaaaGcbaqcLbsacaWGsbqcfa4aaWbaaSqabKqaGeaa jugWaiaaiEdaaaaaaKqbaoaalaaakeaajugibiaadsgacaWGsbaake aajugibiaadsgacaWG6baaaiabgUcaRKqbaoaalaaakeaajugibiaa iwdacaaIYaGaaGymaiaaiAdaaOqaaKqzGeGaaG4naiaaiwdaaaqcfa 4aaSaaaOqaaKqzGeGaeqOSdiwcfa4aaWbaaSqabKqaGeaajugWaiaa iQcaaaaakeaajugibiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaG 4naaaaaaqcfa4aaSaaaOqaaKqzGeGaamizaiaadkfaaOqaaKqzGeGa amizaiaadQhaaaGaey4kaSscfa4aaSaaaOqaaKqzGeGaamODaKqbao aaBaaajeaibaqcLbmacaWGZbaaleqaaaGcbaqcLbsacaaIYaGaaGyn aaaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqySdewcfa4aaW baaSqabKqaGeaajugWaiaaiQcaaaaakeaajugibiaadkfajuaGdaah aaWcbeqcbasaaKqzadGaaGynaaaaaaqcfa4aaSaaaOqaaKqzGeGaam izaiaadkfaaOqaaKqzGeGaamizaiaadQhaaaGaey4kaSscfa4aaSaa aOqaaKqzGeGaaGinaiaaiodacaaI2aaakeaajugibiaadkfajuaGda ahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaadkfajuaGdaWgaaqc basaaKqzadGaamyzaaWcbeaaaaaakiaawIcacaGLPaaajugibiaai6 caaaa@AE81@    (39)
As a special case the velocity profile10 can be obtain by taking α = β * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaWbaaSqabeaajugibiabgEHiQaaacaaI9aGaeqOSdiwcfa4a aWbaaSqabeaajugibiaaiQcaaaGaaGypaiaaicdaaaa@4039@  in Eq. (38).

Pressure distribution
Pressure distribution at any sector z along the constriction can be obtained when Eq. (39) is integrated using boundary condition that is p= p 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiCai aai2dacaWGWbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3BF7@  at z= z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOEai aai2dacaWG6bqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3C0B@ .
(Δp)= 388 225 R 0 R 1 R 5 dR+ v s 25 α * R 0 R 1 R 5 dR+( 2608 75 α * + 5216 75 β * ) R 0 R 1 R 7 dR+ v s R e z 0 R 0 2 z 0 z 1 R 2 dz 8 R e z 0 z 1 R 4 dz, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGikai abfs5aejaadchacaaIPaGaaGypaKqbaoaalaaakeaajugibiaaioda caaI4aGaaGioaaGcbaqcLbsacaaIYaGaaGOmaiaaiwdaaaqcfa4aaC biaOqaaKqbaoaaxabakeaajuaGdaWdbaGcbeWcbeqabKqzGeGaey4k IipaaKqaGeaajugWaiaadkfalmaaBaaajqwaa+FaaKqzGcGaaGimaa qcbasabaaaleqaaaqabKqaGeaajugWaiaadkfaaaqcfa4aaSaaaOqa aKqzGeGaaGymaaGcbaqcLbsacaWGsbqcfa4aaWbaaSqabKqaGeaaju gWaiaaiwdaaaaaaKqzGeGaamizaiaadkfacqGHRaWkjuaGdaWcaaGc baqcLbsacaWG2bqcfa4aaSbaaKqaGeaajugWaiaadohaaSqabaaake aajugibiaaikdacaaI1aaaaiabeg7aHLqbaoaaCaaaleqajeaibaqc LbmacaaIQaaaaKqbaoaaxacakeaajuaGdaWfqaGcbaqcfa4aa8qaaO qabSqabeqajugibiabgUIiYdaajeaibaqcLbmacaWGsbWcdaWgaaqc Kfay=haajugGaiaaicdaaKqaGeqaaaWcbeaaaeqajeaibaqcLbmaca WGsbaaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOuaKqb aoaaCaaaleqajeaibaqcLbmacaaI1aaaaaaajugibiaadsgacaWGsb Gaey4kaSIaaGikaKqbaoaalaaakeaajugibiaaikdacaaI2aGaaGim aiaaiIdaaOqaaKqzGeGaaG4naiaaiwdaaaGaeqySdewcfa4aaWbaaS qabKqaGeaajugWaiaaiQcaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqc LbsacaaI1aGaaGOmaiaaigdacaaI2aaakeaajugibiaaiEdacaaI1a aaaiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaIQaaaaKqzGeGa aGykaKqbaoaaxacakeaajuaGdaWfqaGcbaqcfa4aa8qaaOqabSqabe qajugibiabgUIiYdaajeaibaqcLbmacaWGsbWcdaWgaaqcKfaG=haa jugOaiaaicdaaKqaGeqaaaWcbeaaaeqajeaibaqcLbmacaWGsbaaaK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaCaaa leqajeaibaqcLbmacaaI3aaaaaaajugibiaadsgacaWGsbGaey4kaS scfa4aaSaaaOqaaKqzGeGaamODaKqbaoaaBaaajeaibaqcLbmacaWG ZbaaleqaaaGcbaqcLbsacaWGsbqcfa4aaSbaaKqaGeaajugWaiaadw gaaSqabaaaaKqbaoaalaaakeaajugibiaadQhajuaGdaWgaaqcbasa aKqzadGaaGimaaWcbeaaaOqaaKqzGeGaamOuaKqbaoaaDaaajeaiba qcLbmacaaIWaaajeaibaqcLbmacaaIYaaaaaaajuaGdaWfGaGcbaqc fa4aaCbeaOqaaKqbaoaapeaakeqaleqabeqcLbsacqGHRiI8aaqcba uaaKqzGdGaamOEaSWaaSbaaKazba2=baqcLbiacaaIWaaajeaqbeaa aSqabaaabeqcbasaaKqzadGaamOEaaaajuaGdaWcaaGcbaqcLbsaca aIXaaakeaajugibiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaaaaqcLbsacaWGKbGaamOEaiabgkHiTKqbaoaalaaakeaajugibi aaiIdaaOqaaKqzGeGaamOuaKqbaoaaBaaajeaibaqcLbmacaWGLbaa leqaaaaajuaGdaWfGaGcbaqcfa4aaCbeaOqaaKqbaoaapeaakeqale qabeqcLbsacqGHRiI8aaqcbauaaKqzGdGaamOEaSWaaSbaaKqaafaa jug4aiaaicdaaKqaafqaaaWcbeaaaeqajeaqbaqcLboacaWG6baaaK qbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaCaaa leqajeaibaqcLbmacaaI0aaaaaaajugibiaadsgacaWG6bGaaGilaa aa@F1B6@ (40)
or
(Δp)=( 78 25 v s α + 97 225 )( 1 R 4 1 R 0 4 )( 1304 225 α * + 2608 225 β * )( 1 R 6 1 R 0 4 ) v s R e z 0 π R 0 2 z 0 z 1 [abcosu] 2 dz 8 π R e z 0 π R 0 4 z 0 z 1 [abcosu] 4 dz, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca aIOaGaeuiLdqKaamiCaiaaiMcacaaI9aGaaGikaKqbaoaalaaakeaa jugibiaaiEdacaaI4aaakeaajugibiaaikdacaaI1aaaaiaadAhaju aGdaWgaaqcbasaaKqzadGaam4CaaWcbeaajugibiabeg7aHLqbaoaa CaaaleqabaqcLbsacqGHxiIkaaGaey4kaSscfa4aaSaaaOqaaKqzGe GaaGyoaiaaiEdaaOqaaKqzGeGaaGOmaiaaikdacaaI1aaaaiaaiMca caaIOaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGsbqcfa 4aaWbaaSqabKqaGeaajugWaiaaisdaaaaaaKqzGeGaeyOeI0scfa4a aSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGsbqcfa4aa0baaKqaGe aajugWaiaaicdaaKqaGeaajugWaiaaisdaaaaaaKqzGeGaaGykaiaa iIcajuaGdaWcaaGcbaqcLbsacaaIXaGaaG4maiaaicdacaaI0aaake aajugibiaaikdacaaIYaGaaGynaaaacqaHXoqyjuaGdaahaaWcbeqa aKqzGeGaaGOkaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIYaGaaG OnaiaaicdacaaI4aaakeaajugibiaaikdacaaIYaGaaGynaaaacqaH YoGyjuaGdaahaaWcbeqaaKqzGeGaaGOkaaaacaaIPaGaaGikaKqbao aalaaakeaajugibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaCaaaleqa jeaibaqcLbmacaaI2aaaaaaajugibiabgkHiTKqbaoaalaaakeaaju gibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaDaaajeaibaqcLbmacaaI WaaajeaibaqcLbmacaaI0aaaaaaajugibiaaiMcacqGHsislaOqaaK qbaoaalaaakeaajugibiaadAhajuaGdaWgaaqcbasaaKqzadGaam4C aaWcbeaaaOqaaKqzGeGaamOuaKqbaoaaBaaajeaibaqcLbmacaWGLb aaleqaaaaajuaGdaWcaaGcbaqcLbsacaWG6bqcfa4aaSbaaKqaGeaa jugWaiaaicdaaSqabaaakeaajugibiabec8aWjaadkfajuaGdaqhaa qcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGOmaaaaaaqcfa4aaCbi aOqaaKqbaoaaxabakeaajuaGdaWdbaGcbeWcbeqabKqzGeGaey4kIi paaKqaGfaajugabiaadQhalmaaBaaajeaibaqcLbmacaaIWaaajeay beaaaSqabaaabeqcbauaaKqzGdGaamOEaaaajuaGdaWcaaGcbaqcLb sacaaIXaaakeaajugibiaaiUfacaWGHbGaeyOeI0IaamOyaiGacoga caGGVbGaai4CaiaadwhacaaIDbqcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaaaaKqzGeGaamizaiaadQhacqGHsisljuaGdaWcaaGcbaqc LbsacaaI4aaakeaajugibiabec8aWjaadkfajuaGdaWgaaqcbasaaK qzadGaamyzaaWcbeaaaaqcfa4aaSaaaOqaaKqzGeGaamOEaKqbaoaa BaaajeaibaqcLbmacaaIWaaaleqaaaGcbaqcLbsacqaHapaCcaWGsb qcfa4aa0baaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaisdaaaaa aKqbaoaaxacakeaajuaGdaWfqaGcbaqcfa4aa8qaaOqabSqabeqaju gibiabgUIiYdaajeaqbaqcLboacaWG6bWcdaWgaaqcKfaG=haajugO aiaaicdaaKqaafqaaaWcbeaaaeqajeaqbaqcLboacaWG6baaaKqbao aalaaakeaajugibiaaigdaaOqaaKqzGeGaaG4waiaadggacqGHsisl caWGIbGaci4yaiaac+gacaGGZbGaamyDaiaai2fajuaGdaahaaWcbe qcbasaaKqzadGaaGinaaaaaaqcLbsacaWGKbGaamOEaiaaiYcaaaaa @F3ED@                                                            (41)
Where
a=1 δ 2 ,b= δ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyai aai2dacaaIXaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaeqiTdqwcfa4a aWbaaSqabeaajugibiabgEHiQaaaaOqaaKqzGeGaaGOmaaaacaaISa GaaGjbVlaadkgacaaI9aqcfa4aaSaaaOqaaKqzGeGaeqiTdqwcfa4a aWbaaSqabeaajugibiabgEHiQaaaaOqaaKqzGeGaaGOmaaaacaaIUa aaaa@4B4C@ (42)
Now
0 π 1 abcosu du=π ( a 2 b 2 ) 1/2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxacake aajuaGdaWfqaGcbaqcfa4aa8qaaOqabSqabeqajugibiabgUIiYdaa leaajugibiaaicdaaSqabaaabeqaaKqzGeGaeqiWdahaaKqbaoaala aakeaajugibiaaigdaaOqaaKqzGeGaamyyaiabgkHiTiaadkgaciGG JbGaai4BaiaacohacaWG1baaaiaadsgacaWG1bGaaGypaiabec8aWL qbaoaabmaakeaajugibiaadggajuaGdaahaaWcbeqcbasaaKqzadGa aGOmaaaajugibiabgkHiTiaadkgajuaGdaahaaWcbeqcbasaaKqzad GaaGOmaaaaaOGaayjkaiaawMcaaKqbaoaaCaaaleqajeaibaqcLbma cqGHsislcaaIXaGaaG4laiaaikdaaaqcLbsacaaIUaaaaa@5DD9@ (43)
Differentiating Eq. (43) partially with respect to a, we get
0 π 1 [abcosu] 2 du=πa ( a 2 b 2 ) 3/2 =πg( δ R 0 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxacake aajuaGdaWfqaGcbaqcfa4aa8qaaOqabSqabeqajugibiabgUIiYdaa leaajugibiaaicdaaSqabaaabeqaaKqzGeGaeqiWdahaaKqbaoaala aakeaajugibiaaigdaaOqaaKqzGeGaaG4waiaadggacqGHsislcaWG IbGaci4yaiaac+gacaGGZbGaamyDaiaai2fajuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaaaaqcLbsacaWGKbGaamyDaiaai2dacqaHapaC caWGHbGaaGikaiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiabgkHiTiaadkgajuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaajugibiaaiMcajuaGdaahaaWcbeqcbasaaKqzadGaeyOeI0IaaG 4maiaai+cacaaIYaaaaKqzGeGaaGypaiabec8aWjaadEgacaaIOaqc fa4aaSaaaOqaaKqzGeGaeqiTdqgakeaajugibiaadkfajuaGdaWgaa qcbasaaKqzadGaaGimaaWcbeaaaaqcLbsacaaIPaGaaGilaaaa@6F9F@         (44)
0 π 1 [abcosu] 4 du=πa( a 2 + 3 2 b 2 )( a 2 b 2 ) 7/2 =πf( δ R 0 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxacake aajuaGdaWfqaGcbaqcfa4aa8qaaOqabSqabeqajugibiabgUIiYdaa leaajugibiaaicdaaSqabaaabeqaaKqzGeGaeqiWdahaaKqbaoaala aakeaajugibiaaigdaaOqaaKqzGeGaaG4waiaadggacqGHsislcaWG IbGaci4yaiaac+gacaGGZbGaamyDaiaai2fajuaGdaahaaWcbeqcba saaKqzadGaaGinaaaaaaqcLbsacaWGKbGaamyDaiaai2dacqaHapaC caWGHbGaaGikaiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiabgUcaRKqbaoaalaaakeaajugibiaaiodaaOqaaKqzGeGa aGOmaaaacaWGIbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLb sacaaIPaGaaGikaiaadggajuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaajugibiabgkHiTiaadkgajuaGdaahaaWcbeqcbasaaKqzadGaaG OmaaaajugibiaaiMcajuaGdaahaaWcbeqcbasaaKqzadGaeyOeI0Ia aG4naiaai+cacaaIYaaaaKqzGeGaaGypaiabec8aWjaadAgacaaIOa qcfa4aaSaaaOqaaKqzGeGaeqiTdqgakeaajugibiaadkfajuaGdaWg aaqcbasaaKqzadGaaGimaaWcbeaaaaqcLbsacaaIPaGaaGilaaaa@7DBD@     (45)
Where
g( δ )=(1 δ 2 )(1 δ ) 3/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4zai aaiIcacqaH0oazjuaGdaahaaWcbeqaaKqzGeGaey4fIOcaaiaaiMca caaI9aGaaGikaiaaigdacqGHsisljuaGdaWcaaGcbaqcLbsacqaH0o azjuaGdaahaaWcbeqaaKqzGeGaey4fIOcaaaGcbaqcLbsacaaIYaaa aiaaiMcacaaIOaGaaGymaiabgkHiTiabes7aKLqbaoaaCaaaleqaba qcLbsacqGHxiIkaaGaaGykaKqbaoaaCaaaleqajeaibaqcLbmacqGH sislcaaIZaGaaG4laiaaikdaaaqcLbsacaaISaaaaa@5449@ (46)
f( δ )=(1 δ 2 )(1 δ + 5 8 ( δ ) 2 )(1 δ ) 7/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzai aaiIcacqaH0oazjuaGdaahaaWcbeqcbasaaKqzadGaey4fIOcaaKqz GeGaaGykaiaai2dacaaIOaGaaGymaiabgkHiTKqbaoaalaaakeaaju gibiabes7aKLqbaoaaCaaaleqajeaibaqcLbmacqGHxiIkaaaakeaa jugibiaaikdaaaGaaGykaiaaiIcacaaIXaGaeyOeI0IaeqiTdqwcfa 4aaWbaaSqabKqaGeaajugWaiabgEHiQaaajugibiabgUcaRKqbaoaa laaakeaajugibiaaiwdaaOqaaKqzGeGaaGioaaaacaaIOaGaeqiTdq wcfa4aaWbaaSqabeaajugibiabgEHiQaaacaaIPaqcfa4aaWbaaSqa bKqaGeaajugWaiaaikdaaaqcLbsacaaIPaGaaGikaiaaigdacqGHsi slcqaH0oazjuaGdaahaaWcbeqcbasaaKqzadGaey4fIOcaaKqzGeGa aGykaKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcaaI3aGaaG4lai aaikdaaaqcLbsacaaISaaaaa@6CDC@ (47)
So that
(Δp)=( 78 25 v s α + 97 225 )( 1 R 4 1 R 0 4 ) 8 π R e z 0 R 0 4 f( δ )( 1304 225 α * + 2608 225 β * )( 1 R 6 1 R 0 6 )+ v s R e z 0 R 0 2 g( δ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGikai abfs5aejaadchacaaIPaGaaGypaiaaiIcajuaGdaWcaaGcbaqcLbsa caaI3aGaaGioaaGcbaqcLbsacaaIYaGaaGynaaaacaWG2bqcfa4aaS baaKqaGeaajugWaiaadohaaSqabaqcLbsacqaHXoqyjuaGdaahaaWc beqaaKqzGeGaey4fIOcaaiabgUcaRKqbaoaalaaakeaajugibiaaiM dacaaI3aaakeaajugibiaaikdacaaIYaGaaGynaaaacaaIPaGaaGik aKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaCa aaleqajeaibaqcLbmacaaI0aaaaaaajugibiabgkHiTKqbaoaalaaa keaajugibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaDaaajeaibaqcLb macaaIWaaajeaibaqcLbmacaaI0aaaaaaajugibiaaiMcacqGHsisl juaGdaWcaaGcbaqcLbsacaaI4aaakeaajugibiabec8aWjaadkfaju aGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaqcfa4aaSaaaOqaaKqz GeGaamOEaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaGcbaqcLb sacaWGsbqcfa4aa0baaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaa isdaaaaaaKqzGeGaamOzaiaaiIcacqaH0oazjuaGdaahaaWcbeqaaK qzGeGaey4fIOcaaiaaiMcacaaIOaqcfa4aaSaaaOqaaKqzGeGaaGym aiaaiodacaaIWaGaaGinaaGcbaqcLbsacaaIYaGaaGOmaiaaiwdaaa GaeqySdewcfa4aaWbaaSqabeaajugibiaaiQcaaaGaey4kaSscfa4a aSaaaOqaaKqzGeGaaGOmaiaaiAdacaaIWaGaaGioaaGcbaqcLbsaca aIYaGaaGOmaiaaiwdaaaGaeqOSdiwcfa4aaWbaaSqabeaajugibiaa iQcaaaGaaGykaiaaiIcajuaGdaWcaaGcbaqcLbsacaaIXaaakeaaju gibiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaGOnaaaaaaqcLbsa cqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadkfaju aGdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGOnaaaaaaqc LbsacaaIPaGaey4kaSscfa4aaSaaaOqaaKqzGeGaamODaKqbaoaaBa aajeaibaqcLbmacaWGZbaaleqaaaGcbaqcLbsacaWGsbqcfa4aaSba aKqaGeaajugWaiaadwgaaSqabaaaaKqbaoaalaaakeaajugibiaadQ hajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaOqaaKqzGeGaamOu aKqbaoaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaIYaaaaa aajugibiaadEgacaaIOaGaeqiTdqwcfa4aaWbaaSqabeaajugibiab gEHiQaaacaaIPaGaaGOlaaaa@C3A2@    (48)
For normal tube i-e t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDai aai2dacaaIWaaaaa@38F4@  or δ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq MaaGypaiaaicdaaaa@39A0@  and f( δ R 0 )=g( δ R 0 )=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOzaK qbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqaH0oazaOqaaKqzGeGa amOuaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaaaOGaayjkai aawMcaaKqzGeGaaGypaiaadEgajuaGdaqadaGcbaqcfa4aaSaaaOqa aKqzGeGaeqiTdqgakeaajugibiaadkfajuaGdaWgaaqcbasaaKqzad GaaGimaaWcbeaaaaaakiaawIcacaGLPaaajugibiaai2dacaaIXaGa aGilaaaa@4EF4@  the pressure distribution is given by
( Δp ) P = 16 z 0 R e R 0 4 + v s R e z 0 R 0 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibiabfs5aejaadchaaOGaayjkaiaawMcaaKqbaoaaBaaajeai baqcLbmacaWGqbaaleqaaKqzGeGaaGypaiabgkHiTKqbaoaalaaake aajugibiaaigdacaaI2aGaamOEaKqbaoaaBaaajeaibaqcLbmacaaI WaaaleqaaaGcbaqcLbsacaWGsbqcfa4aaSbaaKqaGeaajugWaiaadw gaaSqabaqcLbsacaWGsbqcfa4aa0baaKqaGeaajugWaiaaicdaaKqa GeaajugWaiaaisdaaaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGe GaamODaKqbaoaaBaaajeaibaqcLbmacaWGZbaaleqaaaGcbaqcLbsa caWGsbqcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaaaaKqbaoaala aakeaajugibiaadQhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaa aOqaaKqzGeGaamOuaKqbaoaaDaaajeaibaqcLbmacaaIWaaajeaiba qcLbmacaaIYaaaaaaajugibiaai6caaaa@68F9@ (49)

In unobstructed tube the Poiseuille flow is defined by subscript P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuaa aa@374F@ . If tube length is 2L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaGOmai aadYeaaaa@3807@ , then the pressure across the whole length of the constricted artery can be expressed as
[Δp]=( 78 25 v s α + 97 225 )( 1 R 4 1 R 0 4 )( 1304 225 α * + 2608 225 β * ) ( 1 R 6 1 R 0 6 )+ 8 π R e (2L2 z 0 ) R 0 4 f( δ ) v s R e (2L2 z 0 ) R 0 2 g( δ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca aIBbGaeuiLdqKaamiCaiaai2facaaI9aGaaGikaKqbaoaalaaakeaa jugibiaaiEdacaaI4aaakeaajugibiaaikdacaaI1aaaaiaadAhaju aGdaWgaaqcbasaaKqzadGaam4CaaWcbeaajugibiabeg7aHLqbaoaa CaaaleqabaqcLbsacqGHxiIkaaGaey4kaSscfa4aaSaaaOqaaKqzGe GaaGyoaiaaiEdaaOqaaKqzGeGaaGOmaiaaikdacaaI1aaaaiaaiMca caaIOaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGsbqcfa 4aaWbaaSqabKqaGeaajugWaiaaisdaaaaaaKqzGeGaeyOeI0scfa4a aSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGsbqcfa4aa0baaKqaGe aajugWaiaaicdaaKqaGeaajugWaiaaisdaaaaaaKqzGeGaaGykaiaa iIcajuaGdaWcaaGcbaqcLbsacaaIXaGaaG4maiaaicdacaaI0aaake aajugibiaaikdacaaIYaGaaGynaaaacqaHXoqyjuaGdaahaaWcbeqc basaaKqzadGaaGOkaaaajugibiabgUcaRKqbaoaalaaakeaajugibi aaikdacaaI2aGaaGimaiaaiIdaaOqaaKqzGeGaaGOmaiaaikdacaaI 1aaaaiabek7aILqbaoaaCaaaleqajeaibaqcLbmacaaIQaaaaKqzGe GaaGykaaGcbaqcLbsacaaIOaqcfa4aaSaaaOqaaKqzGeGaaGymaaGc baqcLbsacaWGsbqcfa4aaWbaaSqabKqaGeaajugWaiaaiAdaaaaaaK qzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWG sbqcfa4aa0baaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaiAdaaa aaaKqzGeGaaGykaiabgUcaRKqbaoaalaaakeaajugibiaaiIdaaOqa aKqzGeGaeqiWdaNaamOuaKqbaoaaBaaajeaibaqcLbmacaWGLbaale qaaaaajuaGdaWcaaGcbaqcLbsacaaIOaGaaGOmaiaadYeacqGHsisl caaIYaGaamOEaKqbaoaaBaaaleaajugibiaaicdaaSqabaqcLbsaca aIPaaakeaajugibiaadkfajuaGdaqhaaqcbasaaKqzadGaaGimaaqc basaaKqzadGaaGinaaaaaaqcLbsacaWGMbGaaGikaiabes7aKLqbao aaCaaaleqajeaqbaqcLboacqGHxiIkaaqcLbsacaaIPaGaeyOeI0sc fa4aaSaaaOqaaKqzGeGaamODaKqbaoaaBaaajeaibaqcLbmacaWGZb aaleqaaaGcbaqcLbsacaWGsbqcfa4aaSbaaKqaGeaajugWaiaadwga aSqabaaaaKqbaoaalaaakeaajugibiaaiIcacaaIYaGaamitaiabgk HiTiaaikdacaWG6bqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqc LbsacaaIPaaakeaajugibiaadkfajuaGdaqhaaqcbasaaKqzadGaaG imaaqcbasaaKqzadGaaGOmaaaaaaqcLbsacaWGNbGaaGikaiabes7a KLqbaoaaCaaaleqabaqcLbsacqGHxiIkaaGaaGykaiaai6caaaaa@D287@                                          (50)
For normal tube, z 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOEaK qbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaGypaiaaicda aaa@3C55@  the expression for the pressure distribution will become
[ Δp ] P = 8 π R e 2L R 0 4 f( δ ) v s R e 2L R 0 2 g( δ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaake aajugibiabfs5aejaadchaaOGaay5waiaaw2faaKqbaoaaBaaajeai baqcLbmacaWGqbaaleqaaKqzGeGaaGypaKqbaoaalaaakeaajugibi aaiIdaaOqaaKqzGeGaeqiWdaNaamOuaKqbaoaaBaaajeaibaqcLbma caWGLbaaleqaaaaajuaGdaWcaaGcbaqcLbsacaaIYaGaamitaaGcba qcLbsacaWGsbqcfa4aa0baaKqaGeaajugWaiaaicdaaKqaGeaajugW aiaaisdaaaaaaKqzGeGaamOzaiaaiIcacqaH0oazjuaGdaahaaWcbe qaaKqzGeGaey4fIOcaaiaaiMcacqGHsisljuaGdaWcaaGcbaqcLbsa caWG2bqcfa4aaSbaaSqaaKqzGeGaam4CaaWcbeaaaOqaaKqzGeGaam OuaKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaaajuaGdaWcaaGc baqcLbsacaaIYaGaamitaaGcbaqcLbsacaWGsbqcfa4aa0baaKqaGe aajugWaiaaicdaaKqaGeaajugWaiaaikdaaaaaaKqzGeGaam4zaiaa iIcacqaH0oazjuaGdaahaaWcbeqcbauaaKqzGdGaey4fIOcaaKqzGe GaaGykaiaai6caaaa@7380@ (51)

We note that Eqs. ( 48) and ( 50) carry the results of (10) as a special case for α = β =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaWbaaSqabeaajugibiabgEHiQaaacaaI9aGaeqOSdiwcfa4a aWbaaSqabeaajugibiabgEHiQaaacaaI9aGaaGimaiaai6caaaa@412C@  

Shear Stress on Constricted Surface
The shear stress on the obstructed surface is
τ w ˜ = ( μ( w ˜ r ˜ + u ˜ z ˜ ) α 2 [ u ˜ r ˜ 2 ( w ˜ r ˜ + u ˜ z ˜ ) ] ) R ( α 1 [ ( u ˜ r ˜ + w ˜ z ˜ )( u ˜ z ˜ + w ˜ r ˜ )+2 u ˜ r ˜ u ˜ z ˜ +2 w ˜ r ˜ w ˜ z ˜ ] ) R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsacq aHepaDjuaGdaWgaaWcbaqcfa4aaacaaKqaGeaajugWaiaadEhaaSGa ay5adaaabeaajugibiaai2dacqGHsisljuaGdaqadaGcbaqcLbsacq aH8oqBjuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIyBcfa4a aacaaOqaaKqzGeGaam4DaaGccaGLdmaaaeaajugibiabgkGi2Mqbao aaGaaakeaajugibiaadkhaaOGaay5adaaaaKqzGeGaey4kaSscfa4a aSaaaOqaaKqzGeGaeyOaIyBcfa4aaacaaOqaaKqzGeGaamyDaaGcca GLdmaaaeaajugibiabgkGi2MqbaoaaGaaakeaajugibiaadQhaaOGa ay5adaaaaaGaayjkaiaawMcaaKqzGeGaeyOeI0IaeqySdewcfa4aaS baaKqaGeaajugWaiaaikdaaSqabaqcfa4aamWaaOqaaKqbaoaalaaa keaajuaGdaaiaaGcbaqcLbsacaWG1baakiaawoWaaaqaaKqbaoaaGa aakeaajugibiaadkhaaOGaay5adaqcfa4aaWbaaSqabKqaGeaajugW aiaaikdaaaaaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqGHci ITjuaGdaaiaaGcbaqcLbsacaWG3baakiaawoWaaaqaaKqzGeGaeyOa IyBcfa4aaacaaOqaaKqzGeGaamOCaaGccaGLdmaaaaqcLbsacqGHRa WkjuaGdaWcaaGcbaqcLbsacqGHciITjuaGdaaiaaGcbaqcLbsacaWG 1baakiaawoWaaaqaaKqzGeGaeyOaIyBcfa4aaacaaOqaaKqzGeGaam OEaaGccaGLdmaaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGL OaGaayzkaaqcfa4aaSbaaKqaGeaajugWaiaadkfaaSqabaaakeaaju gibiabgkHiTKqbaoaabmaakeaajugibiabeg7aHLqbaoaaBaaajeai baqcLbmacaaIXaaaleqaaKqbaoaadmaakeaajuaGdaqadaGcbaqcfa 4aaacaaOqaaKqzGeGaamyDaaGccaGLdmaajuaGdaWcaaGcbaqcLbsa cqGHciITaOqaaKqzGeGaeyOaIyBcfa4aaacaaOqaaKqzGeGaamOCaa GccaGLdmaaaaqcLbsacqGHRaWkjuaGdaaiaaGcbaqcLbsacaWG3baa kiaawoWaaKqbaoaalaaakeaajugibiabgkGi2cGcbaqcLbsacqGHci ITjuaGdaaiaaGcbaqcLbsacaWG6baakiaawoWaaaaaaiaawIcacaGL PaaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOaIyBcfa4aaa caaOqaaKqzGeGaamyDaaGccaGLdmaaaeaajugibiabgkGi2Mqbaoaa GaaakeaajugibiaadQhaaOGaay5adaaaaKqzGeGaey4kaSscfa4aaS aaaOqaaKqzGeGaeyOaIyBcfa4aaacaaOqaaKqzGeGaam4DaaGccaGL dmaaaeaajugibiabgkGi2MqbaoaaGaaakeaajugibiaadkhaaOGaay 5adaaaaaGaayjkaiaawMcaaKqzGeGaey4kaSIaaGOmaKqbaoaalaaa keaajugibiabgkGi2MqbaoaaGaaakeaajugibiaadwhaaOGaay5ada aabaqcLbsacqGHciITjuaGdaaiaaGcbaqcLbsacaWGYbaakiaawoWa aaaajuaGdaWcaaGcbaqcLbsacqGHciITjuaGdaaiaaGcbaqcLbsaca WG1baakiaawoWaaaqaaKqzGeGaeyOaIyBcfa4aaacaaOqaaKqzGeGa amOEaaGccaGLdmaaaaqcLbsacqGHRaWkcaaIYaqcfa4aaSaaaOqaaK qzGeGaeyOaIyBcfa4aaacaaOqaaKqzGeGaam4DaaGccaGLdmaaaeaa jugibiabgkGi2MqbaoaaGaaakeaajugibiaadkhaaOGaay5adaaaaK qbaoaalaaakeaajugibiabgkGi2MqbaoaaGaaakeaajugibiaadEha aOGaay5adaaabaqcLbsacqGHciITjuaGdaaiaaGcbaqcLbsacaWG6b aakiaawoWaaaaaaiaawUfacaGLDbaaaiaawIcacaGLPaaajuaGdaWg aaqcbasaaKqzadGaamOuaaWcbeaaaaaa@F5F5@                                        (52)

The shear stress can be found by substituting Eq. (15) in Eq. (52), i.e
τ w ˜ ρ U 0 2 = 1 R e ( w r ) R α ( w r w z ) R . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabes8a0LqbaoaaBaaaleaajuaGdaaiaaWcbaqcfa4aaSba aSqaaKqzGeGaam4DaaWcbeaaaiaawoWaaaqabaaakeaajugibiabeg 8aYjaadwfajuaGdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGa aGOmaaaaaaqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaeyOeI0IaaG ymaaGcbaqcLbsacaWGsbqcfa4aaSbaaSqaaKqzGeGaamyzaaWcbeaa aaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabgkGi2kaadEhaaO qaaKqzGeGaeyOaIyRaamOCaaaaaOGaayjkaiaawMcaaKqbaoaaBaaa jeaibaqcLbmacaWGsbaaleqaaKqzGeGaeyOeI0IaeqySdewcfa4aaW baaSqabeaajugibiabgEHiQaaajuaGdaqadaGcbaqcfa4aaSaaaOqa aKqzGeGaeyOaIyRaam4DaaGcbaqcLbsacqGHciITcaWGYbaaaKqbao aalaaakeaajugibiabgkGi2kaadEhaaOqaaKqzGeGaeyOaIyRaamOE aaaaaOGaayjkaiaawMcaaKqbaoaaBaaajeaibaqcLbmacaWGsbaale qaaKqzGeGaaGOlaaaa@71B0@ (53)
From Eq. (38) and (53), we obtain
τ w =[ 4 R 3 44 25 1 R 4 dR dz ( R e 9 R e v s α * + 16 3 R e α * R 3 + 32 3 R e β * R 3 )+ 75422 16975 v s R ] [ 1 R e α * dR dz ( 4 R 3 + 44 25 1 R 4 dR dz ( R e 9 R e v s α * + 16 3 R e α * R * + 32 3 R e β * R 3 )+ 75422 16975 v s R ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsacq aHepaDjuaGdaWgaaWcbaqcLbsacaWG3baaleqaaKqzGeGaaGypaKqb aoaadmaabaWaaSaaaeaacaaI0aaajuaibaGaamOuaKqbaoaaCaaaju aibeqaaiaaiodaaaaaaKqbakabgkHiTmaalaaabaGaaGinaiaaisda aeaacaaIYaGaaGynaaaadaWcaaqaaiaaigdaaeaacaWGsbWaaWbaae qajuaibaGaaGinaaaaaaqcfa4aaSaaaeaacaWGKbGaamOuaaqaaiaa dsgacaWG6baaaiaaiIcadaWcaaqaaiaadkfadaWgaaqcfasaaiaadw gaaKqbagqaaaqaaiaaiMdaaaGaeyOeI0IaamOuamaaBaaajuaibaGa amyzaaqcfayabaGaamODamaaBaaajuaibaGaam4CaaqcfayabaGaeq ySde2aaWbaaeqajuaibaGaaGOkaaaajuaGcqGHRaWkdaWcaaqaaiaa igdacaaI2aaabaGaaG4maaaacaWGsbWaaSbaaKqbGeaacaWGLbaaju aGbeaadaWcaaqaaiabeg7aHnaaCaaabeqcfasaaiaaiQcaaaaajuaG baGaamOuamaaCaaabeqcfasaaiaaiodaaaaaaKqbakabgUcaRmaala aabaGaaG4maiaaikdaaeaacaaIZaaaaiaadkfadaWgaaqcfasaaiaa dwgaaKqbagqaamaalaaabaGaeqOSdi2aaWbaaeqajuaibaGaaGOkaa aaaKqbagaacaWGsbWaaWbaaeqajuaibaGaaG4maaaaaaqcfaOaaGyk aiabgUcaRmaalaaabaGaaG4naiaaiwdacaaI0aGaaGOmaiaaikdaae aacaaIXaGaaGOnaiaaiMdacaaI3aGaaGynaaaadaWcaaqaaiaadAha daWgaaqcfasaaiaadohaaKqbagqaaaqaaiaadkfaaaaacaGLBbGaay zxaaaakeaajuaGdaWadaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaa dkfadaWgaaqcfasaaiaadwgaaKqbagqaaaaacqGHsislcqaHXoqyda ahaaqabKqbGeaacaaIQaaaaKqbaoaalaaabaGaamizaiaadkfaaeaa caWGKbGaamOEaaaacaaIOaGaeyOeI0YaaSaaaeaacaaI0aaabaGaam OuamaaCaaabeqcfasaaiaaiodaaaaaaKqbakabgUcaRmaalaaabaGa aGinaiaaisdaaeaacaaIYaGaaGynaaaadaWcaaqaaiaaigdaaeaaca WGsbWaaWbaaeqajuaibaGaaGinaaaaaaqcfa4aaSaaaeaacaWGKbGa amOuaaqaaiaadsgacaWG6baaaiaaiIcadaWcaaqaaiaadkfadaWgaa qcfasaaiaadwgaaKqbagqaaaqaaiaaiMdaaaGaeyOeI0IaamOuamaa BaaajuaibaGaamyzaaqcfayabaGaamODamaaBaaajuaibaGaam4Caa qcfayabaGaeqySde2aaWbaaeqabaGaaGOkaaaacqGHRaWkdaWcaaqa aiaaigdacaaI2aaabaGaaG4maaaacaWGsbWaaSbaaKqbGeaacaWGLb aajuaGbeaadaWcaaqaaiabeg7aHnaaCaaabeqcfasaaiaaiQcaaaaa juaGbaGaamOuamaaCaaabeqcfasaaiaaiQcaaaaaaKqbakabgUcaRm aalaaabaGaaG4maiaaikdaaeaacaaIZaaaaiaadkfadaWgaaqcfasa aiaadwgaaKqbagqaamaalaaabaGaeqOSdi2aaWbaaeqajuaibaGaaG OkaaaaaKqbagaacaWGsbWaaWbaaeqajuaibaGaaG4maaaaaaqcfaOa aGykaiabgUcaRmaalaaabaGaaG4naiaaiwdacaaI0aGaaGOmaiaaik daaeaacaaIXaGaaGOnaiaaiMdacaaI3aGaaGynaaaadaWcaaqaaiaa dAhadaWgaaqcfasaaiaadohaaKqbagqaaaqaaiaadkfaaaGaaGykaa Gaay5waiaaw2faaKqzGeGaaGOlaaaaaa@CFE5@                     (54)
For α = β * =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaWbaaSqabKqaafaajug4aiabgEHiQaaajugibiaai2dacqaH YoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOkaaaajugibiaai2daca aIWaGaaGilaaaa@43DF@  the results of (10) can be found. Shear Stress in unobstructed tube will be
( τ w ) p = 4 R 3 R e + 75422 16975 v s R e R . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugibiabes8a0LqbaoaaBaaajeaibaqcLbmacaWG3baaleqaaaGc caGLOaGaayzkaaqcfa4aaSbaaKqaGeaajugWaiaadchaaSqabaqcLb sacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGinaaGcbaqcLbsacaWGsbqc fa4aaWbaaSqabKqaGeaajugWaiaaiodaaaqcLbsacaWGsbqcfa4aaS baaKqaGeaajugWaiaadwgaaSqabaaaaKqzGeGaey4kaSscfa4aaSaa aOqaaKqzGeGaaG4naiaaiwdacaaI0aGaaGOmaiaaikdaaOqaaKqzGe GaaGymaiaaiAdacaaI5aGaaG4naiaaiwdaaaqcfa4aaSaaaOqaaKqz GeGaamODaKqbaoaaBaaaleaajugibiaadohaaSqabaaakeaajugibi aadkfajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugibiaadkfa aaGaaGOlaaaa@6229@ (55)

Separation and reattachment
The separation and reattachment data can be found by taking imperceptible effects of shear stress at the wall,42 i.e τ w =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiXdq xcfa4aaSbaaKqaGeaajugWaiaadEhaaSqabaqcLbsacaaI9aGaaGim aiaai6caaaa@3E15@
[ 4 R 3 + R e R 5 dR dz ( 528 97 α 19344 16975 v s α R 2 44 225 R 2 )] [ 1 R e + α dR dz ( 4 R 3 + R e R 5 dR dz ( 528 97 α 19344 16975 v s α R 2 44 225 R 2 ))]=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca aIBbqcfa4aaSaaaOqaaKqzGeGaaGinaaGcbaqcLbsacaWGsbqcfa4a aWbaaSqabKqaGeaajugWaiaaiodaaaaaaKqzGeGaey4kaSscfa4aaS aaaOqaaKqzGeGaamOuaKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqa aaGcbaqcLbsacaWGsbqcfa4aaWbaaSqabKqaGeaajugWaiaaiwdaaa aaaKqbaoaalaaakeaajugibiaadsgacaWGsbaakeaajugibiaadsga caWG6baaaiaaiIcajuaGdaWcaaGcbaqcLbsacaaI1aGaaGOmaiaaiI daaOqaaKqzGeGaaGyoaiaaiEdaaaGaeqySdewcfa4aaWbaaSqabKqa GeaajugWaiabgEHiQaaajugibiabgkHiTKqbaoaalaaakeaajugibi aaigdacaaI5aGaaG4maiaaisdacaaI0aaakeaajugibiaaigdacaaI 2aGaaGyoaiaaiEdacaaI1aaaaiaadAhajuaGdaWgaaqcbasaaKqzad Gaam4CaaWcbeaajugibiabeg7aHLqbaoaaCaaaleqajeaibaqcLbma cqGHxiIkaaqcLbsacaWGsbqcfa4aaWbaaSqabKqaGeaajugWaiaaik daaaqcLbsacqGHsisljuaGdaWcaaGcbaqcLbsacaaI0aGaaGinaaGc baqcLbsacaaIYaGaaGOmaiaaiwdaaaGaamOuaKqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaKqzGeGaaGykaiaai2faaOqaaKqzGeGaaG4w aKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOuaKqbaoaaBa aajeaibaqcLbmacaWGLbaaleqaaaaajugibiabgUcaRiabeg7aHLqb aoaaCaaaleqajeaibaqcLbmacqGHxiIkaaqcfa4aaSaaaOqaaKqzGe GaamizaiaadkfaaOqaaKqzGeGaamizaiaadQhaaaGaaGikaKqbaoaa laaakeaajugibiaaisdaaOqaaKqzGeGaamOuaKqbaoaaCaaaleqaje aibaqcLbmacaaIZaaaaaaajugibiabgUcaRKqbaoaalaaakeaajugi biaadkfajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaOqaaKqzGe GaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaI1aaaaaaajuaGdaWc aaGcbaqcLbsacaWGKbGaamOuaaGcbaqcLbsacaWGKbGaamOEaaaaca aIOaqcfa4aaSaaaOqaaKqzGeGaaGynaiaaikdacaaI4aaakeaajugi biaaiMdacaaI3aaaaiabeg7aHLqbaoaaCaaaleqajeaibaqcLbmacq GHxiIkaaqcLbsacqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaGaaGyo aiaaiodacaaI0aGaaGinaaGcbaqcLbsacaaIXaGaaGOnaiaaiMdaca aI3aGaaGynaaaacaWG2bqcfa4aaSbaaKqaGeaajugWaiaadohaaSqa baqcLbsacqaHXoqyjuaGdaahaaWcbeqaaKqzGeGaey4fIOcaaiaadk fajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgkHiTKqb aoaalaaakeaajugibiaaisdacaaI0aaakeaajugibiaaikdacaaIYa GaaGynaaaacaWGsbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqc LbsacaaIPaGaaGykaiaai2facaaI9aGaaGimaiaaiYcaaaaa@D99E@                            (56)
R e = A 4938 dR dz B , C± C 2 1.82572236× 10 10 B 59752 ( dR dz ) 2 B , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaKqzGeGaaGypaKqbaoaa laaakeaajugibiaadgeaaOqaaKqzGeGaaGinaiaaiMdacaaIZaGaaG ioaKqbaoaalaaakeaajugibiaadsgacaWGsbaakeaajugibiaadsga caWG6baaaiaadkeaaaGaaGilaKqbaoaalaaakeaajugibiaadoeacq GHXcqSjuaGdaGcaaGcbaqcLbsacaWGdbqcfa4aaWbaaSqabKqaGeaa jugWaiaaikdaaaqcLbsacqGHsislcaaIXaGaaGOlaiaaiIdacaaIYa GaaGynaiaaiEdacaaIYaGaaGOmaiaaiodacaaI2aGaey41aqRaaGym aiaaicdajuaGdaahaaWcbeqcbasaaKqzadGaaGymaiaaicdaaaqcLb sacaWGcbaaleqaaaGcbaqcLbsacaaI1aGaaGyoaiaaiEdacaaI1aGa aGOmaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWGKbGaamOuaa GcbaqcLbsacaWGKbGaamOEaaaaaOGaayjkaiaawMcaaKqbaoaaCaaa leqajeaibaqcLbmacaaIYaaaaKqzGeGaamOqaaaacaaISaaaaa@7315@                                                                            (57)
Where
A=9( 33950 R 4 37711 R 6 v s +14938 dR dz R 3 vs α * ), B= R 3 +48 α * +96 β * ,C=611100 dR dz R 4 α * 678798 dR dz R 6 v s α * +268884 ( dR dz ) 2 R 3 v s α * . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGbbGaaGypaiaaiMdajuaGdaqadaGcbaqcLbsacaaIZaGaaG4maiaa iMdacaaI1aGaaGimaiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaG inaaaajugibiabgkHiTiaaiodacaaI3aGaaG4naiaaigdacaaIXaGa amOuaKqbaoaaCaaaleqajeaibaqcLbmacaaI2aaaaKqzGeGaamODaK qbaoaaBaaaleaajugibiaadohaaSqabaqcLbsacqGHRaWkcaaIXaGa aGinaiaaiMdacaaIZaGaaGioaKqbaoaalaaakeaajugibiaadsgaca WGsbaakeaajugibiaadsgacaWG6baaaiaadkfajuaGdaahaaWcbeqc basaaKqzadGaaG4maaaajugibiaadAhacqGHsislcaWGZbGaeqySde wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaaakiaawIcacaGLPaaa jugibiaaiYcaaOqaaKqzGeGaamOqaiaai2dacaWGsbqcfa4aaWbaaS qabKqaGeaajugWaiaaiodaaaqcLbsacqGHRaWkcaaI0aGaaGioaiab eg7aHLqbaoaaCaaaleqajeaibaqcLbmacaaIQaaaaKqzGeGaey4kaS IaaGyoaiaaiAdacqaHYoGyjuaGdaahaaWcbeqcbasaaKqzadGaaGOk aaaajugibiaaiYcacaWGdbGaaGypaiaaiAdacaaIXaGaaGymaiaaig dacaaIWaGaaGimaKqbaoaalaaakeaajugibiaadsgacaWGsbaakeaa jugibiaadsgacaWG6baaaiaadkfajuaGdaahaaWcbeqcbasaaKqzad GaaGinaaaajugibiabeg7aHLqbaoaaCaaaleqajeaibaqcLbmacaaI QaaaaKqzGeGaeyOeI0IaaGOnaiaaiEdacaaI4aGaaG4naiaaiMdaca aI4aqcfa4aaSaaaOqaaKqzGeGaamizaiaadkfaaOqaaKqzGeGaamiz aiaadQhaaaGaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaI2aaaaK qzGeGaamODaKqbaoaaBaaajeaibaqcLbmacaWGZbaaleqaaKqzGeGa eqySdewcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaqcLbsacqGHRa WkcaaIYaGaaGOnaiaaiIdacaaI4aGaaGioaiaaisdajuaGdaqadaGc baqcfa4aaSaaaOqaaKqzGeGaamizaiaadkfaaOqaaKqzGeGaamizai aadQhaaaaakiaawIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGa aGOmaaaajugibiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaG4maa aajugibiaadAhajuaGdaWgaaqcbasaaKqzadGaam4CaaWcbeaajugi biabeg7aHLqbaoaaCaaaleqabaqcLbsacaaIQaaaaiaai6caaaaa@C78F@    (58)

Results and discussion

In this theoretical study the blood is considered as second order two-dimensional fluid flowing in a constricted tube of infinite length. The results are applicable on mild constriction.

In (Figures 2)  (Figure 3) the change of non-Newtonian parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaWbaaSqabKqaGeaajugWaiabgEHiQaaaaaa@3B1B@  and β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaaaaa@3AE2@  on the non dimensional velocity profile with and without slip is depicted at z=0.475 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOEai aai2dacaaIWaGaaGOlaiaaisdacaaI3aGaaGynaaaa@3BF0@ taking R e =5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaKqzGeGaaGypaiaaiwda aaa@3C62@ , δ =0.083 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq wcfa4aaWbaaSqabKqaGeaajugWaiabgEHiQaaajugibiaai2dacaaI WaGaaGOlaiaaicdacaaI4aGaaG4maaaa@4022@ , t * =3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK qbaoaaCaaaleqajeaibaqcLbmacaaIQaaaaKqzGeGaaGypaiaaioda aaa@3C4D@ .

Figure 2 Effect of non-Newtonian parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaWbaaSqabKqaGeaajugWaiabgEHiQaaaaaa@3B1B@  on velocity profile.

Figure 3 Effect of non-Newtonian characteristic β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaaaaa@3AE2@  on velocity profile.

It is notable that velocity increases with an increase in non-Newtonian characteristic (with and without slip) which is true in physical phenomena. On the other hand non dimensional velocity increases with slip effects. It is evident from Figure 4 that when Reynolds number boost velocity of the fluid also rise near the throat of the constriction, however, it decline in the diverging region, physically it means that viscous forces are dement over the inertia forces. Effect of Reynolds number for Newtonian fluids can be examined in Figure 5.10

Figure 4  Outcomes of R e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaaa@3A4D@  on velocity profile for non-Newtonian fluid.

Figure 5 Effect of R e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaaa@3A4D@  on velocity profile for Newtonian fluid.

It is depicted from Figure 6 that with and without slip velocity of the fluid expanded with a rise in time, same behavior for Newtonian fluids can be seen from Figure 7. Moreover, it is noted that enhancement in velocity for non-Newtonian fluid is greater than Newtonian fluid due to slip velocity. The effects of Reynolds number on dimensionless pressure gradient between z=±1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOEai aai2dacqGHXcqScaaIXaaaaa@3AE9@  is shown in (Figure 8) (Figure 9). It is notable that the pressure gradient raises up to the throat of the constriction and then declines in the diverging portion for both non-Newtonian and Newtonian fluids with and without velocity slip. In the meanwhile it is evident from the (Figure 8) (Figure 9) that the pressure gradient contracted with rise in Reynolds number.

Effects of non-Newtonian parameters on pressure gradient is given in (Figure 10) (Figure 11)that the pressure rises as non-Newtonian parameters boost and the slip velocity declines the pressure gradient.

Figure 6  Outcomes of time t * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK qbaoaaCaaaleqajeaibaqcLbmacGaGWIOkaaaaaaa@3B72@  on velocity profile for non-Newtonian fluid.

Figure 7  Effect of t * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK qbaoaaCaaaleqajeaibaqcLbmacGaGKIOkaaaaaaa@3B66@  on velocity profile for Newtonian fluid.

Figure 8   Effect of R e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacGaGOnyzaaWcbeaaaaa@3B3D@ on pressure gradient for non-Newtonian fluid.

Figure 9   Effect of R e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacGaG0nyzaaWcbeaaaaa@3B49@  on pressure gradient for Newtonian fluid.

Figure 10  Effect of non-Newtonian parameter α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaWbaaSqabKqaGeaajugWaiadasQHxiIkaaaaaa@3C47@ on pressure gradient.

Figure 11 Effect of non-Newtonian parameter β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiadasQHxiIkaaaaaa@3C49@  on pressure gradient.

Same conduct for constriction height δ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaaaaa@3AE6@  on the pressure gradient is observed in (Figure 12) (Figure 13). (Figure 14) (Figure 15)presents the effect of deviation of time on pressure gradient for non-Newtonian and Newtonian fluids. The results found for Newtonian fluids are same as discussed by DF Young.10

Figure 12 Effect of δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq wcfa4aaWbaaSqabKqaGeaajugWaiadaYOHxiIkaaaaaa@3C35@  on pressure gradient for non-Newtonian fluid.

Figure 13 Effect δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqiTdq wcfa4aaWbaaSqabKqaGeaajugWaiabgEHiQaaaaaa@3B21@  on pressure gradient for Newtonian fluid.

Figure 14 Effect of t * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK qbaoaaCaaaleqajeaibaqcLbmacGaGGJOkaaaaaaa@3BA2@  on pressure gradient for non-Newtonian fluid.

Figure 15 Effect t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK qbaoaaCaaaleqajeaibaqcLbmacWaGWA4fIOcaaaaa@3BAD@  on pressure gradient for Newtonian fluid.

The analytical distribution of shearing stress along the wall is shown in Figures 16−20.

It is observed from the (Figure 16) (Figure 17)that for any Reynolds number, the shearing stress attains a large value on the throat and then promptly declines in the diverging section. It is notable here that shear stress declines with a rise in Reynolds number and slip velocity decreases the wall shear stress. It means that Reynolds number and slip velocity provide a mechanism to control the wall shear stress. Figure 18 shows that as non-Newtonian parameter β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaaaaa@3AE2@ expanded wall shear stress also rises, which was expected naturally.
(Figure 19) (Figure 20)shows that wall shear stress increases with an increase in time t * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDaK qbaoaaCaaaleqajeaibaqcLbmacaaIQaaaaaaa@3A3A@  and decreases with slip velocity.

Figure 16 Effect of R e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaaa@3A4D@  on shear stress for non-Newtonian fluid.

Figure 17  Effect of R e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOuaK qbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaaa@3A4D@  on shear stress for Newtonian fluid.

Figure 18  Effect of β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiacaskIQaaaaaaa@3C0E@  on wall shear stress.

Figure 19  Effect of on shear stress for non-Newtonian fluid.

Figure 20  Effect of on wall shear stress for Newtonian fluid.

(Figure 21) (Figure 22) shows the effects of constriction on the separation and reattachment points respectively. It is noted, as naturally expected, that separation point intricate with a rise in non-Newtonian parameter β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaaaaa@3AE2@  while reattachment point downward.

Figure 21  Separation points for non-Newtonian parameter β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaaaaa@3AE2@ .

Figure 22  Reattachment points for non-Newtonian parameter β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaaaaa@3AE2@ .

It is notable here that the separation point intricate and the reattachment point moves downward with velocity slip v s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamODaK qbaoaaBaaajeaibaqcLbmacaWGZbaaleqaaaaa@3A7F@ .

Conclusion

In this work an incompressible, steady and laminar flow of a second order fluid through time dependent obstructed tube is modeled and analyzed theoretically. The fluid is taken as blood flowing through the artery and the results are pertinent to mild stenosis. The characteristics of fluid such velocity field, pressure gradient, wall shear stress and separation phenomena for the geometry of the time dependent constriction are presented. An integral momentum method is applied for the solution of the problem. In human body blood flow is laminar so the Reynolds number taken in the present theoretical study is very close to natural phenomena.5,38 Usually the slip velocity is taken as the 10 percent of the average velocity.30,39 Therefore we have followed this approach. The present study can be summarized as below:

  1. As non-Newtonian parameter increases velocity increases.
  2. Viscous forces are dement over inertia forces near the throat of the constriction, however, opposite results is observed in the diverging portion.
  3. Reynolds number and non-Newtonian are the parameter to controls the wall shear stress.
  4. The separation and reattachment points vary with Reynolds number.
  5. Slip velocity has increasing effects on velocity profile while decreasing on pressure gradient and wall shearing stress.
  6. The present study recovers the theoretical and experimental results for the velocity profile, pressure gradient and wall shear stress of (10) as a major case for α =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqySde wcfa4aaWbaaSqabKqaGeaajugWaiabgEHiQaaajugibiaai2dacaaI Waaaaa@3D2B@ , β * =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqOSdi wcfa4aaWbaaSqabKqaGeaajugWaiaaiQcaaaqcLbsacaaI9aGaaGim aaaa@3CF2@ .
  7. variation of time t shows the constriction development

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest in publishing the article.

References

  1. DF Young. Fluid Mechanics of arterial stenosis. Journal of biomechanical engineering. 1979;101(3):157−75.
  2. CG Caro. Transport of material between blood and wall in arteries. In Atherogenesis: Initiating factors. Ciba Foundation Medica, Amesterdam: Netherlands; 1973. 127−64 p.
  3. DL Fry. Responses of the Arterial wall to certain physical factors. In: Atherogenesis: initiating factors. Ciba Foundation Sympozium: Netherlands; 1973. 93−125 p.
  4. DF Young, FY Tsai. Flow characteristics in models of arterial stenosis−I-Steady flow. Journal of Biomechanics. 1973;6(4):395−411.
  5. JH Forrester, DF Young. Hemodynamic factors in Atherogenesis cardiovascular diseases. In: Scheiberg, editors. Raven Press: New York; 1976. 77−95 p.
  6. L Dintenfass. Viscosity factors in hypertensive and cardiovascular disease. Cardiovascular Med. 1977;2:337−363.
  7. S Chien. Hemorheology in clinical medicine: Recent Advances in cardiovascular disease. In: Niimi H, editor. Suita, Osaka, Japan; 1981. p. 21−6.
  8. CG Caro. Arterial fluid mechanics and Atherogenesis: Hemorheological Approach to Cardiovascular Diseases. In: Hideyuki Niimi, Takehiko Azuma, Yukihide Isogai editors. Proceedings of the Satellite Meeting of the IV International Congress of Biorheology. Osaka, Japan. 1981.
  9. H Schmidt Schonbein. Fluidity of blood in microvessels: consequences of red cell behaviour and vasomotor activity. 4th International conference of Biorheology, Jikei University, Japan. 1981. p. 20.
  10. DF Young. Effect of a time dependent stenosis on flow through a tube. Journal of Engineering for Industry. 1968;90(2):248−254.
  11. BE Morgan, DF Young. An integral method for the analysis of flow in arterial stenosis. Bulletin of Math Bio. 1974;36:39−53.
  12. MD Deshpande, DP Gidden, RF Mabon. Steady laminar flow through modelled vascular stenosis. Journal of Boimechanics. 1976;9(4):165−74.
  13. DA MacDonald. On steady flow through modelled vascular stenosis. Journal of Biomechanics. 1979;12(1):13−20.
  14. JB Shukla, RS Parikar, SP Gupta. Effects of perpheral layer viscosity on blood flow through the artery with mild stenosis. Bulliten of Mathematical Biology. 1980;42(6):797−805.
  15. J Perkkio, R Keskinen. On the effect of the concentration profiles of red cells on blood flow in the artery with stenosis. Bull Math Biol. 1983;45(2):259−67.
  16. JB Shukla, RS Parikar, BP Rao. Effects of stenosis on non−Newtonian flow of blood in an artery. Bulliten of Mathematical Biology. 1980;42(3):283−94.
  17. SA Ahmed, DP Gidden. Velocity measurement in steady flow through Axisymmetric stenosis at moderate Reynolds number. J Biomech. 1983;16(7):505−516.
  18. DF Young, FY Tsai. Flow characteristics in models of arterial stenosis−II. Unsteady flow. J Biomech. 1973;6(5):547−59.
  19. EW Merill. Rheology of human blood and some speculations on its role in vascular homeostasis: Biomechanical mechanisms in vascular homeostasis and intravascular thrombosis. In: PN Sawyer, editor. New York, Appleton century-crofts; 1965. p. 121−137.
  20. D Biswas. Blood flow models: A comparative study. India: Mittal Publications; 2000. p.103−120.
  21. SR Verma. Analytical study of blood flow through an artery with mild stenosis. Acta Ciencia Indica. 2009;2:281.
  22. A Mirza, A Ansari, AM Siddiqui, et al. On steady two-dimensional flow with heat transfer in the presence of a stenosis. WEAS Transactions on fluids mechanics. 2013;8(4):149−158.
  23. AM Siddiqui, NZ Khan, MA Rana. et al. Flow of a second grade fluid through constricted tube using integral method. Journal of Applied Fluid Mechanics. 2016;9(6):2803−12.
  24. L Benet. Red cell slip at wall in vitro. Science. 1967;155(3769):1554−6.
  25. G Bugliarello, JW Hyden. High speed microcinematograhic studies of blood flow in vitro. Science. 1962;138(3544):981−3.
  26. Y Nubar. Blood flow, slip and viscometry. Biophysical Journal. 1971;11(3):252−264.
  27. V Vand. Viscosity of solutions and suspensions. J Phys Chem. 1948;52(2):277−99.
  28. I Isenberg. A note on the flow of blood in cappillary tubes. The bulletin of mathematical biophysics. 1952;15(2):148−152.
  29. P Brunn. The velocity slip of polar fluids. Rheologica Acta. 1975;14(12):1039−54.
  30. JC Misra, BK Kar. Momentum Integral method for studying flow characteristics of blood through a stenosed vessel. Biorheology. 1989;26(1):23−35.
  31. JC Misra, GC Shit. Rloe of slip velocity in blood flow through stenosed arteries: A non-Newtonian model. J Mech Med Biol. 2007;7(3):337−353.
  32. MD Shamshuddin, OA Beg, RM Sunder, et al. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media. Indian Journal of Physics. 2018;92(2):215−30.
  33. MD Shamshuddin, SR Misra, OA Beg, et al. Unsteady reactive radiative micropolar flow, heat and mass transfer from an inclined plate with Joule heating: A model for electro-conductive polymer processing. Part C: Journal of Mechanical Engineering Science. 2018.
  34. MD Shamshuddin, SS Reddy, Beg OA, et al. Rotating unsteady multi-physico-chemical magneto-micropolar transport in porous media: Galerkin finite element study. Computational Thermal Sciences. 2018;10(2):167−97.
  35. SU Siddiqui, SR Shah, Geeta. A biomechanical approach to study the effect of body acceleration and slip velocity through stenotic artery. Applied Mathematics and Computation. 2015;261:148−55.
  36. A Bhatnagar, RK Shivastav, AK Singh. Effect of slip velocity on blood flow through composite stenosed Arteries: A Herschel-Bulkely fluid model. National Academy of Science Letter. 2015;38(3):251−55.
  37. NZ khan, AM Siddiqui, MA Rana. Flow of a second order fluid through constricted tube using integral method. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering. 2015;9(10):636−42.
  38. JH Forrester, DF Young. Flow through a converging−diverging tube and its implications in occlusive disease. Journal of Biomechanics. 1970;3:297−316.
  39. PN Tandon, VK Ktiyar. Flow through a tube with time dependent stensis. Medical and Life Science Engineering. 1976;2:39−47.
  40. TC Papanastasiou, GC Georgiou, AN Alexandrou. Viscous Fluid Flow. USA: CRC press; 1999. p. 69−72.
  41. BD Coleman, W Noll. An approximate theorem for functionals, with appliications in continuum mechanics. Archives of Rational Mechanics and Analysis. 1960;6(1):355−70.
  42. H Schlichting. Boundary Layer Theory. 6th ed New York: McGraw Hill; 1968. p. 122−92.
  43. JH Forrester, DF Young. Flow through a converging−diverging tube and its implications in occlusive disease. J Biomech. 1970;(3):297−316.
  44. SR Verma. Study of blood flow through modelled vascular stenosis. DAV College Kanpur: India; 2012. p. 1−21.
Creative Commons Attribution License

©2018 Khan, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.