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Effect of a time dependent stenosis on flow of a
second order fluid through constricted tube with
velocity slip at wall using integral method

Abstract

The effect of time dependent, axially symmetric constriction in a tube of constant
cross section, through which a non-Newtonian fluid is flowing steadily; is modeled
and the analysis was made using integral approach. The present article is stationed on
second order fluid model. The study is made applicable for mild constriction by using
an order of magnitude analysis. The effect of different parameters, non-Newtonian
characteristics, Reynolds number and time looming in the model on velocity
distribution, wall shear stress, separation and reattachment and pressure gradient
are reviewed graphically. It is observed that Reynolds number gives a mechanism to
oversight the attachment and de-attachment data. Constricted tube Non-Newtonian
fluids Time dependent stenosis Slip velocity Shear stress.
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Introduction

Constriction is the development of arteriosclerotic plaques in the
luman of an artery which produce major circulatory derangement.'”
Fluid dynamic characteristics of blood flow are the curtain-raiser
to understand and diagnosis the diseases and their treatment.*”’
Blood flow model through constricted tubes are analyzed by many
researchers.'?"

The experimental studies on the steady and unsteady fluid flow
through constricted channels are reported by DF Young et al.*'® The
fluid flow through infected artery is considered theoretically.'® At less
shear rate blood is treated as Newtonian fluid."” Non-Newtonian and
steady blood flow through sicked artery is presented by D Biswas®
analytically and by SR Verma?' numerically studies the fluid flow
through tepid obstructed tube analytically. Few studies considered
the no slip property at uniform and constricted walls.!""'5 A Mirza
et al.,” discussed the steady, non-Newtonian and incompressible
fluid flowing through constricted artery. AM Siddiqui et al.,”® has
discussed the blood flow through tepid obstructed artery where the
slip is neglected and analytic technique is used to find the solution by
considering the constant volume flow rate. In the above mentioned
research papers the usual time independent constriction has been
taken. Experimental observations®*?> and theoretical observations?2%
on blood flow reveals that there exist slip velocity at boundary. P
Brunn® has analyzed the velocity slip at the boundaries analytically
and compared the result with the experimental data of five different
viscometric flows. JC Misra et al.,** developed a mathematical model
to study the blood flow characteristic through constricted vessels by
considering the slip velocity at wall of the vessels. D Biswas® studied
the effect of slip on velocity side view, pressure drop and wall shear.
Different stages of constriction such as mild, moderate and sever for
non-Newtonian fluids with slip property are presented by JC Misra
et al.,’! The developments in non-Newtonian fluids is contributed by
many authors studied the non-Newtonian Bingham plastic blood flow

through the constricted artery with slip velocity at wall and solved
the non-linear differential equation analytically.’>> A Bhatnagar et
al.,’® reported the effect of slip velocity on non-Newtonian (Herschel-
Bulkely) fluid flow through constricted artery. They derived the non-
dimensional results for skin friction, flow resistance, flow rate and
axial velocity. NZ khan et al.,’” extended the work of JH Forrester et
al.,*® for second order fluid through constricted tube with slip velocity
at wall. DF Young'* & PN Tandon® considered the time rate of change
of radius. The aim of this work is to study the effect of time dependent
constriction with slip effects at wall for second order fluid flow.

Governing equations

The governing equations for an incompressible fluid, where body
forces are neglected, given as*

V.V =0, 0

- -~ - “z e e e e
—Vx(Vx V)] = Vpt(a +a)Vodi + uV.di + & (VVIVAi + (VV) Vi + 4.9(VV)),

p[%&)z
2
(@)

where V, p, 4, a,,a,, A1 and A are the velocity vector, constant
density, dynamic viscosity, material constants, first and second Rivlin-
Ericksen tensors. The Rivlin-Ericksen tensors are exemplify as

A= (V) +9v, 3)
And
As = %+(Z1 (5\7))T A (5\7). @)

For the model (2) the material constraints are defined as*!

a, £0,u>0,ande, +a, 2 0. %)
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slip at wall using integral method

Problem formulation

A steady, laminar and incompressible flow of a second order fluid
through constricted tube having transient cosing framed symmetric
constriction of height & is considered. R, RZZS are the radii of
the normal and constricted tube. The z— and r —axXis are taken along
the flow direction and normal to it and ¢ is time. Following the tube
boundary is defined as'®

—z, <z<z

4 -1/T nz
R, ——(1—e " )(1+cos(—)), o o
2 z

R(z) = :

(6)

R otherwise

o-
In Eq. (6), T is the time constant and z, is the length of the

constricted part as shown in the Figure 1. Radius of normal tube can
be obtained by takingz = 0.

Figure | Geometry of the problem.

The velocity vector V for axisymmetric and time independent is
taken of the form

v =[a(7.z).0w(%2)].

Where # and W are the velocity components in 7 —, Z-—
directions respectively. According to the geometry of the problem the
boundary conditions are

™)

i=vw=v, atF=R(Z),—=0at F=0. (8)
or
In view of Eq. (8) the Egs. (1) and (2) become
on ow i
—+—+—-=0, ©)
or oz F
oh 0, 0 2 0(IQ)
i—pWQ:—ﬂT—QIW(V Q_T)+(al+a2)(T7~,
or Oz 7 r oz (10)
oh N Q L, Q 2 8(iIQ)
—FpuQd = p(—+ )+ au(VQ-—) (o +a,))(— ,
0z FF 7 FooF
(11)
Where
ow Oi
a="-7 (12)
or 0z
- P2 2 Y oo | 1 < ?
hfz(u + W )_0‘1 uv (M—FZJ+WVW —1(3051+2012)|Al + p,
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(13)
&, =47 a0y a7 a2 2y (14)
=A4(—) +4——) A=) +2(—+—),
: oF o3 7 oF 0%

. . 2
~ and the Laplacian, generalized pressure are expressed as V'~ and
h . Introducing the dimensionless variables

-
oﬁl
S
STl

_UsRyp
2 o T 5

U, u

(15)

where U, is the average velocity. Order-of-magnitude reasoning

is used to determine the imperceptible effects which are given in Egs.
(9) -(14). Now Eq. (9) becomes

ow o0 10u
—t+————=0
0z R, ror (16)

From Eq. (15) using order of magnitude technique, which is also

1 6

suitable for non-Newtonian fluids'’, it is notable that — — < 1,
o RO . Re RO

u<<w, —<1, — ~ O(1) then normal axial stress component

2 V4 Z
0w 0 0
is imperceptible as compared to the gradient of shear. So Egs.

oz

(9) and (13) becomes

Oh
—= 17)
or
oh 1 |d'w 1aow
M R (18)
oz R, | or r or
) 5 2 2
w * [ 0w 10w x 1 ow * [ Ow
h=—-aw —+——|-a —| — | - |— | +p
2 or r or 2\ or or
(19)
* * 0!1 + 0!2 . .
where a = and f = 3 . The non-dimensional
Ry p R, p

form of time dependent cosine shape obstruction profile is

*
%

R(z) = 1_%(1_‘3_t Y1+ cos(7z)), -1<z<I

1. otherwise (20)

*
where 5* =06/R, and t =1t/T. Eq. (18) can be integrated

from » =0 to » = R to get

2

Exact solution of Eq. 21 is not possible. We can find the
approximate solution by assuming fourth order polynomial which is
called Karman-Pohlhausen method.* Therefore

Citation: Khan NZ, Rana MA, Siddiqui AM. Effect of a time dependent stenosis on flow of a second order fluid through constricted tube with velocity slip at
wall using integral method. Fluid Mech Res Int. 2018;2(3):118-126. DOI: 10.15406/fmrij.2018.02.00027


https://doi.org/10.15406/fmrij.2018.02.00027

Effect of a time dependent stenosis on flow of a second order fluid through constricted tube with velocity

slip at wall using integral method

2 3 4
w r r r r
—= A+ A | I-— |+ A 1-— | +4,|1-—| +4|1-—],
U R R R R
(22)

Where U is the centerline velocity and A4,,4,,4;, A,and As
are the unknown coefficients which can be found by using the five
conditions given below

w=v, atr =R, (23)
w=U at r=0, (24)
ow

—=0atr=0, (25

or

dh 1w 1ow

—=—|—F5+——| atr=R, (26)
dz R \ or r or

w

— =2— atr =0 27)
or R

The velocity slip at the boundary and centerline velocity U is
defined by Egs. (23) and (24) condition (24) is a simple definition,
(26) is attained from equation (18). The assumption for the velocity of

2
,
the fluid is parabolic can be expressedas | w=U|1-—
R
center (r=0) of the tube, so that the second derivative of w with respect
to 7', we get the condition (26). Thus Eq. (22) becomes

w v, |n v, 7]2 v 771 v, 174 v
—=| -A+10-12—= |—=+[34A+45-6— |—+| 32A-12+420— | —+| A +4-9—~ | —+—,
U u)i uj)1 vy vu)17 U

(28)

at the

Where

R’R dh
A=
U dz

29

-
and 77 = (1 ] . It is notable that A4 is dependent only on z
R

, since R,U and h are function of z. In Eq. 29)U and h are
undetermined. The flux Q through the tube is defined as

R
0 = [ 2mrwdr. 30)
0
Using Eq. (28) in (30) we obtain
2
zR°U
0- (22U +97U +51v, ), 31
210
And centerline velocity U is defined as
200 1 ZR'R dh 17
U=s——+ ———Vv. 7R
97 7nR 105 dz 70 (32)
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Using Eq. (19) in (21) to get
ld?rwzdra*d(livs(awj 71?}*[%) r]ﬂ*d?r e
2dzo dz or ), 20 \(or dzo \ 0

And in order to get closed form of solution it is assumed that
velocity profile is parabolic, i.e

(33)

2
7

w=U|1- ? 5

As discussed by JH Forrester et al.,*® if we neglect the non-linear

terms the flow through obstruction becomes Poiseuille. Substitution of

Eqgs. (34) and (29) into Eq. (19) and ( 33) yields generalized pressure
and pressure gradient

(34

2

dh «0 1 dR « O dR «0 1 dR dp
—=48a —F——-Wav,———+ — et
dz 7~ R dz 7" R dz 7~ R dz dz

(35)

dp 388 1 QdR 8
R'R,

dz 225R 7 dz

2 ¥ 2 ¥ * 2 2
2608 Q" @ dR 5216 O B dR v | a Q dR Q° 436
| ———+— .
75

+
75 7' R dz R d: 25\ R 72’ daz 7 R'R,
(36)

In order to get velocity W, we put Egs. (32) and (33) in Eq. (29)
and (28) to get

2 Q 2 1 dR 2 3 4
WZ—Z—[zn—n :|+—3—|:—1177+4377 —45n" +157 :I
R R dz

2

* 2
a Q 128 « R, O
Y Vs e st F T

75 R & 75 R

1
+v | 1———— (754227 — 1103117 + 735407 —18855n") |,
16975

(37

wherenn =1—-r/ R, . Velocity for normal tube can be obtained
by substituting? =0 . The volume flow flux in normal tube is

0= ﬂ'Rg U,, which gives non-dimensional flux 0 = 0/ Rg U,=n

which is same for obstructed tube.** So the expressions for the
dpP

velocity w and pressure gradient — becomes
dz

2 2 1 dR 2 3 4
—[2n-n"1+——I[-1ln+43p" —45p" +1571 ]
R R dz

w=

4 dR 4 . 64 a 128
R —-—Rav.+—R —+—f
dz 25 tTs 75 R

. R,
2

225

e

1
+vvﬂ-—44447(75422n-—1103llq2—+73540n3-—18855n4)],
16975

(3%)
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®
2608 o dR

75 R dz

dp 388 1 dR 8
[ +
R'R,

75 R dz 25\ R’ dz RZR

e

5216 f dR v, [a dR 436
4+ 45 .
dz 225 R ds

(39)
As a special case the velocity profile!® can be obtain by taking

* *
a =p

Pressure distribution

= 0 in Eq. (38).

Pressure distribution at any sector z along the constriction can be
obtained when Eq. (39) is integrated using boundary condition that is
pP=p,atz=z;.

388 F 1 v, R 2608 . 5216 . F 1 v,z
)= ] R+ a’ [—cdR+(——a+ 2O e L z——!
225k R 25 R R 3 R R : R
(40)
or
78 % 97 1 1 1304 x 2608 = 1 1
@p)= (v +— N —a +—— B =) -
25 225 ., 225 225 R’ R,
z 1 8 : 1
B T R | i
R, 7R, zy[a—Dbcosu] 7R, ﬂR z, [a— bcosu]
41
Where
* *
5 5
a=1—7,b—7. (42)
Now
4 1 -1/2
Iidu=7r(a2—b2) . (43)
0ag—-bcosu
Differentiating Eq. (43) partially with respect to a, we get
™ 2 2.-3/2 5
[ ————Fdu=ra(a” -b")"" = 7g(—), (44)
0[a—-bcosu] R,
™ 1 3 . 5
[ du=ra(a’ +-b")a" -0 = nf(—),
0 [a—bcosu] 2 R,
(45)
Where
5*
* 3/
g )=(-—)1-5 ) (46)
. s .5 .
F@)=="0-6 +§(6*)2)(1—5 )y (47)

So that
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E 1304+ 2608 * 1

(Ap) = (*VU( +*)( T —*)—7*/( )(7 +——p )(*—*)‘**78((5 )-
25 R' R R R! 25" "R* R R R
(48)
. o
Fornormal tubei-e t =0 or 6 =0 and f =gl —|=1,
the pressure distribution is given by R, R,
16z v oz
(Ap)P - 04 t— 702 :
ReRO Re RO (49)

In unobstructed tube the Poiseuille flow is defined by subscript P
. If tube length is 2L , then the pressure across the whole length of the
constricted artery can be expressed as

78 97 1 1 1304 . 2608 .
[Ap]=(—via +—)N—F——)(—a +—f)
25 22 R, 225 225
118 @L-2z) . v QL-2z) .«
(-——)+———F (6 )———F—5g( ).
(50)° L, 0 e 0

For normal tube, z
distribution will become

o =0 the expression for the pressure

2L % V 2L
A R )
()51) ”Re RO Re RO

We note that ]%qs. ( 18) and ( 50) carry the results of (10) as a
special case for a = =0.

Shear Stress on Constricted Surface

The shear stress on the obstructed surface is

ow ou uow ou
T~ =—| Ul —=+— —a2 oy — + —=
or 0z ; \Or 0Oz
R
~o ~o\ou ow) ouou _owow
- al U—=+w—= ~t = [+2 ==+ 2= =
or oz J\ 0z oOr or 0z or 0z
R
(52)

The shear stress can be found by substituting Eq. (15) in Eq. (52),

ie .
2—— -—a | ——| .
Uy R, 8r R or 0z ),

From Eq. (38) and (53), we obtain

(53)
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,16a 32, yis

i_iii(i_R
R3 3 ‘R

& 25ptdz o R

4 441 dR R,
o=
w 16975 R

75422 v :|

R, dz g} 25pidz 9 ¢ 3R 3 “pd 16975 R

L edR_4 44 LdRR oo 16Ra 2 B 75420 |
e
(54)

For a" = ﬂ* = 0, the results of (10) can be found. Shear Stress in
unobstructed tube will be

4
(e), =5+

R'R,

75422 vy
5 (55)
16975 R R

Separation and reattachment

The separation and reattachment data can be found by taking
imperceptible effects of shear stress at the wall, i.e 7, = 0.

4 R dR 528 ,

—+
R R d 97

19344, , 44
va' R ———R%)]

s

16975 225
I ,dR 4 R dR 528 , 19344 . , 44
[—+a —(—3+——(—0{ - va RW———R"))]
& R R d 97 16975 225
(56)
o A c+\C* ~182572236x10" B
¢ 4R 2
dR (57)
49388 59752() B
dz dz
Where

4 6 dR X
A=9|33950R" -37711R vy +14938— R'v—sa |,
dz

2

3 N . dR 4 dR ¢ « dR 3 %

B=R +48a +96f ,C=611100—R a —678798— R v.a +268884| — | Rva .
dz dz [z

(58)Results and discussion

In this theoretical study the blood is considered as second order
two-dimensional fluid flowing in a constricted tube of infinite length.
The results are applicable on mild constriction.

In (Figures 2) (Figure 3) the change of non-Newtonian parameter
a and £ onthe non dimensional velocity profile with and without

slip is depicted at z = 0.475 taking R, =5, 5 =0.083, £ =3.

It is notable that velocity increases with an increase in non-
Newtonian characteristic (with and without slip) which is true in
physical phenomena. On the other hand non dimensional velocity
increases with slip effects. It is evident from Figure 4 that when
Reynolds number boost velocity of the fluid also rise near the throat of
the constriction, however, it decline in the diverging region, physically
it means that viscous forces are dement over the inertia forces. Effect
of Reynolds number for Newtonian fluids can be examined in Figure
5‘]0
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z = 0475 =5B8"=03,6"=0083,1" =3
3.0 —m= - a = —01,v,=0

b o a’ = —0.1, v, =005
2.5] — @ = —02,v,=0

h a’ = 02, v, =005

=95
1.0
05

0.0¢ — "
0.0 0.2 0.4 0.6 0.8

.
Figure 2 Effect of non-Newtonian parameter @ on velocity profile.

Z=0.475,ﬂ"——02 R.=30,06"=00831 =

,3‘ — o2, V=0
B* =02, v, =0.05
BT =03,v,=0
B* =03, v, =005

00 02 04

r

*
Figure 3 Effect of non-Newtonian characteristic 3 on velocity profile.

2=0475, 0" = =02, " =0.083,8"=03,1"=3
3.5 - R.o=5v,=0
30— — _ — R =5 v, =005
— — R.=10,v,=0
25 —=
2.2 L — R, = 10, vy =0.05
o
20 ~
= -~
1.5
1.0 S
NG |
0.5 S |
0.0 _ , , -
0.0 0.2 0.4 0.6 0.8

Figure 4 Outcomes of R, on velocity profile for non-Newtonian fluid.

Itis depicted from Figure 6 that with and without slip velocity of the
fluid expanded with a rise in time, same behavior for Newtonian fluids
can be seen from Figure 7. Moreover, it is noted that enhancement
in velocity for non-Newtonian fluid is greater than Newtonian fluid
due to slip velocity. The effects of Reynolds number on dimensionless
pressure gradient between z = £1 is shown in (Figure 8) (Figure 9).
It is notable that the pressure gradient raises up to the throat of the
constriction and then declines in the diverging portion for both non-
Newtonian and Newtonian fluids with and without velocity slip. In the
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meanwhile it is evident from the (Figure 8) (Figure 9) that the pressure
gradient contracted with rise in Reynolds number.

Effects of non-Newtonian parameters on pressure gradient is given
in (Figure 10) (Figure 11)that the pressure rises as non-Newtonian
parameters boost and the slip velocity declines the pressure gradient.

Same conduct for constriction height & " on the pressure gradient
is observed in (Figure 12) (Figure 13). (Figure 14) (Figure 15)presents
the effect of deviation of time on pressure gradient for non-Newtonian
and Newtonian fluids. The results found for Newtonian fluids are
same as discussed by DF Young.!?

The analytical distribution of shearing stress along the wall is
shown in Figures 16—20.

Itis observed from the (Figure 16) (Figure 17)that for any Reynolds
number, the shearing stress attains a large value on the throat and then

z=0475,a" = 0,46"

=0083,8°=0,r'=3

0.0 0.2 0.4 0.6 0.8

Figure 5 Effect of R, on velocity profile for Newtonian fluid.

W

Figure 6 Outcomes of time ¢* on velocity profile for non-Newtonian fluid.

Z2=0475, @ =0, R = 30,6" = 0083, §° =0

WV =0
L vy =005
Sy =0
Ve =005

nm o uwn
= =

1.0

0.5

00 02 04 06 08

Figure 7 Effect of L on velocity profile for Newtonian fluid.
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promptly declines in the diverging section. It is notable here that
shear stress declines with a rise in Reynolds number and slip velocity
decreases the wall shear stress. It means that Reynolds number and
slip velocity provide a mechanism to control the wall shear stress.
Figure 18 shows that as non-Newtonian parameter £ expanded wall
shear stress also rises, which was expected naturally.

(Figure 19) (Figure 20)shows that wall shear stress increases with
an increase in time ¢ and decreases with slip velocity.

(Figure 21) (Figure 22) shows the effects of constriction on
the separation and reattachment points respectively. It is noted, as
naturally expected, that separation point intricate with a rise in non-
Newtonian parameter £ while reattachment point downward.

It is notable here that the separation point intricate and the
reattachment point moves downward with velocity slip v_ .

AP

Figure 8 Effect of R, on pressure gradient for non-Newtonian fluid.

@ =0, =0,6"=0083, R,=1,1"=3
065
<, - N |- R, = 40.v, = 0.05
0.60 // -~ - R, = 60,v, =0
/ s N - R, = 60, v, =005
055 A D
= 7 N
4 050 s N
= -7 :-.. -]
0451~ h

0.40

05 00 05 10

Figure 9 Effect of R, on pressure gradient for Newtonian fluid.

R. =55 =038 =008}, R, =1,1"=3

- a* = -0.1,v,=0
0.1, v, = 0.05
-02,¥,=0
= —02, v, =005

|
R
"

=]
[}

|AP|

-
<

Figure 10 Effect of non-Newtonian parameter

%

@ on pressure gradient.
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R. =35 o =-02,6 =008, Ro=1,1"=3

[ - B =03v=0

6.0 - B = 03, v, =005
; - B =04v,=0

55 B o= 04, v, =005

5.0

<
a4 7
45!
40
“10 05 0.0 0.5 1.0
T

Figure |1 Effect of non-Newtonian parameter " on pressure gradient.

R =5a =-02, 8 =03, Ry=1¢=3

5.5F L
| = 0063, v,=0
= 0.063, v, = 0.05
= 0.083, v, =0
= 0083, v, = 0L05
a
=
35t= " N L
-1.0 -0.5 0.0 0.5 1.0
Z

Figure 12 Effect of §" on pressure gradient for non-Newtonian fluid.

R =50 =0, =0,R,=11=3

407 O = 0073, v, =0

I & = 0073, v, = 005
& = 0083, v, =0
' = 0.083, v, = 005

|AP|

Lv,=0
1, v, =005
L, V=

=005

Figure 14 Effect of t* on pressure gradient for non-Newtonian fluid.
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R.=5a" =0, =0,r =16 =3

4‘00;. . -— = 1,v=0
f ~ — r o= 1,1, =005
395 v \ — 1 =3v=0
3.90] - ro= 3, v, =005
g 3% N
< 380, _
375,
370,
3.65 = R
-1.0 -0.5 0.0 0.5 1.0
Z

Figure 15 Effect ¢* on pressure gradient for Newtonian fluid.

£ =01, =008, a" =—002,r=3

Z

Figure 16 Effect of R, on shear stress for non-Newtonian fluid.

=38 =0083 g =046=0

Figure 17 Effect of R, on shear stress for Newtonian fluid.

R, =3,0" =0083,a" = -0.02
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Conclusion

In this work an incompressible, steady and laminar flow of a second
order fluid through time dependent obstructed tube is modeled and
analyzed theoretically. The fluid is taken as blood flowing through the
artery and the results are pertinent to mild stenosis. The characteristics
of fluid such velocity field, pressure gradient, wall shear stress and
separation phenomena for the geometry of the time dependent
constriction are presented. An integral momentum method is applied
for the solution of the problem. In human body blood flow is laminar
so the Reynolds number taken in the present theoretical study is very
close to natural phenomena.>** Usually the slip velocity is taken as the
10 percent of the average velocity.*** Therefore we have followed
this approach. The present study can be summarized as below:

As non-Newtonian parameter increases velocity increases.

1. Viscous forces are dement over inertia forces near the throat of the
constriction, however, opposite results is observed in the diverging
portion.

2. Reynolds number and non-Newtonian are the parameter to controls
the wall shear stress.

3. The separation and reattachment points vary with Reynolds
number.

4. Slip velocity has increasing effects on velocity profile while
decreasing on pressure gradient and wall shearing stress.

The present study recovers the theoretical and experimental results
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Figure 22 Reattachment points for non-Newtonian parameter ﬂ* .
for the velocity proﬁl*e, pressure gradient and wall shear stress of (10)
as a major case fora =0, f =0.

variation of time ¢ shows the constriction development
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