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Introduction
Constriction is the development of arteriosclerotic plaques in the 

luman of an artery which produce major circulatory derangement.1−3 
Fluid dynamic characteristics of blood flow are the curtain-raiser 
to understand and diagnosis the diseases and their treatment.4−9 
Blood flow model through constricted tubes are analyzed by many 
researchers.10−17

The experimental studies on the steady and unsteady fluid flow 
through constricted channels are reported by DF Young et al.4,18 The 
fluid flow through infected artery is considered theoretically.15 At less 
shear rate blood is treated as Newtonian fluid.19 Non-Newtonian and 
steady blood flow through sicked artery is presented by D Biswas20 
analytically and by SR Verma21 numerically studies the fluid flow 
through tepid obstructed tube analytically. Few studies considered 
the no slip property at uniform and constricted walls.11−15 A Mirza 
et al.,22 discussed the steady, non-Newtonian and incompressible 
fluid flowing through constricted artery. AM Siddiqui et al.,23 has 
discussed the blood flow through tepid obstructed artery where the 
slip is neglected and analytic technique is used to find the solution by 
considering the constant volume flow rate. In the above mentioned 
research papers the usual time independent constriction has been 
taken. Experimental observations24,25 and theoretical observations26−28 
on blood flow reveals that there exist slip velocity at boundary. P 
Brunn29 has analyzed the velocity slip at the boundaries analytically 
and compared the result with the experimental data of five different 
viscometric flows. JC Misra et al.,30 developed a mathematical model 
to study the blood flow characteristic through constricted vessels by 
considering the slip velocity at wall of the vessels. D Biswas20 studied 
the effect of slip on velocity side view, pressure drop and wall shear. 
Different stages of constriction such as mild, moderate and sever for 
non-Newtonian fluids with slip property are presented by JC Misra 
et al.,31 The developments in non-Newtonian fluids is contributed by 
many authors studied the non-Newtonian Bingham plastic blood flow 

through the constricted artery with slip velocity at wall and solved 
the non-linear differential equation analytically.32−35 A Bhatnagar et 
al.,36 reported the effect of slip velocity on non-Newtonian (Herschel-
Bulkely) fluid flow through constricted artery. They derived the non-
dimensional results for skin friction, flow resistance, flow rate and 
axial velocity. NZ khan et al.,37 extended the work of JH Forrester et 
al.,38 for second order fluid through constricted tube with slip velocity 
at wall. DF Young10 & PN Tandon39 considered the time rate of change 
of radius. The aim of this work is to study the effect of time dependent 
constriction with slip effects at wall for second order fluid flow.

Governing equations
 The governing equations for an incompressible fluid, where body 

forces are neglected, given as40
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where   

1 21 2, , , , , andρ µ α αV A A are the velocity vector, constant 
density, dynamic viscosity, material constants, first and second Rivlin-
Ericksen tensors. The Rivlin-Ericksen tensors are exemplify as

	
  ( )  

1 = ,
T

∇ + ∇A V V  			                      (3)

And

	





  ( )( )   ( )1
2 1= .1

Td

dt
+ ∇ + ∇

A
A A V A V  	                       (4)

For the model (2) the material constraints are defined as41

	 1 1 20, 0, and 0.α µ α α≤ ≥ + ≥  		                        (5)
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Problem formulation

A steady, laminar and incompressible flow of a second order fluid 
through constricted tube having transient cosine framed symmetric 
constriction of height δ  is considered. 0R , ( )R z  are the radii of 
the normal and constricted tube. The z−  and r − axis are taken along 
the flow direction and normal to it and t  is time. Following the tube 
boundary is defined as10

/
0 0 0

0

0

(1 )(1 cos( )), < <
( ) = 2

.

t T z
R e z z z

R z z
R otherwise

δ π−− − + −



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





         

(6)

In Eq. (6), T is the time constant and 0z  is the length of the 
constricted part as shown in the Figure 1. Radius of normal tube can 
be obtained by taking = 0t .

Figure 1 Geometry of the problem.

The velocity vector V  for axisymmetric and time independent is 
taken of the form

		
 ( ) ( ), , 0, , .u r z w r z  V =       		                      (7)

Where u  and w  are the velocity components in r − , z −
directions respectively. According to the geometry of the problem the 
boundary conditions are
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 In view of Eq. (8) the Eqs. (1) and (2) become
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Where

		
= ,

w u

r z

∂ ∂
Ω −

∂ ∂

 

 

 			                (12)

( ) 22 2 2 2
1 1 22 1

1
= (3 2 ) ,

2 4

u
h u w u u w w p

r

ρ
α α α+ − ∇ − + ∇ − + +
  
  

  
A 

     





 	
								      

						                   (13)

 

2 2 2 2 2
1| | = 4( ) 4( ) 4( ) 2( ) ,

u w u w u
rz r zr

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂∂
A

  





 

 	                  (14)

and the Laplacian, generalized pressure are expressed as 2∇  and 
h . Introducing the dimensionless variables
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						                  (15)

where 0U  is the average velocity. Order-of-magnitude reasoning 
is used to determine the imperceptible effects which are given in Eqs. 
(9) -(14). Now Eq. (9) becomes

	 0
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					                                    (16)

From Eq. (15) using order of magnitude technique, which is also 

suitable for non-Newtonian fluids10, it is notable that 
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 is imperceptible as compared to the gradient of shear. So Eqs. 

(9) and (13) becomes

		
= 0.

h

r

∂

∂
 	                                                               (17)

		

2

2

1 1
= ,

e

h w w

z R r r r

∂ ∂ ∂
+

∂ ∂ ∂

 
 
 

 		                    (18)

2 22 2

2

1 1 *= .
2 2

w w w w w
h w p

r r r r r
α α β

∂ ∂ ∂ ∂∗ ∗− + − − +
∂ ∂ ∂ ∂

     
         

 		
								      
						                  (19)
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+∗ . The non-dimensional 

form of time dependent cosine shape obstruction profile is
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where 0= / Rδ δ∗  and * = /t t T . Eq. (18) can be integrated 

from = 0r  to =r R  to get
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Exact solution of Eq. 21 is not possible. We can find the 
approximate solution by assuming fourth order polynomial which is 
called Karman-Pohlhausen method.42 Therefore
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Where U  is the centerline velocity and 1 2 3 4 5, , ,  anA A dA A A  
are the unknown coefficients which can be found by using the five 
conditions given below
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The velocity slip at the boundary and centerline velocity U  is 
defined by Eqs. (23) and (24) condition (24) is a simple definition, 
(26) is attained from equation (18). The assumption for the velocity of 

the fluid is parabolic can be expressed as 
2
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center (r=0) of the tube, so that the second derivative of w with respect 
to r , we get the condition (26). Thus Eq. (22) becomes
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. It is notable that λ  is dependent only on z

, since ,R U  and h  are function of .z  In Eq. (29)U  and h  are 
undetermined. The flux Q  through the tube is defined as
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Using Eq. (19) in (21) to get 

2 2 2
2

0 0 0

1 1 1* * = ,
2 2 2

R R R

s
R Re

d d w w d w R dP w
rw dr Rv r dr r dr

dz dz r r dz r dz R r
α β

∂ ∂ ∂ ∂
− − − +∫ ∫ ∫

∂ ∂ ∂ ∂

        
                 

 	
					                                         	
                                                                                                         (33)

 And in order to get closed form of solution it is assumed that 
velocity profile is parabolic, i.e
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As discussed by JH Forrester et al.,38 if we neglect the non-linear 
terms the flow through obstruction becomes Poiseuille. Substitution of 
Eqs. (34) and (29) into Eq. (19) and ( 33) yields generalized pressure 
and pressure gradient
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In order to get velocity w , we put Eqs. (32) and (33) in Eq. (29) 
and (28) to get
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where = 1 / ,r Rη − . Velocity for normal tube can be obtained 
by substituting *=0t  . The volume flow flux in normal tube is 



2
0 0= ,Q R Uπ  which gives non-dimensional flux 

2
0 0= / =Q Q R U π  

which is same for obstructed tube.43−44 So the expressions for the 

velocity w  and pressure gradient 
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As a special case the velocity profile10 can be obtain by taking 		
		

		  *= = 0α β∗  in Eq. (38). 

Pressure distribution

Pressure distribution at any sector z along the constriction can be 
obtained when Eq. (39) is integrated using boundary condition that is 

0=p p  at 0=z z .

0 00 0

* * * 0
5 5 7 2 2 4

0 0

388 1 1 2608 5216 1 1 8 1
( ) = ( ) ,

225 25 75 75

R R R z
s s

R R R e e

z

z z

v v z
p dR dR dR dz dz

R R R R R R R R
α α β∆ + + + + −∫ ∫ ∫ ∫ ∫  	

						                   (40)

 or 

0

4 4 6 4
0 0

0 0
2 2 4 4

00 0

78 97 1 1 1304 2608 1 1* *( ) = ( )( )( )( )
25 225 225 225

1 8 1
,

[ cos ] [ cos ]

s

s

e e

z z

zz

p v
R R R R

v z z
dz dz

R R a b u R R a b u

α α β

π π π

∗∆ + − + − −

−∫ ∫
− −

 	
								      
								      
			                                                               (41)

Where

		
		

= 1 , = .
2 2

a b
δ δ∗ ∗

−  		              (42)

Now

	
( ) 1/22 21

= .
0 cos

du a b
a b u

π
π

−
−∫

−
 		                 (43)

Differentiating Eq. (43) partially with respect to a, we get
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In unobstructed tube the Poiseuille flow is defined by subscript P
. If tube length is 2L , then the pressure across the whole length of the 
constricted artery can be expressed as 
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 For normal tube, 0 = 0z  the expression for the pressure 
distribution will become
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We note that Eqs. ( 48) and ( 50) carry the results of (10) as a 
special case for = = 0.α β∗ ∗  

Shear Stress on Constricted Surface

The shear stress on the obstructed surface is
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The shear stress can be found by substituting Eq. (15) in Eq. (52), 
i.e



2
0

1
= .

R R

w w ww
U R r r ze

τ
α

ρ

− ∂ ∂ ∂∗−
∂ ∂ ∂

   
   
   

 		                     (53)

From Eq. (38) and (53), we obtain
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For *= = 0,α β∗  the results of (10) can be found. Shear Stress in 
unobstructed tube will be

		
( ) 3

4 75422
= .

16975
w p

e e

vs
R R R R

τ +  	              (55)

Separation and reattachment

The separation and reattachment data can be found by taking 
imperceptible effects of shear stress at the wall,42 i.e = 0.wτ
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Where 
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(58)Results and discussion

In this theoretical study the blood is considered as second order 
two-dimensional fluid flowing in a constricted tube of infinite length. 
The results are applicable on mild constriction. 

In (Figures 2)  (Figure 3) the change of non-Newtonian parameter 
α∗  and *β  on the non dimensional velocity profile with and without 

slip is depicted at = 0.475z  taking = 5eR , = 0.083δ ∗ , * = 3t .

It is notable that velocity increases with an increase in non-
Newtonian characteristic (with and without slip) which is true in 
physical phenomena. On the other hand non dimensional velocity 
increases with slip effects. It is evident from Figure 4 that when 
Reynolds number boost velocity of the fluid also rise near the throat of 
the constriction, however, it decline in the diverging region, physically 
it means that viscous forces are dement over the inertia forces. Effect 
of Reynolds number for Newtonian fluids can be examined in Figure 
5.10

Figure 2 Effect of non-Newtonian parameter α
∗

 on velocity profile.

Figure 3 Effect of non-Newtonian characteristic *β  on velocity profile.

Figure 4 Outcomes of eR  on velocity profile for non-Newtonian fluid.

It is depicted from Figure 6 that with and without slip velocity of the 
fluid expanded with a rise in time, same behavior for Newtonian fluids 
can be seen from Figure 7. Moreover, it is noted that enhancement 
in velocity for non-Newtonian fluid is greater than Newtonian fluid 
due to slip velocity. The effects of Reynolds number on dimensionless 
pressure gradient between = 1z ±  is shown in (Figure 8) (Figure 9). 
It is notable that the pressure gradient raises up to the throat of the 
constriction and then declines in the diverging portion for both non-
Newtonian and Newtonian fluids with and without velocity slip. In the 
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meanwhile it is evident from the (Figure 8) (Figure 9) that the pressure 
gradient contracted with rise in Reynolds number.

Effects of non-Newtonian parameters on pressure gradient is given 
in (Figure 10) (Figure 11)that the pressure rises as non-Newtonian 
parameters boost and the slip velocity declines the pressure gradient.

Same conduct for constriction height *δ  on the pressure gradient 
is observed in (Figure 12) (Figure 13). (Figure 14) (Figure 15)presents 
the effect of deviation of time on pressure gradient for non-Newtonian 
and Newtonian fluids. The results found for Newtonian fluids are 
same as discussed by DF Young.10

The analytical distribution of shearing stress along the wall is 
shown in Figures 16−20.

It is observed from the (Figure 16) (Figure 17)that for any Reynolds 
number, the shearing stress attains a large value on the throat and then 

promptly declines in the diverging section. It is notable here that 
shear stress declines with a rise in Reynolds number and slip velocity 
decreases the wall shear stress. It means that Reynolds number and 
slip velocity provide a mechanism to control the wall shear stress. 
Figure 18 shows that as non-Newtonian parameter *β  expanded wall 
shear stress also rises, which was expected naturally.

(Figure 19) (Figure 20)shows that wall shear stress increases with 
an increase in time *t  and decreases with slip velocity.

(Figure 21) (Figure 22) shows the effects of constriction on 
the separation and reattachment points respectively. It is noted, as 
naturally expected, that separation point intricate with a rise in non-
Newtonian parameter *β  while reattachment point downward.

It is notable here that the separation point intricate and the 
reattachment point moves downward with velocity slip sv .

Figure 5 Effect of eR  on velocity profile for Newtonian fluid.

Figure 6 Outcomes of time *t  on velocity profile for non-Newtonian fluid.

Figure 7 Effect of 
*t  on velocity profile for Newtonian fluid.

Figure 8 Effect of eR  on pressure gradient for non-Newtonian fluid.

Figure 9 Effect of eR  on pressure gradient for Newtonian fluid.

Figure 10 Effect of non-Newtonian parameter α
∗

 on pressure gradient.
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Figure 11 Effect of non-Newtonian parameter β ∗  on pressure gradient.

Figure 12 Effect of δ ∗  on pressure gradient for non-Newtonian fluid.

Figure 13 Effect δ ∗  on pressure gradient for Newtonian fluid.

Figure 14 Effect of *t  on pressure gradient for non-Newtonian fluid.

Figure 15 Effect t∗  on pressure gradient for Newtonian fluid.

Figure 16 Effect of eR  on shear stress for non-Newtonian fluid.

Figure 17 Effect of eR  on shear stress for Newtonian fluid.

Figure 18 Effect of 
*β  on wall shear stress.
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Figure 19 Effect of on shear stress for non-Newtonian fluid.

Figure 20 Effect of on wall shear stress for Newtonian fluid.

Figure 21 Separation points for non-Newtonian parameter
*β .

Figure 22 Reattachment points for non-Newtonian parameter *β .

Conclusion
In this work an incompressible, steady and laminar flow of a second 

order fluid through time dependent obstructed tube is modeled and 
analyzed theoretically. The fluid is taken as blood flowing through the 
artery and the results are pertinent to mild stenosis. The characteristics 
of fluid such velocity field, pressure gradient, wall shear stress and 
separation phenomena for the geometry of the time dependent 
constriction are presented. An integral momentum method is applied 
for the solution of the problem. In human body blood flow is laminar 
so the Reynolds number taken in the present theoretical study is very 
close to natural phenomena.5,38 Usually the slip velocity is taken as the 
10 percent of the average velocity.30,39 Therefore we have followed 
this approach. The present study can be summarized as below:

 As non-Newtonian parameter increases velocity increases.

1.	 Viscous forces are dement over inertia forces near the throat of the 
constriction, however, opposite results is observed in the diverging 
portion.

2.	 Reynolds number and non-Newtonian are the parameter to controls 
the wall shear stress.

3.	 The separation and reattachment points vary with Reynolds 
number.

4.	 Slip velocity has increasing effects on velocity profile while 
decreasing on pressure gradient and wall shearing stress.

The present study recovers the theoretical and experimental results 

for the velocity profile, pressure gradient and wall shear stress of (10) 
as a major case for = 0α∗ , * = 0β .

variation of time t shows the constriction development
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