Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Research Article Volume 1 Issue 1

Dynamic modeling of nitrogen adsorption on zeolite 13x bed

Iman Ahmadi Kakavandi,1 Ehsan Javadi Shokroo,2 Mehdi Baghbani,3 Mehdi Farniaei4

1Commercialization Department, FAPKCO Engineering Group, Iran
2Research Team, FAPKCO Engineering Group, Iran
3Support Team, FAPKCO Engineering Group, Iran
4Research Team, FAPKCO Engineering Group, Iran

Correspondence: Ehsan Javadi Shokroo, FAPKCO Engineering Group, Sanaye Sq., Mirzaye Shirazi Blvd., Shiraz, Fars, Iran, Tel (+)989178688600, Fax (+)987136362782

Received: June 10, 2017 | Published: September 1, 2017

Citation: Kakavandi IA, Shokroo EJ, Baghbani M, et al. Dynamic modeling of nitrogen adsorption on zeolite 13x bed. Fluid Mech Res Int. 2017;1(1):20-24. DOI: 10.15406/fmrij.2017.01.00004

Download PDF

Abstract

Generally, the common adsorption processes of air separation are divided into two categories: The first category is consists of processes which make use of zeolites as nitrogen adsorbent under the equilibrium conditions and oxygen is a process product. The second one contains processes which utilize Carbon Molecular Sieves (CMSs) as oxygen adsorbent. Zeolite 13X is the most commonly adsorbent used in the air separation for oxygen production. In this work, nitrogen adsorption behavior on zeolite 13X bed is simulated. Desorption and adsorption dynamics of zeolite 13X was investigated in order to study the behavior of this zeolite. The simulation results showed that the high Roll-up Phenomena occurs for oxygen than nitrogen. There is a large mass transfer zone (MTZ) for zeolite 13X. Therefore, the adsorption rate of zeolite 13X is high. The main drop of nitrogen concentration in the outlet of zeolite 13X occurs at the time of about 125 seconds. Nitrogen concentration in the outlet of zeolite 13X approaches zero after about 180 seconds.

Keywords: Nitrogen Adsorption; Zeolite 13X; Simulation Study

Introduction

Oxygen is one of the most important products in chemical industries. This chemical element is used in various processes such as: refinery industries, manufacturing metal and other industrial operations. For instance, oxygen with high purity is utilized in different chemical processes like: steel construction, paper industries, wastewater treatment and glass production. In 1907, oxygen was produced for the first time, when Linde built a first cryogenic distillation bed for air separation.1 Zeolite 13X is the most commonly adsorbent used in the air separation for oxygen production. The unique properties of zeolites are originated from this fact that their surfaces are formed with negatively charged oxides. Moreover, the presence of isolated cations above their surface structure is another reason for their uniqueness. Zeolites are aluminosilicate crystallines of alkaline or earth alkaline elements such as sodium, potassium and calcium.

Generally, the common adsorption processes of air separation are divided into two categories:

  1. The first category is consists of processes which make use of zeolites as nitrogen adsorbent under the equilibrium conditions and oxygen is a process product.
  2. The second one contains processes which utilize Carbon Molecular Sieves (CMSs) as oxygen adsorbent. Based on kinetic separation in this kind of category, oxygen is adsorbed owing to its faster permeation and higher selectivity. Moreover, nitrogen is produced as a product in such these processes.

The unique properties of zeolites originate fromthe fact that their surfaces are formed with negatively charged oxides. Moreover, the presence of isolated cations above their surface structure is another reason for their uniqueness. Despite the known selectivity of N2/O2 by zeolites, there had not been progress in the case of air separation by adsorption process until 1960, even after the innovation of synthetic zeolites A and X and cycles of PSA. The innovation of zeolites A and X by Milton1 in1959 created conditions which were always available. By the enthusiasm of these innovations, the industrial ideologist was ​​encouraged to examine the feasibility of air separation at ambient temperature by applying adsorption processes (in contrast to 77 k for cryogenic processes).

Zeolite 13X is the most commonly used adsorbent in the air separation for oxygen production. Zeolites are aluminosilicate crystallines of alkaline or earth alkaline elements such as sodium, potassium and calcium. Detailed description of zeolites structure is accessible in relevant sources.2,3 There are a lot of studies which have been done on the separation of oxygen from air.4-18

Oxygen is one of the most important products in chemical industries. This chemical element is used in various processes such as: refinery industries, manufacturing metal and other industrial operations. For instance, oxygen with high purity is utilized in different chemical processes like: steel construction, paper industries, wastewater treatment and glass production. In 1907, oxygen was produced for the first time, when Linde built a first cryogenic distillation bed for air separation1

In this work, the adsorption of nitrogen using zeolite 13X as adsorbents is simulated. The dynamic of nitrogen adsorption is examined. The simulated PSA process is depicted in Figure 1.

Figure 1 Schematic diagram of the adsorption bed.3

Mathematical Model

In order to develop a mathematical model for an adsorption bed, the following assumptions were made:

  1. Gas behaves as an ideal gas;
  2. The flow pattern is axially assumed as plug-flow model;
  3. Equilibrium equations for air are expressed as triple Langmuir-Freundlich isotherm (oxygen, nitrogen and argon);
  4. Rate of mass transfer is presented by linear driving force (LDF) relations;
  5. Bed is clean at initial state and there is no gas flow in it;
  6. Air is considered a mixture of oxygen and argon (21 %) and nitrogen (79 %) as feed.

According to these assumptions, dynamic behavior of system in terms of mass, energy and momentum balances can be expressed as follows:

Dimensionless partial mass balance for gas phase in the adsorption bed is:2,9,10,11

( 1 P e m ). 2 y i z 2 + y i . u z + u .( y i z + y i .( 1 P . P z 1 T . T z ) )+ y i τ + y i .( 1 P . P τ 1 T . T τ )+( ρ p .R. T 0 . T P 0 . P ).( 1ε ε ).( q m,i . q i τ + q i . q m,i τ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYBH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsacq GHsislkmaabmaajaaybaGcdaWcaaqcaawaaKqzGeGaaGymaaqcaawa aKqzGeGaamiuaSWaa0baaKazba4=baqcLbmacaWGLbaajqwaa+FaaK qzadGaamyBaaaaaaaajaaycaGLOaGaayzkaaqcLbsacaGGUaGcdaWc aaqcaawaaKqzGeGaeyOaIyRcdaahaaqcbawabKazba4=baqcLbmaca aIYaaaaKqzGeGaamyEaOWaaSbaaKazba4=baqcLbmacaWGPbaajeay beaaaKaaGfaajugibiabgkGi2MqzadGabmOEayaataWcdaahaaqcKf aG=hqabaqcLbmacaaIYaaaaaaajugibiabgUcaRiaadMhakmaaBaaa jqwaa+FaaKqzadGaamyAaaqcbawabaqcLbsacaGGUaGcdaWcaaqcaa waaKqzGeGaeyOaIyRabmyDayaataaajaaybaqcLbsacqGHciITceWG 6bGbambaaaGaey4kaSIabmyDayaataGaaiOlaOWaaeWaaKaaGfaakm aalaaajaaybaqcLbsacqGHciITcaWG5bGcdaWgaaqcKfaG=haajugW aiaadMgaaKqaGfqaaaqcaawaaKqzGeGaeyOaIyRabmOEayaataaaai abgUcaRiaadMhakmaaBaaajqwaa+FaaKqzadGaamyAaaqcbawabaqc LbsacaGGUaGcdaqadaqcaawaaOWaaSaaaKaaGfaajugibiaaigdaaK aaGfaajugibiqadcfagaWeaaaacaGGUaGcdaWcaaqcaawaaKqzGeGa eyOaIyRabmiuayaataaajaaybaqcLbsacqGHciITceWG6bGbambaaa GaeyOeI0IcdaWcaaqcaawaaKqzGeGaaGymaaqcaawaaKqzGeGabmiv ayaataaaaiaac6cakmaalaaajaaybaqcLbsacqGHciITceWGubGbam baaKaaGfaajugibiabgkGi2kqadQhagaWeaaaaaKaaGjaawIcacaGL PaaaaiaawIcacaGLPaaajugibiabgUcaROWaaSaaaKaaGfaajugibi abgkGi2kaadMhakmaaBaaajqwaa+FaaKqzadGaamyAaaqcbawabaaa jaaybaqcLbsacqGHciITcqaHepaDaaGaey4kaScakeaajugibiaadM hakmaaBaaajqwaa+FaaKqzadGaamyAaaqcbawabaqcLbsacaGGUaGc daqadaqcaawaaOWaaSaaaKaaGfaajugibiaaigdaaKaaGfaajugibi qadcfagaWeaaaacaGGUaGcdaWcaaqcaawaaKqzGeGaeyOaIyRabmiu ayaataaajaaybaqcLbsacqGHciITcqaHepaDaaGaeyOeI0IcdaWcaa qcaawaaKqzGeGaaGymaaqcaawaaKqzGeGabmivayaataaaaiaac6ca kmaalaaajaaybaqcLbsacqGHciITceWGubGbambaaKaaGfaajugibi abgkGi2kabes8a0baaaKaaGjaawIcacaGLPaaajugibiabgUcaROWa aeWaaKaaGfaakmaalaaajaaybaqcLbsacqaHbpGCkmaaBaaajqwaa+ FaaKqzadGaamiCaaqcbawabaqcLbsacaGGUaGaamOuaiaac6cacaWG ubGcdaWgaaqcKfaG=haajugWaiaaicdaaKqaGfqaaKqzGeGaaiOlai qadsfagaWeaaqcaawaaKqzGeGaamiuaOWaaSbaaKazba4=baqcLbma caaIWaaajeaybeaajugibiaac6caceWGqbGbambaaaaajaaycaGLOa GaayzkaaqcLbsacaGGUaGcdaqadaqcaawaaOWaaSaaaKaaGfaajugi biaaigdacqGHsislcqaH1oqzaKaaGfaajugibiabew7aLbaaaKaaGj aawIcacaGLPaaajugibiaac6cakmaabmaajaaybaqcLbsacaWGXbGc daWgaaqcbawaaKqzGeGaamyBaiaacYcacaWGPbaajeaybeaajugibi aac6cakmaalaaajaaybaqcLbsacqGHciITceWGXbGbambakmaaBaaa jqwaa+FaaKqzadGaamyAaaqcbawabaaajaaybaqcLbsacqGHciITcq aHepaDaaGaey4kaSIabmyCayaataGcdaWgaaqcKfaG=haajugWaiaa dMgaaKqaGfqaaKqzGeGaaiOlaOWaaSaaaKaaGfaajugibiabgkGi2k aadghalmaaBaaajqwaa+FaaKqzadGaamyBaiaacYcacaWGPbaajqwa a+FabaaajaaybaqcLbsacqGHciITcqaHepaDaaaajaaycaGLOaGaay zkaaqcLbsacqGH9aqpcaaIWaaaaaa@27A4@    (1)

Dimensionless equilibrium loading of ith component for solid phase in the adsorption bed is:

q m,i τ = q m,i T × T τ = k 2,i T 0 × T τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaja aybaqcLbsacqGHciITcaWGXbqcfa4aaSbaaKazba4=baqcLbmacaWG TbGaaiilaiaadMgaaKqaGfqaaaqcaawaaKqzGeGaeyOaIyRaeqiXdq haaiabg2da9KqbaoaalaaajaaybaqcLbsacqGHciITcaWGXbWcdaWg aaqcKfaG=haajugWaiaad2gacaGGSaGaamyAaaqcKfaG=hqaaaqcaa waaKqzGeGaeyOaIyRabmivayaataaaaiabgEna0Mqbaoaalaaajaay baqcLbsacqGHciITceWGubGbambaaKaaGfaajugibiabgkGi2kabes 8a0baacqGH9aqpcaWGRbqcfa4aaSbaaKazba4=baqcLbmacaaIYaGa aiilaiaadMgaaKqaGfqaaKqzGeGaamivaKqbaoaaBaaajqwaa+FaaK qzadGaaGimaaqcbawabaqcLbsacqGHxdaTjuaGdaWcaaqcaawaaKqz GeGaeyOaIyRabmivayaataaajaaybaqcLbsacqGHciITcqaHepaDaa aaaa@788C@       (2)

Dimensionless loading of ith component for solid phase in the adsorption bed is (LDF relation):

q i τ = α i .( β i . y i ni 1+ j=1 N β j . y j nj q i )( q i q m,i . q m,i τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaja aybaqcLbsacqGHciITceWGXbGbambajuaGdaWgaaqcKfaG=haajugW aiaadMgaaKqaGfqaaaqcaawaaKqzGeGaeyOaIyRaeqiXdqhaaiabg2 da9iabeg7aHLqbaoaaBaaajqwaa+FaaKqzadGaamyAaaqcbawabaqc LbsacaGGUaqcfa4aaeWaaKaaGfaajuaGdaWcaaqcaawaaKqzGeGaeq OSdiwcfa4aaSbaaKazba4=baqcLbmacaWGPbaajeaybeaajugibiaa c6cacaWG5bqcfa4aaSbaaKazba4=baqcLbmacaWGPbaajeaybeaaju aGdaahaaqcbawabKazba4=baqcLbmacaWGUbGaamyAaaaaaKaaGfaa jugibiaaigdacqGHRaWkjuaGdaaeWbqcaawaaKqzGeGaeqOSdiwcfa 4aaSbaaKazba4=baqcLbmacaWGQbaajeaybeaajugibiaac6cacaWG 5bqcfa4aaSbaaKazba4=baqcLbmacaWGQbaajeaybeaajuaGdaahaa qcbawabKazba4=baqcLbmacaWGUbGaamOAaaaaaKqaGfaajugibiaa dQgacqGH9aqpcaaIXaaajeaybaqcLbsacaWGobaacqGHris5aaaacq GHsislceWGXbGbambajuaGdaWgaaqcKfaG=haajugWaiaadMgaaKqa GfqaaaqcaaMaayjkaiaawMcaaKqzGeGaeyOeI0scfa4aaeWaaKaaGf aajuaGdaWcaaqcaawaaKqzGeGabmyCayaataqcfa4aaSbaaKazba4= baqcLbmacaWGPbaajeaybeaaaKaaGfaajugibiaadghajuaGdaWgaa qcKfaG=haajugWaiaad2gacaGGSaGaamyAaaqcbawabaaaaKqzGeGa aiOlaKqbaoaalaaajaaybaqcLbsacqGHciITcaWGXbqcfa4aaSbaaK azba4=baqcLbmacaWGTbGaaiilaiaadMgaaKqaGfqaaaqcaawaaKqz GeGaeyOaIyRaeqiXdqhaaaqcaaMaayjkaiaawMcaaaaa@B10C@            (3)

According to equation (3), the LDF relation depends on various parameters such as: equilibrium parameter for the Langmuir model, mole fraction of species i in the gas phase, average amount adsorbed and equilibrium parameter for the Langmuir model.

The equilibrium of triple Langmuir-Freundlich isotherm is as follows:

q ^ i * = β i y i ni 1+ j=1 N β j . y j nj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGXb GbaKaajuaGdaqhaaqcbasaaKqzadGaamyAaaqcbasaaKqzadGaaiOk aaaajugibiabg2da9Kqbaoaalaaakeaajugibiabek7aITWaaSbaaK qaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaamyEaSWaa0baaKqaGeaa jugWaiaadMgaaKqaGeaajugWaiaad6gacaWGPbaaaaGcbaqcLbsaca aIXaGaey4kaSscfa4aaabCaOqaaKqzGeGaeqOSdi2cdaWgaaqcbasa aKqzadGaamOAaaqcbasabaqcLbsacaGGUaGaamyEaSWaa0baaKqaGe aajugWaiaadQgaaKqaGeaajugWaiaad6gacGaJaoOAaaaaaSqaaKqz GeGaamOAaiabg2da9iaaigdaaSqaaKqzGeGaamOtaaGaeyyeIuoaaa aaaa@6246@               (4)

Where β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabek7aIbaa@3846@ , n and qm are as follows:

q m,i = k 1 + k 2 T 0 T ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb qcfa4aaSbaaKqaGeaajugWaiaad2gacaGGSaGaamyAaaWcbeaajugi biabg2da9iaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaju gibiabgUcaRiaadUgajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaa jugibiaadsfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibi qadsfagaqcaaaa@4C4A@                 (5)

β i = k 3 exp( k 4 T 0 T ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GyjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugibiabg2da9iaa dUgajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaajugibiGacwgaca GG4bGaaiiCaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWGRbqc fa4aaSbaaKqaGeaajugWaiaaisdaaSqabaaakeaajugibiaadsfaju aGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiqadsfagaqcaaaa aOGaayjkaiaawMcaaaaa@50BC@               (6)

n= k 5 + k 6 T 0 T ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb Gaeyypa0Jaam4AaKqbaoaaBaaajeaibaqcLbmacaaI1aaaleqaaKqz GeGaey4kaSscfa4aaSaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaiba qcLbmacaaI2aaaleqaaaGcbaqcLbsacaWGubqcfa4aaSbaaKqaGeaa jugWaiaaicdaaSqabaqcLbsaceWGubGbaKaaaaaaaa@485F@                         (7)

Adsorption isotherm parameters and diffusion rate constants of oxygen, nitrogen and argon over zeolite 13X is presented in Table 1.

Parameters

N2

O2

k1×103 (mol/g)

12.52

6.705

k2×105 (mol/g.K)

-1.785

-1.435

k3×104 (1/atm)

2.154

3.253

k4 (K)

2333

1428

k5

1.666

-0.3169

k6 (K)

-245.2

387.8

Heat of adsorption, (cal/mol)

4390

3060

LDF constant (s-1)

0.197

0.62

Table 1 Equilibrium parameters and adsorption heat of oxygen, nitrogen and argon on zeolite 13X12

Overall dimensionless mass balance for gas phase in the adsorption bed is:4,12,13,14

( 1 P ). P τ + u z + u P . P z ( 1 T ).( T τ + u T z )+( ρ p .R. T 0 . T P 0 . P ).( 1ε ε ). i=1 3 ( q m,i . q i τ + q i . q m,i τ ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaKaaGfaajuaGdaWcaaqcaawaaKqzGeGaaGymaaqcaawaaKqzGeGa bmiuayaataaaaaqcaaMaayjkaiaawMcaaKqzGeGaaiOlaKqbaoaala aajaaybaqcLbsacqGHciITceWGqbGbambaaKaaGfaajugibiabgkGi 2kabes8a0baacqGHRaWkjuaGdaWcaaqcaawaaKqzGeGaeyOaIyRabm yDayaataaajaaybaqcLbsacqGHciITceWG6bGbambaaaGaey4kaSsc fa4aaSaaaOqaaKqzGeGabmyDayaataaakeaajugibiqadcfagaWeaa aacaGGUaqcfa4aaSaaaKaaGfaajugibiabgkGi2kqadcfagaWeaaqc aawaaKqzGeGaeyOaIyRabmOEayaataaaaiabgkHiTKqbaoaabmaaja aybaqcfa4aaSaaaKaaGfaajugibiaaigdaaKaaGfaajugibiqadsfa gaWeaaaaaKaaGjaawIcacaGLPaaajugibiaac6cajuaGdaqadaqcaa waaKqbaoaalaaajaaybaqcLbsacqGHciITceWGubGbambaaKaaGfaa jugibiabgkGi2kabes8a0baacqGHRaWkceWG1bGbambajuaGdaWcaa qcaawaaKqzGeGaeyOaIyRabmivayaataaajaaybaqcLbsacqGHciIT ceWG6bGbambaaaaajaaycaGLOaGaayzkaaqcLbsacqGHRaWkjuaGda qadaqcaawaaKqbaoaalaaajaaybaqcLbsacqaHbpGCjuaGdaWgaaqc bawaaKqzGeGaamiCaaqcbawabaqcLbsacaGGUaGaamOuaiaac6caca WGubqcfa4aaSbaaKqaGfaajugibiaaicdaaKqaGfqaaKqzGeGaaiOl aiqadsfagaWeaaqcaawaaKqzGeGaamiuaKqbaoaaBaaajeaybaqcLb sacaaIWaaajeaybeaajugibiaac6caceWGqbGbambaaaaajaaycaGL OaGaayzkaaqcLbsacaGGUaqcfa4aaeWaaKaaGfaajuaGdaWcaaqcaa waaKqzGeGaaGymaiabgkHiTiabew7aLbqcaawaaKqzGeGaeqyTduga aaqcaaMaayjkaiaawMcaaKqzGeGaaiOlaaGcbaqcfa4aaabCaKaaGf aajuaGdaqadaqcaawaaKqzGeGaiWiGdghalmacmc4gaaqcKfaG=hac mcycLbmacGaJaoyBaiacmcOGSaGaiWiGdMgaaKazba4=bKaJacqcLb sacGaJakOlaKqbaoacmc4caaqcaawaiWiGjugibiadmcOHciITcKaJ aoyCayacmc4eaKqbaoacmc4gaaqcKfaG=hacmcycLbmacGaJaoyAaa qcbawajWiGaaqcaawaiWiGjugibiadmcOHciITcWaJasiXdqhaaiad mcOHRaWkcKaJaoyCayacmc4eaKqbaoacmc4gaaqcKfaG=hacmcycLb macGaJaoyAaaqcbawajWiGaKqzGeGaiWiGc6cajuaGdGaJaUaaaKaa GfacmcycLbsacWaJaAOaIyRaiWiGdghajuaGdGaJaUbaaKazba4=bG aJaMqzadGaiWiGd2gacGaJakilaiacmc4GPbaajeaybKaJacaajaay bGaJaMqzGeGamWiGgkGi2kadmciHepaDaaaajaaycaGLOaGaayzkaa aajeaybaqcLbsacaWGPbGaeyypa0JaaGymaaqcbawaaKqzGeGaaG4m aaGaeyyeIuoacqGH9aqpcaaIWaaaaaa@08BF@      (8)

Dimensionless energy balance for gas phase in the adsorption bed is:5-7,10,16

( 1 P e h ). 2 T z 2 +ε.( u T z + T u z )+( ε t + ρ B . c p,s ρ g . c p,g ). T τ ( ρ B T 0 . ρ g . c p,g ). i=1 3 [ ( q m,i . q i τ + q i . q m,i τ ).( Δ H ¯ i ) ] +( 2 h i .L R B,i . U 0 . ρ g . c p,g ).( T T w )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsacq GHsisljuaGdaqadaqcaawaaKqbaoaalaaajaaybaqcLbsacaaIXaaa jaaybaqcLbsacaWGqbqcfa4aa0baaKazba4=baqcLbmacaWGLbaajq waa+FaaKqzadGaamiAaaaaaaaajaaycaGLOaGaayzkaaqcLbsacaGG Uaqcfa4aaSaaaKaaGfaajugibiabgkGi2MqbaoaaCaaajeaybeqcKf aG=haajugWaiaaikdaaaqcLbsaceWGubGbambaaKaaGfaajugibiab gkGi2kqadQhagaWeaKqbaoaaCaaajeaybeqcKfaG=haajugWaiaaik daaaaaaKqzGeGaey4kaSIaeqyTduMaaiOlaKqbaoaabmaajaaybaqc LbsaceWG1bGbambajuaGdaWcaaqcaawaaKqzGeGaeyOaIyRaamivaa qcaawaaKqzGeGaeyOaIyRabmOEayaataaaaiabgUcaRiqadsfagaWe aKqbaoaalaaajaaybaqcLbsacqGHciITceWG1bGbambaaKaaGfaaju gibiabgkGi2kqadQhagaWeaaaaaKaaGjaawIcacaGLPaaajugibiab gUcaRKqbaoaabmaajaaybaqcLbsacqaH1oqzjuaGdaWgaaqcbawaaK qzGeGaamiDaaqcbawabaqcLbsacqGHRaWkjuaGdaWcaaqcaawaaKqz GeGaeqyWdixcfa4aaSbaaKazba4=baqcLbmacaWGcbaajeaybeaaju gibiaac6cacaWGJbWcdaWgaaqcKfaG=haajugWaiaadchacaGGSaGa am4CaaqcKfaG=hqaaaqcaawaaKqzGeGaeqyWdixcfa4aaSbaaKazba 4=baqcLbmacaWGNbaajeaybeaajugibiaac6cacaWGJbqcfa4aaSba aKazba4=baqcLbmacaWGWbGaaiilaiaadEgaaKqaGfqaaaaaaKaaGj aawIcacaGLPaaajugibiaac6cajuaGdaWcaaqcaawaaKqzGeGaeyOa IyRabmivayaataaajaaybaqcLbsacqGHciITcqaHepaDaaGaeyOeI0 scfa4aaeWaaKaaGfaajuaGdaWcaaqcaawaaKqzGeGaeqyWdi3cdaWg aaqcKfaG=haajugWaiaadkeaaKazba4=beaaaKaaGfaajugibiaads falmaaBaaajqwaa+FaaKqzadGaaGimaaqcKfaG=hqaaKqzGeGaaiOl aiabeg8aYLqbaoaaBaaajqwaa+FaaKqzadGaam4zaaqcbawabaqcLb sacaGGUaGaam4yaKqbaoaaBaaajqwaa+FaaKqzadGaamiCaiaacYca caWGNbaajeaybeaaaaaajaaycaGLOaGaayzkaaqcLbsacaGGUaaake aajuaGdaaeWbqcaawaaKqbaoaadmaajaaybaqcfa4aiWiGbmaajaay bGaJaMqzGeGaiWiGdghajuaGdGaJaUbaaKazba4=bGaJaMqzadGaiW iGd2gacGaJakilaiacmc4GPbaajeaybKaJacqcLbsacGaJakOlaKqb aoacmc4caaqcaawaiWiGjugibiadmcOHciITcKaJaoyCayacmc4eaS WaiWiGBaaajqwaa+FaiWiGjugWaiacmc4GPbaajqwaa+FajWiGaaqc aawaiWiGjugibiadmcOHciITcWaJasiXdqhaaiadmcOHRaWkcKaJao yCayacmc4eaKqbaoacmc4gaaqcbawaiWiGjugibiacmc4GPbaajeay bKaJacqcLbsacGaJakOlaKqbaoacmc4caaqcaawaiWiGjugibiadmc OHciITcGaJaoyCaKqbaoacmc4gaaqcKfaG=hacmcycLbmacGaJaoyB aiacmcOGSaGaiWiGdMgaaKqaGfqcmciaaKaaGfacmcycLbsacWaJaA OaIyRamWiGes8a0baaaKaaGjacmcOLOaGaiWiGwMcaaKqzGeGaaiOl aKqbaoaabmaajaaybaqcLbsacqGHsislcqqHuoarceWGibGbaebalm aaBaaajqwaa+FaaKqzadGaamyAaaqcKfaG=hqaaaqcaaMaayjkaiaa wMcaaaGaay5waiaaw2faaaqcbawaaKqzGeGaamyAaiabg2da9iaaig daaKqaGfaajugibiaaiodaaiabggHiLdGaey4kaSscfa4aaeWaaKaa GfaajuaGdaWcaaqcaawaaKqzGeGaaGOmaiaadIgalmaaBaaajqwaa+ FaaKqzadGaamyAaaqcKfaG=hqaaKqzGeGaaiOlaiaadYeaaKaaGfaa jugibiaadkfalmaaBaaajqwaa+FaaKqzadGaamOqaiaacYcacaWGPb aajqwaa+FabaqcLbsacaGGUaGaamyvaSWaaSbaaKazba4=baqcLbma caaIWaaajqwaa+FabaqcLbsacaGGUaGaeqyWdi3cdaWgaaqcKfaG=h aajugWaiaadEgaaKazba4=beaajugibiaac6cacaWGJbqcfa4aaSba aKazba4=baqcLbmacaWGWbGaaiilaiaadEgaaKqaGfqaaaaaaKaaGj aawIcacaGLPaaajugibiaac6cajuaGdaqadaqcaawaaKqzGeGabmiv ayaataGaeyOeI0IabmivayaataWcdaWgaaqcKfaG=haajugWaiaadE haaKazba4=beaaaKaaGjaawIcacaGLPaaajugibiabg2da9iaaicda aaaa@8E90@                   (9)

Dimensionless energy balance for the wall of adsorption bed is:

T w τ =[ 2π. R B,i . h i .L ρ w . c p,w . A w . U 0 ].( T T w )[ 2π. R B,o . h o .L ρ w . c p,w . A w . U 0 ].( T w T atm T 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuYhk8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaK aa9faajugibiabgkGi2kqadsfagaWeaKqbaoaaBaaajeGybaqcLbsa caWG3baajeGEbeaaaKaa9faajugibiabgkGi2kabes8a0baacqGH9a qpjuaGdaWadaqca0xaaKqbaoaalaaajaqFbaqcLbsacaaIYaGaeqiW daNaaiOlaiaadkfalmaaBaaajeqFbaqcLbmacaWGcbGaaiilaiaadM gaaKqa9fqaaKqzGeGaaiOlaiaadIgalmaaBaaajeqFbaqcLbmacaWG PbaajeqFbeaajugibiaac6cacaWGmbaajaqFbaqcLbsacqaHbpGCju aGdaWgaaqcb0xaaKqzadGaam4Daaqcb0xabaqcLbsacaGGUaGaam4y aKqbaoaaBaaajeqFbaqcLbmacaWGWbGaaiilaiaadEhaaKqa9fqaaK qzGeGaaiOlaiaadgeajuaGdaWgaaqcb0xaaKqzadGaam4Daaqcb0xa baqcLbsacaGGUaGaamyvaSWaaSbaaKqa9faajugWaiaaicdaaKqa9f qaaaaaaKaa9jaawUfacaGLDbaajugibiaac6cajuaGdaqadaqca0xa aKqzGeGabmivayaataGaeyOeI0IabmivayaataWcdaWgaaqcb0xaaK qzadGaam4Daaqcb0xabaaajaqFcaGLOaGaayzkaaqcLbsacqGHsisl juaGdaWadaqca0xaaKqbaoaalaaajaqFbaqcLbsacaaIYaGaeqiWda NaaiOlaiaadkfalmaaBaaajeqFbaqcLbmacaWGcbGaaiilaiaad+ga aKqa9fqaaKqzGeGaaiOlaiaadIgajuaGdaWgaaqcb0xaaKqzadGaam 4Baaqcb0xabaqcLbsacaGGUaGaamitaaqca0xaaKqzGeGaeqyWdi3c daWgaaqcb0xaaKqzadGaam4Daaqcb0xabaqcLbsacaGGUaGaam4yaS WaaSbaaKqa9faajugWaiaadchacaGGSaGaam4Daaqcb0xabaqcLbsa caGGUaGaamyqaSWaaSbaaKqa9faajugWaiaadEhaaKqa9fqaaKqzGe GaaiOlaiaadwfalmaaBaaajeqFbaqcLbmacaaIWaaajeqFbeaaaaaa jaqFcaGLBbGaayzxaaqcLbsacaGGUaqcfa4aaeWaaKaa9faajugibi qadsfagaWeaSWaaSbaaKqa9faajugWaiaadEhaaKqa9fqaaKqzGeGa eyOeI0scfa4aaSaaaKaa9faajugibiaadsfajuaGdaWgaaqcb0xaaK qzadGaamyyaiaadshacaWGTbaajeqFbeaaaKaa9faajugibiaadsfa juaGdaWgaaqcb0xaaKqzadGaaGimaaqcb0xabaaaaaqca0Naayjkai aawMcaaaaa@C6A6@                            (10)

Cross-sectional area of adsorption bed wall is:

A w =π.( R B,o 2 R B,i 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYBH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqaO WaaSbaaKqaGeaajugWaiaadEhaa4qabaqcLbsacqGH9aqpcqaHapaC caGGUaGcdaqadaGdbaqcLbsacaWGsbWcdaqhaaqcbasaaKqzadGaam OqaiaacYcacaWGVbaajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0Ia amOuaSWaa0baaKqaGeaajugWaiaadkeacaGGSaGaamyAaaqcbasaaK qzadGaaGOmaaaaa4GaayjkaiaawMcaaaaa@4EFB@                              (11)

Ergun equation is utilized in order to investigate the pressure drop across the adsorption bed8,9

d P d z =[ a.μ. U 0 . u +b.ρ. U 0 2 . u .| u | ].( L P 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuYhk8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi sljuaGdaWcaaqca0xaaKqzGeGaamizaiqadcfagaWeaaqca0xaaKqz GeGaamizaiqadQhagaWeaaaacqGH9aqpjuaGdaWadaqca0xaaKqzGe Gaamyyaiaac6cacqaH8oqBcaGGUaGaamyvaKqbaoaaBaaajeaDbaqc LDracaaIWaaajeqFbeaajugibiaac6caceWG1bGbambacqGHRaWkca WGIbGaaiOlaiabeg8aYjaac6cacaWGvbqcfa4aa0baaKqa0faaju2f biaaicdaaKqa0faaju2fbiaaikdaaaqcLbsacaGGUaGabmyDayaata GaaiOlaiaacYhaceWG1bGbambacaGG8baajaqFcaGLBbGaayzxaaqc LbsacaGGUaqcfa4aaeWaaKaa9faajuaGdaWcaaqca0xaaKqzGeGaam itaaqca0xaaKqzGeGaamiuaKqbaoaaBaaajeaDbaqcLDracaaIWaaa jeqFbeaaaaaajaqFcaGLOaGaayzkaaaaaa@6A95@                        (12)

a= 150 4 R p 2 . (1ε) 2 ε 2 ;b=1.75 (1ε) 2 R p ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuYhk8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb Gaeyypa0tcfa4aaSaaaKaa9faajugibiaaigdacaaI1aGaaGimaaqc a0xaaKqzGeGaaGinaiaadkfalmaaDaaajeaDbaqcLbmacaWGWbaaje aDbaqcLbmacaaIYaaaaaaajugibiaac6cajuaGdaWcaaqca0xaaKqz GeGaaiikaiaaigdacqGHsislcqaH1oqzcaGGPaqcfa4aaWbaaKqa9f qajeaDbaqcLbmacaaIYaaaaaqca0xaaKqzGeGaeqyTduwcfa4aaWba aKqa9fqajeaDbaqcLbmacaaIYaaaaaaajugibiaacUdacaWGIbGaey ypa0JaaGymaiaac6cacaaI3aGaaGynaKqbaoaalaaajaqFbaqcLbsa caGGOaGaaGymaiabgkHiTiabew7aLjaacMcaaKaa9faajugibiaaik dacaWGsbWcdaWgaaqcb0xaaKqzadGaamiCaaqcb0xabaqcLbsacqaH 1oqzaaaaaa@6BF3@                     (13)

Physical properties of adsorbents and characteristics of adsorption bed are depicted in Tables 2 & 3, respectively.

Characteristic

Zeolite 13X

Type

Sphere

Average pellet size, RP (cm)

0.07

Pellet density, ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaamiCaaWcbeaaaaa@3B4C@ (g/cm3)

1.17

Heat capacity, Cps (cal/g.K)

0.32

Bed porosity, ε

0.391

Bed density, ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaamOqaaWcbeaaaaa@3B1E@ (g/cm3)

0.713

Table 2 Physical properties of bed and adsorbent12

Characteristic

Zeolite 13X

Length, L (cm)

76

Inside radius, RBi (cm)

2.138

Outside radius, RBo (cm)

2.415

Heat capacity of the column, Cpw (cal/g.K)

0.12

Density of column, ρ W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaam4vaaWcbeaaaaa@3B33@ (g/cm3)

7.83

Internal heat-transfer coefficient, hi (cal/cm2.K.s)

9.2 × 10-4

External heat-transfer coefficient, ho (cal/ cm2.K.s)

3.4 × 10-4

Axial thermal conductivity, KL (cal/cm.s.K)

6.2 ×10-5

Axial dispersion coefficient, DL (cm2/s)

1 × 10-5

Table 3 Adsorption bed properties21

Results and Discussion

The fourth order Runge-Kutta Gill scheme was used to solve a mathematical model considered as coupled partial differential equations. The experimental data obtained from literatures has been simulated in order to validate the simulation results in this study9,12,13 An experimental and simulation study of a PSA unit which is running a traditional Skarstrom cycle and a Skarstrom cycle with co-current equalization owing to separate oxygen from air using a 5A zeolite has been proposed by Mendes et al.9 Moreover, a small-scale two-bed six-step PSA process using zeolite 13X was performed by Jee et al.20 in order to provide oxygen-enriched air. They showed that there is a strong effect of feed flow rate on O2 purity.12 The effects of adsorption and desorption on zeolite 5A and CMS beds were investigated in a mixture of N2/O2/Ar by Jee et al.13 A non-isothermal mathematical model was applied in order to simulate the adsorption dynamics in their studies.

Figures 2(a)& 2(b) indicate the effect of product flow rate and P/F on the purity and recovery of oxygen during PSA process, respectively. The impact of temperature variations in gas phase during adsorption as a function of time is illustrated in Figure 2(c). It is obviously seen that there is a relatively high accuracy in the simulation of experimental data21

Figure 2a Numerical simulation of experimental data in this work.9

Figure 2b Numerical simulation of experimental data in this work.12

Figure 2c Numerical simulation of experimental data in this work.13

Breakthrough curves for nitrogen and oxygen on zeolite 13X is shown in Figure 3. The term "break-through time" is originated from the response of initially cleaned bed per a flow with a constant composition. As an initial condition, it is assumed that the adsorption bed is pressurized with a non-adsorptive gas. As shown in Figure 3, oxygen exits from the top of zeolite 13X earlier than nitrogen at a time of approximately 230 seconds.21

Figure 3 The simulated breakthrough curves of zeolite 13X for oxygen and nitrogen at adsorption pressure of 6 bar and feed flow rate of 5 LSTP/min. The adsorption bed was initially saturated with a non-adsorptive gas.

As time is passing, High Roll-up Phenomena is observed in the case of oxygen. Owing to High Roll-up Phenomena effect, oxygen concentration is approximately 4.5 times more than feed concentration during the time of 400-500 seconds. Occurring High Roll-up Phenomena in the case of oxygen is due to this fact that there is a competitive adsorption between oxygen and nitrogen molecules to be adsorbed on the adsorbent. Oxygen is affected by the High Roll-up Phenomena because nitrogen adsorption on the adsorbent sites is much more than oxygen adsorption. Therefore, oxygen concentration is relatively increased rather than feed concentration. While time reaches nitrogen breakthrough at the time of 550 seconds, oxygen concentration is starting to be reduced. As clearly shown in Figure 3, the High Roll-up Phenomena does not occur in the case of nitrogen due to its strong adsorption on zeolite 13X adsorbent.

The adsorption capacity in the adsorption bed depends on the factors such as pressure, temperature, flow rate.2,12 Actually, the adsorption and desorption cycle of a PSA system operates by pressure increasing and decreasing. Adsorption and desorption phenomenon are inherently exothermic and endothermic, respectively. Therefore, optimal setting of temperature is very important owing to better performance of adsorption and desorption phenomenon. On the other hand, the adsorption of impurities on the adsorbent bed is a function of retention time on the adsorbent. Consequently, the flow rate factor is necessary for better performance of system. The concentration of nitrogen on zeolite 13X in terms of different adsorption pressures and time is presented in Figure 4. As pressure increases, the adsorption rate of more strongly adsorbed component increases2,12 As it is expected, nitrogen adsorption capacity on zeolite 13X enhances with pressure increasing. Oxygen concentration along the bed length for zeolite 13X in different times have been depicted in Figure 5. Obviously, the slope of oxygen concentration curves is fast. The small MTZ for zeolite 13X has larg adsorption rate. In the dynamic study of adsorption beds it is considerable to investigate desorption curves. The desorption curve of zeolite 13X is illustrated in Figure 6. In order to simulate desorption over the beds, it is assumed that a pure inert gas is utilized for cleaning the beds. By passing the inert gas through the bed in a pressure of 0.1 bars, nitrogen with high concentration is first desorbed from top of the bed. As nitrogen is desorbed, a little adsorbed oxygen is removed from the bed with nitrogen. As time passes and the desorbed volume of nitrogen and oxygen gases decreases, the concentration of inert gas in the outlet of bed begins to increase.

Figure 4 The outlet mole fraction of nitrogen form zeolite 13X at different adsorption pressures and feed flow rate of 4 LSTP/min. The adsorption bed was initially saturated with a non-adsorptive gas.

Figure 5 Distribution of oxygen concentration along the length of zeolite 13X during adsorption process in different times. The feed flow rate is 5 LSTP/min and the adsorption pressure is 6 bar.

Figure 6 The outlet simulated concentration of gas phase from zeolite 13X during desorption at pressure of 0.1 bar. The desorption bed was completely clean in the initial state.

By referring to Figure 6:

  1. The main drop of nitrogen concentration in the outlet of zeolite 13X occurs at the time of about 125 seconds;
  2. Nitrogen concentration in the outlet of zeolite 13X approaches zero after about 180 seconds

Conclusion

Nitrogen adsorption on zeolite 13X bed is simulated. Desorption and adsorption dynamics of zeolite 13X was investigated in order to study the behavior of this zeolite.

The results obtained from dynamic simulation of bed showed that:

The High Roll-up Phenomena occurs for oxygen than nitrogen. There is a large mass transfer zone (MTZ) for zeolite 13X. Therefore, the adsorption rate of zeolite 13X is high. The main drop of nitrogen concentration in the outlet of zeolite 13X occurs at the time of about 125 seconds. Nitrogen concentration in the outlet of zeolite 13X approaches zero after about 180 seconds.28-31

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflicts of interest.

References

  1. RM Milton. US Patent No. 2,882,243. 1959.
  2. Ruthven DM, Farooq S, Knaebel KS. Pressure Swing Adsorption. New York: VCH Publications. 1994. 352 p.
  3. DM Ruthven. Principle of Adsorption and Adsorption Processes. USA: John Wiley & Sons. 1984. 453 p.
  4. CT Chou, Wen Chun Huang. Simulation of a Four-Bed Pressure Swing Adsorption Process for Oxygen Enrichment. Industrial & Engineering Chemistry Research. 1994;33(5):1250‒1258.
  5. L Lin. Numerical Simulation of Pressure Swing Adsorption Process. Dissertation Presented for the Degree of Bachelor of Science. XIDIAN University, China; 1997. 122 p.
  6. JA Ritter, Yujun Liu. Tapered Pressure Swing Adsorption Columns for Simultaneous Air Purification and Solvent Vapor Recovery. Ind Eng Chem Res. 1998;37(7):2783‒2791.
  7. KG Teague, TF Edgar. Predictive Dynamic Model of a Small Pressure Swing Adsorption. Ind Eng Chem Res. 1999;38(10):3761‒3775.
  8. AMM Mendes, CAV Costa, AE Rodrigues. Analysis of Nonisobaric Steps in Nonlinear Bicomponent Pressure Swing Adsorption Systems: Application to Air Separation. Ind Eng Chem Res. 2000;39(1):138‒145.
  9. AMM Mendes, CAV Costa, AE Rodrigues. Oxygen Separation from Air by PSA: Modeling and Experimental Results Part I: Isothermal Operation. Separation and Purification Technology. 2001;24(1):173‒188.
  10. SJ Wilson. The Effects of a Readily Adsorbed Trace Component (Water) in a Bulk Separation PSA Process: The Case of Oxygen VSA. Ind Eng Chem Res. 2001;40(12):2702‒2713.
  11. SU Rege, K Qian, Buzanowski MA. Air-Prepurifcation by Pressure Swing Adsorption Using Single/Layered Beds". Chemical Engineering Science. 2001;56(8):2745‒2759.
  12. JG Jee, JS Lee, CH Lee. Air Separation by Small-Scale Two-Bed Medical O2 Pressure Swing Adsorption. Ind Eng Chem Res. 2001;40(16):3647‒3658.
  13. JG Jee, JS Lee, CH Lee. Comparison of the Adsorption Dynamics of Air on Zeolite 5A and Carbon Molecular Sieve Beds" Korean Journal of Chemical Engineering. 2004;21(6):1183‒1192.
  14. JG Jee, JHJ Park, SJ Haam, et al. Effects of Nonisobaric Steps and Isobaric Steps on O2 Pressure Swing Adsorption for an Aerator. Ind Eng Chem Res. 2002;41(17):4383‒4392.
  15. STY Choong, WR Peterson, DM Scott. On the Numerical Simulation of Rapid Pressure Swing Adsorption for Air Separation. Jurnal Teknologi. 2003;38:65‒86.
  16. JC Santos, AF Portugal, FD Magalhães, et al. Simulation and Optimization of Small Oxygen Pressure Swing Adsorption Units. Ind Eng Chem Res. 2004;43(26):8328‒8338.
  17. SP Reynolds, AD Ebner, JA Ritter. Enriching PSA Cycle for the Production of Nitrogen from Air. Ind Eng Chem Res. 2006;45(9):3256‒3264.
  18. KP Kostroski, PC Wankat. High Recovery Cycles for Gas Separations by Pressure-Swing Adsorption. Ind Eng Chem Res. 2006;45(24):8117‒8133.
  19. SJ Lee, JH Jung, JH Moon, et al. Parametric Study of the Three-Bed Pressure-Vacuum Swing Adsorption Process for High Purity O2 Generation from Ambient Air. Ind Eng Chem Res. 2007;46(11):3720‒3728.
  20. JG Jee, MK Park, HK Yoo, et al. Adsorption and Desorption Characteristics of Air on Zeolite 5a, 10x, and 13x Fixed Beds. Separation Science and Technology. 2002;37(15):3465‒3490.
  21. M Mofarahi, EJ Shokroo. Comparison of Two Pressure Swing Adsorption Processes for Air Separation Using Zeolite 5A And Zeolite 13X. Petroleum & Coal. 2013;55(3):216‒225.
  22. CA Grande. Advances in pressure swing adsorption for gas separation. ISRN Chemical Engineering. 2012. 13 p.
  23. Rosen M, Mulloth L, Affleck D, et al. Development and testing of a temperature-swing adsorption compressor for carbon dioxide in closed-loop air revitalization systems. SAE international. 2005. 8 p.
  24. A Mivechian, Majid Pakizeh. Hydrogen recovery from Tehran refinery off-gas using pressure swing adsorption, gas absorption and membrane separation technologies: Simulation and economic evaluation. Korean Journal of Chemical Engineering. 2013;30(4):937‒948.
  25. SC Jang, S Yang, Seong Geun Oh. Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multi component gas adsorption. Korean Journal of Chemical Engineering. 2011;28(2):583‒590.
  26. YH Kim, DG Lee, DK Moon, et al. Effect of bed void volume on pressure vacuum swing adsorption for air separation. Korean Journal of Chemical Engineering. 2014;31(1):132‒141.
  27. M Zaman, JH Lee. Carbon capture from stationary power generation sources: A review of the current status of the technologies. Korean Journal of Chemical Engineering. 2013;30(8):1497‒1526.
  28. V Hoshyargar, F Fadaei, SN Ashrafizadeh. Mass transfer simulation of nanofiltration membranes for electrolyte solutions through generalized Maxwell-Stefan approach. Korean Journal of Chemical Engineering. 2015;32(7):1388‒1404.
  29. RT Yang. Adsorbents: Fundamentals and Applications. US: John Wiley & Sons; 2003. 425 p.
  30. Olney TN, Cann NM, Cooper G, et al. Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chemical Physics. 1997;223:59‒98.
  31. S Jain, AS Moharir, P Li, et al. Heuristic design of pressure swing adsorption: a preliminary Study. Separation and Purification Technology. 2003;33(1):25‒43.
Creative Commons Attribution License

©2017 Kakavandi, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.