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Introduction
Oxygen is one of the most important products in chemical industries. 

This chemical element is used in various processes such as: refinery 
industries, manufacturing metal and other industrial operations. For 
instance, oxygen with high purity is utilized in different chemical 
processes like: steel construction, paper industries, wastewater 
treatment and glass production. In 1907, oxygen was produced for 
the first time, when Linde built a first cryogenic distillation bed for 
air separation.1 Zeolite 13X is the most commonly adsorbent used in 
the air separation for oxygen production. The unique properties of 
zeolites are originated from this fact that their surfaces are formed with 
negatively charged oxides. Moreover, the presence of isolated cations 
above their surface structure is another reason for their uniqueness. 
Zeolites are aluminosilicate crystallines of alkaline or earth alkaline 
elements such as sodium, potassium and calcium. nGenerally, the 
common adsorption processes of air separation are divided into two 
categories: The first category is consists of processes which make use 
of zeolites as nitrogen adsorbent under the equilibrium conditions and 
oxygen is a process product.

The second one contains processes which utilize Carbon Molecular 
Sieves (CMSs) as oxygen adsorbent. Based on kinetic separation in 
this kind of category, oxygen is adsorbed owing to its faster permeation 
and higher selectivity. Moreover, nitrogen is produced as a product in 
such these processes.

The unique properties of zeolites originate from the fact that their 
surfaces are formed with negatively charged oxides. Moreover, the 
presence of isolated cations above their surface structure is another 
reason for their uniqueness. Despite the known selectivity of N2/O2 by 
zeolites, there had not been progress in the case of air separation by 
adsorption process until 1960, even after the innovation of synthetic 
zeolites A and X and cycles of PSA. The innovation of zeolites A and 
X by Milton1 in1959 created conditions which were always available. 
By the enthusiasm of these innovations, the industrial ideologist was ​​
encouraged to examine the feasibility of air separation at ambient 
temperature by applying adsorption processes (in contrast to 77k for 
cryogenic processes).

Zeolite 13X is the most commonly used adsorbent in the air 
separation for oxygen production. Zeolites are aluminosilicate 
crystallines of alkaline or earth alkaline elements such as sodium, 
potassium and calcium. Detailed description of zeolites structure is 
accessible in relevant sources.2,3 There are a lot of studies which have 
been done on the separation of oxygen from air.4‒19

Oxygen is one of the most important products in chemical industries. 
This chemical element is used in various processes such as: refinery 
industries, manufacturing metal and other industrial operations. For 
instance, oxygen with high purity is utilized in different chemical 
processes like: steel construction, paper industries, wastewater 
treatment and glass production. In 1907, oxygen was produced for 
the first time, when Linde built a first cryogenic distillation bed for 
air separation.1

In this work, the adsorption of nitrogen using zeolite 13X as 
adsorbents is simulated. The dynamic of nitrogen adsorption is 
examined. The simulated PSA process is depicted in Figure 1.

Figure 1 Schematic diagram of the adsorption bed.3
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Abstract

Generally, the common adsorption processes of air separation are divided into two categories: 
The first category is consists of processes which make use of zeolites as nitrogen adsorbent 
under the equilibrium conditions and oxygen is a process product. The second one contains 
processes which utilize Carbon Molecular Sieves (CMSs) as oxygen adsorbent. Zeolite 
13X is the most commonly adsorbent used in the air separation for oxygen production. In 
this work, nitrogen adsorption behavior on zeolite 13X bed is simulated. Desorption and 
adsorption dynamics of zeolite 13X was investigated in order to study the behavior of this 
zeolite. The simulation results showed that the high Roll-up Phenomena occurs for oxygen 
than nitrogen. There is a large mass transfer zone (MTZ) for zeolite 13X. Therefore, the 
adsorption rate of zeolite 13X is high. The main drop of nitrogen concentration in the outlet 
of zeolite 13X occurs at the time of about 125 seconds. Nitrogen concentration in the outlet 
of zeolite 13X approaches zero after about 180 seconds.
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Mathematical model
In order to develop a mathematical model for an adsorption bed, 

the following assumptions were made:

Gas behaves as an ideal gas;

The flow pattern is axially assumed as plug-flow model;

Equilibrium equations for air are expressed as triple Langmuir-
Freundlich isotherm (oxygen, nitrogen and argon);

Rate of mass transfer is presented by linear driving force (LDF) 
relations;

Bed is clean at initial state and there is no gas flow in it;

Air is considered a mixture of oxygen and argon (21%) and 
nitrogen (79%) as feed.

According to these assumptions, dynamic behavior of system in 
terms of mass, energy and momentum balances can be expressed as 
follows:

Dimensionless partial mass balance for gas phase in the adsorption 
bed is:2,9–11
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Dimensionless equilibrium loading of ith component for solid 
phase in the adsorption bed is:
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Dimensionless loading of ith component for solid phase in the 
adsorption bed is (LDF relation):
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According to equation (3), the LDF relation depends on various 
parameters such as: equilibrium parameter for the Langmuir model, 
mole fraction of species i in the gas phase, average amount adsorbed 
and equilibrium parameter for the Langmuir model.

The equilibrium of triple Langmuir-Freundlich isotherm is as 
follows:
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Adsorption isotherm parameters and diffusion rate constants of 

oxygen, nitrogen and argon over zeolite 13X is presented in Table 1.

Table 1 Equilibrium parameters and adsorption heat of oxygen, nitrogen and 
argon on zeolite 13X12

Parameters N2 O2

k1×103 (mol/g) 12.52 6.705

k2×105 (mol/g.K) -1.785 -1.435

k3×104 (1/atm) 2.154 3.253

k4 (K) 2333 1428

k5 1.666 -0.3169

k6 (K) -245.2 387.8

Heat of adsorption, (cal/mol) 4390 3060

LDF constant (s-1) 0.197 0.62

Overall dimensionless mass balance for gas phase in the adsorption 
bed is:4,12–14
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Dimensionless energy balance for gas phase in the adsorption bed 
is:5‒7,10,16
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Dimensionless energy balance for the wall of adsorption bed is:
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Cross-sectional area of adsorption bed wall is:
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Ergun equation is utilized in order to investigate the pressure drop 
across the adsorption bed.8,9
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	 Physical properties of adsorbents and characteristics of adsorption 
bed are depicted in (Tables 2 & 3), respectively.

Table 2 Physical properties of bed and adsorbent12

Characteristic Zeolite 13X

Type Sphere

Average pellet size, RP (cm) 0.07

Pellet density,       (g/cm3) 1.17

Heat capacity, Cps (cal/g.K) 0.32

Bed porosity, ε 0.391

Bed density,        (g/cm3) 0.713

Table 3 Adsorption bed properties21 

Characteristic Zeolite 13X

Length, L (cm) 76

Inside radius, RBi (cm) 2.138

Outside radius, RBo (cm) 2.415

Heat capacity of the column, Cpw (cal/g.K) 0.12

Density of column,         (g/cm3) 7.83

Internal heat-transfer coefficient, hi (cal/cm2.K.s) 9.2×10-4

External heat-transfer coefficient, ho (cal/ cm2.K.s) 3.4×10-4

Axial thermal conductivity, KL (cal/cm.s.K) 6.2×10-5

Axial dispersion coefficient, DL (cm2/s) 1×10-5

Results and discussion
The fourth order Runge-Kutta Gill scheme was used to solve 

a mathematical model considered as coupled partial differential 
equations. The experimental data obtained from literatures has been 
simulated in order to validate the simulation results in this study.9,12,13 
An experimental and simulation study of a PSA unit which is running 
a traditional Skarstrom cycle and a Skarstrom cycle with co-current 
equalization owing to separate oxygen from air using a 5A zeolite 
has been proposed by Mendes et al.9 Moreover, a small-scale two-bed 
six-step PSA process using zeolite 13X was performed by Jee et al.,20 
in order to provide oxygen-enriched air. They showed that there is a 
strong effect of feed flow rate on O2 purity.12 The effects of adsorption 
and desorption on zeolite 5A and CMS beds were investigated in a 
mixture of N2/O2/Ar by Jee et al.13 A non-isothermal mathematical 
model was applied in order to simulate the adsorption dynamics in 
their studies.

Figures 2 (A) & (B) indicate the effect of product flow rate and P/F 
on the purity and recovery of oxygen during PSA process, respectively. 
The impact of temperature variations in gas phase during adsorption 
as a function of time is illustrated in Figure 2 (C). It is obviously 
seen that there is a relatively high accuracy in the simulation of 
experimental data.21

Breakthrough curves for nitrogen and oxygen on zeolite 13X 

is shown in Figure 3. The term “break-through time” is originated 
from the response of initially cleaned bed per a flow with a constant 
composition. As an initial condition, it is assumed that the adsorption 
bed is pressurized with a non-adsorptive gas. As shown in Figure 3, 
oxygen exits from the top of zeolite 13X earlier than nitrogen at a time 
of approximately 230seconds.21

Figure 2 (A) Numerical simulation of experimental data in this work.9

Figure 2 (B) Numerical simulation of experimental data in this work.12

Figure 2 (C) Numerical simulation of experimental data in this work.13
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Figure 3 The simulated breakthrough curves of zeolite 13X for oxygen and 
nitrogen at adsorption pressure of 6 bar and feed flow rate of 5 LSTP/min. The 
adsorption bed was initially saturated with a non-adsorptive gas.

As time is passing, High Roll-up Phenomena is observed in 
the case of oxygen. Owing to High Roll-up Phenomena effect, 
oxygen concentration is approximately 4.5 times more than feed 
concentration during the time of 400-500seconds. Occurring High 
Roll-up Phenomena in the case of oxygen is due to this fact that there 
is a competitive adsorption between oxygen and nitrogen molecules 
to be adsorbed on the adsorbent. Oxygen is affected by the High Roll-
up Phenomena because nitrogen adsorption on the adsorbent sites is 
much more than oxygen adsorption. Therefore, oxygen concentration 
is relatively increased rather than feed concentration. While time 
reaches nitrogen breakthrough at the time of 550seconds, oxygen 
concentration is starting to be reduced. As clearly shown in Figure 3, 
the High Roll-up Phenomena do not occur in the case of nitrogen due 
to its strong adsorption on zeolite 13X adsorbent.

The adsorption capacity in the adsorption bed depends on the 
factors such as pressure, temperature, flow rate.2,12 Actually, the 
adsorption and desorption cycle of a PSA system operates by pressure 
increasing and decreasing. Adsorption and desorption phenomenon 
are inherently exothermic and endothermic, respectively. Therefore, 
optimal setting of temperature is very important owing to better 
performance of adsorption and desorption phenomenon. On the other 
hand, the adsorption of impurities on the adsorbent bed is a function 
of retention time on the adsorbent. Consequently, the flow rate factor 
is necessary for better performance of system. The concentration of 
nitrogen on zeolite 13X in terms of different adsorption pressures and 
time is presented in Figure 4. As pressure increases, the adsorption 
rate of more strongly adsorbed component increases.2,12 As it is 
expected, nitrogen adsorption capacity on zeolite 13X enhances with 
pressure increasing. Oxygen concentrations along the bed length 
for zeolite 13X in different times have been depicted in Figure 5. 
Obviously, the slope of oxygen concentration curves is fast. The small 
MTZ for zeolite 13X has large adsorption rate. In the dynamic study 
of adsorption beds it is considerable to investigate desorption curves. 
The desorption curve of zeolite 13X is illustrated in Figure 6. In order 
to simulate desorption over the beds, it is assumed that a pure inert gas 
is utilized for cleaning the beds. By passing the inert gas through the 

bed in a pressure of 0.1bars, nitrogen with high concentration is first 
desorbed from top of the bed. As nitrogen is desorbed, a little adsorbed 
oxygen is removed from the bed with nitrogen. As time passes and 
the desorbed volume of nitrogen and oxygen gases decreases, the 
concentration of inert gas in the outlet of bed begins to increase.22–27

By referring to Figure 6:

Figure 4 The outlet mole fraction of nitrogen form zeolite 13X at different 
adsorption pressures and feed flow rate of 4LSTP/min. The adsorption bed 
was initially saturated with a non-adsorptive gas.

Figure 5 Distribution of oxygen concentration along the length of zeolite 
13X during adsorption process in different times. The feed flow rate is 5LSTP/
min and the adsorption pressure is 6bar.

Figure 6 The outlet simulated concentration of gas phase from zeolite 13X 
during desorption at pressure of 0.1bar. The desorption bed was completely 
clean in the initial state.
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The main drop of nitrogen concentration in the outlet of zeolite 
13X occurs at the time of about 125seconds;

Nitrogen concentration in the outlet of zeolite 13X approaches 
zero after about 180seconds

Conclusion
Nitrogen adsorption on zeolite 13X bed is simulated. Desorption 

and adsorption dynamics of zeolite 13X was investigated in order to 
study the behavior of this zeolite.

The results obtained from dynamic simulation of bed showed that:

The High Roll-up Phenomena occurs for oxygen than nitrogen. 
There is a large mass transfer zone (MTZ) for zeolite 13X. Therefore, 
the adsorption rate of zeolite 13X is high. The main drop of nitrogen 
concentration in the outlet of zeolite 13X occurs at the time of about 
125seconds. Nitrogen concentration in the outlet of zeolite 13X 
approaches zero after about 180seconds.28‒31
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