Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Review Article Volume 1 Issue 2

Global wellposedness of a free boundary problem for the Navier-stokes equations in an exterior domain

Yoshihiro Shibata

Department of Mathematics and Research Institute of Science and Engineering, Waseda University, Japan

Correspondence: Yoshihiro Shibata, Department of Mathematics and Research Institute of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

Received: May 29, 2017 | Published: October 18, 2017

Citation: Shibata Y. Global wellposedness of a free boundary problem for the navier-stokes equations in an exterior domain. Fluid Mech Res Int. 2017;1(2):56-72. DOI: 10.15406/fmrij.2017.01.00008

Download PDF

Abstract

In this paper, we prove a unique existence theorem of globally in time strong solutions to free boundary problem for the Navier-Stokes equations in an exterior domain in the case that initial data are small enough. The key step is to prove decay properties of locally in time solutions, which is derived by combination of maximal Lp-Lq regularity with Lp-Lq decay estimates for solutions of slightly perturbed Stokes equations with free boundary condition in an exterior domain.

Keywords: navier-stokes equations, free boundary problem, global well-posedness, exterior domain, polynomial decay, maximal lp-lq regularity

Introduction

This paper deals with global well-posedness of the following free boundary problem for the Navier-Stokes equations. Let Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@ be an exterior domain in the N dimensional Eucledian space RN occupied by an incompressible viscous fluid. Let Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo5ahbaa@380D@ be the boundary of Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@ that is a C2 compact hyper surface with the unit outer normal n. Let Ω t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvjuaGdaWgaaqcKvaq=haajugWaiaadshaaKqbagqaaaaa@3D28@ be the evolution of Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@ at time t. Let Γ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo5ahLqba+aadaWgaaqcbasaaKqzadWdbiaadshaaSWd aeqaaaaa@3B46@ be the boundary of Ω t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvjuaGdaWgaaqcfasaaKqzadGaamiDaaqcfayabaaaaa@3BA5@ with the unit outer normal nt. Let ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeg8aYbaa@3865@ and µ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwlaaaa@37DF@ be positive numbers denoting the mass density and the viscosity coefficient, respectively. Let u   = ( u 1 ,   .   .   .   ,   u N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhacaqGGaGaeyypa0tcfa4damacaciQaaaaCaaaleqc aciQaaaabGaGaIkaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDOb YtUvgaiuGajugib8qacWaGaIkaaaWFKksLaaqcfa4damaabmaakeaa jugib8qacaWG1bqcfa4damaaBaaajeaibaqcLbmapeGaaCymaaWcpa qabaqcLbsapeGaaiilaiaabccacaGGUaGaaeiiaiaac6cacaqGGaGa aiOlaiaabccacaGGSaGaaeiiaiaadwhajuaGpaWaaSbaaKqaGeaaju gWa8qacaWGobaal8aabeaaaOGaayjkaiaawMcaaaaa@5EFB@ be an N-vector of functions describing the velocity field, where M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaWbaaS qabKqaGeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb cKqzadaeaaaaaaaaa8qacWaGaIkaaaWFKksLaaqcLbsacaWGnbaaaa@46A6@ denotes the the transposed M, and let p be a scalar function describing the pressure field. We consider the initial boundary value problem for the Navier-Stokes equations in Ω t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo WvjuaGdaWgaaqcfasaaKqzadGaamiDaaqcfayabaaaaa@3BA5@ given by

ρ ( t u + u · u ) D i v ( µ D ( u ) Ρ I ) = 0 ,   d i v u = 0 i n   0 < t < T Ω t × { t } , ( µ D ( u ) Ρ I ) n t     = 0 ,   V Γ t     = n t . u o n 0 < t < T Γ t × { t } , u | t = 0     = u 0 ,       Ω t | t = 0     = Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeqyWdi3daiaacIcapeGaeyOaIyRaamiDaiaahwha cqGHRaWkcaWH1bGaai4TaiabgEGirlaahwhapaGaaiyka8qacqGHsi slcaWGebGaamyAaiaadAhapaGaaiika8qacaWG1cGaaCira8aacaGG OaWdbiaahwhapaGaaiyka8qacqGHsislcqqHHoGucaWHjbWdaiaacM capeGaeyypa0JaaGimaiaacYcacaGGGcGaaCzcaiaaxMaacaWGKbGa amyAaiaadAhacaaMc8UaaCyDaiabg2da9iaaicdacaaMc8UaaGPaVl aaxMaacaWLjaGaamyAaiaad6gacaGGGcqcfa4aambeaeaajugibiab fM6axLqbaoaaBaaajuaibaqcLbmacaWG0baajuaGbeaaaKqbGeaaju gWaiaaicdacqGH8aapcaWG0bGaeyipaWJaamivaaqcfayabKqzGeGa eSOkIufacqGHxdaTpaGaai4Ea8qacaWG0bWdaiaac2hapeGaaiilaa GcbaqcLbsacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaV=aaca GGOaWdbiaadwlacaWHebWdaiaacIcapeGaaCyDa8aacaGGPaWdbiab gkHiTiabfg6asjaahMeapaGaaiyka8qacaWHUbWcdaWgaaqcfasaaK qzadGaamiDaaqcfasabaqcLbsacaGGGcGaaiiOaiabg2da9iaaicda caGGSaGaaiiOaiaaykW7caaMc8UaaCzcaiaadAfajuaGdaWgaaqcfa saaiabfo5ahjaadshaaKqbagqaaKqzGeGaaiiOaiaacckacqGH9aqp caWHUbqcfa4aaSbaaKqbGeaacaWG0baajuaGbeaajugibiaac6caca WH1bGaaCzcaiaad+gacaWGUbGaaGPaVlaaykW7juaGdaWeqaqaaKqz GeGaeu4KdCucfa4aaSbaaKqbGeaajugWaiaadshaaKqbagqaaaqcfa saaKqzadGaaGimaiabgYda8iaadshacqGH8aapcaWGubaajuaGbeqc LbsacqWIQisvaiabgEna0+aacaGG7bWdbiaadshapaGaaiyFa8qaca GGSaaakeaajugibiaaxMaacaWLjaGaaCzcaiaahwhapaGaaiiFaSWd bmaaBaaajuaibaqcLbmacaWG0baajuaibeaalmaaBaaajuaibaqcLb macqGH9aqpcaaIWaaajuaibeaajugibiaacckacaGGGcGaeyypa0Ja aCyDaSWaaSbaaKqbGeaajugWaiaaicdaaKqbGeqaaKqzGeGaaiilai aacckacaGGGcGaaiiOaiabfM6axLqbaoaaBaaajuaibaqcLbmacaWG 0baajuaGbeaajugib8aacaGG8bWcpeWaaSbaaKqbGeaajugWaiaads haaKqbGeqaaSWaaSbaaKqbGeaajugWaiabg2da9iaaicdaaKqbGeqa aKqzGeGaaiiOaiaacckacqGH9aqpcqqHPoWvaaaa@F4F5@ (1)

Here, D ( u )   = u   + u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadseajuaGpaWaaeWaaOqaaKqzGeWdbiaadwhaaOWdaiaa wIcacaGLPaaajugib8qacaqGGaGaeyypa0Jaey4bIeTaamyDaiaabc cacqGHRaWkjuaGpaWaaWbaaSqabKqaGeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbcKqzadWdbiadaciHaaaa=rQivcaaju gibiabgEGirlaadwhaaaa@53D6@ denotes the doubled deformation tensor, I the N × N identity matrix, and V Γ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGdaWgaaqcfasaaiabfo5ahjaadshaaKqbagqa aaaa@3B4C@ the evolution speed of the surface Γ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo5ahLqba+aadaWgaaqcbasaaKqzadWdbiaadshaaSWd aeqaaaaa@3B46@ in the nt direction. Moreover, for any matrix field K with (i, j) componentKij, the quantity Div K is an N vector of functions whose ith component is   j = 1 N j K i j     , j = / x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckajuaGdaaeWbGcbaqcLbsacqGHciITjuaGdaWgaaqc basaaKqzadGaamOAaaWcbeaajugibiaadUeajuaGdaWgaaqcbasaaK qzadGaamyAaiaadQgaaSqabaaabaqcLbsacaWGQbGaeyypa0JaaGym aaWcbaqcLbsacaWGobaacqGHris5aiaacckacaGGGcGaaiilaiaayk W7cqGHciITjuaGdaWgaaqcbasaaKqzadGaamOAaaWcbeaajugibiab g2da9iabgkGi2kaac+cacqGHciITcaWG4bqcfa4aaSbaaKqaGeaaju gWaiaadQgaaSqabaaaaa@5B77@ and for any N vector of function w = ( w 1 , ... , w N ) , d i v w = j = 1 N j w i   MathType@MTEF@5@5@+= feaagKart1ev2aaaPXbrtLur4f2y0nfCLv2yObWuWvwzJHgvLHhDaC hatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMB aeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu 0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9 pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaae GaciGaaiaabeqaamaabaabaaGcbaWzaKqzGeaeaaaaaaaaa8qacaWH 3baAeeaabiGaeyypa0ZdaiaacIcapeGaam4DaKqbaoaaBaaajuaiba GaaGymaaqcfayabaqcLbsacaGGSaGaaiOlaiaac6cacaGGUaGaaiil aiaadEhajuaGdaWgaaqcfasaaiaad6eaaKqbagqaaKqzGeWdaiaacM capeGaaiilaiaadsgacaWGPbGaamODaiaahEhacqGH9aqpjuaGdaae WbGcbaqcLbsacqGHciITjuaGdaWgaaqcbasaaKqzadGaamOAaaWcbe aajugibiaadEhajuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaaaKqa GeaajugWaiaadQgacqGH9aqpcaaIXaaajeaibaqcLbmacaWGobaaju gibiabggHiLdGaaiiOaaaa@69E0@ #ns=DSIExactSpeech; #range=0; SpeechText=w; and the quantity w · w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahEhacaGG3cGaey4bIeTaaC4Daaaa@3B66@ is an N -vector of functions whose ith component is j = 1 N j w i   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaaeWbGcbaqcLbsacqGHciITjuaGdaWgaaqcbasaaKqzadGa amOAaaWcbeaajugibiaadEhajuaGdaWgaaqcbasaaKqzadGaamyAaa WcbeaaaKqaGeaajugWaiaadQgacqGH9aqpcaaIXaaajeaibaqcLbma caWGobaajugibiabggHiLdGaaiiOaaaa@4A3F@

One phase problem for the Navier-Stokes equations formulated in (1) with ( µ D ( u )   Ρ I ) n t = c σ H n t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWG1cGaamiraKqba+aadaqadaGcbaqc LbsapeGaamyDaaGcpaGaayjkaiaawMcaaKqzGeWdbiabgkHiTiaabc cacqqHHoGucaWGjbaak8aacaGLOaGaayzkaaqcLbsapeGaamOBaiaa dshacqGH9aqpcaWGJbqcfa4aaSbaaKqbGeaacqaHdpWCaKqbagqaaK qzGeGaamisaiaad6gajuaGdaWgaaqcfasaaiaadshaaKqbagqaaaaa @4F9C@ in place of ( µ D ( u )   Ρ I ) n t = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWG1cGaamiraKqba+aadaqadaGcbaqc LbsapeGaamyDaaGcpaGaayjkaiaawMcaaKqzGeWdbiabgkHiTiaabc cacqqHHoGucaWGjbaak8aacaGLOaGaayzkaaqcLbsapeGaamOBaiaa dshacqGH9aqpcaaIWaaaaa@478D@ has been received wide attention for many years, where H is the doubledmean curvature of Γ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo5ahLqba+aadaWgaaqcbasaaKqzadWdbiaadshaaSWd aeqaaaaa@3B46@ and c σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogajuaGdaWgaaqcfasaaKqzadGaeq4WdmhajuaGbeaa aaa@3BE9@ is a non-negative constant describing the coefficient of surface tension. Inparticular, the following two cases have been studied by many mathematicians: (1) the motion of an isolated liquid mass and (2) the motion of a viscous incompressible fluid contained in an ocean of infinite extent. In case (1), the initial domain Ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axLqbaoaaBaaajuaibaqcLbmacaaIWaaajuaGbeaa aaa@3B86@ is bounded and local well posedness in the case that c σ > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH+aGpcaaIWaaaaa@3B12@ was proved by Solonnikov1-4 in the L2 Sobolev-Slobodetskii space, by Schweizer5 in the semi group setting, and by Moglievskii and Solonnikov6 in the Holder spaces. And, in the case that c σ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH9aqpcaaIWaaaaa@3B10@ , local wellposedness was proved by Solonnikov,7 Mucha and Zaja¸czkowski8,9 in the LpSobolev-Slobodetskii space, and by Shibata and Shimizu10,11 in the Lpin time and Lqin space setting. Global wellposedness in the case that c σ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH9aqpcaaIWaaaaa@3B10@ for small initial data by Solonnikov4,7 in the LpSobolev-Slobodetskii space and by Shibata12 in the Lpin time and Lqin space setting. Global wellposedness in the case that c σ > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH+aGpcaaIWaaaaa@3B12@ was proved under the assumption that the initial domain Ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axLqbaoaaBaaajuaibaqcLbmacaaIWaaajuaGbeaa aaa@3B86@ is sufficiently close to a ball and initial data are very small by Solonnikov13 in the L2 Sobolev-Slobodetskii space, by Padula and Solonnikov14 in the Holder spaces, and by Shibata15 in the Lpin time and Lqin space setting.

In case (2), the initial domain Ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axLqbaoaaBaaajuaibaqcLbmacaaIWaaajuaGbeaa aaa@3B86@ is a perturbed layer like:
Ω 0   = { x   3   |   b   <   x 3   < η ( x ) , x   =   ( x 1 , x 2 ) 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaaiiOaiabg2da98aacaGG7bWdbiaadIhacaqGGaGaeyicI4SaeS yhHeAcfa4aaWbaaSqabKqaGeaajugWaiaaiodaaaqcLbsacaGGGcWd aiaacYhapeGaaeiiaiabgkHiTiaadkgacaqGGaGaeyipaWJaaeiiai aadIhacaaIZaGaaiiOaiabgYda8iabeE7aOLqba+aadaqadaGcbaqc LbsapeGaamiEaiabgkdiIcGcpaGaayjkaiaawMcaaKqzGeWdbiaacY cacaWG4bGaeyOmGiQaaiiOaiabg2da9iaacckapaGaaiika8qacaWG 4bGaaGymaiaacYcacaWG4bGaaGOma8aacaGGPaWdbiabgIGiolabl2 riHMqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeWdaiaac2ha aaa@6CF4@ and local wellposed was proved by Allain,16 Beale17 and Tani18 in the L2 Sobolev-Slobodetskii space when c σ > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH+aGpcaaIWaaaaa@3B12@ and by Abels19 in the LpSobolev-Slobodetskii space when c σ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH9aqpcaaIWaaaaa@3B10@ .

Global wellposedness for small initial velocity was proved in the L2 Sobolev-Slobodetskii space by Beale20 and Tani and Tanaka21 in the case that c σ > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH+aGpcaaIWaaaaa@3B12@ and by Sylvester22 in the case that c σ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH9aqpcaaIWaaaaa@3B10@ . The
decay rate was studied by Beale and Nishida,23 Sylvestre,24 Hataya25 and Hataya and Kawashima.26 In the case of the Ocean problem without bottom, Ω 0   =     { x   3   | x 3   < η ( x ) , x = ( x 1 , x 2 )         2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaaiiOaiabg2da9iaacckacaGGGcGaai4EaiaadIhacaGGGcGaey icI4SaeSyhHeAcfa4aaWbaaSqabKqaGeaajugWaiaaiodaaaqcLbsa caGGGcqcfa4aaqqaaOqaaKqzGeGaamiEaKqbaoaaBaaajeaibaqcLb macaaIZaGaaiiOaaWcbeaajugibiabgYda8iabeE7aOLqba+aadaqa daGcbaqcLbsapeGaamiEaiabgkdiIcGcpaGaayjkaiaawMcaaKqzGe WdbiaacYcacaWG4bGaeyOmGiQaeyypa0ZdaiaacIcapeGaamiEaKqb aoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaaiilaiaadIhaju aGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugib8aacaGGPaaak8qa caGLhWoajugibiaacckacaGGGcGaeyicI4SaaiiOaiaacckacqWIDe sOjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaac2haaaa@772E@ .

In this case, global well posedness for small initial data and the decay properties of solutions have been studied by Saito and Shibata.28,29 Recently, local well-posedness for the one phase problem of the Navie-Stokes equations was proved in the general unbounded domain case by Shibata12 in the c σ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH9aqpcaaIWaaaaa@3B10@ case and by Shibata29,30 in the case c σ > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogacqaHdpWCcqGH+aGpcaaIWaaaaa@3B12@ .

We remark that two phase problem of the Navier-Stokes equations has been studied by many math- ematicians,31-46 and references therein. Although many papers dealt with global well-posend, as far as the author knows, global well-posedness of free boundary problem for the Navier-Stokes equations in an exterior domain has never be treated, and the purpose of this paper is to prove global well-posedness of problem (1) in the Lpin time and Lqin space setting. Since only polynomial decays are obtained for solutions of Stokes equations with free boundary conditions in the exterior domain case;47,48 it is necessary to choose a large exponent p to guarantees Lpintegrability of solutions, so that the maximal Lp- Lqregularity for the Stokes equations with free boundary consition proved in Shibata30,49,50 and also in Pruess and Simonett40 in the dfferent p and q case are one of essential tools.

Now we consider the transformation that transforms Ω t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axLqba+aadaWgaaqcbasaaKqzadWdbiaadshaaSWd aeqaaaaa@3B6C@ to a fixed domain. If Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axbaa@3833@ is a bounded domain, then we have the exponential stability of the corresponding Stokes equations with free boundary conditions in some quotient space, so that we can use the Lagrange transformation to transform Ω t t o Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axLqba+aadaWgaaqcKfaG=haajugWa8qacaWG0baa l8aabeaajugibiaaykW7caWG0bGaam4BaiaaykW7caaMc8UaeuyQdC faaa@45DA@ .7,12 But, is now an exterior domain, so that solutions of the Stokes equations with free boundary conditions decay polynomially as mentioned above. Thus, the Lagrange transformation is not available, because the polynomial decay does not seem to be enough to control the term 0 t u d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaaju gibiabgEGirlaadwhacaaMc8UaamizaiaadohaaKazba4=baqcLbma caaIWaaajeaibaqcLbsacaWG0baajugGbiabgUIiYdaaaa@44F8@ . Another known transformation is the Hanzawa one. But, this transformation requires at least the W q 3 1 / q ( N <   q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEfalmaaDaaajeaibaqcLbmacaWGXbaajeaibaqcLbma caaIZaGaeyOeI0IaaGymaiaac+cacaWGXbaaaKqba+aadaqadaGcba qcLbsapeGaamOtaiabgYda8iaabccacaWGXbaak8aacaGLOaGaayzk aaaaaa@45BA@ regularity of the height function representing Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHto Wraaa@37ED@ , and such regularity is usually derived from surface tension. In our case, surface tension is not taken into account, so that such regularity is unable to be obtained. To overcome such difficulty, our idea is to use the Lagrange transformation only near Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHto Wraaa@37ED@ .

Let R be a positive number such that Ο = N \ Ω B R / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHFo WtcqGH9aqpcqWIDesOjuaGdaahaaWcbeqcbasaaKqzadGaamOtaaaa jugibiaacYfacqqHPoWvcqGHckcZcaWGcbqcfa4aaSbaaKqaGeaaju gWaiaadkfacaGGVaGaaGOmaaWcbeaaaaa@4775@ , where B L     = { x N | | x | < L } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkeajuaGdaWgaaqcbasaaKqzadGaamitaaWcbeaajugi biaacckacaGGGcGaeyypa0ZdaiaacUhapeGaamiEaiabgIGiolabl2 riHMqbaoaaCaaaleqajeaibaqcLbmacaWGobaaaKqbaoaaeeaakeaa aiaawEa7aKqzGeWdaiaacYhapeGaamiEa8aacaGG8bWdbiabgYda8i aadYeapaGaaiyFaaaa@4EFC@ , and let κ b e a C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeQ7aRjaaykW7caaMc8UaaGPaVlaadkgacaWGLbGaaGPa VlaaykW7caWGHbGaaGPaVlaaykW7caWGdbqcfa4aaWbaaeqabaGaey OhIukaaaaa@48C4@ function such that κ ( ξ ) = 1   f o r | ξ | R a n d κ ( ξ ) = 0   f o r | ξ | 2 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH6oWApaWaaeWaaeaapeGaeqOVdGhapaGaayjkaiaawMca a8qacqGH9aqpcaaIXaGaaeiiaiaadAgacaWGVbGaamOCaiaaykW7pa WaaqWaaeaapeGaeqOVdGhapaGaay5bSlaawIa7aiaaykW7peGaeyiz ImQaaGPaVlaadkfacaaMc8UaaGPaVlaadggacaWGUbGaamizaiaayk W7caaMc8UaeqOUdS2damaabmaabaWdbiabe67a4bWdaiaawIcacaGL PaaapeGaeyypa0JaaGimaiaabccacaWGMbGaam4BaiaadkhacaaMc8 +damaaemaabaWdbiabe67a4bWdaiaawEa7caGLiWoacaaMc8+dbiab gwMiZkaaykW7caaIYaGaamOuaaaa@6DEA@ . Let v ( ξ , t )   a n d q ( ξ ,   t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH2bWdaiaacIcapeGaeqOVdGNaaiilaiaadshapaGaaiyk a8qacaqGGaGaamyyaiaad6gacaWGKbGaaGPaVlaaykW7caWGXbWdam aabmaabaWdbiabe67a4jaacYcacaqGGaGaamiDaaWdaiaawIcacaGL Paaaaaa@49DD@ be the velocity field and the pressure field in Lagrange coordinates { ξ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacUhacqaH+oaEcaGG9baaaa@3A68@ . Let us consider a transformation,

x = L ( ξ , t ) : = ξ + 0 t κ ( ξ ) v ( ξ , s ) d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhacqGH9aqpcaWHmbWdaiaacIcapeGaeqOVdGNaaiil aiaadshapaGaaiyka8qacaGG6aGaeyypa0JaeqOVdGNaey4kaSIcda WdXaqaaaqcKfaG=haajugWaiaadcdaaKazba4=baqcLbmacaWG0baa jugGbiabgUIiYdqcLbsacqaH6oWApaGaaiika8qacqaH+oaEpaGaai yka8qacaWH2bWdaiaacIcapeGaeqOVdGNaaiilaiaadohapaGaaiyk a8qacaWGKbGaam4Caaaa@5B54@ (2)

Let δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes7aKbaa@384A@ be a positive number such that the transformation: x = L ( ξ ,   t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhacqGH9aqpcaWHmbqcfa4damaabmaakeaajugib8qa cqaH+oaEcaGGSaGaaeiiaiaadshaaOWdaiaawIcacaGLPaaaaaa@4074@ is bijective from Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@ on to Ω t = { x = L ( ξ ,   t ) | ξ   Ω } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyQdC 1aaSbaaKqbGeaacaWG0baajuaGbeaacqGH9aqpcaGG7baeaaaaaaaa a8qacaWG4bGaeyypa0JaaCita8aadaqadaqaa8qacqaH+oaEcaGGSa Gaaeiiaiaadshaa8aacaGLOaGaayzkaaGaaGPaVlaacYhacaaMc8+d biabe67a4jaabccacqGHiiIZcaaMc8UaeuyQdC1daiaac2haaaa@50E4@ for each t   ( 0 ,   T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshacaqGGaGaeyicI4Ccfa4damaabmaakeaajugib8qa caaIWaGaaiilaiaabccacaWGubaak8aacaGLOaGaayzkaaaaaa@3F93@ provided that

0 T ( κ ( · ) v ( · , s ) ) L ( Ω )   d s δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaaaK azba4=baqcLbmacaaIWaaajqwaa+FaaKqzadGaamivaaqcLbyacqGH RiI8aKqbaoaafeaakeaajugibiabgEGirlaacIcaqaaaaaaaaaWdbi abeQ7aR9aacaGGOaWdbiaacElapaGaaiyka8qacaWH2bWdaiaacIca peGaai4TaiaacYcacaWGZbWdaiaacMcacaGGPaWdbiablwIiqjaadY eajuaGdaWgaaqcbasaaKqzadGaeyOhIukaleqaaKqba+aadaqadaGc baqcLbsapeGaeuyQdCfak8aacaGLOaGaayzkaaqcLbsapeGaaiiOai aadsgacaWGZbGaeyizImQaeqiTdqgak8aacaGLjWoaaaa@6182@ (3)

Since δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes7aKbaa@384A@ will be chosen as a small positive number eventually, we may assume that 0 <   δ   1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacqGH8aapcaqGGaGaeqiTdqMaaeiiaiabgsMiJkaa igdaaaa@3DBE@ . Let

l i j   ( t ) = δ i j     + 0 t ξ j ( κ ( ξ ) v i ( ξ , s ) ) d s ( v = ( v 1 = , ... , v N ) ) ,       A ( t )   ( l i j ( t ) ) 1 = ( a i j ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabloriSLqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWc beaajugibiaacckapaGaaiika8qacaWG0bWdaiaacMcapeGaeyypa0 JaeqiTdqwcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqz GeGaaiiOaiaacckacqGHRaWkkmaapedajuaGbaaajqwbG8FaamXvP5 wqSX2qVrwzqf2zLnharyaqbjxAHXgiv5wAJ9gzLbsttbacfiqcLbma caWFWaaajqwbG8FaaKqzadGaa8hDaaqcLbEacqGHRiI8aKqbaoaala aakeaajugibiabgkGi2cGcbaqcLbsacqGHciITcqaH+oaEjuaGdaWg aaqcbasaaKqzadGaamOAaaWcbeaaaaqcLbsapaGaaiika8qacqaH6o WAjuaGpaWaaeWaaOqaaKqzGeWdbiabe67a4bGcpaGaayjkaiaawMca aKqzGeWdbiaadAhajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGe WdaiaacIcapeGaeqOVdGNaaiilaiaadohapaGaaiykaiaacMcacaaM c8+dbiaadsgacaWGZbGaaGPaV=aacaGGOaWdbiaahAhacqGH9aqpju aGdaahaaWcbeqcbasaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhA G8KBLbacgiqcLbmacWaGaslaaaGFKksLaaqcLbsapaGaaiika8qaca WG2bqcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyp a0Jaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG2bqcfa4aaSbaaK qaGeaajugWaiaad6eaaSqabaqcLbsapaGaaiykaiaacMcapeGaaiil aiaacckacaGGGcGaaiiOaiaahgeajuaGpaWaaeWaaOqaaKqzGeWdbi aadshaaOWdaiaawIcacaGLPaaajugib8qacaGGGcWdaiaacIcapeGa eS4eHWwcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqba+ aadaqadaGcbaqcLbsapeGaamiDaaGcpaGaayjkaiaawMcaaKqzGeGa aiykaKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcaaIXaaaaKqzGe Gaeyypa0Jaaiika8qacaWGHbqcfa4aaSbaaKqaGeaajugWaiaadMga caWGQbaaleqaaKqba+aadaqadaGcbaqcLbsapeGaamiDaaGcpaGaay jkaiaawMcaaKqzGeGaaiykaaaa@C92A@ (4)

where δ i j   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes7aKLqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWc beaajugibiaacckaaaa@3DEC@ are the Kronecker delta symbols, that is δ i i   = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes7aKLqbaoaaBaaajeaibaqcLbmacaWGPbGaamyAaaWc beaajugibiaacckacqGH9aqpcaaIXaaaaa@3FAC@ and δ i j   = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabes7aKLqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWc beaajugibiaacckacqGH9aqpcaaIWaaaaa@3FAC@ for i   j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgacaGGGcGaeyiyIKRaamOAaaaa@3B6D@ . Here and hereafter, a function a = a ( ξ ,   t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGH9aqpcaWGHbqcfa4damaabmaakeaajugib8qa cqaH+oaEcaGGSaGaaeiiaiaadshaaOWdaiaawIcacaGLPaaaaaa@406E@ is written simply by a(t) and (aij) denotes the N   ×   N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad6eacaqGGaGaey41aqRaaeiiaiaad6eaaaa@3BA8@ matrix whose (i, j) component is aij, unless confusion may occur. For a while, we assume that the N   ×   N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad6eacaqGGaGaey41aqRaaeiiaiaad6eaaaa@3BA8@ matrix ( l i j ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacqWItecBjuaGdaWgaaqcbasaaKqzadGaamyAaiaa dQgaaSqabaqcfa4damaabmaakeaajugib8qacaWG0baak8aacaGLOa GaayzkaaqcLbsacaGGPaaaaa@418E@ is invertible.
Let

Ω t = { x = L ( ξ ,   t ) | ξ Ω } , Γ t = { x = L ( ξ ,   t ) | ξ   Γ } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHPoWvdaWgaaqcfasaaiaadshaaKqbagqaaiabg2da98aa caGG7bWdbiaadIhacqGH9aqpcaWHmbGaaGPaV=aadaqadaqaa8qacq aH+oaEcaGGSaGaaeiiaiaadshaa8aacaGLOaGaayzkaaGaaGPaVlaa cYhacaaMc8+dbiabe67a4jabgIGiolabfM6ax9aacaGG9bWdbiaacY cacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabfo5ahnaaBaaajuai baGaamiDaaqcfayabaGaeyypa0ZdaiaacUhapeGaamiEaiabg2da9i aahYeapaWaaeWaaeaapeGaeqOVdGNaaiilaiaabccacaWG0baapaGa ayjkaiaawMcaaiaacYhapeGaeqOVdGNaaeiiaiabgIGiolabfo5ah9 aacaGG9bWdbiaacYcacaaMc8UaaGPaVlaaykW7aaa@73AA@

u ( x ,   t )   = v ( L 1 ( x ,   t ) ,   t ) a n d p ( x ,   t )   = q ( L 1 ( x ,   t ) ,   t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8UaaGPaVlaahwhapaWaaeWaaeaapeGaamiEaiaacYca caqGGaGaamiDaaWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iaahA hapaWaaeWaaeaapeGaaCitamaaCaaabeqcfasaaiabgkHiTiaaigda aaqcfa4damaabmaabaWdbiaadIhacaGGSaGaaeiiaiaadshaa8aaca GLOaGaayzkaaWdbiaacYcacaqGGaGaamiDaaWdaiaawIcacaGLPaaa caaMc8+dbiaadggacaWGUbGaamizaiaaykW7caWGWbWdamaabmaaba WdbiaadIhacaGGSaGaaeiiaiaadshaa8aacaGLOaGaayzkaaWdbiaa bccacqGH9aqpcaWGXbWdamaabmaabaWdbiaahYeadaahaaqabKqbGe aacqGHsislcaaIXaaaaKqba+aadaqadaqaa8qacaWG4bGaaiilaiaa bccacaWG0baapaGaayjkaiaawMcaa8qacaGGSaGaaeiiaiaadshaa8 aacaGLOaGaayzkaaaaaa@69D8@ in Eq. (1), and then, v and q satisfy the following equations:

{ t v D i v ( µ D ( v ) q I ) = f ( v ) , i n Ω × ( 0 , T ) , d i v v = g ( v )   = d i v g ( v ) i n   Ω × ( 0 , T ) , ( µ D ( v ) q I ) n = h ( v ) o n Γ × ( 0 , T ) , v | t = 0     = u 0                   i n Ω . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaq aabeqaaabaaaaaaaaapeGaeyOaIy7aaSbaaKqbGeaacaWG0baajuaG beaacaWH2bGaeyOeI0IaamiraiaadMgacaWG2bWdaiaacIcapeGaam yTaiaahseapaGaaiika8qacaWH2bWdaiaacMcapeGaeyOeI0IaamyC aiaahMeapaGaaiyka8qacqGH9aqpcaWHMbWdaiaacIcapeGaaCODa8 aacaGGPaWdbiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caWGPbGaamOBaiaaykW7caaMc8Uaeu yQdCLaey41aq7daiaacIcapeGaaGimaiaacYcacaWGubWdaiaacMca caGGSaaabaWdbiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsgacaWGPbGa amODaiaaykW7caWH2bGaeyypa0Jaam4za8aadaqadaqaa8qacaWH2b aapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0JaamizaiaadMgacaWG 2bGaaGPaVlaahEgapaWaaeWaaeaapeGaaCODaaWdaiaawIcacaGLPa aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8+dbiaadMgacaWGUbGaaeiiaiabfM6axjabgEna0+ aadaqadaqaa8qacaaIWaGaaiilaiaadsfaa8aacaGLOaGaayzkaaGa aiilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaapeGaamyTaiaahsea paWaaeWaaeaapeGaaCODaaWdaiaawIcacaGLPaaapeGaeyOeI0Iaam yCaiaahMeaa8aacaGLOaGaayzkaaWdbiaah6gacqGH9aqpcaWHObWd amaabmaabaWdbiaahAhaa8aacaGLOaGaayzkaaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaV=qacaWGVbGaamOBaiaaykW7caaMc8Uaeu4KdC Kaey41aq7damaabmaabaWdbiaaicdacaGGSaGaamivaaWdaiaawIca caGLPaaacaGGSaaabaWdbiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaCODa8aacaGG8bWdbmaaBaaabaGaamiDai abg2da9iaaicdaaeqaaiaacckacaGGGcGaeyypa0JaaCyDamaaBaaa juaibaGaaGimaaqcfayabaGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caGGGcGaaiiOaiaaykW7caWGPbGaamOBaiaaykW7 caaMc8UaeuyQdCLaaiOlaaaapaGaay5Eaaaaaa@528F@ (5)

Here, f (v) is consisting of some linear combinations of nonlinear functions of the forms

V 0 ( 0 t ( κv )ds) 2 v, V 1 ( 0 t ( κv )ds) t v , V 2 ( 0 t ( κv )ds) ( 0 t 2 (κv)ds )v,( 1 κ ) ( A) 1 {v· ( Av)}; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamOvaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqa aKqzGeWdaiaacIcajuaGdaWdXaGcbaqcLbsapeGaey4bIeDcfa4dam aabmaakeaajugib8qacqaH6oWAcaWH2baak8aacaGLOaGaayzkaaqc LbsapeGaamizaiaadohapaGaaiyka8qacqGHhis0juaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaajugibiaahAhacaGGSaGaaGPaVlaaykW7 caaMc8UaaGPaVlaadAfajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbe aajugibiaacIcajuaGdaWdXaGcbaqcLbsacqGHhis0juaGpaWaaeWa aOqaaKqzGeWdbiabeQ7aRjaahAhaaOWdaiaawIcacaGLPaaajugib8 qacaWGKbGaam4Ca8aacaGGPaGaeyOaIyBcfa4aaSbaaKqaGeaajugW aiaadshaaSqabaqcLbsapeGaaCODaaqcbasaaKqzadGaaGimaaqcba saaKqzadGaamiDaaqcLbsacqGHRiI8aaqcbaYdaeaajugWaiaaicda aKqaGeaajugWaiaadshaaKqzGeGaey4kIipacaGGSaGaaGPaVlaayk W7aOqaaKqzGeGaamOvaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqa aKqzGeGaaiikaKqbaoaapedakeaajugib8qacqGHhis0juaGpaWaae WaaOqaaKqzGeWdbiabeQ7aRjaahAhaaOWdaiaawIcacaGLPaaajugi b8qacaWGKbGaam4Ca8aacaGGPaaajeaibaqcLbmacaaIWaaajeaiba qcLbmacaWG0baajugibiabgUIiYdGaaiikaKqbaoaapedakeaajugi biabgEGirNqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaai ika8qacqaH6oWAcaWH2bWdaiaacMcapeGaamizaiaadohaaKqaG8aa baqcLbmacaaIWaaajeaibaqcLbmacaWG0baajugibiabgUIiYdGaai ykaiabgEGirlaacAhacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVNqb aoaabmaakeaajugib8qacaaIXaGaeyOeI0IaaeiiaiabeQ7aRbGcpa GaayjkaiaawMcaaKqzGeGaaiikaKqba+qadaahaaWcbeqcbasaamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbmacWa+a+ hPIujaaKqzGeGaaCyqa8aacaGGPaqcfa4dbmaaCaaaleqabaqcLbsa cqGHsislcaaIXaaaa8aacaGG7bWdbiaahAhacaGG3cWdaiaacIcaju aGpeWaaWbaaSqabKqaGeaajugWaiad4d4FKksLaaqcLbsacaWHbbGa ey4bIeTaaCODa8aacaGGPaGaaiyFa8qacaGG7aaaaaa@DE82@ (6)

and g(v) and g(v) and h(v) are nonlinear functions of the forms:

g ( v )   = V 3 ( o t ( κ v ) d s ) v ;         g ( v )   = V 4 ( 0 t ( κ v ) d s ) v ;         h ( v )   = V 5 ( 0 t ( κ v ) d s ) v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEgajuaGpaWaaeWaaOqaaKqzGeWdbiaahAhaaOWdaiaa wIcacaGLPaaajugib8qacaqGGaGaeyypa0JaamOvaKqbaoaaBaaaje aibaqcLbmacaaIZaaaleqaaKqzGeWdaiaacIcakmaapedajaa4baaa jeaibaqcLbmacaWGVbaajeaibaqcLbmacaWG0baajugGbiabgUIiYd qcLbsapeGaey4bIeDcfa4damaabmaakeaajugib8qacqaH6oWAcaWH 2baak8aacaGLOaGaayzkaaqcLbsapeGaamizaiaadohapaGaaiyka8 qacqGHhis0caWH2bGaai4oaiaacckacaGGGcGaaiiOaiaacckacaWH Nbqcfa4damaabmaakeaajugib8qacaWH2baak8aacaGLOaGaayzkaa qcLbsapeGaaiiOaiabg2da9iaadAfajuaGdaWgaaqcbasaaKqzadGa aGinaaWcbeaajugibiaacIcakmaapedajaa4baaajeaibaqcLbmaca aIWaaajeaibaqcLbmacaWG0baajugGbiabgUIiYdqcLbsacqGHhis0 juaGpaWaaeWaaOqaaKqzGeWdbiabeQ7aRjaahAhaaOWdaiaawIcaca GLPaaajugib8qacaWGKbGaam4Ca8aacaGGPaWdbiaahAhacaGG7aGa aiiOaiaacckacaGGGcGaaiiOaiaahIgajuaGpaWaaeWaaOqaaKqzGe WdbiaahAhaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0Ja amOvaKqbaoaaBaaajeaibaqcLbmacaaI1aaaleqaaKqzGeWdaiaacI cakmaapedajaa4baaajeaibaqcLbmacaaIWaaajeaqbaqcLboacaWG 0baajugGbiabgUIiYdqcLbsapeGaey4bIeDcfa4damaabmaakeaaju gib8qacqaH6oWAcaWH2baak8aacaGLOaGaayzkaaqcLbsapeGaamiz aiaadohapaGaaiyka8qacqGHhis0caWH2baaaa@A681@ (7)

with some nonlinear functions Visuch that Vi(0) = 0 except for i = 2.

The main result of this paper is the following theorem that shows the unique existence theorem of global in time solutions of Eq. (5) and asymptotics as t     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshacaqGGaGaeyOKH4Qaaeiiaiabg6HiLcaa@3C42@ .

Theorem 1

Let N     3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaaiiOaiabgwMiZkaacckacaaIZaaaaa@3BB4@ and let q1 and q2 be exponents such that max ( N ,     2 N N 2 )   < q 2 < a n d 1 / q 1 = 1 / q 2 + 1 / N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciyBai aacggacaGG4bWaaeWaaOqaaKqzGeaeaaaaaaaaa8qacaWGobGaaiil aiaacckacaGGGcqcfa4aaSaaaOqaaKqzGeGaaGOmaiaad6eaaOqaaK qzGeGaamOtaiabgkHiTiaaikdaaaaak8aacaGLOaGaayzkaaqcLbsa peGaaiiOaiabgYda8iaacghajuaGdaWgaaqcbasaaKqzadGaaGOmaa WcbeaajugibiabgYda8iabg6HiLkaaykW7caaMc8Uaamyyaiaad6ga caWGKbGaaGPaVlaaykW7caaIXaGaai4laiaadghajuaGdaWgaaqcba saaKqzadGaaGymaaWcbeaajugibiabg2da9iaaigdacaGGVaGaamyC aKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaey4kaSIaaG ymaiaac+cacaWGobaaaa@677F@ . Let b and p be numbers defined by

b = 3 N 2 q 2 + 1 2 , p = 2 q 2 ( 1 + σ ) q 2 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkgacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIZaGaamOt aaGcbaqcLbsacaaIYaGaamyCaKqbaoaaBaaajeaibaqcLbmacaaIYa aaleqaaaaajugibiabgUcaRKqbaoaalaaakeaajugibiaaigdaaOqa aKqzGeGaaGOmaaaacaGGSaGaaGPaVlaaykW7caWGWbGaeyypa0tcfa 4aaSaaaOqaaKqzGeGaaGOmaiaadghajuaGdaWgaaqcbasaaKqzadGa aGOmaaWcbeaajugibiaacIcacaaIXaGaey4kaSIaeq4WdmNaaiykaa GcbaqcLbsacaWGXbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqc LbsacqGHsislcaWGobaaaaaa@5C96@ (8)

with some very small positive number σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZbaa@3868@ . Then, there exists an >   0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgIGiolabg6da+iaacckacaaIWaGaaiiOaaaa@3C33@ such that if initial data u 0 B q 2 , p 2 ( 1 1 / p ) ( ) N   B q 1 / 2 , p 2 ( 1 1 / p ) ( ) N       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biabgIGiolaadkeajuaGdaqhaaqcbasaaKqzadGaamyCaSWaaSbaaK GaGeaajugyaiaaikdajugWaiaacYcacaWGWbaajiaibeaaaKqaGeaa jugWaiaaikdacaGGOaGaaGymaiabgkHiTiaaigdacaGGVaGaamiCai aacMcaaaqcfa4damaabmaakeaatCvAUfeBSn0BKvguHDwzZbqegiuy 0fMBNbacfaqcLbsapeGaa8NjHaGcpaGaayjkaiaawMcaaKqba+qada ahaaWcbeqcbasaaKqzadGaamOtaaaajugibiaacckacqGHPiYXcaWG cbqcfa4aa0baaKqaGeaajugWaiaadghajuaGdaWgaaqccasaaKqzGb GaaGymaiaac+cacaaIYaaajiaibeaajugWaiaacYcacaWGWbaajeai baqcLbmacaaIYaWdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVa GaamiCa8aacaGGPaaaaKqbaoaabmaakeaajugib8qacaWFMecak8aa caGLOaGaayzkaaqcfa4dbmaaCaaaleqajeaibaqcLbmacaWGobaaaK qzGeGaaiiOaiaacckacaGGGcaaaa@7B94@ satisfies the compatibility condition:

div u 0  = 0 in  Ω , D ( u 0 ) n < D ( u 0 ) n , n > n = 0         o n Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGKb GaaeyAaiaabAhacaqGGaGaaeyDaKqbaoaaBaaajeaibaqcLbmacaqG WaaaleqaaKqzGeGaaeiiaiaab2dacaqGGaGaaeimaiaaykW7caaMc8 UaaeyAaiaab6gacaqGGaGaeuyQdCLaaiilaiaaykW7caaMc8UaaGPa VlaaykW7qaaaaaaaaaWdbiaahseapaGaaiika8qacaWH1bqcfa4aaS baaKqaGeaajugWaiaaicdaaSqabaqcLbsapaGaaiyka8qacaWHUbGa eyOeI0IaeyipaWJaaCira8aacaGGOaWdbiaahwhajuaGdaWgaaqcba saaKqzadGaaGimaaWcbeaajugib8aacaGGPaWdbiaah6gacaGGSaGa aCOBaiabg6da+iaah6gacqGH9aqpcaaIWaGaaiiOaiaacckacaGGGc GaaiiOaiaad+gacaWGUbGaaGPaVlaaykW7caaMc8Uaeu4KdCeaaa@7258@ (9)

and the smallness condition: with I   =   u 0 B q 2 , p 2 ( 1 1 / p )   +   u 0 B q 1 / 2 , p 2 ( 1 1 / p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMeacaGGGcGaeyypa0JaaiiOaiablwIiqjaahwhajuaG daWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiablwIiqjaadkealm aaDaaajeaibaqcLbmacaWGXbWcdaWgaaqccasaaKqzGbGaaGOmaaqc casabaqcLbmacaGGSaGaamiCaaqcbasaaKqzadGaaGOma8aacaGGOa WdbiaaigdacqGHsislcaaIXaGaai4laiaadchapaGaaiykaaaajugi b8qacaGGGcGaey4kaSIaaiiOaiablwIiqjaahwhajuaGdaWgaaqcba saaKqzadGaaGimaaWcbeaajugibiablwIiqjaadkealmaaDaaajeai baqcLbmacaWGXbWcdaWgaaqccasaaKqzGbGaaGymaiaac+cacaaIYa aajiaibeaajugWaiaacYcacaWGWbaajeaibaqcLbmacaaIYaWdaiaa cIcapeGaaGymaiabgkHiTiaaigdacaGGVaGaamiCa8aacaGGPaaaaa aa@6CD8@ , then Eq. (5) admits unique solutions v and q with

v L p ( ( 0 , ) , H q 2 2     ( Ω )   N ) H p 1   ( ( 0 , ) , L q 2     ( Ω )   N ) ,                           q L p ( ( 0 , ) , H q 2 1 ( Ω ) + H ^ q 2 , 0 1 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahAhacqGHiiIZcaWGmbqcfa4aaSbaaKazba4=baqcLbma caWGWbaaleqaaKqbaoaabmaabaqcLbsapaGaaiika8qacaaIWaGaai ilaiabg6HiL+aacaGGPaWdbiaacYcacaWGibWcdaqhaaqcfasaaKqz adGaamyCaSWaaSbaaKazfaY=baqcLbgacaaIYaaajuaibeaaaKazfa 0=baqcLbmacaaIYaaaaKqzGeGaaiiOaiaacckajuaGpaWaaeWaaeaa jugib8qacqqHPoWvaKqba+aacaGLOaGaayzkaaqcLbsapeGaaiiOaK qbaoaaCaaabeqcfasaaKqzGeGaamOtaaaaaKqbakaawIcacaGLPaaa jugibiabgMIihlaadIealmaaDaaajqwaa+FaaKqzadGaamiCaaqcKf aG=haajugWaiaaigdaaaqcLbsacaGGGcqcfa4aaeWaaeaajugib8aa caGGOaWdbiaaicdacaGGSaGaeyOhIu6daiaacMcapeGaaiilaiaadY eajuaGdaWgaaqcKvaq=haajugWaiaadghalmaaBaaajqwbG8FaaKqz GbGaaGOmaaqcKvaq=hqaaaqcfayabaqcLbsacaGGGcGaaiiOaKqba+ aadaqadaqaaKqzGeWdbiabfM6axbqcfa4daiaawIcacaGLPaaajugW a8qacaGGGcWcdaahaaqcfasabeaajugWaiaad6eaaaaajuaGcaGLOa GaayzkaaqcLbsacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aadghacqGHiiIZcaWGmbqcfa4aaSbaaKqaGeaajugWaiaadchaaSqa baqcfa4aaeWaaeaajugib8aacaGGOaWdbiaaicdacaGGSaGaeyOhIu 6daiaacMcapeGaaiilaiaadIeajuaGdaqhaaqcfasaaiaadghajuaG daWgaaqcKvaq=haacaaIYaaajuaibeaaaeaacaaIXaaaaKqba+aada qadaqaaKqzGeWdbiabfM6axbqcfa4daiaawIcacaGLPaaajugib8qa cqGHRaWkceWGibGbaKaajuaGdaqhaaqcfasaaKqzadGaamyCaKqbao aaBaaajqwba9FaaKqzGbGaaGOmaaqcfasabaqcLbmacaGGSaGaaGim aaqcfasaaKqzadGaaGymaaaajugibiaacIcacqqHPoWvcaGGPaaaju aGcaGLOaGaayzkaaaaaa@C5A3@ ,

possessing the estimate [ v ]     C ϵ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeaeaaaaaaaaa8qacaWG2baak8aacaGLBbGaayzxaaqcfa4d bmaaBaaajeaibaqcLbmacqGHEisPaSqabaqcLbsacaqGGaGaeyizIm QaaeiiaiaadoeatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=v=aYdaa@4E21@ with

[ v ] T = { 0 T ( <   s   > b v ( · , s ) H 1     ( Ω ) ) p d s + 0 T ( <   s   > ( b N 2 q 1 ) v ( · , s ) H q 1 1 ( Ω ) ) p d s + ( s u p 0 < s < T < s > N 2 q 1       v ( · , s ) L q 1 ( Ω ) ) p + 0 T ( <   s   > ( b N 2 q 2 ) v ( · , s ) H q 2 2 ( Ω ) + t v ( · , s ) L q 2 ( Ω ) ) p d s } 1 p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WadaGcbaqcLbsaqaaaaaaaaaWdbiaahAhaaOWdaiaawUfacaGLDbaa juaGpeWaaSbaaKqaGeaajugWaiaadsfaaSqabaqcLbsacqGH9aqpju aGdaGabaGcbaWaa8qmaKqbagaadaqadaqaaiabgYda8iaabccacaWG ZbGaaeiiaiabg6da+maaCaaabeqaaiaadkgaaaGaeSyjIaLaaCODa8 aacaGGOaWdbiaacElacaGGSaGaam4Ca8aacaGGPaWdbiablwIiqjaa dIeadaqhaaqaaiabg6HiLcqaaiaaigdaaaGaaiiOaiaacckapaGaai ika8qacqqHPoWvpaGaaiykaaWdbiaawIcacaGLPaaapaWaaWbaaeqa baGaamiCaaaapeGaamizaiaadohaaKazfaY=baqcLbmacaaIWaaajq wbG8FaaKqzadGaamivaaqcLbEacqGHRiI8aaGccaGL7baaaeaajugi biaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaROWaa8qmaKqbagaadaqa daqaaiabgYda8iaabccacaWGZbGaaeiiaiabg6da+maaCaaabeqaai aacIcacaGGIbGaeyOeI0YaaSaaaeaacaWGobaabaGaaGOmaiaadgha daWgaaqaaiaaigdaaeqaaaaacaGGPaaaaiablwIiqjaahAhapaGaai ika8qacaGG3cGaaiilaiaadohapaGaaiyka8qacqWILicucaWGibWa a0baaeaacaWGXbWaaSbaaeaadaWgaaqaaiaaigdaaeqaaaqabaaaba GaaGymaaaapaGaaiika8qacqqHPoWvpaGaaiykaiaacMcadaahaaqa beaacaWGWbaaa8qacaWGKbGaam4CaiabgUcaRiaacIcadaWfqaqaai aacohacaGG1bGaaiiCaaqaaiaaicdacqGH8aapcaWGZbGaeyipaWJa amivaaqabaGaaGPaVlaaykW7caaMc8UaaGPaVlabgYda8iaadohacq GH+aGpdaahaaqabeaadaWcaaqaaiaad6eaaeaacaaIYaWaaSbaaeaa caWGXbWaaSbaaeaadaWgaaqaaiaaigdaaeqaaaqabaaabeaaaaaaai aacckacaGGGcGaaiiOaiablwIiqjaahAhapaGaaiika8qacaGG3cGa aiilaiaadohapaGaaiyka8qacqWILicucaWGmbWaaSbaaeaacaWGXb WaaSbaaeaacaaIXaaabeaaaeqaaiaacIcacqqHPoWvcaGGPaaacaGL OaGaayzkaaaajqwbG8FaaKqzadGaaGimaaqcKvai=haajugWaiaads faaKqzGhGaey4kIipakmaaCaaaleqabaGaamiCaaaaaOqaaKqzGeGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7cqGHRaWkjuaGdaGacaGcbaWaa8qmaKqbagaa daqadaqaaiabgYda8iaabccacaWGZbGaaeiiaiabg6da+maaCaaabe qaaiaacIcacaGGIbGaeyOeI0YaaSaaaeaacaWGobaabaGaaGOmaiaa dghadaWgaaqaaiaaikdaaeqaaaaacaGGPaaaaiablwIiqjaahAhapa Gaaiika8qacaGG3cGaaiilaiaadohapaGaaiyka8qacqWILicucaWG ibWaa0baaeaacaWGXbWaaSbaaeaacaaIYaaabeaaaeaacaaIYaaaa8 aacaGGOaWdbiabfM6ax9aacaGGPaGaey4kaSYdbiablwIiqjabgkGi 2oaaBaaabaGaamiDaaqabaGaaCODa8aacaGGOaWdbiaacElacaGGSa Gaam4Ca8aacaGGPaWdbiablwIiqjaadYeadaWgaaqaaiaadghacaaI YaaabeaacaGGOaGaeuyQdCLaaiykaaGaayjkaiaawMcaaaqcKvai=h aajugWaiaaicdaaKazfaY=baqcLbmacaWGubaajug4biabgUIiYdGc daahaaWcbeqaaiaadchaaaqcLbsacaWGKbGaam4CaaGccaGL9baaju aGdaahaaWcbeqcbasaaKqbaoaalaaajeaibaqcLbmacaaIXaaajeai baqcLbmacaWGWbaaaaaajuaGcaGGUaaaaaa@2188@

Here, <   s   > =   ( 1   +   s 2 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaabccacaWGZbGaaeiiaiabg6da+iabg2da9iaa bccajuaGpaWaaeWaaOqaaKqzGeWdbiaaigdacaqGGaGaey4kaSIaae iiaiaadohajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOWdaiaa wIcacaGLPaaajuaGdaahaaWcbeqcbasaaKqzadGaaGymaiaac+caca aIYaaaaaaa@4A67@ and C is a constant that is independent of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHii IZaaa@3809@ .

Remark 2

Let p   =   p / ( p 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchacqGHYaIOcaqGGaGaeyypa0JaaeiiaiaadchacaGG Vaqcfa4damaabmaakeaajugib8qacaWGWbGaeyOeI0IaaGymaaGcpa GaayjkaiaawMcaaKqzGeWdbiaacYcaaaa@43E2@ that is 1 / p   =   1 1 / p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaigdacaGGVaGaamiCaiabgkdiIkaabccacqGH9aqpcaqG GaGaaGymaiabgkHiTiaaigdacaGGVaGaamiCaiaac6caaaa@4191@ And then,

1 p = ( 1 + 2 σ ) q 2 + N 2 q 2 ( 1 + σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcLbsaqaaaaaaaaaWdbiaadchacqGHYaIO aaWdaiabg2da9KqbaoaalaaakeaajuaGdaqadaGcbaqcLbsapeGaaG ymaiabgUcaRiaaikdacqaHdpWCaOWdaiaawIcacaGLPaaajugib8qa caWGXbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacqGHRa WkcaWGobaak8aabaqcLbsapeGaaGOmaiaadghajuaGdaWgaaqcbasa aKqzadGaaGOmaaWcbeaajuaGpaWaaeWaaOqaaKqzGeWdbiaaigdacq GHRaWkcqaHdpWCaOWdaiaawIcacaGLPaaaaaaaaa@55EF@

We choose σ > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo8aZjabg6da+iaaicdaaaa@3A2A@ small enough in such a way that the following relations hold,

1 < q 1 < 2 , N q 1 > b > 1 p , ( N q 1 b ) p > 1 , ( b N 2 q 2 ) p > 1 , b N 2 q 1 , b N q 2 , ( N 2 q 2 + 1 2 ) p < 1 , ( b N 2 q 2 ) p > 1 , N q 2 + 2 p < 1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aaigdacqGH8aapcaWGXbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqa baqcLbsacqGH8aapcaaIYaGaaiilaKqbaoaalaaakeaajugibiaad6 eaaOqaaKqzGeGaamyCaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqa aaaajugibiabg6da+iaadkgacqGH+aGpjuaGdaWcaaGcbaqcLbsaca aIXaaakeaajugibiqadchagaqbaaaacaGGSaGaaGPaVNqbaoaabmaa keaajuaGdaWcaaGcbaqcLbsacaWGobaakeaajugibiaadghajuaGda WgaaqcbasaaKqzadGaaGymaaWcbeaaaaqcLbsacqGHsislcaWGIbaa kiaawIcacaGLPaaajugibiaaykW7caWGWbGaeyOpa4JaaGymaiaacY cacaaMc8UaaGPaVNqbaoaabmaakeaajugibiaackgacqGHsisljuaG daWcaaGcbaqcLbsacaWGobaakeaajugibiaaikdacaWGXbqcfa4aaS baaKqaGeaajugWaiaaikdaaSqabaaaaaGccaGLOaGaayzkaaqcLbsa caGGWbGaeyOpa4JaaGymaiaacYcacaaMc8UaaGPaVlaadkgacqGHLj YSjuaGdaWcaaGcbaqcLbsacaWGobaakeaajugibiaaikdacaWGXbqc fa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaKqzGeGaaiilaaGcba qcLbsacaWGIbGaeyyzImBcfa4aaSaaaOqaaKqzGeGaamOtaaGcbaqc LbsacaWGXbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaKqzGe GaaiilaiaaykW7caaMc8Ecfa4aaeWaaOqaaKqbaoaalaaakeaajugi biaad6eaaOqaaKqzGeGaaGOmaiaadghajuaGdaWgaaqcbasaaKqzad GaaGOmaaWcbeaaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaI XaaakeaajugibiaaikdaaaaakiaawIcacaGLPaaajugibiqadchaga qbaiabgYda8iaaigdacaGGSaGaaGPaVlaaykW7juaGdaqadaGcbaqc LbsacaGGIbGaeyOeI0scfa4aaSaaaOqaaKqzGeGaamOtaaGcbaqcLb sacaaIYaGaamyCaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaaaa aOGaayjkaiaawMcaaKqzGeGabmiCayaafaGaeyOpa4JaaGymaiaacY cacaaMc8UaaGPaVNqbaoaalaaakeaajugibiaad6eaaOqaaKqzGeGa amyCaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaaaajugibiabgU caRKqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaamiCaaaacqGH 8aapcaaIXaGaaiOlaaaaaa@C3C6@ (11)

Remark 3

The exponent q2 is used to control the nonlinear terms, so that q2 is chosen as N < q 2 < . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob GaeyipaWJaamyCaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqz GeGaeyipaWJaeyOhIuQaaiOlaaaa@3FD6@

Let

1 q 1 = 1 N + 1 q 2 , 1 q 3 = 1 q 1 + 1 q 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcLbsacaWGXbqcfa4aaSbaaKqaGeaajugW aiaaigdaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaG ymaaGcbaqcLbsacaWGobaaaiabgUcaRKqbaoaalaaakeaajugibiaa igdaaOqaaKqzGeGaamyCaKqbaoaaBaaajeaibaqcLbmacaaIYaaale qaaaaajugibiaacYcacaaMc8UaaGPaVNqbaoaalaaakeaajugibiaa igdaaOqaaKqzGeGaamyCaKqbaoaaBaaajeaibaqcLbmacaaIZaaale qaaaaajugibiabg2da9KqbaoaalaaakeaajugibiaaigdaaOqaaKqz GeGaamyCaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaaajugibi abgUcaRKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamyCaKqb aoaaBaaajeaibaqcLbmacaaIYaaaleqaaaaajugibiaac6caaaa@63F1@ (12)

And the condition: q 2 > 2 N N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGXb qcfa4aaSbaaKqbGeaajugWaiaaikdaaKqbagqaaKqzGeGaeyOpa4tc fa4aaSaaaOqaaKqzGeGaaGOmaiaad6eaaOqaaKqzGeGaamOtaiabgk HiTiaaikdaaaaaaa@4241@ implies that q1 > 2 and q3 > 1 which is necessary to prove Theorem 1.

Thus, we assume that

max ( N , 2 N N 2 ) < q 2 < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGTb GaaiyyaiaacIhajuaGdaqadaGcbaqcLbsacaWGobGaaiilaKqbaoaa laaakeaajugibiaaikdacaWGobaakeaajugibiaad6eacqGHsislca aIYaaaaaGccaGLOaGaayzkaaqcLbsacqGH8aapcaWGXbqcfa4aaSba aKqaGeaajugWaiaaikdaaSqabaqcLbsacqGH8aapcqGHEisPaaa@4BCC@ .

Remark 4

We can choose δ > 0 so small that x = L(ξ, t) is a diffeomorphism with suitable regularity from Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuyQdCfaaa@3882@ onto Ω t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeuyQdCLaamiDaaaa@397B@ , so that the original problem (1) is globally well-posed.

Finally, we explain several symbols used in this paper. We use bold small letters to denote N -vectors of functions and bold capital letters to denote N × N matrix of functions. For a scalor function h = h(x), h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgEGirlaadIgaaaa@3918@ is an N vector whose ith component is i h   =   h / x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2MqbaoaaBaaajuaibaGaamyAaaqcfayabaqcLbsa caWGObGaaeiiaiabg2da9iaabccacqGHciITcaWGObGaai4laiabgk Gi2kaadIhajuaGdaWgaaqcfasaaiaadMgaaeqaaaaa@4560@ . For v(x) = (v1(x), . . . , vN (x)), v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgEGirlaadAhaaaa@3926@ is an N × N matrix of functions whose (i, j) component is i v j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2MqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaKqz GeGaamODaKqbaoaaBaaajeaibaqcLbmacaWGQbaaleqaaaaa@3F96@ . Given exponent 1 <   q <   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaigdacqGH8aapcaqGGaGaamyCaiabgYda8iaabccacqGH EisPaaa@3D15@ , let q′ = q/(q − 1).

Let L q   ( Ω ) , H q m ( Ω ) a n d B q , p s   ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeajuaGdaWgaaqcfasaaiaadghaaKqbagqaaKqzGeGa aiiOaKqba+aadaqadaGcbaqcLbsacqqHPoWvaOGaayjkaiaawMcaaK qzGeWdbiaacYcacaWGibqcfa4aa0baaKqbGeaacaWGXbaabaGaamyB aaaajuaGpaWaaeWaaOqaaKqzGeGaeuyQdCfakiaawIcacaGLPaaaju gib8qacaWGHbGaamOBaiaadsgacaaMc8UaaGPaVlaadkealmaaDaaa jeaibaqcLbmacaWGXbGaaiilaiaadchaaKqaGeaajugWaiaadohaaa qcLbsacaGGGcGaaiika8aacqqHPoWvtCvAUfeBSn0BKvguHDwzZbqe giuy0fMBNbacfaWdbiaa=Lcaaaa@63B4@ be the standard Lebesgue, Sobolev, and Besov spaces on Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHPo Wvaaa@3813@ , while L q   ( Ω ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjaaykW7caaMc8UaeyOiGCRaaGPaVlaaykW7cqWI LicucaWGmbqcfa4aaSbaaKqaGeaajugWaiaadghaaSqabaqcLbsaca GGGcWdaiaacIcapeGaeuyQdC1daiaacMcacaaMc8UccaaMc8+dbiaa cYcaaaa@4D27@ H q m ( Ω ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjaaykW7caaMc8UaeyOiGCRaaGPaVlaaykW7cqWI LicucaWGibqcfa4aa0baaKqbGeaacaWGXbaabaGaamyBaaaajuaGpa WaaeWaaOqaaKqzGeGaeuyQdCfakiaawIcacaGLPaaajugib8qacaGG Saaaaa@49DF@ B q , p s   ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjaaykW7caaMc8UaeyOiGCRaaGPaVlaaykW7cqWI LicucaWGcbWcdaqhaaqcbasaaKqzadGaamyCaiaacYcacaWGWbaaje aibaqcLbmacaWGZbaaaKqzGeGaaiiOaiaacIcapaGaeuyQdC1exLMB bXgBd9gzLbvyNv2CaeHbcfgDH52zaGqba8qacaWFPaaaaa@54C9@ denote their norms, respectively. For a Banach space X with norm X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjaackcicqWILicucaWGybaaaa@3A98@ ,

Let { ( f 1 , . . . ,  f d ) |  f i  X ( i = 1, . . . , d ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGadaqaa8aadaqadaqaa8qacaWGMbWdamaaBaaabaWdbiaa igdaa8aabeaapeGaaiilaiaabccacaGGUaGaaeiiaiaac6cacaqGGa GaaiOlaiaabccacaGGSaGaaeiiaiaadAgapaWaaSbaaeaapeGaamiz aaWdaeqaaaGaayjkaiaawMcaa8qacaqGGaWdaiaacYhapeGaaeiiai aadAgapaWaaSbaaeaapeGaamyAaaWdaeqaa8qacaGGGcGaeyicI4Sa amiwaiaacckapaWaaeWaaeaapeGaamyAaiaabccacqGH9aqpcaqGGa GaaGymaiaacYcacaqGGaGaaiOlaiaabccacaGGUaGaaeiiaiaac6ca caqGGaGaaiilaiaabccacaWGKbaapaGaayjkaiaawMcaaaWdbiaawU hacaGL9baaaaa@5BEA@ , while the norm of Xd is written simply by X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjaackcicqWILicucaWGybaaaa@3A98@ , which is defined by fX = j=1 d f j X  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjaadAgacqWILicucaWGybGaaiiOaiabg2da9Kqb aoaaqadakeaajugibiablwIiqjaadAgajuaGdaWgaaWcbaqcLbsaca WGQbaaleqaaKqzGeGaeSyjIaLaamiwaiaacckaaKqaGeaajugWaiaa dQgacqGH9aqpcaaIXaaajeaibaqcLbmacaWGKbaajugibiabggHiLd aaaa@4EDE@ for  f = ( f 1 , . . . ,  f d ) X d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGGaqcLbsacaWGMbGaaiiOaiabg2da9iaabccajuaGpaWaaeWa aOqaaKqzGeWdbiaadAgajuaGdaWgaaqcfasaaiaaigdaaKqbagqaaK qzGeGaaiilaiaabccacaGGUaGaaeiiaiaac6cacaqGGaGaaiOlaiaa bccacaGGSaGaaeiiaiaadAgajuaGdaWgaaqcfasaaiaadsgaaKqbag qaaaGcpaGaayjkaiaawMcaaKqzGeWdbiabgIGiolaadIfajuaGdaWg aaqcfasaaiaadsgaaKqbagqaaaaa@50C0@ . Let H ^ q ,0 1 (Ω)={ θ L q,loc (Ω)| θ L q ( Ω ) N  , θ|Γ= 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadIeagaqcaSWaa0baaKqaGeaajugWaiaadghalmaaBaaa jiaibaqcLbmacaGGSaGaaGimaaqccasabaaajeaibaqcLbmacaaIXa aaaKqzGeWdaiaacIcapeGaeuyQdC1daiaacMcacqGH9aqpjuaGdaGa daGcbaqcLbsacqaH4oqCcqGHiiIZpeGaamitaKqbaoaaBaaajeaiba qcLbmacaWGXbGaaiilaiaadYgacaWGVbGaam4yaaWcbeaajugib8aa caGGOaWdbiabfM6ax9aacaGGPaqcfa4aaqqaaOqaaKqzGeWdbiabgE GirlabeI7aXjabgIGiolaadYeajuaGdaWgaaqcbasaaKqzadGaamyC aaWcbeaajuaGpaWaaeWaaOqaaKqzGeWdbiabfM6axbGcpaGaayjkai aawMcaaKqbaoaaCaaaleqajeaibaqcLbmacaWGobaaaKqzGeWdbiaa cckacaGGSaGaaeiiaiabeI7aX9aacaGG8bWdbiabfo5ahjabg2da9i aabccacaaIWaaak8aacaGLhWoaaiaawUhacaGL9baaaaa@71FF@

H ^ q 1 (Ω)= H ^ q ,0 1 (Ω)+{ p= p 1 + p 2 | p 1 H q 1 (Ω), p 2 H ^ q ,0 1 (Ω) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8EcLbsacaaMc8UabmisayaajaWcdaqhaaqcKfaG=haa jugWaiaadghaaKazba4=baqcLbmacaaIXaaaaKqzGeWdaiaacIcape GaeuyQdC1daiaacMcacqGH9aqppeGabmisayaajaWcdaqhaaqcKfaG =haajugWaiaadghalmaaBaaajiaibaqcLbmacaGGSaGaaGimaaqcca sabaaajqwaa+FaaKqzadGaaGymaaaajugib8aacaGGOaWdbiabfM6a x9aacaGGPaGaey4kaSscfa4aaiWaaeaatuuDJXwAKzKCHTgD1jhary qr1ngBPrgigjxyRrxDYbacfaqcLbsacqWFPapCcqWF9aqpcqWFPapC lmaaBaaajuaibaqcLbmacaaIXaaajuaibeaajugibiabgUcaRiab=L c8WTWaaSbaaKqbGeaajugWaiaaikdaaKqbGeqaaKqbaoaaeeaabaaa caGLhWoajugibiab=Lc8WTWaaSbaaKqbGeaajugWaiaaigdaaKqbGe qaaKqzGeGaeyicI48dbiaadIealmaaDaaajuaibaqcLbmacaWGXbaa juaibaqcLbmacaaIXaaaaKqzGeWdaiaacIcapeGaeuyQdC1daiaacM cacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlab=Lc8WTWaaSbaaKqb GeaajugWaiaaikdaaKqbGeqaaKqzGeGaeyicI48dbiqadIeagaqcaS Waa0baaKqbGeaajugWaiaadghalmaaBaaajuaibaqcLbmacaGGSaGa aGimaaqcfasabaaabaqcLbmacaaIXaaaaKqzGeWdaiaacIcapeGaeu yQdC1daiaacMcaaKqbakaawUhacaGL9baaaaa@A081@

For 1     p     ,   L p ( ( a ,   b ) ,   X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaigdacaqGGaGaeyizImQaaeiiaiaadchacaqGGaGaeyiz ImQaaeiiaiabg6HiLkaacYcacaqGGaGaamitaKqba+aadaWgaaqcba saaKqzadWdbiaadchaaSWdaeqaaKqbaoaabmaakeaajuaGdaqadaGc baqcLbsapeGaamyyaiaacYcacaqGGaGaamOyaaGcpaGaayjkaiaawM caaKqzGeWdbiaacYcacaqGGaGaamiwaaGcpaGaayjkaiaawMcaaaaa @5017@ and H m p ( ( a ,   b ) ,   X ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeajuaGdaqhaaqcbasaaKqzadGaamyBaaqcbasaaKqz adGaamiCaaaajuaGpaWaaeWaaOqaaKqbaoaabmaakeaajugib8qaca WGHbGaaiilaiaabccacaWGIbaak8aacaGLOaGaayzkaaqcLbsapeGa aiilaiaabccacaWGybaak8aacaGLOaGaayzkaaaaaa@47CA@ denote the standard Lebesgue and Sobolev spaces of X-valued functions defined on an interval (a, b), while L p ( ( a , b ) , X )     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjaackcicqWILicucaWGmbqcfa4aaSbaaKqbGeaa caWGWbaajuaGbeaapaWaaeWaaOqaaKqbaoaabmaakeaajugib8qaca WGHbGaaiilaiaadkgaaOWdaiaawIcacaGLPaaajugib8qacaGGSaGa amiwaaGcpaGaayjkaiaawMcaaKqzGeWdbiaacckacaGGGcaaaa@4910@ and H m p ( ( a , b ) , X )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjaackcicqWILicucaWGibqcfa4aa0baaKqaGeaa jugWaiaad2gaaKqaGeaajugWaiaadchaaaqcfa4damaabmaakeaaju aGdaqadaGcbaqcLbsapeGaamyyaiaacYcacaWGIbaak8aacaGLOaGa ayzkaaqcLbsapeGaaiilaiaadIfaaOWdaiaawIcacaGLPaaajugib8 qacaGGGcaaaa@4B5D@ denote their norms, respectively. The letter C denotes generic constants and Ca,b,c,… means that the constant Ca,b,c,… depends on a, b, c... The values of C and Ca,b,c… may change from line to line.

After Introduction (Sect. 1), the paper is organized as follows: In Sect. 2, we reformulate problem (5) by using the formula:

0 t ( κ ( ξ ) v ( ξ ,   s ) d s = 0 T ( κ ( ξ ) v ( ξ ,   s ) d s 0 T ( κ ( ξ ) v ( ξ ,   s ) d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWdXaqaaKqzGeGaey4bIe9daiaacIcapeGaeqOUdS2daiaacIca peGaeqOVdG3daiaacMcapeGaaCODa8aacaGGOaWdbiabe67a4jaacY cacaqGGaGaam4Ca8aacaGGPaWdbiaadsgacaWGZbaaleaajugWaiaa icdaaSqaaKqzadGaamiDaaqdcqGHRiI8aOGaaGPaVlaaykW7jugibi aaykW7cqGH9aqpkiaaykW7daWdXaqaaKqzGeGaey4bIe9daiaacIca peGaeqOUdS2daiaacIcapeGaeqOVdG3daiaacMcapeGaaCODa8aaca GGOaWdbiabe67a4jaacYcacaqGGaGaam4Ca8aacaGGPaWdbiaadsga caWGZbaaleaajugWaiaaicdaaSqaaKqzadGaamivaaqdcqGHRiI8aK qzGeGaeyOeI0IcdaWdXaqaaKqzGeGaey4bIe9daiaacIcapeGaeqOU dS2daiaacIcapeGaeqOVdG3daiaacMcapeGaaCODa8aacaGGOaWdbi abe67a4jaacYcacaqGGaGaam4Ca8aacaGGPaWdbiaadsgacaWGZbaa leaajugWaiaaicdaaSqaaKqzadGaamivaaqdcqGHRiI8aOGaaGPaVd aa@84E2@ .

In Sect. 3, we give estimations of the nonlinear terms. In Sect. 4, we explain how to prolong local in time solutions to the infinite time interval ( 0 , ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacaaIWaGaaiilaiabg6HiL+aacaGGPaaaaa@3AE8@ . Finally, in Sect. 5, we prove Theorem 1 by using maximal Lp-Lq regularity and Lp-Lq decay estimate for solutions of the perturbed Stokes equations with free boundary condition in an exterior domain, which was proved in Shibata.30,47

Another formulation of Eq. (5)

Let T > 0 and let v H p 1   ( ( 0 , T ) , L q   ( Ω   ) N   ) L p ( ( 0 , T ) , H q 2   ( Ω   ) )   , q L p ( ( 0 , T ) , H q 1   ( Ω   ) + H ^ q , 0 1   ( Ω   ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahAhacqGHiiIZcaWGibqcfa4aa0baaKazba4=baqcLbma caWGWbaajqwaa+FaaKqzadGaaGymaaaajugibiaacckajuaGpaWaae WaaeaajugibiaacIcapeGaaGimaiaacYcacaWGubWdaiaacMcapeGa aiilaiaadYeajuaGdaWgaaqcfasaaKqzadGaamyCaaqcfayabaqcLb sacaGGGcGaaiikaiabfM6axjaacckacaGGPaqcfa4aaWbaaeqajuai baqcLbmacaWGobaaaKqzGeGaaiiOaaqcfa4daiaawIcacaGLPaaaju gib8qacqGHPiYXcaWGmbqcfa4aaSbaaKazba4=baqcLbmacaWGWbaa leqaaKqbaoaabmaabaqcLbsapaGaaiika8qacaaIWaGaaiilaiaads fapaGaaiyka8qacaGGSaGaamisaSWaa0baaKqbGeaajugWaiaadgha aKqbGeaajugWaiaaikdaaaqcLbsacaGGGcGaaiikaiabfM6axjaacc kacaGGPaaajuaGcaGLOaGaayzkaaqcLbsacaGGGcGaaiilaiaaykW7 caaMc8UaaGPaVlaadghacqGHiiIZcaWGmbqcfa4aaSbaaKazba4=ba qcLbmacaWGWbaaleqaaKqbaoaabmaabaqcLbsapaGaaiika8qacaaI WaGaaiilaiaadsfapaGaaiyka8qacaGGSaGaamisaSWaa0baaKqbGe aajugWaiaadghaaKqbGeaajugWaiaaigdaaaqcLbsacaGGGcGaaiik aiabfM6axjaacckacaGGPaGaey4kaSIabmisayaajaWcdaqhaaqcfa saaKqzadGaamyCaiaacYcacaaIWaaajuaibaqcLbmacaaIXaaaaKqz GeGaaiiOaiaacIcacqqHPoWvcaGGGcGaaiykaaqcfaOaayjkaiaawM caaaaa@A4E8@ (13)

be solutions of Eq. (5) satisfying the condition (3). In what follows, we rewrite Eq. (5) in order that the nonlinear terms have suitable decay properties.

Let A(t) = (aij(t)) be the N×N matrix given in (4), and let n t   =   ( n t 1 ,   .   .   .   ,   n t N )   a n d n = ( n 1 ,   .   .   .   ,   n N ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaah6gajuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugi biaacckacqGH9aqpcaGGGcqcfa4aaWraaSqabKqaGeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbcKqzadGamGmG=rQivcaa juaGpaWaaeWaaOqaaKqzGeWdbiaad6gajuaGdaWgaaqcbasaaKqzad GaamiDaiaaigdaaSqabaqcLbsacaGGSaGaaeiiaiaac6cacaqGGaGa aiOlaiaabccacaGGUaGaaeiiaiaacYcacaqGGaGaamOBaKqbaoaaBa aajeaibaqcLbmacaWG0bGaamOtaaWcbeaaaOWdaiaawIcacaGLPaaa jugib8qacaqGGaGaamyyaiaad6gacaWGKbGaaGPaVlaaykW7caaMc8 UaaCOBaiabg2da9KqbaoaaCeaaleqajeaibaqcLbmacWaYa+hPIuja aKqba+aadaqadaGcbaqcLbsapeGaamOBaKqbaoaaBaaajeaibaqcLb macaaIXaaaleqaaKqzGeGaaiilaiaabccacaGGUaGaaeiiaiaac6ca caqGGaGaaiOlaiaabccacaGGSaGaaeiiaiaad6gajuaGdaWgaaqcba saaKqzadGaamOtaaWcbeaaaOWdaiaawIcacaGLPaaajugib8qacaGG Saaaaa@83E3@ and then by the transformation (2), we have

a ji (t) ξ j , x j = j = 1 N n ti = d ( t ) j = 1 N a ji ( t ) n j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggajuaGpaWaaSbaaKqaGeaajugWaiaabQgacaqGPbaa leqaaKqzGeGaaeikaiaabshacaqGPaqcfa4aaSaaaOqaaKqzGeGaey OaIylakeaajugibiabgkGi2kabe67a4LqbaoaaBaaajeaibaqcLbma caWGQbaaleqaaaaajugibiaacYcacaaMc8UaaGPaVNqbaoaalaaake aajugibiabgkGi2cGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaKqa GeaajugWaiaadQgaaSqabaaaaKqzGeGaeyypa0JaaGPaVNqbaoaaqa hakeaajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaaeiDaiaabMga aSqabaaajeaibaqcLbmacaWGQbGaeyypa0JaaGymaaqcbasaaKqzad GaamOtaaqcLbsacqGHris5aiabg2da9iaaykW7caWGKbGaaiikaiaa cshacaGGPaGaaGPaVNqbaoaaqahakeaajugibiaadggajuaGdaWgaa qcbasaaKqzadGaaeOAaiaabMgaaSqabaaajeaibaqcLbmacaWGQbGa eyypa0JaaGymaaqcbasaaKqzadGaamOtaaqcLbsacqGHris5aiaacI cacaGG0bGaaiykaiaad6gajuaGdaWgaaqcbasaaKqzadGaamOAaaWc beaaaaa@834B@ (14)

where d ( t ) = | T   A ( t ) n | . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb GaaiikaiaacshacaGGPaaeaaaaaaaaa8qacqGH9aqppaGaaiiFa8qa caWGubGaaiiOaiaahgeapaGaaiika8qacaWG0bWdaiaacMcapeGaaC OBa8aacaGG8bWdbiaac6caaaa@4423@

a j i (t)= δ i j + a ˜ i j   ( t ) ,     J ( t ) = 1 + J ˜ ( t ) , l i j ( t ) = δ i j + l ˜ i j ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggajuaGpaWaaSbaaKazba4=baqcLbmacaWGQbGaamyA aaWcbeaajugibiaabIcacaqG0bGaaeykaiaab2dacqaH0oazjuaGda WgaaqcfasaaKqzadGaamyAaiaadQgaaKqbagqaaKqzGeGaey4kaSIa bmyyayaaiaqcfa4dbmaaBaaaleaajugibiaadMgajugWaiaadQgaaS qabaqcLbsacaGGGcWdaiaacIcapeGaamiDa8aacaGGPaWdbiaacYca caGGGcGaaiiOaiaadQeacaGGOaGaamiDaiaacMcacqGH9aqpcaaIXa Gaey4kaSIabmOsayaaiaGaaiikaiaadshacaGGPaGaaiilaiaaykW7 caaMc8UaeS4eHWwcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaale qaaKqzGeGaaiikaiaadshacaGGPaGaeyypa0Zdaiabes7aKTWaaSba aKqbGeaajugWaiaadMgacaWGQbaajuaibeaajugibiabgUcaR8qacu WItecBgaacaSWaaSbaaKqaGeaajugWaiaadMgacaWGQbaajeaibeaa jugibiaacIcacaWG0bGaaiykaaaa@7949@ ,     (15)

Where l i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabloriSLqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWc beaaaaa@3BC5@ are given in (4) and J is the Jacobian of the transformation (2), that is J = J =   d e t ( l i j ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeacqGH9aqpcaGGGcGaamizaiaadwgacaWG0bqcfa4d amaabmaakeaajugib8qacqWItecBjuaGdaWgaaqcbasaaKqzadGaam yAaiaadQgaaSqabaaak8aacaGLOaGaayzkaaqcLbsapeGaaiilaaaa @45C1@ and then

a ˜ i j   ( t ) = b i j   ( 0 t ( κ ( ξ ) v ( ξ ,   s ) ) d s ) , J ˜ ( t )   = K ( 0 t ( κ ( ξ ) v ( ξ ,   s ) ) d s ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadggagaacaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOA aaWcbeaajugibiaacckapaGaaiika8qacaWG0bWdaiaacMcapeGaey ypa0JaamOyaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaiaaccka aSqabaqcfa4aaeWaaeaadaWdXaqaaiabgEGir=aacaGGOaWdbiabeQ 7aR9aacaGGOaWdbiabe67a49aacaGGPaWdbiaahAhapaGaaiika8qa cqaH+oaEcaGGSaGaaeiiaiaadohapaGaaiykaiaacMcapeGaamizai aadohaaKqbGeaacaaIWaaabaGaamiDaaqcfaOaey4kIipaaiaawIca caGLPaaajugibiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UabmOsay aaiaWdaiaacIcapeGaamiDa8aacaGGPaWdbiaabccacqGH9aqpcaWG lbqcfa4aaeWaaeaadaWdXaqaaiabgEGir=aacaGGOaWdbiabeQ7aR9 aacaGGOaWdbiabe67a49aacaGGPaWdbiaahAhapaGaaiika8qacqaH +oaEcaGGSaGaaeiiaiaadohapaGaaiykaiaacMcapeGaamizaiaado haaKqbGeaacaaIWaaabaGaamiDaaqcfaOaey4kIipaaiaawIcacaGL PaaajugibiaacYcaaaa@83A9@

l ˜ i j   ( t ) = m i j   ( 0 t ( κ ( ξ ) v ( ξ ,   s ) ) d s ) : = 0 t ξ j ( κ ( ξ ) v i ( ξ ,   t ) ) d s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqbloriSzaaiaqcfa4aaSbaaKazba4=baqcLbmacaWGPbGa amOAaaWcbeaajugibiaacckapaGaaiika8qacaWG0bWdaiaacMcape Gaeyypa0JaamyBaKqbaoaaBaaajqwaa+FaaKqzadGaamyAaiaadQga caGGGcaaleqaaKqbaoaabmaabaWaa8qmaeaajugibiabgEGir=aaca GGOaWdbiabeQ7aR9aacaGGOaWdbiabe67a49aacaGGPaWdbiaahAha paGaaiika8qacqaH+oaEcaGGSaGaaeiiaiaadohapaGaaiykaiaacM capeGaamizaiaadohaaKqbGeaajugWaiaaicdaaKqbGeaajugWaiaa dshaaKqzGeGaey4kIipaaKqbakaawIcacaGLPaaajugibiaacQdacq GH9aqpcaaMc8UaaGPaVlaaykW7caaMc8Ecfa4aa8qmaeaadaWcaaqa aKqzGeGaeyOaIylajuaGbaqcLbsacqGHciITcqaH+oaEjuaGdaWgaa qcfasaaKqzadGaamOAaaqcfayabaaaaKqzGeWdaiaacIcapeGaeqOU dS2daiaacIcapeGaeqOVdG3daiaacMcapeGaaCODaKqbaoaaBaaaju aibaqcLbmacaWGPbaajuaGbeaajugib8aacaGGOaWdbiabe67a4jaa cYcacaqGGaGaamiDa8aacaGGPaGaaiyka8qacaWGKbGaam4Ca8aaca GGPaaajuaipeqaaKqzadGaaGimaaqcfasaaKqzadGaamiDaaqcLbsa cqGHRiI8aaaa@93DC@ (16)

With some smooth functions bijand K defined on {w | |w| ≤ 1} such that bij(0) = K(0) = 0, where w is the corresponding variable to 0 t ( κ ( ξ ) v ( ξ ,   s ) ) d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWdXaqaaKqzGeGaey4bIe9daiaacIcapeGaeqOUdS2daiaa cIcapeGaeqOVdG3daiaacMcapeGaaCODa8aacaGGOaWdbiabe67a4j aacYcacaqGGaGaam4Ca8aacaGGPaGaaiyka8qacaWGKbGaam4Caaqc fasaaKqzadGaaGimaaqcfasaaKqzadGaamiDaaqcLbsacqGHRiI8aa aa@4ECD@ Let u ( x ,   t )   = v ( ξ ,   t )   a n d p ( x ,   t )   = q ( ξ ,   t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahwhajuaGpaWaaeWaaOqaaKqzGeWdbiaadIhacaGGSaGa aeiiaiaadshaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0 JaaCODaKqba+aadaqadaGcbaqcLbsapeGaeqOVdGNaaiilaiaabcca caWG0baak8aacaGLOaGaayzkaaqcLbsapeGaaeiiaiaadggacaWGUb GaamizaiaaykW7caaMc8UaaGPaVlaaykW7caWGWbqcfa4damaabmaa keaajugib8qacaWG4bGaaiilaiaabccacaWG0baak8aacaGLOaGaay zkaaqcLbsapeGaaeiiaiabg2da9iaadghajuaGpaWaaeWaaOqaaKqz GeWdbiabe67a4jaacYcacaqGGaGaamiDaaGcpaGaayjkaiaawMcaaa aa@639D@ and then u and p satisfy Eq. (1). By (14),

u i x j + u j x i = D i j , t ( v ) : = D i j ( v ) + D ˜ i j ( t ) Δ v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaamyDaKqbaoaaBaaajeaibaqcLbmacaWGPbaa leqaaaGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaKqaGeaajugWai aadQgaaSqabaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaeyOa IyRaamyDaKqbaoaaBaaajeaibaqcLbmacaWGQbaaleqaaaGcbaqcLb sacqGHciITcaWG4bqcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaaa aKqzGeGaeyypa0JaaGPaVlaadseajuaGdaWgaaqcbasaaKqzadGaam yAaiaadQgacaGGSaGaamiDaaWcbeaajugibiaacIcacaGG2bGaaiyk aiaaykW7caGG6aGaeyypa0JaamiraKqbaoaaBaaajeaibaqcLbmaca WGPbGaamOAaaWcbeaajugibiaacIcacaGG2bGaaiykaiabgUcaRiqa dseagaacaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaaju gibiaacIcacaWG0bGaaiykaiabgs5aejaacAhaaaa@72C6@

With

D i j ( v ) = v i ξ j + v j ξ j , D ˜ i j ( t ) Δ v = K = 1 N a ˜ k j ( t ) v i ξ k + a ˜ k i ( t ) v j ξ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb qcfa4aaSbaaKazba4=baqcLbmacaWGPbGaamOAaaWcbeaajugibiaa cIcacaGG2bGaaiykaiabg2da9KqbaoaalaaakeaajugibiabgkGi2k aadAhajuaGdaWgaaqcKfaG=haajugWaiaadMgaaSqabaaakeaajugi biabgkGi2kabe67a4LqbaoaaBaaajqwaa+FaaKqzadGaamOAaaWcbe aaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacqGHciITcaWG2bqc fa4aaSbaaKazba4=baqcLbmacaWGQbaaleqaaaGcbaqcLbsacqGHci ITcqaH+oaEjuaGdaWgaaqcKfaG=haajugWaiaadQgaaSqabaaaaKqz GeGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqads eagaacaKqbaoaaBaaajqwaa+FaaKqzadGaamyAaiaadQgaaSqabaqc LbsacaGGOaGaamiDaiaacMcacqGHuoarcaGG2bGaeyypa0tcfa4aaa bCaeaaceWGHbGbaGaadaWgaaqaaiaadUgacaWGQbaabeaacaGGOaGa amiDaiaacMcadaWcaaqaaiabgkGi2kaadAhadaWgaaqaaiaadMgaae qaaaqaaiabgkGi2kabe67a4naaBaaabaGaam4AaaqabaaaaiabgUca RiqadggagaacamaaBaaabaGaam4AaiaadMgaaeqaaiaacIcacaWG0b GaaiykamaalaaabaGaeyOaIyRaamODamaaBaaabaGaamOAaaqabaaa baGaeyOaIyRaeqOVdG3aaSbaaeaacaWGRbaabeaaaaaajuaibaqcLb macaWGlbGaeyypa0JaaGymaaqcfasaaKqzadGaamOtaaqcLbsacqGH ris5aaaa@9FB6@ (17)

We also have an important formula:

d i v u = j = 1 N u j x j = j , k = 1 N J ( t ) a k j ( t ) v j ξ k = j , k = 1 N ξ k ( J ( t ) a k j ( t ) v j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb GaamyAaiaadAhacaaMc8UaaCyDaiabg2da9KqbaoaaqahakeaajuaG daWcaaGcbaqcLbsacqGHciITcaWG1bqcfa4aaSbaaKazba4=baqcLb macaWGQbaaleqaaaGcbaqcLbsacqGHciITcaWG4bqcfa4aaSbaaKaz ba4=baqcLbmacaWGQbaaleqaaaaaaKqaGeaajugWaiaadQgacqGH9a qpcaaIXaaajeaibaqcLbmacaWGobaajugibiabggHiLdGaeyypa0tc fa4aaabCaOqaaKqzGeaeaaaaaaaaa8qacaWGkbWdaiaacIcapeGaam iDa8aacaGGPaWdbiaadggajuaGdaWgaaqcbasaaKqzadGaam4Aaiaa dQgaaSqabaqcLbsacaGGOaGaamiDaiaacMcajuaGpaWaaSaaaOqaaK qzGeGaeyOaIyRaamODaKqbaoaaBaaajeaibaqcLbmacaWGQbaaleqa aaGcbaqcLbsacqGHciITcqaH+oaEjuaGdaWgaaqcbasaaKqzadGaam 4AaaWcbeaaaaaajeaibaqcLbmacaWGQbGaaiilaiaadUgacqGH9aqp caaIXaaajeaibaqcLbmacaWGobaajugibiabggHiLdGaeyypa0tcfa 4aaabCaOqaaKqbaoaalaaakeaajugibiabgkGi2cGcbaqcLbsacqGH ciITcqaH+oaEjuaGdaWgaaqcbasaaKqzadGaam4AaaWcbeaaaaqcfa OaaiikaKqzGeWdbiaadQeapaGaaiika8qacaWG0bWdaiaacMcapeGa amyyaKqbaoaaBaaajeaibaqcLbmacaWGRbGaamOAaaWcbeaajugibi aacIcacaWG0bGaaiykaiaadAhajuaGdaWgaaqcbasaaKqzadGaamOA aaWcbeaajugibiaacMcaaKqaG8aabaqcLbmacaWGQbGaaiilaiaadU gacqGH9aqpcaaIXaaaleaajugibiaad6eaaiabggHiLdaaaa@A256@ (18)

which implies that

j , k = 1 N a ˜ k j ( t ) = J ˜ ( t ) a k j ( t ) v j ξ k = j , k = 1 N ξ k { ( a ˜ k j ( t ) + J ˜ ( t ) a k j ( t ) ) v j } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGabmyyayaaiaqcfa4aaSbaaKqaGeaajugWaiaadUgacaWG QbaaleqaaKqzGeGaaiikaiaadshacaGGPaaajeaibaqcLbmacaWGQb GaaiilaiaadUgacqGH9aqpcaaIXaaajeaibaqcLbmacaWGobaajugi biabggHiLdGaeyypa0deaaaaaaaaa8qaceWGkbGbaGaapaGaaiika8 qacaWG0bWdaiaacMcapeGaamyyaKqbaoaaBaaajeaibaqcLbmacaWG RbGaamOAaaWcbeaajugibiaacIcacaWG0bGaaiykaKqba+aadaWcaa GcbaqcLbsacqGHciITcaWG2bqcfa4aaSbaaKqaGeaajugWaiaadQga aSqabaaakeaajugibiabgkGi2kabe67a4LqbaoaaBaaajeaibaqcLb macaWGRbaaleqaaaaajugibiabg2da9KqbaoaaqahakeaajuaGdaWc aaGcbaqcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaeqOVdGxcfa4aaS baaKqaGeaajugWaiaadUgaaSqabaaaaKqbaoaacmaabaWaaeWaaeaa jugibiqadggagaacaKqbaoaaBaaajuaibaqcLbmacaWGRbGaamOAaa qcfayabaqcLbsacaGGOaGaamiDaiaacMcacqGHRaWkpeGabmOsayaa iaWdaiaacIcapeGaamiDa8aacaGGPaWdbiaadggajuaGdaWgaaqcfa saaKqzadGaam4AaiaadQgaaKqbagqaaKqzGeGaaiikaiaadshacaGG PaaajuaGpaGaayjkaiaawMcaaKqzGeWdbiaadAhajuaGdaWgaaqcfa saaKqzadGaamOAaaqcfayabaaapaGaay5Eaiaaw2haaaqcbasaaKqz adGaamOAaiaacYcacaWGRbGaeyypa0JaaGymaaqcbasaaKqzadGaam OtaaqcLbsacqGHris5aaaa@98D4@ (19)

And then, Eq. (5) is written as follows:

{ i = 1 N l i s ( t ) ( t v i +   ( 1 κ ) j , k = 1 N v j a k j ( t ) v i ξ k ) μ i , j , k = 1 N l i s ( t ) a k j ( t ) ξ k D i , j , t ( v ) q ξ s = 0 i n Ω × ( 0 , T ) , j , k = 1 N J ( t ) a k j ( t ) v j ξ k = j , k = 1 N ξ k ( J ( t ) a k j ( t ) v j ) = 0 i n Ω × ( 0 , T ) μ i , j , k = 1 N l i s ( t ) a k j ( t ) D i , j , t ( v ) n k q n s = 0 o n Γ × ( 0 , T ) , v | t = 0 = u 0 i n Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqajuaGbaWaaabCaeaajugibabaaaaaaaaapeGaeS4eHWwc fa4aaSbaaKqbGeaajugWaiaadMgacaWGZbaajuaGbeaajugib8aaca GGOaWdbiaadshapaGaaiykaiaacIcapeGaeyOaIyBcfa4aaSbaaKqb GeaajugWaiaadshaaKqbagqaaKqzGeGaamODaKqbaoaaBaaajuaiba qcLbmacaWGPbaajuaGbeaajugibiabgUcaRiaabccapaGaaiika8qa caaIXaGaeyOeI0IaeqOUdS2daiaacMcaaKqbGeaajugWaiaadMgacq GH9aqpcaaIXaaajuaibaqcLbmacaWGobaajugibiabggHiLdqcfa4a aabCaeaajugibiaadAhajuaGdaWgaaqcfasaaKqzadGaamOAaaqcfa yabaqcLbsacaWGHbqcfa4aaSbaaKqbGeaajugWaiaadUgacaWGQbaa juaGbeaajugibiaacIcacaWG0bGaaiykaKqbaoaalaaabaqcLbsacq GHciITcaWG2bqcfa4aaSbaaKqbGeaajugWaiaadMgaaKqbagqaaaqa aKqzGeGaeyOaIyRaeqOVdGxcfa4aaSbaaKqbGeaajugWaiaadUgaaK qbagqaaaaajugibiaacMcaaKqbGeaajugWaiaadQgacaGGSaGaam4A aiabg2da9iaaigdaaKqbGeaajugWaiaad6eaaKqzGeGaeyyeIuoaaK qbagaajugibiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgkHiTiab eY7aTLqbaoaaqahabaqcLbsapeGaeS4eHWwcfa4aaSbaaKqbGeaaju gWaiaadMgacaWGZbaajuaGbeaajugib8aacaGGOaWdbiaadshapaGa aiykaiaadggajuaGdaWgaaqcfasaaKqzadGaam4AaiaadQgaaKqbag qaaKqzGeGaaiika8qacaWG0bWdaiaacMcajuaGdaWcaaqaaKqzGeGa eyOaIylajuaGbaqcLbsacqGHciITcqaH+oaEjuaGdaWgaaqcfasaaK qzadGaam4AaaqcfayabaaaaKqzGeGaamiraKqbaoaaBaaajuaibaqc LbmacaWGPbGaaiilaiaadQgacaGGSaGaamiDaaqcfayabaqcLbsaca GGOaGaaiODaiaacMcacqGHsisljuaGdaWcaaqaaKqzGeGaeyOaIy7e fv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbciab=Pc8Xb qcfayaaKqzGeGaeyOaIyRaeqOVdGxcfa4aaSbaaKqbGeaajugWaiaa dohaaKqbagqaaaaajugibiabg2da9iaaicdaaKazfa4=baqcLbkaca WGPbGaaiilaiaadQgacaGGSaGaam4Aaiabg2da9iaaigdaaKqbGeaa jugWaiaad6eaaKqzGeGaeyyeIuoacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamyAaiaad6gacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlabfM6axjabgEna0kaacIcacaaIWaGaaiilaiaacsfacaGGPa GaaiilaaqcfayaamaaqahabaqcLbsacaWGkbGaaiika8qacaWG0bWd aiaacMcapeGaamyyaKqbaoaaBaaajuaibaqcLbmacaWGRbGaamOAaa qcfayabaqcLbsacaGGOaGaamiDaiaacMcajuaGpaWaaSaaaeaajugi biabgkGi2kaadAhajuaGdaWgaaqcfasaaKqzadGaamOAaaqcfayaba aabaqcLbsacqGHciITcqaH+oaEjuaGdaWgaaqcfasaaKqzadGaam4A aaqcfayabaaaaaqcfasaaKqzadGaamOAaiaacYcacaWGRbGaeyypa0 JaaGymaaqcfasaaKqzadGaamOtaaqcLbsacqGHris5aiabg2da9Kqb aoaaqahabaWaaSaaaeaajugibiabgkGi2cqcfayaaKqzGeGaeyOaIy RaeqOVdGxcfa4aaSbaaKqbGeaajugWaiaadUgaaKqbagqaaaaajugi biaacIcapeGaamOsa8aacaGGOaWdbiaadshapaGaaiyka8qacaWGHb qcfa4aaSbaaKqbGeaajugWaiaadUgacaWGQbaajuaGbeaajugibiaa cIcacaWG0bGaaiykaiaadAhajuaGdaWgaaqcfasaaKqzadGaamOAaa qcfayabaqcLbsacaGGPaGaeyypa0JaaGimaaqcfaYdaeaajugWaiaa dQgacaGGSaGaam4Aaiabg2da9iaaigdaaKqbGeaajugWaiaad6eaaK qzGeGaeyyeIuoapeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaV=aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMgacaWGUbGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7cqqHPoWvcqGHxdaTcaGGOaGa aGimaiaacYcacaGGubGaaiykaaqcfayaaKqzGeGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabeY7aTLqbaoaaqahabaqcLbsapeGaeS4eHWwcfa4aaS baaKqbGeaajugWaiaadMgacaWGZbaajuaGbeaajugib8aacaGGOaWd biaadshapaGaaiykaiaadggajuaGdaWgaaqcfasaaKqzadGaam4Aai aadQgaaKqbagqaaKqzGeGaaiika8qacaWG0bWdaiaacMcacaWGebqc fa4aaSbaaKazfa4=baqcLbkacaWGPbGaaiilaiaadQgacaGGSaGaam iDaaqcfayabaqcLbsacaGGOaGaaiODaiaacMcacaWGUbqcfa4aaSba aKqbGeaajugWaiaadUgaaKqbagqaaKqzGeGaeyOeI0Iae8NkWhNae8 3jW7wcfa4aaSbaaKqbGeaajugWaiaadohaaKqbagqaaKqzGeGaeyyp a0JaaGimaaqcfasaaKqzadGaamyAaiaacYcacaWGQbGaaiilaiaadU gacqGH9aqpcaaIXaaajuaibaqcLbmacaWGobaajugibiabggHiLdGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGVbGaam OBaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeu4KdCKaey41aqRa aiikaiaaicdacaGGSaGaaiivaiaacMcacaGGSaaajuaGbaqcLbsaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaabAhajuaGdaabbaqaamaaBaaajqwb a9FaaKqzadGaamiDaiabg2da9iaaicdaaKqbagqaaaGaay5bSdqcLb sacqGH9aqpcaaMc8+dbiaahwhajuaGdaWgaaqcKvaq=haajugWaiaa icdaaKqbagqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadMgacaWGUbGaaGPaVlaaykW7caaMc8UaaG PaVlabfM6axbaajuaGpaGaay5Eaaaaaa@2819@ (20)

Where s runs from 1 through N. Here, we have used the fact that ( l i j ) = A 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacqWItecBjuaGdaWgaaqcfasaaKqzadGaamyAaiaa dQgaaKqbagqaaKqzGeGaaiykaiabg2da9iaacgeajuaGdaahaaqabK qbGeaajugWaiabgkHiTiaaigdaaaaaaa@43B3@ which follows from (4).

In order to get some decay properties of the nonlinear terms, we write

0 t ( κ ( ξ ) v ( ξ ,   s ) d s = 0 T ( κ ( ξ ) v ( ξ ,   s ) d s 0 T ( κ ( ξ ) v ( ξ ,   s ) d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWdXaqaaKqzGeGaey4bIe9daiaacIcapeGaeqOUdS2daiaacIca peGaeqOVdG3daiaacMcapeGaaCODa8aacaGGOaWdbiabe67a4jaacY cacaqGGaGaam4Ca8aacaGGPaWdbiaadsgacaWGZbaaleaajugWaiaa icdaaSqaaKqzadGaamiDaaqdcqGHRiI8aOGaaGPaVlaaykW7jugibi aaykW7cqGH9aqpkiaaykW7daWdXaqaaKqzGeGaey4bIe9daiaacIca peGaeqOUdS2daiaacIcapeGaeqOVdG3daiaacMcapeGaaCODa8aaca GGOaWdbiabe67a4jaacYcacaqGGaGaam4Ca8aacaGGPaWdbiaadsga caWGZbaaleaajugWaiaaicdaaSqaaKqzadGaamivaaqdcqGHRiI8aK qzGeGaeyOeI0IcdaWdXaqaaKqzGeGaey4bIe9daiaacIcapeGaeqOU dS2daiaacIcapeGaeqOVdG3daiaacMcapeGaaCODa8aacaGGOaWdbi abe67a4jaacYcacaqGGaGaam4Ca8aacaGGPaWdbiaadsgacaWGZbaa leaajugWaiaaicdaaSqaaKqzadGaamivaaqdcqGHRiI8aOGaaGPaVd aa@84E2@ .

In (16), by the Taylor formula we write

a i j ( t ) = a i j ( T ) + A i j ( t ) , l i j ( t ) = l i j ( T ) + L i j ( t ) , D i j , t = D i j , T ( v ) + D i j ( t ) Δ v J ( t ) = J ( T ) + J ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadggajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqabaqcLbsa caGGOaGaamiDaiaacMcacqGH9aqpcaWGHbqcfa4aaSbaaKqaGeaaju gWaiaadMgacaWGQbaaleqaaKqzGeGaaiikaiaadsfacaGGPaGaey4k aSIaamyqaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaaju gibiaacIcacaWG0bGaaiykaiaacYcacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqWItecBjuaG daWgaaWcbaqcfa4aaSbaaKGaGeaajugWaiaadMgacaWGQbaameqaaa WcbeaajugibiaacIcacaWG0bGaaiykaiabg2da9iabloriSLqbaoaa BaaaleaajuaGdaWgaaqccasaaKqzadGaamyAaiaadQgaaWqabaaale qaaKqzGeGaaiikaiaadsfacaGGPaGaey4kaSIaaGPaVprr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8NeHWucfa4aaSbaaS qaaKqbaoaaBaaajiaibaqcLbmacaWGPbGaamOAaaadbeaaaSqabaqc LbsacaGGOaGaamiDaiaacMcacaGGSaaakeaajugibiaadseajuaGda WgaaqcbasaaKqzadGaamyAaiaadQgacaGGSaGaamiDaaWcbeaajugi biabg2da9iaadseajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaca GGSaGaamivaaWcbeaajugibiaacIcacaqG2bGaaiykaiabgUcaRiaa dseajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqabaqcLbsaca GGOaGaamiDaiaacMcacqqHuoarcaqG2bGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaamOsaiaacIcacaWG0bGaaiykaiabg2da9iaadQeacaGGOaGa amivaiaacMcacqGHRaWkcqWFjeVscaGGOaGaaiiDaiaacMcaaaaa@CEB9@ (21)

With

A i j ( t ) = 0 1 b i j 0 T ( κ ( ξ ) v ( ξ ,   s ) d s θ t T ( κ ( ξ ) v ( ξ ,   s ) d s ) d θ t T ( κ ( ξ ) v ( ξ ,   s ) d s , L i j ( t ) = t T ξ j κ ( ξ ) v i ( ξ ,   s ) d s , D i j ( t ) Δ v = κ = 1 N ( A k j ( t ) v i ξ k + A k i v j ξ k ) , J ( t ) = 0 1 K ( 0 T ( κ ( ξ ) v ( ξ ,   s ) d s θ t T ( κ ( ξ ) v ( ξ ,   s ) d s ) d θ t T ( κ ( ξ ) v ( ξ ,   s ) d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadgeajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqabaqcLbsa caGGOaGaamiDaiaacMcacqGH9aqpkmaapedabaqcLbsacqGHsislce WGIbGbauaajuaGdaWgaaqcfasaaKqzadGaamyAaiaadQgaaKqbagqa aOaeaaaaaaaaa8qadaWdXaqaaKqzGeGaey4bIe9daiaacIcapeGaeq OUdS2daiaacIcapeGaeqOVdG3daiaacMcapeGaaCODa8aacaGGOaWd biabe67a4jaacYcacaqGGaGaam4Ca8aacaGGPaWdbiaadsgacaWGZb aaleaajugWaiaaicdaaSqaaKqzadGaamivaaqdcqGHRiI8aOGaeyOe I0scLbsacqaH4oqCkmaapedabaqcLbsacqGHhis0paGaaiika8qacq aH6oWApaGaaiika8qacqaH+oaEpaGaaiyka8qacaWH2bWdaiaacIca peGaeqOVdGNaaiilaiaabccacaWGZbWdaiaacMcapeGaamizaiaado haaSqaaKqzadGaamiDaaWcbaqcLbmacaWGubaaniabgUIiYdGccaaM c8UaaiykaKqzGeGaamizaiabeI7aXPGaaGPaVpaapedabaqcLbsacq GHhis0paGaaiika8qacqaH6oWApaGaaiika8qacqaH+oaEpaGaaiyk a8qacaWH2bWdaiaacIcapeGaeqOVdGNaaiilaiaabccacaWGZbWdai aacMcapeGaamizaiaadohaaSqaaKqzadGaamiDaaWcbaqcLbmacaWG ubaaniabgUIiYdaal8aabaqcLbmacaaIWaaaleaajugWaiaaigdaa0 Gaey4kIipakiaaykW7caGGSaaabaWefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuGajugibiab=jrimLqbaoaaBaaajeaibaqcLb sacaWGPbGaamOAaaWcbeaajugibiaacIcacaWG0bGaaiykaiabg2da 9iabgkHiTOWaa8qmaKqbagaadaWcbaqaaKqzGeGaeyOaIylajuaGba qcLbsacqGHciITcqaH+oaEjuaGdaWgaaqcKvaq=haajugWaiaadQga aKqbagqaaaaajugib8qacqaH6oWApaGaaiika8qacqaH+oaEpaGaai yka8qacaWG2bqcfa4aaSbaaKazfa4=baqcLbmacaWGPbaajuaGbeaa jugib8aacaGGOaWdbiabe67a4jaacYcacaqGGaGaam4Ca8aacaGGPa WdbiaadsgacaWGZbGaaGPaVlaacYcacaaMc8EcfaOaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8EcLbsapaGaamiraKqbaoaaBaaaju aibaqcLbmacaWGPbGaamOAaaqcfayabaqcLbsacaGGOaGaamiDaiaa cMcacqqHuoarcaWG2bGaeyypa0tcfa4aaabCaeaajugibiaacIcaca WGbbqcfa4aaSbaaKqbGeaajugWaiaadUgacaWGQbaajuaGbeaajugi biaacIcacaWG0bGaaiykaKqbaoaalaaabaqcLbsacqGHciITcaWG2b qcfa4aaSbaaKqbGeaajugWaiaadMgaaKqbagqaaaqaaKqzGeGaeyOa IyBcfa4aaSbaaeaajugibiabe67a4LqbaoaaBaaajuaqbaqcLboaca WGRbaajuaGbeaaaeqaaaaajugibiabgUcaRiaadgeajuaGdaWgaaqc fasaaKqzadGaam4AaiaadMgaaKqbagqaamaalaaabaqcLbsacqGHci ITcaWG2bqcfa4aaSbaaKqbafaajug4aiaadQgaaKqbagqaaaqaaKqz GeGaeyOaIyBcfa4aaSbaaeaajugibiabe67a4LqbaoaaBaaajuaiba qcLbmacaWGRbaajuaGbeaaaeqaaaaajugibiaacMcaaKqbGeaajugW a8qacqaH6oWAcqGH9aqpcaaIXaaajuaipaqaaKqzadGaamOtaaqcLb sacqGHris5aaqcfasaaiaadshaaeaacaWGubaajug4biabgUIiYdGc caaMc8UaaiilaaqaaKqzGeGae8xcXRKaaiikaiaacshacaGGPaGaey ypa0JccqGHsisldaWdXaqaaKqzGeGabm4sayaafaaaleaajugWaiaa icdaaSqaaKqzadGaaGymaaqdcqGHRiI8aOGaaiikamaapedabaqcLb sapeGaey4bIe9daiaacIcapeGaeqOUdS2daiaacIcapeGaeqOVdG3d aiaacMcapeGaaCODa8aacaGGOaWdbiabe67a4jaacYcacaqGGaGaam 4Ca8aacaGGPaWdbiaadsgacaWGZbaal8aabaqcLbmacaaIWaaaleaa jugWaiaadsfaa0Gaey4kIipajugib8qacqGHsislcqaH4oqCkmaape dabaqcLbsacqGHhis0paGaaiika8qacqaH6oWApaGaaiika8qacqaH +oaEpaGaaiyka8qacaWH2bWdaiaacIcapeGaeqOVdGNaaiilaiaabc cacaWGZbWdaiaacMcapeGaamizaiaadohaaSqaaKqzadGaamiDaaWc baqcLbmacaWGubaaniabgUIiYdGccaaMc8UaaiykaKqzGeGaamizai abeI7aXPWaa8qmaeaajugibiabgEGir=aacaGGOaWdbiabeQ7aR9aa caGGOaWdbiabe67a49aacaGGPaWdbiaahAhapaGaaiika8qacqaH+o aEcaGGSaGaaeiiaiaadohapaGaaiyka8qacaWGKbGaam4CaaWcbaqc LbmacaWG0baaleaajugWaiaadsfaa0Gaey4kIipaaaaa@8865@

Where b i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadkgagaqbaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOA aaWcbeaaaaa@3B87@ and K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGlb Gbauaaaaa@3761@ are derivatives of b i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkgajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqa baaaaa@3B7B@ and K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGlb aaaa@3755@ with respect to w. By the relation:

s = 1 N l i s ( T ) a s m ( T )   = δ i m , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaaeWbGcbaqcLbsacqWItecBjuaGdaWgaaqcbasaaKqzadGa amyAaiaadohaaSqabaqcLbsapaGaaiika8qacaWGubWdaiaacMcape GaamyyaKqbaoaaBaaajeaibaqcLbmacaWGZbGaamyBaaWcbeaajugi b8aacaGGOaWdbiaadsfapaGaaiyka8qacaqGGaGaeyypa0JaeqiTdq wcfa4aaSbaaKqaGeaajugWaiaadMgacaWGTbGaaGPaVlaaykW7aSqa baqcLbsacaGGSaaajeaibaqcLbmacaWGZbGaeyypa0JaaGymaaqcba saaKqzadGaamOtaaqcLbsacqGHris5aaaa@5BD0@ (22)

the first equation in (20) is rewritten as follows:

t v m μ j , k = 1 N a j k ( T ) ξ k ( μ D m j , T ( v ) δ m j q = f m ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHci ITjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugibiaadAhajuaG daWgaaqcbasaaKqzadGaamyBaaWcbeaajugibiabgkHiTiabeY7aTL qbaoaaqahakeaaaKqaGeaajugWaiaadQgacaGGSaGaam4Aaiabg2da 9iaaigdaaKqaGeaajugWaiaad6eaaKqzGeGaeyyeIuoacaWGHbqcfa 4aaSbaaKqaGeaajugWaiaadQgacaWGRbaaleqaaKqzGeGaaiikaiaa dsfacaGGPaqcfa4aaSaaaOqaaKqzGeaeaaaaaaaaa8qacqGHciITaO Wdaeaajugib8qacqGHciITcqaH+oaEjuaGdaWgaaqaaKqzadGaam4A aaqcfayabaaaaKqzGeWdaiaacIcacqaH8oqBcaWGebqcfa4aaSbaaK qaGeaajugWaiaad2gacaWGQbGaaiilaiaacsfaaSqabaqcLbsacaGG OaGaaiODaiaacMcacqGHsislcqaH0oazjuaGdaWgaaqcbasaaKqzad GaamyBaiaadQgaaSqabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIr Yf2A0vNCaGqbcKqzGeGae8NkWhNaeyypa0JaamOzaKqbaoaaBaaaje aibaqcLbmacaWGTbaaleqaaKqzGeGaaiikaiaacAhacaGGPaaaaa@874F@

With

f m ( v ) = s = 1 N a s m ( T ) { i = 1 N L i s ( t ) t v i + i , j , k = 1 N ( 1 κ ) l i s ( t ) a k j ( t ) v i v i ξ k } + μ s = 1 N a s m ( T ) { i , j , k = 1 N l i s ( T ) a k j ( T ) ξ k ( D i j ( t ) v ) + i , j , k = 1 N l i s ( T ) A k j ( t ) ξ k D i j , t ( v ) } + i , j , k = 1 N L i s ( t ) a k j ( t ) ξ k D i j , t ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamOzaKqbaoaaBaaajeaibaqcLbmacaWGTbaaleqa aKqba+aadaqadaGcbaqcLbsapeGaaeODaaGcpaGaayjkaiaawMcaaK qzGeGaeyypa0JaeyOeI0scfa4aaabCaOqaaKqzGeGaamyyaKqbaoaa BaaajeaibaqcLbmacaWGZbGaamyBaaWcbeaajugibiaacIcacaWGub GaaiykaKqbaoaacmaakeaajuaGdaaeWbGcbaWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuGajugib8qacqWFsectjuaGdaWgaa qcbasaaKqzadGaamyAaiaadohaaSqabaqcLbsacaGGOaGaamiDaiaa cMcacqGHciITjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugibi aadAhajuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugibiabgUca RKqba+aadaaeWbGcbaqcLbsacaGGOaWdbiaaigdacqGHsislcqaH6o WApaGaaiyka8qacqWItecBjuaGdaWgaaqcbasaaKqzadGaamyAaiaa dohaaSqabaqcLbsapaGaaiika8qacaWG0bWdaiaacMcapeGaamyyaK qbaoaaBaaajeaibaqcLbmacaWGRbGaamOAaaWcbeaajugib8aacaGG OaWdbiaadshapaGaaiyka8qacaWG2bqcfa4aaSbaaKqaGeaajugWai aadMgaaSqabaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaamODaKqbaoaa BaaajeaibaqcLbmacaWGPbaaleqaaaGcbaqcLbsacqGHciITcqaH+o aEjuaGdaWgaaqcfasaaKqzadGaam4AaaqcfayabaaaaaqcKfaG==aa baqcLbmacaWGPbGaaiilaiaadQgacaGGSaGaam4Aaiabg2da9iaaig daaKazba4=baqcLbmacaWGobaajugibiabggHiLdaajqwaa+FaaKqz adGaamyAaiabg2da9iaaigdaaKazba4=baqcLbmacaWGobaajugibi abggHiLdaakiaawUhacaGL9baaaKazba4=baqcLbmacaWGZbGaeyyp a0JaaGymaaqcKfaG=haajugWaiaad6eaaKqzGeGaeyyeIuoaaOqaaK qzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiab eY7aTLqbaoaaqahakeaajugibiaadggajuaGdaWgaaqcbasaaKqzad Gaam4Caiaad2gaaSqabaqcLbsacaGGOaGaamivaiaacMcajuaGdaGa daGcbaqcfa4aaabCaOqaaKqzGeWdbiabloriSLqbaoaaBaaajeaiba qcLbmacaWGPbGaam4CaaWcbeaaaKazba4=paqaaKqzadGaamyAaiaa cYcacaWGQbGaaiilaiaadUgacqGH9aqpcaaIXaaajqwaa+FaaKqzad GaamOtaaqcLbsacqGHris5aiaacIcacaWGubGaaiykaiaadggajuaG daWgaaqcKfaG=haajugWaiaadUgacaWGQbaaleqaaKqzGeGaaiikai aadsfacaGGPaqcfa4dbmaalaaakeaajugibiabgkGi2cGcbaqcLbsa cqGHciITcqaH+oaEjuaGdaWgaaqcfasaaKqzadGaam4Aaaqcfayaba aaaKqzGeGaaiika8aacaWGebqcfa4aaSbaaKqbGeaajugWaiaadMga caWGQbaajuaGbeaajugibiaacIcacaGG0bGaaiykaiabgEGirlaacA hapeGaaiykaiabgUcaRKqba+aadaaeWbGcbaqcLbsapeGaeS4eHWwc fa4aaSbaaKqaGeaajugWaiaadMgacaWGZbaaleqaaaqcKfaG==aaba qcLbmacaWGPbGaaiilaiaadQgacaGGSaGaam4Aaiabg2da9iaaigda aKazba4=baqcLbmacaWGobaajugibiabggHiLdGaaiikaiaadsfaca GGPaGaamyqaKqbaoaaBaaajqwaa+FaaKqzadGaam4AaiaadQgaaSqa baqcLbsacaGGOaGaamiDaiaacMcajuaGpeWaaSaaaOqaaKqzGeGaey OaIylakeaajugibiabgkGi2kabe67a4LqbaoaaBaaajuaibaqcLbma caWGRbaajuaGbeaaaaqcLbsapaGaamiraKqbaoaaBaaajuaibaqcLb macaWGPbGaamOAaiaacYcacaGG0baajuaGbeaajugibiaacIcacaGG 2bGaaiykaaGccaGL7bGaayzFaaaajqwaa+FaaKqzadGaam4Caiabg2 da9iaaigdaaKazba4=baqcLbmacaWGobaajugibiabggHiLdaakeaa jugibiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey 4kaSscfa4aaabCaOqaaKqzGeWdbiab=jrimLqbaoaaBaaajeaibaqc LbmacaWGPbGaam4CaaWcbeaaaKazba4=paqaaKqzadGaamyAaiaacY cacaWGQbGaaiilaiaadUgacqGH9aqpcaaIXaaajqwaa+FaaKqzadGa amOtaaqcLbsacqGHris5aiaacIcapeGaamiDa8aacaGGPaWdbiaadg gajuaGdaWgaaqcbasaaKqzadGaam4AaiaadQgaaSqabaqcLbsapaGa aiikaiaadshacaGGPaqcfa4dbmaalaaakeaajugibiabgkGi2cGcba qcLbsacqGHciITcqaH+oaEjuaGdaWgaaqcfasaaKqzadGaam4Aaaqc fayabaaaaKqzGeWdaiaadseajuaGdaWgaaqcfasaaKqzadGaamyAai aadQgacaGGSaGaaiiDaaqcfayabaqcLbsacaGGOaGaaiODaiaacMca aaaa@C099@ (23)

Next, by (18)

d i v   v ˜ =   g ( v )   =   d i v   g ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeaeaaaaaaaaa8qacaWGKbGaamyAaiaadAhacaqGGaGaamOD aaGcpaGaay5adaqcLbsacqGH9aqppeGaaeiiaiaadEgajuaGpaWaae WaaOqaaKqzGeWdbiaadAhaaOWdaiaawIcacaGLPaaajugib8qacaqG GaGaeyypa0JaaeiiaiaadsgacaWGPbGaamODaiaabccacaWGNbqcfa 4damaabmaakeaajugib8qacaWG2baak8aacaGLOaGaayzkaaaaaa@4ECE@

With

d i v   v ˜ =   j , k = 1 N J ( T ) a k j ( T ) v i ξ k = j , k = 1 N ξ k J ( T ) a k j ( T ) v j g ( v ) = j , k = 1 N ( J ( T ) A k j ( t ) + J ( t ) a k j ( t ) ) v j ξ k g k ( v ) = j = 1 N ( J ( T ) A k j ( t ) + J ( t ) a k j ( t ) v j , g ( v ) = ( g 1 ( v ) .... g N ( v ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda aiaaGcbaqcLbsaqaaaaaaaaaWdbiaadsgacaWGPbGaamODaiaabcca caWG2baak8aacaGLdmaajugibiabg2da98qacaqGGaqcfa4damaaqa hakeaajugibiaadQeacaGGOaGaamivaiaacMcacaWGHbqcfa4aaSba aKazba4=baqcLbmacaWGRbGaamOAaaWcbeaajugibiaacIcacaWGub GaaiykaKqba+qadaWcaaGcbaqcLbsacqGHciITcaWG2bqcfa4aaSba aKazba4=baqcLbmacaWGPbaaleqaaaGcbaqcLbsacqGHciITcqaH+o aEjuaGdaWgaaqcKvaq=haajugWaiaadUgaaKqbagqaaaaajugibiab g2da9Kqba+aadaaeWbGcbaaajqwaa+FaaKqzadGaamOAaiaacYcaca WGRbGaeyypa0JaaGymaaqcKfaG=haajugWaiaad6eaaKqzGeGaeyye IuoajuaGpeWaaSaaaOqaaKqzGeGaeyOaIylakeaajugibiabgkGi2k abe67a4LqbaoaaBaaajqwba9FaaKqzadGaam4AaaqcfayabaaaaKqz GeWdaiaadQeacaGGOaGaamivaiaacMcacaWGHbqcfa4aaSbaaKazba 4=baqcLbmacaWGRbGaamOAaaWcbeaajugibiaacIcacaWGubGaaiyk aiaacAhajuaGdaWgaaqcfasaaKqzadGaamOAaaqcfayabaaajqwaa+ FaaKqzadGaamOAaiaacYcacaWGRbGaeyypa0JaaGymaaqcKfaG=haa jugWaiaad6eaaKqzGeGaeyyeIuoaaOqaaKqzGeGaai4zaiaacIcaca GG2bGaaiykaiabg2da9KqbaoaaqahakeaajugibiaacIcacaWGkbGa aiikaiaadsfacaGGPaGaamyqaKqbaoaaBaaajqwaa+FaaKqzadGaam 4AaiaadQgaaSqabaqcLbsacaGGOaGaamiDaiaacMcacqGHRaWktuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=Lq8kjaacI capeGaamiDa8aacaGGPaWdbiaadggajuaGdaWgaaqcbasaaKqzadGa am4AaiaadQgaaSqabaqcLbsapaGaaiikaiaadshacaGGPaGaaiykaK qba+qadaWcaaGcbaqcLbsacqGHciITcaWG2bqcfa4aaSbaaeaajugW aiacCb4GQbaajuaGbeaaaOqaaKqzGeGaeyOaIyRaeqOVdGxcfa4aaS baaKazfa0=baqcLbmacaWGRbaajuaGbeaaaaaajqwaa+=daeaajugW aiaadQgacaGGSaGaam4Aaiabg2da9iaaigdaaKazba4=baqcLbmaca WGobaajugibiabggHiLdaakeaajugibiaacEgajuaGdaWgaaqcfasa aKqzadGaam4AaaqcfayabaqcLbsacaGGOaGaaiODaiaacMcacqGH9a qpjuaGdaaeWbGcbaqcLbsacaGGOaGaamOsaiaacIcacaWGubGaaiyk aiaadgeajuaGdaWgaaqcKfaG=haajugWaiaadUgacaWGQbaaleqaaK qzGeGaaiikaiaadshacaGGPaGaey4kaSIae8xcXRKaaiika8qacaWG 0bWdaiaacMcapeGaamyyaKqbaoaaBaaajqwaa+FaaKqzadGaam4Aai aadQgaaSqabaqcLbsapaGaaiikaiaadshacaGGPaGaaiODaKqbaoaa BaaajuaibaqcLbmacGaoaoOAaaqcfayabaaajqwaa+FaaKqzadGaam OAaiabg2da9iaaigdaaKazba4=baqcLbmacaWGobaajugibiabggHi LdGaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caGGNbGaaiikaiaacA hacaGGPaGaeyypa0JaaiikaiaacEgajuaGdaWgaaqcfasaaKqzadGa aGymaaqcfayabaqcLbsacaGGOaGaaiODaiaacMcacaGGUaGaaiOlai aac6cacaGGUaGaai4zaKqbaoaaBaaajuaibaqcLbmacaGGobaajuaG beaajugibiaacIcacaGG2bGaaiykaiaacMcaaaaa@372F@ (24)

Finally, we consider the boundary condition. Let n ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqah6gagaacaaaa@37AB@ be an N -vector defined on N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabl2riHMqbaoaaCaaaleqajeaibaqcLbmacaWGobaaaaaa @3AFB@ such that n ˜ = n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqah6gagaacaiabg2da9iaah6gaaaa@39A8@ on Γ  and n ˜ H 2     ( N   )     C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfo5ahjaabccacaqGHbGaaeOBaiaabsgacqWILicuceWH UbGbaGaacqWILicucaWGibqcfa4aa0baaKqaGeaajugWaiabg6HiLc qcbasaaKqzadGaaGOmaaaajugibiaacckacaGGGcqcfa4damaabmaa keaajugib8qacqWIDesOjuaGdaahaaWcbeqcbasaaKqzadGaamOtaa aajugibiaabccaaOWdaiaawIcacaGLPaaajugib8qacaGGGcGaeyiz ImQaaeiiaiaadoeaaaa@5546@ . In what follows, n ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqah6gagaacaaaa@37AB@ is simply written by n = ( n 1 ,   .   .   .   ,   n N   ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad6gacqGH9aqpjuaGdaahbaWcbeqcbasaamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbmacqWFKksLaaqcfa 4damaabmaakeaajugib8qacaWGUbqcfa4aaSbaaKqbGeaacaaIXaaa juaGbeaajugibiaacYcacaqGGaGaaiOlaiaabccacaGGUaGaaeiiai aac6cacaqGGaGaaiilaiaabccacaWGUbqcfa4aaSbaaKqbGeaacaWG obaajuaGbeaajugibiaabccaaOWdaiaawIcacaGLPaaaaaa@57B4@ . By (14) and (22)

j , k = 1 N a j k ( T ) ( μ D m j , T ( v ) δ m j q ) n k = h m ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamyyaKqbaoaaBaaajeaibaqcLbmacaWGQbGaam4AaaWc beaajugibiaacIcacaWGubGaaiykaiaacIcacqaH8oqBcaWGebqcfa 4aaSbaaKqaGeaajugWaiaad2gacaWGQbGaaiilaiaacsfaaSqabaqc LbsacaGGOaGaaiODaiaacMcacqGHsislcqaH0oazjuaGdaWgaaqcba saaKqzadGaamyBaiaadQgaaSqabaWefv3ySLgzgjxyRrxDYbqeguuD JXwAKbIrYf2A0vNCaGqbcKqzGeGae8NkWhNaaeykaiaad6gajuaGda WgaaqcfasaaKqzadGaam4AaaqcfayabaqcLbsacqGH9aqpcaWGObqc fa4aaSbaaKqaGeaajugWaiaad2gaaSqabaqcLbsacaGGOaGaaiODai aacMcaaKqaGeaajugWaiaadQgacaGGSaGaam4Aaiabg2da9iaaigda aKqaGeaajugWaiaad6eaaKqzGeGaeyyeIuoaaaa@7640@

with

h m ( v ) = μ j , k = 1 N ( a k j ( T ) D m j ( t ) v + A k j ( t ) D m j , t ( v ) ) n k μ i , j , k , s = 1 N a s m ( T ) L i s ( t ) a k j ( t ) D i j , t ( v ) n k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb qcfa4aaSbaaKazba4=baqcLbmacaWGTbaaleqaaKqzGeGaaiikaiaa cAhacaGGPaGaeyypa0JaeyOeI0IaeqiVd0wcfa4aaabCaOqaaKqbao aabmaabaqcLbsacaWGHbqcfa4aaSbaaKqbGeaajugWaiaadUgacaWG QbaajuaGbeaajugibiaacIcacaWGubGaaiykamrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbacfiGae83aXtucfa4aaSbaaKqbGeaa jugWaiaad2gacaWGQbaajuaGbeaajugibiaacIcacaWG0bGaaiykai abgEGirlaacAhacqGHRaWkcqWFaeFqjuaGdaWgaaqcfasaaKqzadGa am4AaiaadQgaaKqbagqaaKqzGeGaaiikaiaadshacaGGPaGaamiraK qbaoaaBaaajuaibaqcLbmacaWGTbGaamOAaiaacYcacaGG0baajuaG beaajugibiaacIcacaGG2bGaaiykaaqcfaOaayjkaiaawMcaaKqzGe GaamOBaKqbaoaaBaaajeaibaqcLbmacaWGRbaaleqaaaqcKfaG=haa jugWaiaadQgacaGGSaGaam4Aaiabg2da9iaaigdaaKazba4=baqcLb macaWGobaajugibiabggHiLdGaaGPaVlaaykW7caaMc8UaeyOeI0Ia eqiVd0wcfa4aaabCaOqaaKqzGeGaamyyaKqbaoaaBaaajuaqbaqcLb oacaWGZbGaamyBaaqcfayabaqcLbsacaGGOaGaamivaiaacMcaqaaa aaaaaaWdbiab=jrimLqbaoaaBaaajqwaa+FaaKqzadGaamyAaiaado haaSqabaqcLbsacaGGOaGaamiDaiaacMcapaGaamyyaKqbaoaaBaaa jeaibaqcLbmacaWGRbGaamOAaaWcbeaajugibiaacIcacaWG0bGaai ykaiaadseajuaGdaWgaaqcKfaG=haajugWaiaadMgacaWGQbGaaiil aiaacshaaSqabaqcLbsacaGGOaGaamODaiaacMcacaWGUbqcfa4aaS baaKqaGeaajugWaiaadUgaaSqabaaajqwaa+FaaKqzadGaamyAaiaa cYcacaWGQbGaaiilaiaadUgacaGGSaGaam4Caiabg2da9iaaigdaaK azba4=baqcLbmacaWGobaajugibiabggHiLdaaaa@CCD7@ (25)

By (18),

μ j , k = 1 N a k j ( T ) ξ k ( μ D m j , T (v) δ m j q ) = J ( T ) 1 j , k = 1 N ξ k { J ( T ) a j k ( T ) ( D m j , T ( v ) δ m j q ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaaeWbGcbaqcLbsacaWGHbqcfa4aaSbaaKqaGeaajugWaiaa dUgacaWGQbaaleqaaKqzGeGaaiikaiaadsfacaGGPaqcfa4aaSaaaO qaaKqzGeGaeyOaIylakeaajugibiabgkGi2kabe67a4LqbaoaaBaaa jeaibaqcLbmacaWGRbaaleqaaaaajugibiaacIcacqaH8oqBcaWGeb qcfa4aaSbaaKqaGeaajugWaiaad2gacaWGQbGaaiilaiaacsfaaSqa baqcLbsacaqGOaGaaeODaiaabMcacqGHsislcqaH0oazjuaGdaWgaa qcbasaaKqzadGaamyBaiaadQgaaSqabaWefv3ySLgzgjxyRrxDYbqe guuDJXwAKbIrYf2A0vNCaGqbcKqzGeGae8NkWhNaaeykaaqcKfaG=h aajugWaiaadQgacaGGSaGaam4Aaiabg2da9iaaigdaaKazba4=baqc LbmacaWGobaajugibiabggHiLdGaaGPaVlaaykW7caaMc8Uaaeypai aaykW7caaMc8UaamOsaiaacIcacaWGubGaaiykaKqbaoaaCaaaleqa jeaibaqcLbmacqGHsislcaaIXaaaaKqbaoaaqahakeaajuaGdaWcaa GcbaqcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaeqOVdGxcfa4aaSba aKqaGeaajugWaiaadUgaaSqabaaaaKqbaoaacmaakeaajugibiaadQ eacaGGOaGaamivaiaacMcacaWGHbqcfa4aaSbaaKqaGeaajugWaiaa dQgacaWGRbaaleqaaKqzGeGaaiikaiaadsfacaGGPaGaaiikaiaads eajuaGdaWgaaqcbasaaKqzadGaamyBaiaadQgacaGGSaGaaiivaaWc beaajugibiaacIcacaGG2bGaaiykaiabes7aKLqbaoaaBaaajeaiba qcLbmacaWGTbGaamOAaaWcbeaajugibiab=Pc8Xjab=LcaPaGccaGL 7bGaayzFaaaajqwaa+FaaKqzadGaamOAaiaacYcacaWGRbGaeyypa0 JaaGymaaqcKfaG=haajugWaiaad6eaaKqzGeGaeyyeIuoaaaa@C12D@

And

j , k = 1 N a k j ( T ) D m j , T ( v ) n k ( s = 1 N a s m ( T ) n s ) q = k = 1 N [ j = 1 N { J ( T ) a k j ( T ) ( D m j , T ( v ) δ m j q } ] n k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamyyaKqbaoaaBaaajqwaa+FaaKqzadGaam4AaiaadQga aSqabaqcLbsacaGGOaGaamivaiaacMcacaWGebqcfa4aaSbaaKazba 4=baqcLbmacaWGTbGaamOAaiaacYcacaGGubaaleqaaKqzGeGaaiik aiaabAhacaGGPaGaamOBaKqbaoaaBaaajqwaa+FaaKqzadGaam4Aaa WcbeaaaKazba4=baqcLbmacaWGQbGaaiilaiaadUgacqGH9aqpcaaI Xaaajqwaa+FaaKqzadGaamOtaaqcLbsacqGHris5aiabgkHiTKqbao aabmaabaWaaabCaeaajugibiaadggajuaGdaWgaaqcfasaaKqzadGa am4Caiaad2gaaKqbagqaaKqzGeGaaiikaiaadsfacaGGPaGaamOBaK qbaoaaBaaajuaibaqcLbmacaWGZbaajuaGbeaaaKqbGeaajugWaiaa dohacqGH9aqpcaaIXaaajuaibaqcLbmacaWGobaajugibiabggHiLd aajuaGcaGLOaGaayzkaaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIr Yf2A0vNCaGqbcKqzGeGae8NkWhNaeyypa0tcfa4aaabCaOqaaKqbao aadmaakeaajuaGdaaeWbGcbaqcfa4aaiWaaeaajugibiaadQeacaGG OaGaamivaiaacMcacaWGHbqcfa4aaSbaaKqbGeaajugWaiaadUgaca WGQbaajuaGbeaajugibiaacIcacaWGubGaaiykaiaacIcacaWGebqc fa4aaSbaaKqbGeaajugWaiaad2gacaWGQbGaaiilaiaacsfaaKqbag qaaKqzGeGaaiikaiaacAhacaGGPaGaeyOeI0IaeqiTdqwcfa4aaSba aKqbGeaajugWaiaad2gacaWGQbaajuaGbeaajugibiab=Pc8Xbqcfa Oaay5Eaiaaw2haaaqcKfaG=haajugibiaadQgacqGH9aqpcaaIXaaa jqwaa+FaaKqzGeGaamOtaaGaeyyeIuoaaOGaay5waiaaw2faaaqcKf aG=haajugWaiaadUgacqGH9aqpcaaIXaaajqwaa+FaaKqzadGaamOt aaqcLbsacqGHris5aiaad6gajuaGdaWgaaqcKfaG=haajugWaiaadU gaaSqabaaaaa@CAF2@

Thus, letting

S m k ( v , q ) = j = 1 N J ( T ) a k j   ( T ) ( µ D m j , T   ( v ) δ m j q ) , S ˜ ( v , q ) = ( S i j   ( v , q ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadofajuaGdaWgaaqcbasaaKqzadGaamyBaiaadUgaaSqa baqcLbsapaGaaiika8qacaWH2bGaaiilamrr1ngBPrMrYf2A0vNCae Hbfv3ySLgzGyKCHTgD1jhaiuGacqWFQaFCpaGaaiykaiabg2da9Kqb aoaaqahakeaaaKazba4=baqcLbmacaWGQbGaeyypa0JaaGymaaqcKf aG=haajugWaiaad6eaaKqzGeGaeyyeIuoapeGaamOsa8aacaGGOaWd biaadsfapaGaaiyka8qacaWGHbqcfa4aaSbaaKqaGeaajugWaiaadU gacaWGQbaaleqaaKqzGeGaaiiOa8aacaGGOaWdbiaadsfapaGaaiyk aiaacIcapeGaamyTaiaadseajuaGdaWgaaqcbasaaKqzadGaamyBai aadQgacaGGSaGaamivaaWcbeaajugibiaacckapaGaaiika8qacaWH 2bWdaiaacMcapeGaeyOeI0IaeqiTdqwcfa4aaSbaaKqaGeaajugWai aad2gacaWGQbaaleqaaKqzGeGae8NkWh3daiaacMcapeGaaiilaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabC 4uayaaiaWdaiaacIcapeGaaCODaiaacYcacqWFQaFCpaGaaiyka8qa cqGH9aqpjuaGpaWaaeWaaeaajugib8qacaWGtbqcfa4aaSbaaKqbGe aajugWaiaadMgacaWGQbaajuaGbeaajugibiaacckapaGaaiika8qa caWH2bGaaiilaiab=Pc8X9aacaGGPaaajuaGcaGLOaGaayzkaaqcLb sapeGaaiilaaaa@A1FE@

f ( v ) = ( f 1 ( v ) , ... , f N ( v ) ) ,             h ( v ) = ( h 1 ( v ) , ... , h N ( v ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabAgajuaGpaWaaeWaaOqaaKqzGeWdbiaabAhaaOWdaiaa wIcacaGLPaaajugib8qacqGH9aqpjuaGdaahbaWcbeqcbasaamrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqcLbmacqWFKksL aaqcLbsapaGaaiika8qacaWGMbqcfa4aaSbaaKqaGeaajugWaiaaig daaSqabaqcfa4damaabmaakeaajugib8qacaqG2baak8aacaGLOaGa ayzkaaqcLbsapeGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGMb qcfa4aaSbaaKqaGeaajugWaiaad6eaaSqabaqcfa4damaabmaakeaa jugib8qacaqG2baak8aacaGLOaGaayzkaaqcLbsacaGGPaWdbiaacY cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWGObqcfa4d amaabmaakeaajugib8qacaqG2baak8aacaGLOaGaayzkaaqcLbsape Gaeyypa0tcfa4aaWraaSqabKqaGeaajugWaiab=rQivcaajugib8aa caGGOaWdbiaadIgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaju aGpaWaaeWaaOqaaKqzGeWdbiaabAhaaOWdaiaawIcacaGLPaaajugi b8qacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadIgajuaGdaWgaa qcbasaaKqzadGaamOtaaWcbeaajuaGpaWaaeWaaOqaaKqzGeWdbiaa bAhaaOWdaiaawIcacaGLPaaajugibiaacMcapeGaaiilaaaa@8941@

and using (18), we see that v and q satisfy the following equations:

{ t v J ( T ) 1 D i v S ˜ ( v , q ) = f ( v ) i n Ω × ( 0 , T ) , d i v   v ˜ =   g ( v )   =   d i v   g ( v ) i n Ω × ( 0 , T ) , S ˜ ( v , q ) n = h ( v ) o n Γ × ( 0 , T ) , v | t = 0 = u 0 in Ω . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibabaaaaaaaaapeGaeyOaIyBcfa4aaSbaaKqa GeaajugWaiaadshaaSqabaqcLbsacaqG2bGaeyOeI0IaamOsa8aaca GGOaWdbiaadsfapaGaaiykaKqba+qadaahaaWcbeqcbasaaKqzadGa eyOeI0IaaGymaaaajugibiaadseacaWGPbGaamODaiaaykW7ceWGtb GbaGaapaGaaiika8qacaqG2bGaaiilamrr1ngBPrMrYf2A0vNCaeHb fv3ySLgzGyKCHTgD1jhaiuGacqWFQaFCpaGaaiyka8qacqGH9aqpca WGMbWdaiaacIcapeGaaeODa8aacaGGPaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaacMgacaGGUbGaaG PaVlaaykW7cqqHPoWvcqGHxdaTcaGGOaGaaGimaiaacYcacaGGubGa aiykaiaacYcaaOqaaKqzGeWdbiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVNqba+aadaaiaaGcbaqcLbsapeGaaGPaVlaads gacaWGPbGaamODaiaabccacaWG2baak8aacaGLdmaajugibiabg2da 98qacaqGGaGaam4zaKqba+aadaqadaGcbaqcLbsapeGaamODaaGcpa GaayjkaiaawMcaaKqzGeWdbiaabccacqGH9aqpcaqGGaGaamizaiaa dMgacaWG2bGaaeiiaiaadEgajuaGpaWaaeWaaOqaaKqzGeWdbiaadA haaOWdaiaawIcacaGLPaaajugibiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aiyAaiaac6gacaaMc8UaaGPaVlabfM6axjabgEna0kaacIcacaaIWa GaaiilaiaacsfacaGGPaGaaiilaaGcbaqcLbsapeGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlqahofagaaca8aacaGGOaWdbiaahAhacaGGSaGae8NkWh3daiaa cMcacaGGUbGaeyypa0JaaiiAaiaacIcacaGG2bGaaiykaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaai4Baiaac6gacaaM c8UaaGPaVlabfo5ahjabgEna0kaacIcacaaIWaGaaiilaiaacsfaca GGPaGaaiilaaGcbaqcLbsacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaiODaKqbaoaaeeaakeaaju aGdaWgaaqcbasaaKqzadGaamiDaiabg2da9iaaicdaaSqabaqcLbsa cqGH9aqpcaqG1bqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLb sacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaeyAaiaab6gacaaMc8UaaGPaVlaaykW7cqqHPoWvcaaMc8 UaaGPaVlaac6caaOGaay5bSdaaaiaawUhaaaaa@0C0B@ (26)

Estimates for the nonlinear terms

Let f (v), g(v), and h(v) are functions defined in Sect. 2. In this section, we estimate these functions. In what follows we write

<   t   >   α w L p ( ( 0 , T ) , X )   = { 0 T ( <   t > α w ( · , t ) X   ) p d t } 1 p 1 p < , <   t   >   α w L ( ( 0 , T ) , X ) = esssup 0 < t < T <   t > α w ( · , t ) X p = . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeSyjIaLaeyipaWJaaeiiaiaadshacaqGGaGaeyOp a4JaaiiOaKqbaoaaCaaaleqajeaibaqcLbmacqaHXoqyaaqcLbsaca WH3bGaeSyjIaLaamitaKqbaoaaBaaajeaibaqcLbmacaWGWbaaleqa aKqzGeWdaiaacIcacaGGOaWdbiaaicdacaGGSaGaamiva8aacaGGPa WdbiaacYcacaWGybWdaiaacMcapeGaaiiOaiabg2da9Kqbaoaacmaa keaadaWdXaqaaKqzGeWdaiaacIcapeGaeyipaWJaaeiiaiaadshacq GH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaeqySdegaaKqzGeGaeSyj IaLaaC4Da8aacaGGOaWdbiaacElacaGGSaGaamiDa8aacaGGPaWdbi ablwIiqjaadIfacaGGGcWdaiaacMcajuaGdaahaaWcbeqcbasaaKqz adWdbiaadchaaaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaWGub aajugGbiabgUIiYdqcLbsapaGaamizaiaadshaaOWdbiaawUhacaGL 9baajuaGdaahaaWcbeqcbasaaSWaaSGaaKqaGeaajugWaiaaigdaaK qaGeaajugWaiaadchaaaaaaKqzGeGaaGymaiabgsMiJkaadchacqGH 8aapcqGHEisPcaGGSaaakeaajugibiablwIiqjabgYda8iaabccaca WG0bGaaeiiaiabg6da+iaacckajuaGdaahaaWcbeqaaKqzGeGaeqyS degaaiaahEhacqWILicucaWGmbqcfa4aaSbaaKqaGeaajugWaiabg6 HiLcWcbeaajugib8aacaGGOaGaaiika8qacaaIWaGaaiilaiaadsfa paGaaiyka8qacaGGSaGaamiwa8aacaGGPaGaeyypa0tcfa4aaCbeaO qaaKqzGeGaaeyzaiaabohacaqGZbGaae4CaiaabwhacaqGWbaajeai baqcLbmacaaIWaGaeyipaWJaamiDaiabgYda8iaadsfaaSqabaqcLb sapeGaeyipaWJaaeiiaiaadshacqGH+aGpjuaGdaahaaWcbeqcbasa aKqzadGaeqySdegaaKqzGeGaeSyjIaLaaC4Da8aacaGGOaWdbiaacE lacaGGSaGaamiDa8aacaGGPaWdbiablwIiqjaadIfacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGWb Gaeyypa0JaeyOhIuQaaGPaVlaac6caaaaa@CBD6@

First, we prove that

< t > b f   L p ( ( 0 , T ) , L q 1 / 2 ( Ω )   +     <   t   > f   L p ( ( 0 , T   ) , L q 2   ( Ω ) )       C ( I   +   [ v ] T 2   ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiablwIiqjabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqc basaaKqzadGaamOyaaaajugibiaahAgacaGGGcGaeSyjIaLaamitaK qbaoaaBaaajeaibaqcLbmacaWGWbaaleqaaKqzGeWdaiaacIcacaGG OaWdbiaaicdacaGGSaGaamiva8aacaGGPaWdbiaacYcacaaMc8UaaG PaVlaaykW7caWGmbqcfa4aaSbaaKqaGeaajugWaiaadghacaaIXaGa ai4laiaaikdaaSqabaqcfa4damaabmaakeaajugibiabfM6axbGcca GLOaGaayzkaaqcLbsapeGaaiiOaiabgUcaRiaacckacqWILicucaGG GcGaeyipaWJaaiiOaiaadshacaGGGcGaeyOpa4JaaCOzaiaacckacq WILicucaWGmbqcfa4aaSbaaKqaGeaajugWaiaadchaaSqabaqcLbsa paGaaiikaiaacIcapeGaaGimaiaacYcacaWGubGaaiiOa8aacaGGPa WdbiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaamitaKqbaoaaBaaa jeaibaqcLbmacaWGXbWcdaWgaaqccasaaKqzadGaaGOmaaqccasaba aaleqaaKqzGeGaaiiOaKqba+aadaqadaGcbaqcLbsacqqHPoWvaOGa ayjkaiaawMcaaKqzGeGaaiyka8qacaGGGcGaaiiOaiabgsMiJkaacc kacaWGdbWdaiaacIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbc8qacqWFqesscaGGGcGaey4kaSIaaiiOa8aacaGGBbWdbi aahAhapaGaaiyxaSWaa0baaKqaGeaajugWaiaadsfaaKqaGeaajugW aiaaikdaaaqcLbsapeGaaiiOa8aacaGGPaWdbiaac6caaaa@A65C@ (27)

with I = u 0 B q 1 / 2 , p 2 ( 1 1 / p ) ( Ω )     + u 0 B q 2 , p 2 ( 1 1 / p ) ( Ω )     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibabaaaaaaaaapeGa e8heHKKaeyypa0tcfa4aauWaaeaajugibiaabwhajuaGdaWgaaqcfa saaKqzadGaaGimaaqcfayabaaacaGLjWUaayPcSdWdamaaBaaajeai baqcLbmapeGaamOqaSWaa0baaKGaGeaajugOaiaadghacaaIXaadda WgaaqccasaaKqzGcGaai4laiaaikdaaKGaGeqaaKqzGcGaaiilaiaa dchaaKGaGeaajugOaiaaikdapaGaaiika8qacaaIXaGaeyOeI0IaaG ymaiaac+cacaWGWbWdaiaacMcaaaWcdaqadaqcbasaaKqzadGaeuyQ dCfajeaicaGLOaGaayzkaaqcLbmapeGaaiiOaiaacckaaSWdaeqaaK qzGeGaey4kaSscfa4dbmaafmaabaqcLbsacaqG1bqcfa4aaSbaaKqb GeaajugWaiaaicdaaKqbagqaaaGaayzcSlaawQa7a8aadaWgaaqcba saaKqzadWdbiaadkealmaaDaaajiaibaqcLbkacaWGXbaddaWgaaqc casaaKqzGcGaaGOmaaqccasabaqcLbkacaGGSaGaamiCaaqccasaaK qzGcGaaGOma8aacaGGOaWdbiaaigdacqGHsislcaaIXaGaai4laiaa dchapaGaaiykaaaalmaabmaajeaibaqcLbmacqqHPoWvaKqaGiaawI cacaGLPaaajugWa8qacaGGGcGaaiiOaaWcpaqabaaaaa@894F@ . Here and in what follows, C denotes generic constants independent of I ,   [ v ] T   ,   δ ,   a n d   T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMeacaGGSaGaaeiiaKqba+aadaWadaGcbaqcLbsapeGa amODaaGcpaGaay5waiaaw2faaKqzGeWdbiaadsfacaqGGaGaaiilai aabccacqaH0oazcaGGSaGaaeiiaiaadggacaWGUbGaamizaiaabcca caWGubaaaa@47B6@ . The value of C may change from line to line. Since we choose I small enough eventually, we may assume that 0 < I   1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacqGH8aapcaWGjbGaeyizImQaaeiiaiaaigdaaaa@3C44@ . Especially, we use the estimates:

I 2   I ,               I [ v ] T 1 2 ( I 2 + [ v ] T 2 ) I + [ v ] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibabaaaaaaaaapeGa e8heHKucfa4aaWbaaeqajuaibaqcLbmacaaIYaaaaKqzGeGaaiiOai abgsMiJkab=brijjaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGae8heHKucfa4damaadmaakeaajugib8qacaWH2b aak8aacaGLBbGaayzxaaqcfa4dbmaaBaaajeaibaqcLbmacaWGubaa leqaaKqzGeGaeyizImAcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLb sacaaIYaaaa8aacaGGOaWdbiab=brijLqbaoaaCaaabeqcfasaaKqz adGaaGOmaaaajugibiabgUcaRKqba+aadaWadaGcbaqcLbsapeGaaC ODaaGcpaGaay5waiaaw2faaSWdbmaaDaaajeaibaqcLbmacaWGubaa jeaibaqcLbmacaaIYaaaaKqzGeWdaiaacMcapeGaeyizImQae8heHK Kaey4kaSscfa4damaadmaakeaajugib8qacaWH2baak8aacaGLBbGa ayzxaaWcpeWaa0baaKqaGeaajugWaiaadsfaaKqaGeaajugWaiaaik daaaaaaa@7B78@

Since

α β ( κ v ( · , s ) ) L ( Ω ) C ( 1   + α ) b + 1 p ( α β ( < s > b v ( · , s ) H 1     ( Ω ) ) p d s ) 1 p α β 2 ( κ v ( · , s ) ) L q ( Ω ) C ( 1   + α ) b + N 2 q 2 + 1 p ( α β ( < s > b N 2 q 2 v ( · , s ) H q 2 2 ( Ω ) ) p d s ) 1 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedabaqcLbsacqWILicucqGHhis0paGaaiika8qacqaH 6oWAcaWH2bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaca GGPaWdbiablwIiqjaadYeajuaGdaWgaaqcbasaaKqzadGaeyOhIuka leqaaKqbaoaabmaabaGaeuyQdCfacaGLOaGaayzkaaqcLbsacqGHKj YOcaWGdbWdaiaacIcapeGaaGymaiaabccacqGHRaWkcqaHXoqypaGa aiykaKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcaWGIbGaey4kaS scfa4aaSaaaKqaGeaajugWaiaaigdaaKqaGeaajugWaiqadchagaqb aaaaaaaal8qabaqcLbmacqaHXoqyaSqaaKqzadGaeqOSdiganiabgU IiYdGcpaWaaeWaaeaapeWaa8qmaeaajugibiaacIcacqGH8aapcaWG ZbGaeyOpa4tcfa4aaWbaaSqabKqaGeaajugWaiaadkgaaaqcLbsacq WILicucaWH2bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMca peGaeSyjIaLaamisaKqbaoaaDaaajeaibaqcLbmacqGHEisPaKqaGe aajugWaiaaigdaaaqcLbsacaGGGcGaaiiOa8aacaGGOaWdbiabfM6a x9aacaGGPaGaaiykaKqbaoaaCaaaleqajeaibaqcLbmacaWGWbaaaK qzGeWdbiaadsgacaWGZbaaleaajugWaiabeg7aHbWcbaqcLbmacqaH YoGya0Gaey4kIipaaOWdaiaawIcacaGLPaaadaahaaWcbeqaamaali aabaqcLbmacaaIXaaaleaajugWaiaadchaaaaaaaGcbaWdbmaapeda baqcLbsacqWILicucqGHhis0juaGdaahaaqabeaajugWaiaaikdaaa qcLbsapaGaaiika8qacqaH6oWAcaWH2bWdaiaacIcapeGaai4Taiaa cYcacaWGZbWdaiaacMcacaGGPaWdbiablwIiqjaadYeajuaGdaWgaa qcbasaaKqzadGaamyCaaWcbeaajuaGdaqadaqaaiabfM6axbGaayjk aiaawMcaaKqzGeGaeyizImQaam4qa8aacaGGOaWdbiaaigdacaqGGa Gaey4kaSIaeqySde2daiaacMcajuaGdaahaaWcbeqcbasaaKqzadGa eyOeI0IaamOyaiabgUcaRSWaaSaaaKqaGeaajugWaiaad6eaaKqaGe aajugWaiaaikdacaWGXbWcdaWgaaqccasaaKqzadGaaGOmaaqccasa baaaaKqzadGaey4kaSYcdaWcaaqcbasaaKqzadGaaGymaaqcbasaaK qzadGabmiCayaafaaaaaaaaSWdbeaajugWaiabeg7aHbWcbaqcLbma cqaHYoGya0Gaey4kIipak8aadaqadaqaa8qadaWdXaqaaKqzGeGaai ikaiabgYda8iaadohacqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGa amOyaiabgkHiTSWdamaalaaajeaibaqcLbmacaWGobaajeaibaqcLb macaaIYaGaamyCaSWaaSbaaKGaGeaajugWaiaaikdaaKGaGeqaaaaa aaqcLbsapeGaeSyjIaLaaCODa8aacaGGOaWdbiaacElacaGGSaGaam 4Ca8aacaGGPaWdbiablwIiqjaadIealmaaDaaajeaibaqcLbmacaWG XbWcdaWgaaqccasaaKqzGcGaaGOmaaqccasabaaajeaibaqcLbmaca aIYaaaaKqzGeWdaiaacIcapeGaeuyQdC1daiaacMcacaGGPaqcfa4a aWbaaSqabeaajugibiaadchaaaWdbiaadsgacaWGZbaaleaajugWai abeg7aHbWcbaqcLbmacqaHYoGya0Gaey4kIipaaOWdaiaawIcacaGL PaaadaahaaWcbeqaamaaliaabaqcLbmacaaIXaaaleaajugWaiaadc haaaaaaaaaaa@06E9@

for any 0 α < β T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacqGHKjYOcqaHXoqycqGH8aapcqaHYoGycqGHKjYO caWGubaaaa@3FE6@ , where q [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacqGHiiIZjuaGpaWaamWaaOqaaKqzGeWdbiaaigda caGGSaGaaeiiaiaadghajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbe aaaOWdaiaawUfacaGLDbaaaaa@4242@ , we have

α β ( κ v ( · , s ) ) L ( Ω ) d s C [ v ] T ( 1 + α ) b + 1 p α β 2 ( κ v ( · , s ) ) L q ( Ω ) C [ v ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedabaqcLbsacqWILicucqGHhis0paGaaiika8qacqaH 6oWAcaWH2bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaca GGPaWdbiablwIiqjaadYeajuaGdaWgaaqcbasaaKqzadGaeyOhIuka leqaaKqbaoaabmaabaGaeuyQdCfacaGLOaGaayzkaaWdaiaadsgaca WGZbGaaGPaVlaaykW7jugib8qacqGHKjYOcaWGdbWdaiaacUfacaGG 2bGaaiyxaKqbaoaaBaaabaqcLbmacaWGubaajuaGbeaajugibiaacI cacaaIXaGaey4kaSIaeqySdeMaaiykaKqbaoaaCaaaleqajeaibaqc LbmacqGHsislcaWGIbGaey4kaSscfa4aaSaaaKqaGeaajugWaiaaig daaKqaGeaajugWaiqadchagaqbaaaaaaaal8qabaqcLbmacqaHXoqy aSqaaKqzadGaeqOSdiganiabgUIiYdaak8aabaWdbmaapedabaqcLb sacqWILicucqGHhis0juaGdaahaaqabeaajugWaiaaikdaaaqcLbsa paGaaiika8qacqaH6oWAcaWH2bWdaiaacIcapeGaai4TaiaacYcaca WGZbWdaiaacMcacaGGPaWdbiablwIiqjaadYeajuaGdaWgaaqcbasa aKqzadGaamyCaaWcbeaajuaGdaqadaqaaiabfM6axbGaayjkaiaawM caaKqzGeGaeyizImQaam4qa8aacaGGBbGaaiODaiaac2fajuaGdaWg aaqaaKqzadGaamivaaqcfayabaaal8qabaqcLbmacqaHXoqyaSqaaK qzadGaeqOSdiganiabgUIiYdaaaaa@98F5@ (28)

for any 0   α < β   T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacqGHKjYOcaqGGaGaeqySdeMaeyipaWJaeqOSdiMa eyizImQaaeiiaiaadsfaaaa@412C@ , where q [ 1 ,   q   ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacqGHiiIZjuaGpaWaamWaaOqaaKqzGeWdbiaaigda caGGSaGaaeiiaiaadghacaqGGaaak8aacaGLBbGaayzxaaaaaa@4017@ , because b > N 2 q 2 + 1 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aiai1Ca aaleqcasDcbasaiai1jugibiacas9GIbGaiai1ykW7cWaGuBOpa4Ja iai1ykW7juaGdGaGuVaaaKqaGeacasDcLbsacGaGupOtaaqcbasaia i1jugibiacasnIYaGaiai1dghajuaGdGaGuVbaaKGaGeacasDcLbma cGaGuJOmaaqccasajai1aaaajugibiadasTHRaWkjuaGdGaGuVaaaK qaGeacasDcLbsacGaGuJymaaqcbasaiai1jugibiqcas9GWbGbiai1 faaaaaaaaaa@69D0@ as follows from (11). By real interpolation theorem, we have

s u p   t ( 0 , T ) < t > b   N 2 q 2 v ( · , t ) B q 2 , p 2 ( 1 1 / p ) ( Ω ) C u 0 B q 2 , p 2 ( 1 1 / p ) ( Ω ) +   <   t   > b   N 2 q 2 v L p ( ( 0 , T ) , H q 2 2     ( Ω ) )     + < t   > b   N 2 q 2 t v L p ( ( 0 , T ) L q 2 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaaxabakeaajugibiaadohacaWG1bGaamiCaaqcbasa aKqzadGaaiiOaiaadshacqGHiiIZpaGaaiika8qacaaIWaGaaiilai aadsfapaGaaiykaaWcpeqabaqcLbsacqGH8aapcaWG0bGaeyOpa4tc fa4aaWbaaSqabKqaGeaajugWaiaadkgacqGHsislcaGGGcWcdaWcaa qcbasaaKqzadGaamOtaaqcbasaaKqzadGaaGOmaiaadghalmaaBaaa jiaibaqcLbmacaaIYaaajiaibeaaaaaaaKqbaoaafmaakeaajugibi aahAhapaGaaiika8qacaGG3cGaaiilaiaadshapaGaaiykaaGcpeGa ayzcSlaawQa7aKqbaoaaBaaajeaibaqcLbmacaWGcbWcdaqhaaqcca saaKqzadGaamyCaSWaaSbaaKGaGeaajugOaiaaikdaaKGaGeqaaKqz adGaaiilaiaadchaaKGaGeaajugWaiaaikdapaGaaiika8qacaaIXa GaeyOeI0IaaGymaiaac+cacaWGWbWdaiaacMcaaaGaaiikaiabfM6a xjaacMcaaSWdbeqaaKqzGeGaeyizImQaam4qaKqbaoaafmaakeaaju gibiaabwhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaOGaayzc SlaawQa7aKqbaoaaBaaaleaajuaGdaWgaaadbaqcfa4damaaBaaaji aibaqcLbmapeGaamOqaSWaa0baaKGaGeaajugWaiaadghalmaaBaaa jiaqbaqcLbkacaaIYaaajiaibeaajugWaiaacYcacaWGWbaajiaiba qcLbmacaaIYaWdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVaGa amiCa8aacaGGPaaaaiaacIcacqqHPoWvcaGGPaaameqaaaWdbeqaaa WcbeaaaOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlabgUcaRiaacckajuaGdaqbbaqaaiabgYda8aGaayzcSd qcLbsacaGGGcGaamiDaiaacckacqGH+aGpjuaGdaahaaqcbasabKaz ba4=baqcLbmacaWGIbGaeyOeI0IaaiiOaSWaaSaaaKazba4=baqcLb macaWGobaajqwaa+FaaKqzadGaaGOmaiaadghalmaaBaaajiaibaqc LbmacaaIYaaajiaibeaaaaaaaKqbaoaafiaabaGaaeODaaGaayPcSd WaaSbaaeaacaWGmbWaaSbaaKqbGeaacaWGWbaajuaGbeaapaGaaiik aiaacIcapeGaaGimaiaacYcacaWGubWdaiaacMcapeGaaiilaiaadI eadaqhaaqcfasaaiaadghajuaGdaWgaaqcKvaG=haacaaIYaaajuai beaaaeaacaaIYaaaaKqbakaacckacaGGGcWdamaabmaabaGaeuyQdC facaGLOaGaayzkaaGaaiyka8qacaGGGcaabeaajugibiaacckajuaG daqbcaqaaiabgUcaRaGaayPcSdGaeyipaWtcLbsacaWG0bGaaiiOai abg6da+KqbaoaaCaaaleqajeaibaqcLbmacaWGIbGaeyOeI0IaaiiO aKqbaoaalaaajeaibaqcLbmacaWGobaajeaibaqcLbmacaaIYaGaam yCaKqbaoaaBaaajiaibaqcLbmacaaIYaaajiaibeaaaaaaaKqzGeGa eyOaIyRaamiDaiaabAhajuaGdaqbbaqaamaaBaaabaWaaSbaaeaaca WGmbWaaSbaaKqbGeaacaWGWbaajuaGbeaapaGaaiikaiaacIcapeGa aGimaiaacYcacaWGubWdaiaacMcacaGGmbWaaSbaaKqbGeaacaGGXb qcfa4aaSbaaKqbGeaacaaIYaaabeaaaKqbagqaamaabmaabaGaeuyQ dCfacaGLOaGaayzkaaGaaiykaaWdbeqaaaqabaaacaGLjWoaaaaa@0214@ (29)

To prove (29), we introduce an operator T ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibabaaaaaaaaapeGa e83eXt1daiaacIcapeGaamiDa8aacaGGPaaaaa@448E@ acting of g B q 2 , p 2 ( 1 1 / p ) N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGNb GaeyicI4SaamOqaSWaa0baaKqaGeaajugWaabaaaaaaaaapeGaamyC aSWaaSbaaKGaGeaajugOaiaaikdaaKGaGeqaaKqzadGaaiilaiaadc haaKqaG8aabaqcLbmapeGaaGOma8aacaGGOaWdbiaaigdacqGHsisl caaIXaGaai4laiaadchapaGaaiykaaaajugibiabl2riHMqbaoaaCa aameqajiaibaqcLbmacaWGobaaaaaa@4E22@ defined by

T ( t ) g = F 1 [ e ( | ξ |     + 1 ) t F [ g ] ( ξ ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibabaaaaaaaaapeGa e83eXt1daiaacIcapeGaamiDa8aacaGGPaWdbiaadEgacqGH9aqpcq WFXeIrjuaGdaahaaqabKqbGeaajugWaiabgkHiTiaaigdaaaqcLbsa paGaai4wa8qacaWGLbqcfa4aaWbaaeqajuaibaqcLbmacqGHsislpa GaaiikaiaacYhapeGaeqOVdG3daiaacYhapeGaaiiOaiaacckacqGH RaWkcaaIXaWdaiaacMcapeGaamiDaaaajugibiaadAeapaGaai4wa8 qacaWGNbWdaiaac2facaGGOaWdbiabe67a49aacaGGPaGaaiyxa8qa caGGSaaaaa@6438@ (30)

where F a n d F 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibabaaaaaaaaapeGa e8xmHyKaaGPaVlaadggacaWGUbGaamizaiaaykW7cqWFXeIrjuaGda ahaaqabKqbGeaajugWaiabgkHiTiaaigdaaaaaaa@4BF7@ denote the Fourier transform in N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqWIDe sOjuaGdaahaaadbeqccasaaKqzadGaamOtaaaaaaa@3ADD@ and its inverse transform. We have

e γ t T ( t ) g L p ( ( 0 , ) , H q 2 (   N ) )   + e γ t t T ( t ) g L p ( ( 0 , ) , L q (   N ) ) C | | g | | B q 2 , p 2 ( 1 1 / p ) ( N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb qcfa4aaWbaaSqabKqaGeaajugWaiabeo7aNjaadshaaaWefv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibabaaaaaaaaape Gae83eXt1daiaacIcapeGaamiDa8aacaGGPaWdbiaadEgacqWILicu juaGpaWaaSbaaKqaGeaajugWa8qacaWGmbGaamiCa8aacaGGOaGaai ika8qacaaIWaGaaiilaiabg6HiL+aacaGGPaGaaiilaiaacIealmaa DaaameaacaWGXbaabaGaaGOmaaaajugWaiaacIcapeGaaiiOa8aacq WIDesOlmaaCaaajiaibeqaaKqzadGaamOtaaaacaGGPaGaaiyka8qa caGGGcaal8aabeaajuaGcqGHRaWkjugibiaadwgajuaGdaahaaWcbe qcbasaaKqzadGaeq4SdCMaamiDaaaajugib8qacqGHciITcaWG0bGa e83eXt1daiaacIcapeGaamiDa8aacaGGPaWdbiaadEgacqWILicuju aGdaWgaaqaaKqzadGaamitaiaadchapaGaaiikaiaacIcapeGaaGim aiaacYcacqGHEisPpaGaaiykaiaacYcacaWGmbWcdaWgaaqcfayaaK qzadGaamyCaiaacIcapeGaaiiOa8aacqWIDesOlmaaCaaajuaGbeqa aKqzadGaamOtaaaacaGGPaGaaiykaaqcfayabaaapeqabaqcLbsapa GaeyizImQaam4qaiaacYhacaGG8bGaam4zaiaacYhacaGG8bqcfa4a aSbaaeaapeWaaSbaaeaadaWgaaqaaSWdamaaBaaajuaGbaqcLbmape GaamOqaSWaa0baaKqbGfaajugOaiaadghammaaBaaajuaybaqcLbka caaIYaaajuaybeaajugOaiaacYcacaWGWbaajuaybaqcLbkacaaIYa WdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVaGaamiCa8aacaGG PaaaaaqcfayabaqcLbmapeGaaiika8aacqWIDesOlmaaCaaajuaGbe qcfawaaKqzGcGaamOtaaaajugWaiaacMcaaKqba+qabeaaaeqaaaWd aeqaaaaa@AE59@ (31)

Given f(t) defned on (0, T) with f | t = 0 =   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgapaGaaiiFaKqbaoaaBaaajeaibaqcLbmapeGaamiD aiabg2da9iaaicdaaSWdaeqaaKqzGeWdbiabg2da9iaabccacaaIWa aaaa@408B@ , let

[ e T f ] ( t ) = { 0 ( t   < 0 ) , f ( t )               ( 0 < t < T ) , f ( 2 T t )   ( T   <   t   < 2 T ) , 0                         ( 2 T   < t ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacUfacaWGLbqcfa4aaSbaaKqaGeaajugWaiaadsfaaSqa baqcLbsacaWGMbGaaiyxaiaacIcacaWG0bGaaiykaiabg2da9Kqbao aaceaajugibqaabeGcbaqcLbsacaaMc8UaaGPaVlaaicdacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaV=aacaGGOaWdbiaadshacaqGGaGaeyipaWJaaGima8aaca GGPaWdbiaacYcaaOqaaKqzGeGaamOza8aacaGGOaWdbiaadshapaGa aiyka8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8+daiaacIcapeGaaGimaiabgYda8iaadshacqGH8aap caWGubWdaiaacMcapeGaaiilaaGcbaqcLbsacaWGMbWdaiaacIcape GaaGOmaiaadsfacqGHsislcaWG0bWdaiaacMcapeGaaiiOaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8+daiaacIcapeGaamivaiaa bccacqGH8aapcaqGGaGaamiDaiaabccacqGH8aapcaaIYaGaamiva8 aacaGGPaWdbiaacYcaaOqaaKqzGeGaaGPaVlaaicdacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7paGaaiika8qacaaIYaGaamivaiaa cckacqGH8aapcaWG0bWdaiaacMcapeGaaiilaaaakiaawUhaaaaa@0C56@ (32)

and then [ e T f ] ( t ) = f ( t )     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacUfacaWGLbqcfa4aaSbaaKqaGeaajugWaiaadsfaaSqa baqcLbsacaWGMbGaaiyxaiaacIcacaWG0bGaaiykaiabg2da9iaadA gapaGaaiika8qacaWG0bWdaiaacMcapeGaaiiOaiaacckaaaa@46CF@ for t ( 0 ,   T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshacqGHiiIZjuaGpaWaaeWaaOqaaKqzGeWdbiaaicda caGGSaGaaeiiaiaadsfaaOWdaiaawIcacaGLPaaaaaa@3EF0@ and

t [ e T f ] ( t ) = { 0 ( t   < 0 ) , t f ( t )               ( 0 < t < T ) , ( t f ) ( 2 T t )   ( T   <   t   < 2 T ) , 0                         ( 2 T   < t ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2kaadshacaGGBbGaamyzaKqbaoaaBaaajeaibaqc LbmacaWGubaaleqaaKqzGeGaamOzaiaac2facaGGOaGaamiDaiaacM cacqGH9aqpjuaGdaGabaqcLbsaeaqabOqaaKqzGeGaaGPaVlaaykW7 caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7paGaaiika8qacaWG0bGaaeii aiabgYda8iaaicdapaGaaiyka8qacaGGSaaakeaajugibiabgkGi2k aadshacaWGMbWdaiaacIcapeGaamiDa8aacaGGPaWdbiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+daiaacIcapeGa aGimaiabgYda8iaadshacqGH8aapcaWGubWdaiaacMcapeGaaiilaa GcbaqcLbsacqGHsislcaGGOaGaeyOaIyRaamiDaiaadAgacaGGPaWd aiaacIcapeGaaGOmaiaadsfacqGHsislcaWG0bWdaiaacMcapeGaai iOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+daiaacIcape GaamivaiaabccacqGH8aapcaqGGaGaamiDaiaabccacqGH8aapcaaI YaGaamiva8aacaGGPaWdbiaacYcaaOqaaKqzGeGaaGPaVlaaicdaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7paGaaiika8qacaaIYaGaamivaiaacckacqGH8aapcaWG0b WdaiaacMcapeGaaiilaaaakiaawUhaaaaa@40ED@ (33)

Let u ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadwhagaacaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqa aaaa@3A7A@ be an N-vector of functions in B q 2 , p 2 ( 1 1 / p ) ( N ) N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb WcdaqhaaqcbasaaKqzadaeaaaaaaaaa8qacaWGXbWcdaWgaaqccasa aKqzGcGaaGOmaaqccasabaqcLbmacaGGSaGaamiCaaqcbaYdaeaaju gWa8qacaaIYaWdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVaGa amiCa8aacaGGPaaaaKqzGeGaaiikaiabl2riHMqbaoaaCaaameqaji aibaqcLbmacaWGobaaaKqzGeGaaiykaKqbaoaaCaaabeqcfasaaKqz adGaamOtaaaaaaa@5079@ such that u ˜ 0 = u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadwhagaacaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqa aKqbakabg2da9KqzGeGaamyDaKqbaoaaBaaajuaibaqcLbmacaaIWa aajuaGbeaaaaa@40EA@ in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axbaa@3833@ and u ˜ 0 B q 1 / 2 , p 2 ( 1 1 / p )   N   < C u 0 B q 2 , p 2 ( 1 1 / p ) ( Ω )     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaamaaGaaabaqcLbsacaqG1baajuaGcaGLdmaadaWg aaqcKvaq=haajugWaiaaicdaaKqbagqaaaGaayzcSlaawQa7a8aada WgaaqcbasaaKqzGeWdbiaadkealmaaDaaajiaibaqcLbmacaWGXbGa aGymaSWaaSbaaKGaGeaajugWaiaac+cacaaIYaaajiaibeaajugWai aacYcacaWGWbaajiaibaqcLbmacaaIYaWdaiaacIcapeGaaGymaiab gkHiTiaaigdacaGGVaGaamiCa8aacaGGPaaaaKqzGeWdbiaacckapa GaeSyhHeAcfa4aaWbaaKGaGeqabaqcLbmacaWGobaaaKqzGeWdbiaa cckaaSWdaeqaaKqzGeGaeyipaWJaam4qaKqba+qadaqbdaqaaKqzGe GaaeyDaKqbaoaaBaaajqwba9FaaKqzadGaaGimaaqcfayabaaacaGL jWUaayPcSdWdamaaBaaajeaibaqcLbsapeGaamOqaSWaa0baaKGaGe aajugWaiaadghalmaaBaaajiaibaqcLbkacaaIYaaajiaibeaajugW aiaacYcacaWGWbaajiaibaqcLbmacaaIYaWdaiaacIcapeGaaGymai abgkHiTiaaigdacaGGVaGaamiCa8aacaGGPaaaaKqbaoaabmaajeai baqcLbsacqqHPoWvaKqaGiaawIcacaGLPaaajugib8qacaGGGcGaai iOaaWcpaqabaaaaa@807D@ .

Let z = e T [ < t > b   N 2 q 2 v T ( | t | ) u ˜ 0 ] + T ( | t | ) u ˜ 0 f o r t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b Gaeyypa0JaamyzaKqbaoaaBaaajqwba9FaaKqzadGaamivaaqcfaya baqcLbsacaGGBbGaeyipaWJaamiDaiabg6da+KqbaoaaCaaabeqcKv aq=haajugWaabaaaaaaaaapeGaiGgYdkgacWaAiBOeI0IaiGgYccka lmacOH8caaqcKvaq=hacOHCcLbmacGaAipOtaaqcKvaq=hacOHCcLb macGaAiJOmaiacOH8GXbWcdGaAiVbaaKazfa0=bGaAiNqzadGaiGgY ikdaaKazfa0=bKaAidaaaaaajugib8aacaGG2bGaeyOeI0Yefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFtepvjuaGdaqa daqaaKqzGeGaaiiFaiaacshacaGG8baajuaGcaGLOaGaayzkaaWaaa caaeaacaqG1baacaGLdmaapeWaaSbaaKazba4=baqcLbmacaaIWaaa leqaaKqzGeWdaiaac2facqGHRaWkcqWFtepvjuaGdaqadaqaaKqzGe GaaiiFaiaacshacaGG8baajuaGcaGLOaGaayzkaaWaaacaaeaacaqG 1baacaGLdmaapeWaaSbaaKazba4=baqcLbmacaaIWaaaleqaaKqzGe GaaGPaVlaaykW7caaMc8UaamOzaiaad+gacaWGYbGaaGPaVlaadsha cqGHiiIZpaGaeSyhHekaaa@9ED8@ . Since < t > b   N 2 q 2 v T ( | t | ) u ˜ 0 | t = 0 = 0 i n Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGH8a apcaWG0bGaeyOpa4tcfa4aaWbaaeqajqwba9FaaKqzadaeaaaaaaaa a8qacaWGIbGaeyOeI0IaaiiOaSWaaSaaaKazfa0=baqcLbmacaWGob aajqwba9FaaKqzadGaaGOmaiaadghalmaaBaaajqwba9FaaKqzadGa aGOmaaqcKvaq=hqaaaaaaaqcLbsapaGaaiODaiabgkHiTmrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae83eXtvcfa4aaeWa aeaajugibiaacYhacaGG0bGaaiiFaaqcfaOaayjkaiaawMcaamaaGa aabaGaaeyDaaGaay5adaWdbmaaBaaajqwaa+FaaKqzadGaaGimaaWc beaajugibiaacYhajuaGdaWgaaqcfasaaKqzadGaamiDaiabg2da9i aaicdaaKqbagqaaKqzGeGaeyypa0JaaGimaiaaykW7caaMc8UaamyA aiaad6gacaaMc8UaaGPaVlabfM6axbaa@7AB7@ by (31), (32) and (33),

z L p ( ( 0 , ) , H q 2 2 ( Ω ) ) +   t z L p ( ( 0 , ) , L q 2     ( Ω ) ) < C ( | | < t > b   N 2 q 2 v L p ( ( 0 , T ) , H q 2 2     ( Ω ) )   + <   t   > b   N 2 q 2 t v L p ( ( 0 , T ) L q 2 ( Ω ) ) + u 0 B q 2 , p 2 ( 1 1 / p ) ( Ω )     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaaMc8 UaaGPaVNqzGeaeaaaaaaaaa8qacqWILicucaWH6bGaeSyjIavcfa4a aSbaaKqaGeaajugWaiaadYealmaaBaaajiaibaqcLbkacaWGWbaaji aibeaajugWa8aacaGGOaGaaiika8qacaaIWaGaaiilaiabg6HiL+aa caGGPaWdbiaacYcapaGaaiisaWWaa0baaKGaGeaajugOaiaadghamm aaBaaajiaybaGaaGOmaaadbeaaaKGaGeaajugOaiaaikdaaaqcLbma caGGOaGaeuyQdCLaaiykaiaacMcaaSWdbeqaaKqzGeGaey4kaSIaai iOaiablwIiqjabgkGi2MqbaoaaBaaajeaibaqcLbmacaWG0baaleqa aKqzGeGaaCOEaiablwIiqLqbaoaaBaaaleaajugibiaadYeajuaGda WgaaqccasaaKqzadGaamiCaaadbeaajugib8aacaGGOaGaaiika8qa caaIWaGaaiilaiabg6HiL+aacaGGPaWdbiaacYcacaWGmbqcfa4aaS baaKGaGeaajugWaiaadghalmaaBaaajiaybaGaaGOmaaadbeaaaeqa aKqzGeGaaiiOaiaacckajuaGpaWaaeWaaSqaaiabfM6axbGaayjkai aawMcaaKqzGeGaaiykaaWcpeqabaaakeaajugib8aacqGH8aapcaWG dbGaaiikaiaacYhacaGG8bGaeyipaWJaamiDaiabg6da+KqbaoaaCa aabeqcfasaaKqzadWdbiaadkgacqGHsislcaGGGcWcdaWcaaqcfasa aKqzadGaamOtaaqcfasaaKqzadGaaGOmaiaadghalmaaBaaajuaiba qcLbmacaaIYaaajuaibeaaaaaaaKqzGeWdaiaabAhajuaGdaqbbaqa amaaBaaabaqcLbmapeGaamitaSWaaSbaaKqbagaajugWaiaadchaaK qbagqaaKqzadWdaiaacIcacaGGOaWdbiaaicdacaGGSaGaamiva8aa caGGPaWdbiaacYcacaWGibWcdaqhaaqcfayaaKqzadGaamyCaSWaaS baaKqbagaajugWaiaaikdaaKqbagqaaaqaaKqzadGaaGOmaaaacaGG GcGaaiiOaSWdamaabmaajuaGbaqcLbmacqqHPoWvaKqbakaawIcaca GLPaaajugWaiaacMcapeGaaiiOaaqcfa4daeqaaaGaayzcSdWdbiaa ykW7jugibiaaykW7caaMc8Uaey4kaSIaeyipaWJaaiiOaiaadshaca GGGcGaeyOpa4tcfa4aaWbaaSqabKazba4=baqcLbmacaWGIbGaeyOe I0IaaiiOaSWaaSaaaKazba4=baqcLbmacaWGobaajqwaa+FaaKqzad GaaGOmaiaadghalmaaBaaajiaibaqcLbkacaaIYaaajiaibeaaaaaa aKqzGeGaeyOaIyBcfa4aaSbaaKqbGeaajugWaiaadshaaKqbagqaaK qzGeGaaeODaKqbaoaafeaabaWaaSbaaeaajugWaiaadYealmaaBaaa juaibaqcLbmacaWGWbaajuaGbeaajugWa8aacaGGOaGaaiika8qaca aIWaGaaiilaiaadsfapaGaaiykaiaacYealmaaBaaajuaibaqcLbma caGGXbWcdaWgaaqcKvaG=haajugWaiaaikdaaKqbGeqaaaqabaWcda qadaqcfayaaKqzadGaeuyQdCfajuaGcaGLOaGaayzkaaqcLbmacaGG PaaajuaGpeqabaaacaGLjWoajugibiabgUcaRKqbaoaafmaabaqcLb sacaqG1bqcfa4aaSbaaKqbGeaajugibiaaicdaaKqbagqaaaGaayzc SlaawQa7a8aadaWgaaqcKfaG=haajugWa8qacaWGcbWcdaqhaaqcca saaKqzGcGaamyCaWWaaSbaaKGaGeaajugOaiaaikdaaKGaGeqaaKqz GcGaaiilaiaadchaaKGaGfaajugOaiaaikdapaGaaiika8qacaaIXa GaeyOeI0IaaGymaiaac+cacaWGWbWdaiaacMcaaaWcdaqadaqcKfaG =haajugWaiabfM6axbqcKfaG=laawIcacaGLPaaajugWa8qacaGGGc GaaiiOaaWcpaqabaaaaaa@1A89@ (34)

It is known (Tanabe51) that L p ( ( 0 ,   ) ,   E 1 )     H p 1 ( ( 0 ,   ) ,   E 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeajuaGpaWaaSbaaKqaGeaajugWa8qacaWGWbaal8aa beaajuaGdaqadaGcbaqcfa4aaeWaaOqaaKqzGeWdbiaaicdacaGGSa Gaaeiiaiabg6HiLcGcpaGaayjkaiaawMcaaKqzGeWdbiaacYcacaqG GaGaamyraKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaGcpaGaay jkaiaawMcaaKqzGeWdbiaabccacqGHPiYXcaqGGaGaamisaSWaa0ba aKqaGeaajugWaiaadchaaKqaGeaajugWaiaaigdaaaqcfa4damaabm aakeaajuaGdaqadaGcbaqcLbsapeGaaGimaiaacYcacaqGGaGaeyOh Iukak8aacaGLOaGaayzkaaqcLbsapeGaaiilaiaabccacaWGfbqcfa 4aaSbaaKqaGeaajugWaiaaicdaaSqabaaak8aacaGLOaGaayzkaaaa aa@5FCA@ is continuously imbedded into B U C ( ( 0 ,   ) ,   ( E 0 , E 1 ) 1 1 / p , p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkeacaWGvbGaam4qaKqba+aadaqadaGcbaqcLbsapeGa aiikaiaaicdacaGGSaGaaeiiaiabg6HiLkaacMcacaGGSaGaaeiiai aacIcacaWGfbqcfa4damaaBaaajeaibaqcLbmapeGaaGimaaWcpaqa baqcLbsapeGaaiilaiaadweajuaGpaWaaSbaaKqaGeaajugWa8qaca aIXaaal8aabeaajuaGcaGGPaWdbmaaBaaajeaibaqcLbmacaaIXaGa eyOeI0IaaGymaiaac+cacaWGWbGaaiilaiaadchaaSqabaaak8aaca GLOaGaayzkaaaaaa@5423@ , where E0 and E1 are two Banach spaces such that E1 is a dense subset of E0, and BUC denotes the set of all uniformly bounded continuous functions . Noting that
z ( t )   = <   t   > b   N 2 q 2 v ( t )   f o r   t     ( 0 ,   T   ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQhajuaGpaWaaeWaaOqaaKqzGeWdbiaadshaaOWdaiaa wIcacaGLPaaajugib8qacaqGGaGaeyypa0JaeyipaWJaaiiOaiaads hacaGGGcGaeyOpa4tcfa4aaWbaaKqaGeqajqwaa+FaaKqzadGaamOy aiabgkHiTiaacckalmaalaaajqwaa+FaaKqzadGaamOtaaqcKfaG=h aajugWaiaaikdacaWGXbWcdaWgaaqccasaaKqzadGaaGOmaaqccasa baaaaaaajugibiaadAhajuaGpaWaaeWaaOqaaKqzGeWdbiaadshaaO WdaiaawIcacaGLPaaajugib8qacaqGGaGaamOzaiaad+gacaWGYbGa aeiiaiaadshacaqGGaGaeyicI4SaaeiiaKqba+aadaqadaGcbaqcLb sapeGaaGimaiaacYcacaqGGaGaamivaiaabccaaOWdaiaawIcacaGL Paaaaaa@69A3@ , we have

s u p   0 < t < T ) < t > b   N 2 q 2 v ( t ) B q 2 , p 2 ( 1 1 / p ) ( Ω ) s u p   t ( 0 , ) z ( t ) B q 2 , p 2 ( 1 1 / p ) ( Ω ) C z L p ( ( 0 , ) , H q 2 2     ( Ω ) )   + t z L p ( ( 0 , ) , L q 2 ( Ω ) )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWfqaGcbaqcLbsacaWGZbGaamyDaiaadchaaKqaGeaajugW aiaacckacaaIWaGaeyipaWJaamiDaiabgYda8iaadsfapaGaaiykaa WcpeqabaqcLbsacqGH8aapcaWG0bGaeyOpa4tcfa4aaWbaaSqabKqa GeaajugWaiaadkgacqGHsislcaGGGcWcdaWcaaqcbasaaKqzadGaam OtaaqcbasaaKqzadGaaGOmaiaadghalmaaBaaajiaibaqcLbmacaaI YaaajiaibeaaaaaaaKqbaoaafmaakeaajugibiaahAhapaGaaiika8 qacaWG0bWdaiaacMcaaOWdbiaawMa7caGLkWoajuaGdaWgaaqcbasa aKqzadGaamOqaSWaa0baaKGaGeaajugWaiaadghalmaaBaaajiaiba qcLbkacaaIYaaajiaibeaajugWaiaacYcacaWGWbaajiaibaqcLbma caaIYaWdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVaGaamiCa8 aacaGGPaaaaiaacIcacqqHPoWvcaGGPaaal8qabeaajuaGcqGHKjYO caaMc8+aaCbeaOqaaKqzGeGaam4CaiaadwhacaWGWbaajeaibaqcLb macaGGGcGaamiDaiabgIGio=aacaGGOaWdbiaaicdacaGGSaGaeyOh Iu6daiaacMcaaSWdbeqaaKqbaoaafmaakeaajugib8aacaGG6bGaai ika8qacaWG0bWdaiaacMcaaOWdbiaawMa7caGLkWoajuaGdaWgaaqc basaaKqzadGaamOqaSWaa0baaKGaGeaajugWaiaadghalmaaBaaaji aibaqcLbkacaaIYaaajiaibeaajugWaiaacYcacaWGWbaajiaibaqc LbmacaaIYaWdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVaGaam iCa8aacaGGPaaaaiaacIcacqqHPoWvcaGGPaaal8qabeaajuaGcaaM c8UaaGPaVlabgsMiJkaaykW7caaMc8UaaGPaVlaadoeadaqbdaGcba qcLbsapaGaaiOEaaGcpeGaayzcSlaawQa7aKqbaoaaBaaajeaibaqc LbmacaWGmbGaamiCa8aacaGGOaGaaiika8qacaaIWaGaaiilaiabg6 HiL+aacaGGPaWdbiaacYcacaWGibqcfa4aa0baaKGaGeaajugWaiaa dghajuaGdaWgaaqccasaaKqzadGaaGOmaaqccasabaaabaqcLbmaca aIYaaaaiaacckacaGGGcqcfa4damaabmaajeaibaqcLbmacqqHPoWv aKqaGiaawIcacaGLPaaajugWaiaacMcapeGaaiiOaaWcbeaajuaGcq GHRaWkdaqbdaGcbaqcLbsacqGHciITjuaGdaWgaaqcKvaG=haajugW aiaadshaaKqbagqaaKqzGeGaamOEaaGccaGLjWUaayPcSdWcdaWgaa qcbasaaKqzadGaamitaKqzacGaamiCaKqzadWdaiaacIcacaGGOaWd biaaicdacaGGSaGaeyOhIu6daiaacMcapeGaaiila8aacaGGmbWcda WgaaqccasaaKqzadGaaiyCaWWaaSbaaKGaGeaajugOaiaaikdaaKGa GeqaaaqabaWcdaqadaqcbasaaKqzadGaeuyQdCfajeaicaGLOaGaay zkaaqcLbmacaGGPaWdbiaacckaaSqabaaaaa@F013@

which, combined with (34), furnishes (29).

Since 2 p + N q 2 < 1 , B q 2 , p 2 ( 1 1 / p ) ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWccaqaaKqzGeGaaGOmaaqcfayaaKqzGeGaamiCaaaacqGH RaWkjuaGdaWccaqaaKqzGeGaamOtaaqcfayaaKqzGeGaamyCaKqbao aaBaaajuaibaqcLbmacaaIYaaajuaGbeaaaaqcLbsacqGH8aapcaaI XaGaaiilaiaaykW7caaMc8UaaGPaVlaadkeajuaGdaqhaaqcfasaaK qzadGaamyCaSWaaSbaaKazfa4=baqcLbkacaaIYaaajuaibeaajugW aiaacYcacaWGWbaajuaibaqcLbmacaaIYaWdaiaacIcapeGaaGymai abgkHiTiaaigdacaGGVaGaamiCa8aacaGGPaaaaKqzGeWdbiaacIca cqqHPoWvcaGGPaaaaa@5FDF@ is continuously imbedded into H 1 ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIealmaaDaaajuaibaqcLbmacqGHEisPaKqbGeaajugW aiaaigdaaaqcLbsacaGGOaGaeuyQdCLaaiykaaaa@3FF9@ so that by (29)

< t > b   N 2 q 2 v ( t ) L ( ( 0 , T ) , H 1     ( Ω ) )   C ( I + [ v ] T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcKfaG=haa jugWaiaadkgacqGHsislcaGGGcWcdaWcaaqcKfaG=haajugWaiaad6 eaaKazba4=baqcLbmacaaIYaGaamyCaSWaaSbaaKGaGeaajugWaiaa ikdaaKGaGeqaaaaaaaqcfa4aauWaaOqaaKqzGeGaaCODa8aacaGGOa WdbiaadshapaGaaiykaaGcpeGaayzcSlaawQa7aKqbaoaaBaaabaWa aSbaaKqbGeaajugWaiaadYeacqGHEisPpaGaaiikaiaacIcapeGaaG imaiaacYcacaGGubWdaiaacMcapeGaaiilaiaadIealmaaDaaajuai baqcLbmacqGHEisPaKqbGeaajugWaiaaigdaaaGaaiiOaiaacckal8 aadaqadaqcfasaaKqzadGaeuyQdCfajuaicaGLOaGaayzkaaqcLbma caGGPaWdbiaacckaaKqbagqaaaqabaGaeyizImAcLbsacaWGdbGaai ikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8he HKKaey4kaSIaai4waiaabAhacaGGDbqcfa4aaSbaaKqbGeaajugWai aadsfaaKqbagqaaKqzGeGaaiykaaaa@844E@ (35)

Applying (3), (28) and (29) to the formulas in (15) and (16) and using the fact that b + 1 p N 2 q 2 N 2 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkHiTiaadkgacqGHRaWkjuaGdaWcaaqaaKqzGeGaaGym aaqcfayaaKqzGeGabmiCayaafaaaaKqbaoaalaaakeaajugibiaad6 eaaOqaaKqzGeGaaGOmaiaadghajuaGdaWgaaqcKfaG=haajugWaiaa ikdaaSqabaaaaKqzGeGaeyizImQaeyOeI0scfa4aaSaaaOqaaKqzGe GaamOtaaGcbaqcLbsacaaIYaGaamyCaKqbaoaaBaaajqwaa+FaaKqz adGaaGOmaaWcbeaaaaaaaa@525E@ and b + N 2 q 2 N 2 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkHiTiaadkgacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWG obaakeaajugibiaaikdacaWGXbqcfa4aaSbaaKqaGeaajugWaiaaik daaSqabaaaaKqzGeGaeyizImQaeyOeI0scfa4aaSaaaOqaaKqzGeGa amOtaaGcbaqcLbsacaaIYaGaamyCaKqbaoaaBaaajeaibaqcLbmaca aIYaaaleqaaaaaaaa@4AD2@ ,which follows from (11), give

( a i j ( t ) , J ( t ) , l i j ( t ) , A i j ( t ) , J ( t ) , L i j ( t ) L   ( Ω ) C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsapaGaaiikaiaadggajuaGdaWgaaqcKfaG =haajugWaiaadMgacaWGQbaaleqaaKqzGeGaaiikaiaadshacaGGPa GaaiilaiaadQeacaGGOaGaamiDaiaacMcacaGGSaGaaGPaVlablori SLqbaoaaBaaaleaajuaGdaWgaaqccasaaKqzadGaamyAaiaadQgaaW qabaaaleqaaKqzGeGaaiikaiaadshacaGGPaGaaiilaiaadgeajuaG daWgaaqcKfaG=haajugWaiaadMgacaWGQbaaleqaaKqzGeGaaiikai aadshacaGGPaGaaiilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbacfiGae8xcXRKaaiikaiaacshacaGGPaGaaiilaiab=jrimL qbaoaaBaaajqwaa+FaaKqzadGaamyAaiaadQgaaSqabaqcLbsacaGG OaGaamiDaiaacMcaaOWdbiaawMa7caGLkWoajuaGdaWgaaqcbasaaK qzadGaamitaSWaaSbaaKqbGeaajugWaiabg6HiLcqcfasabaqcLbma caGGGcWcpaWaaeWaaKqaGeaajugWaiabfM6axbqcbaIaayjkaiaawM caaaWcpeqabaqcLbsapaGaeyizImQaam4qaaaa@8666@ ,

( A i j ( t ) , J ( t ) , L i j ( t ) L   ( Ω ) C t T ( κ v ( · , s ) ) L ( Ω ) d s C [ v ] T + < t > b + 1 p C [ v ] T < t > N 2 q 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsapaGaaiikaiaadgeajuaGdaWgaaqcbasa aKqzadGaamyAaiaadQgaaSqabaqcLbsacaGGOaGaamiDaiaacMcaca GGSaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWF jeVscaGGOaGaaiiDaiaacMcacaGGSaGae8NeHWucfa4aaSbaaKazba 4=baqcLbmacaWGPbGaamOAaaWcbeaajugibiaacIcacaWG0bGaaiyk aaGcpeGaayzcSlaawQa7aKqbaoaaBaaajeaibaqcLbmacaWGmbWcda WgaaqcfasaaKqzadGaeyOhIukajuaibeaajugWaiaacckal8aadaqa daqcbasaaKqzadGaeuyQdCfajeaicaGLOaGaayzkaaaal8qabeaaju gib8aacqGHKjYOcaWGdbGcdaWdXaqcfayaaKqzGeWdbiabgEGir=aa caGGOaWdbiabeQ7aRjaahAhapaGaaiika8qacaGG3cGaaiilaiaado hapaGaaiykaiaacMcapeGaeSyjIavcfa4aaSbaaeaajugibiaadYea juaGdaWgaaqcfasaaKqzadGaeyOhIukajuaGbeaaaeqaamaabmaaba qcLbsacqqHPoWvaKqbakaawIcacaGLPaaajugib8aacaWGKbGaam4C aiaaykW7caaMc8+dbiabgsMiJkaadoeapaGaai4waiaacAhacaGGDb qcfa4aaSbaaKqbGeaajugWaiaadsfaaKqbagqaaaqaaKqzadGaamiD aaqcfawaaKqzadGaamivaaqcLbyacqGHRiI8aKqzGeGaey4kaSIaey ipaWJaamiDaiabg6da+KqbaoaaCaaabeqcfasaaKqzadWdbiabgkHi TiaadkgacqGHRaWklmaalaaajuaibaqcLbmacaaIXaaajuaibaqcLb maceWGWbGbauaaaaaaaKqzGeGaeyizImQaam4qa8aacaGGBbGaaiOD aiaac2fajuaGdaWgaaqcbasaaKqzadGaamivaaWcbeaajugibiabgY da8iaadshacqGH+aGpjuaGdaahaaqabKqbGeaajugWa8qacqGHsisl lmaalaaajuaibaqcLbmacaWGobaajuaibaqcLbmacaaIYaGaamyCaS WaaSbaaKazfa4=baqcLbkacaaIYaaajuaibeaaaaaaaKqzGeWdaiaa cYcaaaa@C063@

( a i j ( t ) , J ( t ) , l i j ( t ) , A i j ( t ) , J ( t ) , L i j ( t ) L q   ( Ω ) C 0 T 2 ( κ v ( · , s ) ) L q C [ v ] T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsapaGaey4bIeTaaiikaiaadggajuaGdaWg aaqcKfaG=haajugWaiaadMgacaWGQbaaleqaaKqzGeGaaiikaiaads hacaGGPaGaaiilaiaadQeacaGGOaGaamiDaiaacMcacaGGSaGaaGPa VlabloriSLqbaoaaBaaaleaajuaGdaWgaaqccasaaKqzadGaamyAai aadQgaaWqabaaaleqaaKqzGeGaaiikaiaadshacaGGPaGaaiilaiaa dgeajuaGdaWgaaqcKfaG=haajugWaiaadMgacaWGQbaaleqaaKqzGe GaaiikaiaadshacaGGPaGaaiilamrr1ngBPrwtHrhAXaqeguuDJXwA KbstHrhAG8KBLbacfiGae8xcXRKaaiikaiaacshacaGGPaGaaiilai ab=jrimLqbaoaaBaaajqwaa+FaaKqzadGaamyAaiaadQgaaSqabaqc LbsacaGGOaGaamiDaiaacMcaaOWdbiaawMa7caGLkWoajuaGdaWgaa qcbasaaKqzadGaamitaSWaaSbaaKqbGeaajugWaiaadghaaKqbGeqa aKqzadGaaiiOaSWdamaabmaajeaibaqcLbmacqqHPoWvaKqaGiaawI cacaGLPaaaaSWdbeqaaKqzGeWdaiabgsMiJkaaykW7caWGdbGcdaWd XaqcfayaaKqzGeWdbiabgEGirNqbaoaaCaaabeqcfasaaiaaikdaaa qcLbsapaGaaiika8qacqaH6oWAcaWH2bWdaiaacIcapeGaai4Taiaa cYcacaWGZbWdaiaacMcacaGGPaWdbiablwIiqLqbaoaaBaaabaqcLb sacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghaaKqbagqaaaqabaGa eyizImAcLbsacaWGdbWdaiaacUfacaGG2bGaaiyxaKqbaoaaBaaaju aibaqcLbmacaWGubaajuaGbeaaaeaajugWaiaaicdaaKqbagaajugW aiaadsfaaKqzagGaey4kIipajugibiaacYcaaaa@AF4E@ (36)

t ( a i j ( t ) , J ( t ) , l i j ( t ) , A i j ( t ) , J ( t ) , L i j ( t ) L   ( Ω ) C ( κ v ( · , t ) ) , L ( Ω ) C ( I + [ v ] T ) < t > b +   N 2 q 2 C ( I + [ v ] T ) < t > N 2 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafmaakeaajugib8aacqGHciITjuaGdaWgaaqaaiaa cshaaeqaaKqzGeGaaiikaiaadggajuaGdaWgaaqcKfaG=haajugWai aadMgacaWGQbaaleqaaKqzGeGaaiikaiaadshacaGGPaGaaiilaiaa dQeacaGGOaGaamiDaiaacMcacaGGSaGaaGPaVlabloriSLqbaoaaBa aaleaajuaGdaWgaaqccasaaKqzadGaamyAaiaadQgaaWqabaaaleqa aKqzGeGaaiikaiaadshacaGGPaGaaiilaiaadgeajuaGdaWgaaqcKf aG=haajugWaiaadMgacaWGQbaaleqaaKqzGeGaaiikaiaadshacaGG PaGaaiilamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfi Gae8xcXRKaaiikaiaacshacaGGPaGaaiilaiab=jrimLqbaoaaBaaa jqwaa+FaaKqzadGaamyAaiaadQgaaSqabaqcLbsacaGGOaGaamiDai aacMcaaOWdbiaawMa7caGLkWoajuaGdaWgaaqcbasaaKqzadGaamit aSWaaSbaaKqbGeaajugWaiabg6HiLcqcfasabaqcLbmacaGGGcWcpa WaaeWaaKqaGeaajugWaiabfM6axbqcbaIaayjkaiaawMcaaaWcpeqa baaakeaajuaGcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8EcLbsapaGaeyizImQaaGPaVlaadoeajuaGdaqbdaqaaKqzGeWd biabgEGir=aacaGGOaWdbiabeQ7aRjaahAhapaGaaiika8qacaGG3c GaaiilaiaacshapaGaaiykaiaacMcaaKqbakaawMa7caGLkWoajugi biaacYcajuaGpeWaaSbaaSqaaKqzGeGaamitaKqbaoaaBaaajiaiba qcLbmacqGHEisPaWqabaqcLbsacaGGOaGaeuyQdCLaaiykaaWcbeaa jugibiabgsMiJkaadoeacaGGOaGae8heHKKaey4kaSIaai4waiaabA hacaGGDbqcfa4aaSbaaKazfa0=baqcLbmacaWGubaajuaGbeaajugi biaacMcacqGH8aapcaWG0bGaeyOpa4tcfa4aaWbaaSqabKazba4=ba qcLbmacqGHsislcaWGIbGaey4kaSIaaiiOaSWaaSaaaKazba4=baqc LbmacaWGobaajqwaa+FaaKqzadGaaGOmaiaadghalmaaBaaajiaiba qcLbmacaaIYaaajiaibeaaaaaaaKqzGeGaeyizImQaam4qaiaacIca cqWFqesscqGHRaWkcaGGBbGaaeODaiaac2fajuaGdaWgaaqcKvaq=h aajugWaiaadsfaaKqbagqaaKqzGeGaaiykaiabgYda8iaadshacqGH +aGpjuaGdaahaaWcbeqcKfaG=haalmaalaaajqwaa+FaaKqzadGaam OtaaqcKfaG=haajugWaiaaikdacaWGXbWcdaWgaaqccasaaKqzadGa aGOmaaqccasabaaaaaaaaaaa@F44F@

for any t     ( 0 ,   T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadshacaqGGaGaeyicI4SaaeiiaKqba+aadaqcWaGcbaqc LbsapeGaaGimaiaacYcacaqGGaGaamivaaGcpaGaayjkaiaaw2faaa aa@409F@ , where q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Moreover, we have

( a ˜ i j , J ˜ , l ˜ i j , A ˜ i j , J , L i j ) ( x , t ) = 0 f o r x B 2 R a n d t [ 0 , T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gabmyyayaaiaqcfa4aaSbaaKazba4=baqcLbmacaWGPbGaamOAaaWc beaajugibiaacYcaceWGkbGbaGaacaGGSaGaaGPaVlqbloriSzaaia qcfa4aaSbaaSqaaKqbaoaaBaaajiaibaqcLbmacaWGPbGaamOAaaad beaaaSqabaqcLbsacaGGSaGabmyqayaaiaqcfa4aaSbaaKazba4=ba qcLbmacaWGPbGaamOAaaWcbeaajugibiaacYcatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=Lq8kjaacYcacqWFsectju aGdaWgaaqcKfaG=haajugWaiaadMgacaWGQbaaleqaaKqbakaacMca jugibiaacIcacaWG4bGaaiilaiaadshacaGGPaGaeyypa0JaaGimai aaykW7caaMc8UaaGPaVlaadAgacaWGVbGaamOCaiaaykW7caaMc8Ua amiEaiabgMGiplaadkeajuaGdaWgaaqcfasaaKqzadGaaGOmaiaadk faaKqbagqaaKqzGeGaaGPaVlaaykW7caWGHbGaamOBaiaadsgacaaM c8UaaGPaVlaadshacqGHiiIZcaGGBbGaaGimaiaacYcacaWGubGaai yxaaaa@8D6F@ (37)

By (36) and (37),

( a s m ( T ) L i s ( t ) t v i ) L q   ( Ω ) C [ v ] T + < t > b + 1 p t v i ( t ) L q 2   ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaaO qaaKqzGeGaaiikaiaadggajuaGdaWgaaqcbasaaKqzadGaam4Caiaa d2gaaSqabaqcLbsacaGGOaGaamivaiaacMcatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGqbciab=jrimLqbaoaaBaaajqwaa+Fa aKqzadGaamyAaiaadohaaSqabaqcLbsacaGGOaGaamiDaiaacMcacq GHciITjuaGdaWgaaqcfasaaKqzadGaamiDaaqcfayabaqcLbsacaWG 2bqcfa4aaSbaaKqbGeaajugWaiaadMgaaKqbagqaaKqzGeGaaiykaa GccaGLjWUaayPcSdqcfa4aaSbaaSqaaKqzGeaeaaaaaaaaa8qacaWG mbqcfa4aaSbaaKGaGeaajugWaiaadghaaWqabaqcLbsacaGGGcqcfa 4damaabmaaleaajugibiabfM6axbWccaGLOaGaayzkaaaabeaajugi b8qacaWGdbWdaiaacUfacaWG2bGaaiyxaKqbaoaaBaaajeaibaqcLb macaWGubaaleqaaKqzGeGaey4kaSIaeyipaWJaamiDaiabg6da+Kqb aoaaCaaabeqcKvaq=haajugWa8qacqGHsislcaWGIbGaey4kaSYcda WcaaqcKvaq=haajugWaiaaigdaaKazfa0=baqcLbmaceWGWbGbauaa aaaaaKqba+aadaqbdaqaaKqzGeGaeyOaIyBcfa4aaSbaaKqbGeaaju gWaiaadshaaKqbagqaaKqzGeGaamODaKqbaoaaBaaajuaibaqcLbma caWGPbaajuaGbeaajugibiaacIcacaWG0bGaaiykaaqcfaOaayzcSl aawQa7amaaBaaaleaajugib8qacaWGmbqcfa4aaSbaaKGaGeaajugW aiaadghalmaaBaaajiaibaqcLbkacaaIYaaajiaibeaaaWqabaqcLb sacaGGGcqcfa4damaabmaaleaajugibiabfM6axbWccaGLOaGaayzk aaaabeaaaaa@A4A3@

for any q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Since 1 p < b N 2 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcbaqcLbsacaaIXaaakeaajugibiqadchagaqbaaaa cqGH8aapcaWGIbGaeyOeI0scfa4aaSaaaOqaaKqzGeGaamOtaaGcba qcLbsacaaIYaGaamyCaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqa aaaaaaa@439D@ as follows from (11), we have

< t > b a s m ( T ) L i s ( t ) t v i ) L p ( ( 0 , T ) , L q   ( Ω ) )   C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsacqGH8aapcaWG0bGaeyOpa4tcfa4aaWba aSqabKqaGeaajugWaiaadkgaaaqcLbsapaGaamyyaKqbaoaaBaaajq waa+FaaKqzadGaam4Caiaad2gaaSqabaqcLbsacaGGOaGaamivaiaa cMcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=j rimLqbaoaaBaaajqwaa+FaaKqzadGaamyAaiaadohaaSqabaqcLbsa caGGOaGaamiDaiaacMcacqGHciITjuaGdaWgaaqcKvaq=haajugWai aadshaaKqbagqaaKqzGeGaamODaKqbaoaaBaaajqwba9FaaKqzadGa amyAaaqcfayabaqcLbsacaGGPaaak8qacaGLjWUaayPcSdqcfa4aaS baaSqaaKqzGeGaamitaKqbaoaaBaaajiaibaqcLbmacaWGWbaameqa aKqzGeWdaiaacIcacaGGOaWdbiaaicdacaGGSaGaamiva8aacaGGPa WdbiaacYcacaWGmbqcfa4aaSbaaKGaGeaajugWaiaadghaaWqabaqc LbsacaGGGcqcfa4damaabmaaleaajugib8qacqqHPoWvaSWdaiaawI cacaGLPaaajugibiaacMcaaSWdbeqaaKqzGeGaaiiOaiabgsMiJkaa doeacaGGOaGae8heHKKaey4kaSIaai4waiaadAhacaGGDbWcdaqhaa qcfasaaKqzadGaamivaaqcfasaaKqzadGaaGOmaaaajugibiaacMca aaa@916B@

for any q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@

Next, by Holder’s inequality,

< t > b v · v ( · , t ) L q 1 / 2 ( Ω ) < t > N 2 q 1 v ( · , t ) L q 1 ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcKfaG=haa jugWaiaadkgaaaqcfa4aauWaaeaajugibiaahAhacaGG3cGaey4bIe TaaCODa8aacaGGOaWdbiaacElacaGGSaGaamiDa8aacaGGPaaajuaG peGaayzcSlaawQa7aOWaaSbaaSqaaiaadYeadaWgaaadbaGaamyCam aaBaaabaGaaGymaaqabaaabeaaliaac+cacaaIYaaabeaajugibiaa cIcacqqHPoWvcaGGPaGaeyizImQaeyipaWJaamiDaiabg6da+Kqbao aaCaaabeqcfasaaKqbaoaalaaajuaibaqcLbmacaWGobaajuaibaqc LbmacaaIYaGaamyCaKqbaoaaBaaajuaibaqcLbmacaaIXaaajuaibe aaaaaaaKqbaoaafmaabaqcLbsacqGHhis0caWH2bWdaiaacIcapeGa ai4TaiaacYcacaWG0bWdaiaacMcaaKqba+qacaGLjWUaayPcSdWaaS baaeaajugibiaadYeajuaGdaWgaaqaaKqzGeGaamyCaKqbaoaaBaaa juaibaqcLbmacaaIXaaajuaGbeaaaeqaaKqzGeGaaiikaiabfM6axj aacMcaaKqbagqaaaaa@79AF@

so that by (36), we have

< t > b a s m ( T ) l i s a k j v j v i ξ k L p ( ( 0 , T ) , L q 1 / 2 ( Ω ) )   C [ v ] T 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsacqGH8aapcaWG0bGaeyOpa4tcfa4aaWba aSqabKazba4=baqcLbmacaWGIbaaaKqzGeWdaiaadggajuaGdaWgaa qcKfaG=haajugWaiaadohacaWGTbaaleqaaKqzGeGaaiikaiaadsfa caGGPaGaaGPaVlabloriSLqbaoaaBaaajuaibaqcLbmacaWGPbGaam 4CaaqcfayabaqcLbsacaWGHbqcfa4aaSbaaKqbGeaajugWaiaadUga caWGQbaajuaGbeaajugibiaadAhajuaGdaWgaaqcfasaaKqzadGaam OAaaqcfayabaWaaSaaaeaajugibiabgkGi2kaadAhajuaGdaWgaaqc fasaaKqzadGaamyAaaqcfayabaaabaqcLbsacqGHciITcqaH+oaEju aGdaWgaaqcfasaaKqzadGaam4AaaqcfayabaaaaaGcpeGaayzcSlaa wQa7aKqbaoaaBaaaleaajugibiaadYeajuaGdaWgaaqccasaaKqzad GaamiCaaadbeaajugib8aacaGGOaGaaiika8qacaaIWaGaaiilaiaa dsfapaGaaiykaiaacYcal8qacaWGmbWaaSbaaWqaaiaadghadaWgaa qaaiaaigdaaeqaaaqabaWccaGGVaGaaGOmaiaacIcacqqHPoWvcaGG PaqcLbsapaGaaiykaaWcpeqabaqcLbsacaGGGcGaeyizImQaam4qai aacUfacaWH2bGaaiyxaSWaa0baaKazfa0=baqcLbmacaWGubaajqwb a9FaaKqzadGaaGOmaaaaliaac6caaaa@8EFC@

Since

< t > b v · v ( · , t ) L q 2 ( Ω ) < t > N 2 q 2 v ( · , t ) L ( Ω ) < t > b   N 2 q 2 v ( · , t ) L q 2 ( Ω ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcKfaG=haa jugWaiaadkgaaaqcfa4aauWaaeaajugibiaahAhacaGG3cGaey4bIe TaaCODa8aacaGGOaWdbiaacElacaGGSaGaamiDa8aacaGGPaaajuaG peGaayzcSlaawQa7amaaBaaabaqcLbsacaWGmbqcfa4aaSbaaKqbGe aajugWaiaadghalmaaBaaameaacaaIYaaabeaaaKqbagqaaKqzGeGa aiikaiabfM6axjaacMcaaKqbagqaaKqzGeGaeyizImQaeyipaWJaam iDaiabg6da+KqbaoaaCaaabeqcKvaq=haalmaalaaajqwba9FaaKqz adGaamOtaaqcKvaq=haajugWaiaaikdacaWGXbWcdaWgaaqcKvaq=h aajugWaiaaikdaaKazfa0=beaaaaaaaKqbaoaafmaabaqcLbsacqGH his0caWH2bWdaiaacIcapeGaai4TaiaacYcacaWG0bWdaiaacMcaaK qba+qacaGLjWUaayPcSdWaaSbaaeaadaWgaaqaaKqzGeGaamitaKqb aoaaBaaabaqcLbsacqGHEisPaKqbagqaaKqzGeGaaiikaiabfM6axj aacMcaaKqbagqaaaqabaqcLbsacqGH8aapcaWG0bGaeyOpa4tcfa4a aWbaaSqabKazba4=baqcLbmacaWGIbGaeyOeI0IaaiiOaSWaaSaaaK azba4=baqcLbmacaWGobaajqwaa+FaaKqzadGaaGOmaiaadghalmaa BaaajiaibaqcLbmacaaIYaaajiaibeaaaaaaaKqbaoaafmaabaqcLb sacqGHhis0caWH2bWdaiaacIcapeGaai4TaiaacYcacaWG0bWdaiaa cMcaaKqba+qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGda WgaaqcfasaaKqzadGaamyCaKqbaoaaBaaajuaibaqcLbmacaaIYaaa juaibeaaaKqbagqaaKqzGeGaaiikaiabfM6axjaacMcaaKqbagqaai aacYcaaaa@AEDF@

by (36)

< t > b a s m ( T ) l i s a k j v j v i ξ k L p ( ( 0 , T ) , L q 2   ( Ω ) )   C ( I + [ v ] T ) [ v ] T C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsacqGH8aapcaWG0bGaeyOpa4tcfa4aaWba aSqabKazba4=baqcLbmacaWGIbaaaKqzGeWdaiaadggajuaGdaWgaa qcKfaG=haajugWaiaadohacaWGTbaaleqaaKqzGeGaaiikaiaadsfa caGGPaGaaGPaVlabloriSLqbaoaaBaaajuaibaqcLbmacaWGPbGaam 4CaaqcfayabaqcLbsacaWGHbqcfa4aaSbaaKqbGeaajugWaiaadUga caWGQbaajuaGbeaajugibiaadAhajuaGdaWgaaqcfasaaKqzadGaam OAaaqcfayabaWaaSaaaeaajugibiabgkGi2kaadAhajuaGdaWgaaqc fasaaKqzadGaamyAaaqcfayabaaabaqcLbsacqGHciITcqaH+oaEju aGdaWgaaqcfasaaKqzadGaam4AaaqcfayabaaaaaGcpeGaayzcSlaa wQa7aKqbaoaaBaaaleaajugibiaadYeajuaGdaWgaaqccasaaKqzad GaamiCaaadbeaajugib8aacaGGOaGaaiika8qacaaIWaGaaiilaiaa dsfapaGaaiyka8qacaGGSaGaamitaKqbaoaaBaaajiaibaqcLbsaca WGXbqcfa4aaSbaaKGaGeaajugWaiaaikdaaWqabaaabeaajugibiaa cckajuaGpaWaaeWaaSqaaKqzGeWdbiabfM6axbWcpaGaayjkaiaawM caaKqzGeGaaiykaaWcpeqabaqcLbsacaGGGcGaeyizImQaam4qaiaa cIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=b rijjabgUcaRiaacUfacaWH2bGaaiyxaKqbaoaaBaaajuaibaqcLbma caGGubaajuaGbeaajugibiaacMcacaGGBbGaaCODaiaac2facaGGub GaeyizImQaam4qaiaacIcacqWFqesscqGHRaWkcaGGBbGaaCODaiaa c2falmaaDaaajqwba9FaaKqzadGaamivaaqcKvaq=haajugWaiaaik daaaqcLbsacaGGPaaaaa@B081@

Since

ξ k ( D i j ( t ) v ) = m = 1 N ( A m j ( t ) 2 v i ξ k ξ m + A m i ( t ) 2 v j ξ k ξ m ) + m = 1 N (( ξ m A m j ( t ) v i ξ m + ξ k A m i ( t ) ) v j ξ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaeqOV dGxcfa4aaSbaaKqaGeaajugWaiaadUgaaSqabaaaaKqzGeWdaiaacI capeGaamiraKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaa jugib8aacaGGOaWdbiaadshapaGaaiyka8qacqGHhis0caWH2bWdai aacMcacqGH9aqpjuaGdaaeWbGcbaqcLbsacaGGOaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuGacqWFaeFqjuaGdaWgaaqcba saaKqzadGaamyBaiaadQgaaSqabaqcLbsacaGGOaWdbiaadshapaGa aiykaKqba+qadaWcaaGcbaqcLbsacqGHciITjuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaajugibiaadAhajuaGdaWgaaqcbasaaKqzadGa amyAaaWcbeaaaOqaaKqzGeGaeyOaIyRaeqOVdGxcfa4aaSbaaKqaGe aajugWaiaadUgaaSqabaqcLbsacqGHciITcqaH+oaEjuaGdaWgaaqc basaaKqzadGaamyBaaWcbeaaaaqcLbsacqGHRaWkpaGae8haXhucfa 4aaSbaaKqaGeaajugWaiaad2gacaWGPbaaleqaaKqzGeGaaiika8qa caWG0bWdaiaacMcajuaGpeWaaSaaaOqaaKqzGeGaeyOaIyBcfa4aaW baaSqabKqaGeaajugWaiaaikdaaaqcLbsacaWG2bqcfa4aaSbaaKqa GeaajugWaiaadQgaaSqabaaakeaajugibiabgkGi2kabe67a4Lqbao aaBaaajeaibaqcLbmacaWGRbaaleqaaKqzGeGaeyOaIyRaeqOVdGxc fa4aaSbaaKqaGeaajugWaiaad2gaaSqabaaaaKqzGeWdaiaacMcaaK qaGeaajugWaiaad2gacqGH9aqpcaaIXaaajeaibaqcLbmacaWGobaa jugibiabggHiLdWdbiabgUcaRKqba+aadaaeWbGcbaqcLbsacaqGOa GaaeikaKqba+qadaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGaeyOa IyRaeqOVdGxcfa4aaSbaaKqaGeaajugWaiaad2gaaSqabaaaaKqzGe Wdaiab=bq8bLqbaoaaBaaajeaibaqcLbmacaWGTbGaamOAaaWcbeaa jugibiaacIcapeGaamiDa8aacaGGPaqcfa4dbmaalaaakeaajugibi abgkGi2kaadAhajuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaaaOqa aKqzGeGaeyOaIyRaeqOVdGxcfa4aaSbaaKqaGeaajugWaiaad2gaaS qabaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaeyOaIylakeaa jugibiabgkGi2kabe67a4LqbaoaaBaaajeaibaqcLbmacaWGRbaale qaaaaajugib8aacqWFaeFqjuaGdaWgaaqcbasaaKqzadGaamyBaiaa dMgaaSqabaqcLbsacaGGOaWdbiaadshapaGaaiykaiaacMcajuaGpe WaaSaaaOqaaKqzGeGaeyOaIyRaamODaKqbaoaaBaaajeaibaqcLbma caWGQbaaleqaaaGcbaqcLbsacqGHciITcqaH+oaEjuaGdaWgaaqcba saaKqzadGaamyBaaWcbeaaaaqcLbsacaGGPaaajeaipaqaaKqzadGa amyBaiabg2da9iaaigdaaKqaGeaajugWaiaad6eaaKqzGeGaeyyeIu oaaaa@F47E@

by (36)

< t > b ξ k ( D i j ( . ) v ) L q ( Ω ) C [ v ] T { < t > b   N 2 q 2 2 v ( . t ) L q ( Ω ) + < t > b v ( · , t ) L ( Ω ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaadshacqGH+aGpjuaGdaahaaqabKqbGeaajugW aiaadkgaaaqcfa4aauWaaeaadaWcaaqaaKqzGeGaeyOaIylajuaGba qcLbsacqGHciITcqaH+oaEjuaGdaWgaaqcfasaaKqzadGaam4Aaaqc fayabaaaaKqzGeWdaiaacIcapeGaamiraKqbaoaaBaaajuaibaqcLb macaWGPbGaamOAaaqcfayabaqcLbsapaGaaiika8qacaGGUaWdaiaa cMcapeGaey4bIeTaaCODa8aacaGGPaaajuaGpeGaayzcSlaawQa7am aaBaaabaqcLbsacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghaaKqb agqaaKqzGeGaaiikaiabfM6axjaacMcaaKqbagqaaKqzGeGaeyizIm Qaam4qaiaacUfacaWH2bGaaiyxaKqbaoaaBaaajqwba9FaaKqzadGa aiivaaqcfayabaqcLbsacaGG7bGaeyipaWJaamiDaiabg6da+Kqbao aaCaaaleqajeaibaqcLbmacaWGIbGaeyOeI0IaaiiOaSWaaSaaaKqa GeaajugWaiaad6eaaKqaGeaajugWaiaaikdacaWGXbWcdaWgaaqcca saaKqzadGaaGOmaaqccasabaaaaaaajuaGdaqbdaGcbaqcLbsacqGH his0juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaahAhaca GGOaGaaiOlaiaacshacaGGPaaakiaawMa7caGLkWoajuaGdaWgaaWc baqcLbsacaWGmbqcfa4aaSbaaKGaGeaajugWaiaadghaaWqabaqcLb sacaGGOaGaeuyQdCLaaiykaaWcbeaajugibiabgUcaRiabgYda8iaa dshacqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyaaaajugibi aaykW7juaGdaqbdaGcbaqcLbsacqGHhis0caWH2bWdaiaacIcapeGa ai4TaiaacYcacaWG0bWdaiaacMcaaOWdbiaawMa7caGLkWoajuaGda WgaaWcbaqcfa4aaSbaaWqaaKqzGeGaamitaKqbaoaaBaaajiaibaqc LbmacqGHEisPaWqabaqcLbsacaGGOaGaeuyQdCLaaiykaaadbeaaaS qabaqcLbsacaGG9baaaa@B2DF@ (38)

for any q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajqwba9FaaK qzadGaaGOmaaqcfayabaaak8aacaGLBbGaayzxaaaaaa@4592@ and therefore

< t > b a s m ( T ) l i s ( T ) a k j ( T ) ξ k ( D i j ( . ) v ) L p ( ( 0 , T ) , L q   ( Ω ) ) C [ v ] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeGaeyipaWJaamiDaiabg6da+KqbaoaaCaaa beqcfasaaKqzadGaamOyaaaajugib8aacaWGHbqcfa4aaSbaaKqbGe aajugWaiaadohacaWGTbaajuaGbeaajugibiaacIcacaWGubGaaiyk aiaaykW7cqWItecBjuaGdaWgaaqcfasaaKqzadGaamyAaiaadohaaK qbagqaaKqzGeGaaiikaiaadsfacaGGPaGaamyyaKqbaoaaBaaajuai baqcLbmacaWGRbGaamOAaaqcfayabaqcLbsacaGGOaGaamivaiaacM cajuaGpeWaaSaaaeaajugibiabgkGi2cqcfayaaKqzGeGaeyOaIyRa eqOVdGxcfa4aaSbaaKazfa0=baqcLbmacaWGRbaajuaGbeaaaaqcLb sapaGaaiika8qacaWGebqcfa4aaSbaaKazfa0=baqcLbmacaWGPbGa amOAaaqcfayabaqcLbsapaGaaiika8qacaGGUaWdaiaacMcapeGaey 4bIeTaaCODa8aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaabaqc LbsacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadchaaKqbagqaaKqzGe WdaiaacIcacaGGOaWdbiaaicdacaGGSaGaamiva8aacaGGPaWdbiaa cYcacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghaaKqbagqaaKqzGe GaaiiOaKqba+aadaqadaqaaKqzGeWdbiabfM6axbqcfa4daiaawIca caGLPaaajugibiaacMcaaKqba+qabeaajugibiabgsMiJkaadoeaca GGBbGaaCODaiaac2falmaaDaaajqwbG8FaaKqzadGaamivaaqcKvai =haajugWaiaaikdaaaaaaa@9AB9@

for any q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Since

ξ k ( D i j , T ( v ) ) = m = 1 N ( a m j ( T ) 2 v i ξ k ξ m + a m i ( T ) 2 v j ξ k ξ m ) + m = 1 N (( ξ m a m j ( T ) v i ξ m + ξ k a m i ( T ) ) v j ξ m ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcbaqcLbsacqGHciITaOqaaKqzGeGaeyOaIyRaeqOV dGxcfa4aaSbaaKqaGeaajugWaiaadUgaaSqabaaaaKqzGeWdaiaacI capeGaamiraKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaiaacYca caWGubaaleqaaKqzGeWdaiaacIcapeGaaCODa8aacaGGPaGaaiykai abg2da9KqbaoaaqahakeaajugibiaacIcapeGaamyyaKqba+aadaWg aaqcbasaaKqzadGaamyBaiaadQgaaSqabaqcLbsacaGGOaWdbiaads fapaGaaiykaKqba+qadaWcaaGcbaqcLbsacqGHciITjuaGdaahaaWc beqcbasaaKqzadGaaGOmaaaajugibiaadAhajuaGdaWgaaqcbasaaK qzadGaamyAaaWcbeaaaOqaaKqzGeGaeyOaIyRaeqOVdGxcfa4aaSba aKqaGeaajugWaiaadUgaaSqabaqcLbsacqGHciITcqaH+oaEjuaGda WgaaqcbasaaKqzadGaamyBaaWcbeaaaaqcLbsacqGHRaWkcaWGHbqc fa4damaaBaaajeaibaqcLbmacaWGTbGaamyAaaWcbeaajugibiaacI capeGaamiva8aacaGGPaqcfa4dbmaalaaakeaajugibiabgkGi2Mqb aoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaamODaKqbaoaaBa aajeaibaqcLbmacaWGQbaaleqaaaGcbaqcLbsacqGHciITcqaH+oaE juaGdaWgaaqcbasaaKqzadGaam4AaaWcbeaajugibiabgkGi2kabe6 7a4LqbaoaaBaaajeaibaqcLbmacaWGTbaaleqaaaaajugib8aacaGG PaaajeaibaqcLbmacaWGTbGaeyypa0JaaGymaaqcbasaaKqzadGaam OtaaqcLbsacqGHris5a8qacqGHRaWkjuaGpaWaaabCaOqaaKqzGeGa aeikaiaabIcajuaGpeWaaSaaaOqaaKqzGeGaeyOaIylakeaajugibi abgkGi2kabe67a4LqbaoaaBaaajeaibaqcLbmacaWGTbaaleqaaaaa jugibiaadggajuaGpaWaaSbaaKqaGeaajugWaiaad2gacaWGQbaale qaaKqzGeGaaiika8qacaWGubWdaiaacMcajuaGpeWaaSaaaOqaaKqz GeGaeyOaIyRaamODaKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaa GcbaqcLbsacqGHciITcqaH+oaEjuaGdaWgaaqcbasaaKqzadGaamyB aaWcbeaaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacqGHciITaO qaaKqzGeGaeyOaIyRaeqOVdGxcfa4aaSbaaKqaGeaajugWaiaadUga aSqabaaaaKqzGeGaamyyaKqba+aadaWgaaqcbasaaKqzadGaamyBai aadMgaaSqabaqcLbsacaGGOaWdbiaadsfapaGaaiykaiaacMcajuaG peWaaSaaaOqaaKqzGeGaeyOaIyRaamODaKqbaoaaBaaajeaibaqcLb macaWGQbaaleqaaaGcbaqcLbsacqGHciITcqaH+oaEjuaGdaWgaaqc basaaKqzadGaamyBaaWcbeaaaaqcLbsacaGGPaaajeaipaqaaKqzad GaamyBaiabg2da9iaaigdaaKqaGeaajugWaiaad6eaaKqzGeGaeyye IuoajuaGcaGGSaaaaa@E776@

by (36)

< t > b a s m ( T ) l i s ( T ) A k j ( t ) ξ k ( D i j , T ( v ) L q   ( Ω ) C [ v ] T { < t > b   N 2 q 2 2 v ( . t ) L q ( Ω ) + < t > b v ( · , t ) L ( Ω ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcbasaaKqz adGaamOyaaaajuaGdaqbdaqaaKqzGeWdaiaadggajuaGdaWgaaqcKv aq=haajugWaiaadohacaWGTbaajuaGbeaajugibiaacIcacaWGubGa aiykaiaaykW7cqWItecBjuaGdaWgaaqcKvaq=haajugWaiaadMgaca WGZbaajuaGbeaajugibiaacIcacaWGubGaaiykamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfaGae8haXhucfa4aaSbaaKazfa 0=baqcLbmacaWGRbGaamOAaaqcfayabaqcLbsacaGGOaGaamiDaiaa cMcajuaGpeWaaSaaaeaajugibiabgkGi2cqcfayaaKqzGeGaeyOaIy RaeqOVdGxcfa4aaSbaaKazfaY=baqcLbmacaWGRbaajuaGbeaaaaqc LbsapaGaaiika8qacaWGebqcfa4aaSbaaKazfaY=baqcLbmacaWGPb GaamOAaiaacYcacaWGubaajuaGbeaajugibiaacIcacaWH2bWdaiaa cMcaaKqba+qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGda WgaaqcKvaq=haajugWaiaadghaaKqbagqaaKqzGeGaaiiOaKqba+aa daqadaqaaKqzGeWdbiabfM6axbqcfa4daiaawIcacaGLPaaaa8qabe aajugibiabgsMiJkaadoeacaGGBbGaaCODaiaac2fajuaGdaWgaaqc Kvaq=haajugWaiaacsfaaKqbagqaaKqzGeGaai4EaiabgYda8iaads hacqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyaiabgkHiTiaa cckalmaalaaajeaibaqcLbmacaWGobaajeaibaqcLbmacaaIYaGaam yCaSWaaSbaaKGaGeaajugWaiaaikdaaKGaGeqaaaaaaaqcfa4aauWa aOqaaKqzGeGaey4bIeDcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaa qcLbsacaWH2bGaaiikaiaac6cacaGG0bGaaiykaaGccaGLjWUaayPc Sdqcfa4aaSbaaSqaaKqzGeGaamitaKqbaoaaBaaajiaibaqcLbmaca WGXbaameqaaKqzGeGaaiikaiabfM6axjaacMcaaSqabaqcLbsacqGH RaWkcqGH8aapcaWG0bGaeyOpa4tcfa4aaWbaaSqabKqaGeaajugWai aadkgaaaqcLbsacaaMc8Ecfa4aauWaaOqaaKqzGeGaey4bIeTaaCOD a8aacaGGOaWdbiaacElacaGGSaGaamiDa8aacaGGPaaak8qacaGLjW UaayPcSdqcfa4aaSbaaSqaaKqbaoaaBaaameaajugibiaadYeajuaG daWgaaqccasaaKqzadGaeyOhIukameqaaKqzGeGaaiikaiabfM6axj aacMcaaWqabaaaleqaaKqzGeGaaiyFaaaa@E2C9@ ,

so that

< t > b a s m ( T ) l i s ( T ) A k j ( T ) ξ k ( D i j , T ( v ) L p ( ( 0 , T ) , L q   ( Ω ) ) C [ v ] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcbasaaKqz adGaamOyaaaajuaGdaqbdaqaaKqzGeWdaiaadggajuaGdaWgaaqcKv aq=haajugWaiaadohacaWGTbaajuaGbeaajugibiaacIcacaWGubGa aiykaiaaykW7cqWItecBjuaGdaWgaaqcKvaq=haajugWaiaadMgaca WGZbaajuaGbeaajugibiaacIcacaWGubGaaiykamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfaGae8haXhucfa4aaSbaaKazfa 0=baqcLbmacaWGRbGaamOAaaqcfayabaqcLbsacaGGOaGaamivaiaa cMcajuaGpeWaaSaaaeaajugibiabgkGi2cqcfayaaKqzGeGaeyOaIy RaeqOVdGxcfa4aaSbaaKazfaY=baqcLbmacaWGRbaajuaGbeaaaaqc LbsapaGaaiika8qacaWGebqcfa4aaSbaaKazfaY=baqcLbmacaWGPb GaamOAaiaacYcacaWGubaajuaGbeaajugibiaacIcacaWH2bWdaiaa cMcaaKqba+qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGda WgaaqcKvaq=haajugWaiaadchaaKqbagqaaKqzGeWdaiaacIcacaGG OaWdbiaaicdacaGGSaGaamiva8aacaGGPaWdbiaacYcacaWGmbqcfa 4aaSbaaKazfa0=baqcLbmacaWGXbaajuaGbeaajugibiaacckajuaG paWaaeWaaeaajugib8qacqqHPoWvaKqba+aacaGLOaGaayzkaaqcLb sacaGGPaaajuaGpeqabaqcLbsacqGHKjYOcaWGdbGaai4waiaahAha caGGDbWcdaqhaaqcKvai=haajugWaiaadsfaaKazfaY=baqcLbmaca aIYaaaaaaa@AAD0@

for any q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Analogously, we have

< t > b a s m ( T ) L i s a k j ξ k ( D i j , T ( v ) L p ( ( 0 , T ) , L q   ( Ω ) ) C [ v ] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaiabgYda8iaadshacqGH+aGpdaahaaqabeaacaWG IbaaaKqzGeWdaiaadggajuaGdaWgaaqcKvaq=haajugWaiaadohaca WGTbaajuaGbeaajugibiaacIcacaWGubGaaiykaiaaykW7tuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbcKqbakab=jrimnaaBa aajqwba9FaaKqzadGaamyAaiaadohaaKqbagqaa8qacaWGHbWdamaa Baaajqwba9FaaKqzadGaam4AaiaadQgaaKqbagqaa8qadaWcaaqaaK qzGeGaeyOaIylajuaGbaqcLbsacqGHciITcqaH+oaEjuaGdaWgaaqc Kvai=haajugWaiaadUgaaKqbagqaaaaajugib8aacaGGOaWdbiaads eajuaGdaWgaaqcKvai=haajugWaiaadMgacaWGQbGaaiilaiaadsfa aKqbagqaaKqzGeGaaiikaiaahAhapaGaaiykaaqcfa4dbiaawMa7ca GLkWoadaWgaaqaaKqzGeGaamitaKqbaoaaBaaajqwba9FaaKqzadGa amiCaaqcfayabaqcLbsapaGaaiikaiaacIcapeGaaGimaiaacYcaca WGubWdaiaacMcapeGaaiilaiaadYeajuaGdaWgaaqcKvaq=haajugW aiaadghaaKqbagqaaKqzGeGaaiiOaKqba+aadaqadaqaaKqzGeWdbi abfM6axbqcfa4daiaawIcacaGLPaaajugibiaacMcaaKqba+qabeaa jugibiabgsMiJkaadoeacaGGBbGaaCODaiaac2falmaaDaaajqwbG8 FaaKqzadGaamivaaqcKvai=haajugWaiaaikdaaaaaaa@A0D5@

for any q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Summing up, we have obtained (27).

Next, we consider 𝔤 and g. To estimate the H p 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIealmaaDaaajeaibaqcLbmacaWGWbaajeaibaWcdaWc aaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaaaaaaaa@3E58@ norm, we use the following lemma.

Lemma 5.

Let f H 1 ( ,   L ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgacqGHiiIZcaWGibWcdaqhaaqcbasaaKqzadGaeyOh IukajeaibaqcLbmacaaIXaaaaKqzGeWdaiaacIcapeGaeSyhHeQaai ilaiaabccacaWGmbqcfa4aaSbaaKqaGeaajugWaiabg6HiLcWcbeaa jugibiaacIcacqqHPoWvcaGGPaGaaiykaaaa@4B7E@ and g H p 1 2 ( ,   L q ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb qeg0uAJj3BZ9Mz0bcvHLgimvgaiuGajugibabaaaaaaaaapeGae83z aCMaeyicI4SaamisaSWaa0baaKqbGeaajugWaiaadchaaKqbGeaalm aalaaajuaibaqcLbmacaaIXaaajuaibaqcLbmacaaIYaaaaaaajugi b8aacaGGOaWdbiabl2riHkaacYcacaqGGaGaamitaKqbaoaaBaaajq waa+FaaKqzadGaamyCaaWcbeaajugibiaacIcacqqHPoWvcaGGPaGa aiykaaaa@5772@ . Assume that f ( x ,   t )   =   0 f o r   ( x ,   t ) B R × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgajuaGpaWaaeWaaOqaaKqzGeWdbiaadIhacaGGSaGa aeiiaiaadshaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0 JaaeiiaiaaicdacaWGMbGaam4BaiaadkhacaqGGaqcfa4damaabmaa keaajugib8qacaWG4bGaaiilaiaabccacaWG0baak8aacaGLOaGaay zkaaqcLbsacqGHjiYZcaWGcbqcfa4aaSbaaKqaGeaajugWaiaadkfa aSqabaqcLbsacqGHxdaTcqWIDesOaaa@54EB@ .

Then,

f g H p 1 2 ( ,   L q ( Ω ) ) C f H 1 ( ,   L ( Ω ) ) g H p 1 2 ( ,   L q 2 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeGaaGPaVlaadAgatCvAUfKttLearyqtPnMC Vn3BMrhiufwAGWuzaGqbciab=DgaNbqcfaOaayzcSlaawQa7amaaBa aabaqcLbsacaWGibWcdaqhaaqcfasaaKqzadGaamiCaaqcfasaaSWa aSaaaKqbGeaajugWaiaaigdaaKqbGeaajugWaiaaikdaaaaaaKqzGe WdaiaacIcapeGaeSyhHeQaaiilaiaabccacaWGmbqcfa4aaSbaaKqb GeaajugWaiaadghaaKqbagqaaKqzGeGaaiikaiabfM6axjaacMcaca GGPaaajuaGbeaajugibiabgsMiJkaadoeajuaGdaqbdaqaaKqzGeGa amOzaaqcfaOaayzcSlaawQa7amaaBaaabaqcLbsacaWGibWcdaqhaa qcfasaaKqzadGaeyOhIukajuaibaqcLbmacaaIXaaaaKqzGeWdaiaa cIcapeGaeSyhHeQaaiilaiaabccacaWGmbqcfa4aaSbaaKqbGeaaju gWaiabg6HiLcqcfayabaqcLbsacaGGOaGaeuyQdCLaaiykaiaacMca caaMc8oajuaGbeaadaqbdaqaaKqzGeGae83zaCgajuaGcaGLjWUaay PcSdWaaSbaaeaajugibiaadIealmaaDaaajuaibaqcLbmacaWGWbaa juaibaWcdaWcaaqcfasaaKqzadGaaGymaaqcfasaaKqzadGaaGOmaa aaaaqcLbsapaGaaiika8qacqWIDesOcaGGSaGaaeiiaiaadYeajuaG daWgaaqcfasaaKqzadGaamyCaWWaaSbaaKazfa4=baqcLbkacaaIYa aajqwba+FabaaajuaGbeaajugibiaacIcacqqHPoWvcaGGPaGaaiyk aaqcfayabaaaaa@9C45@ (39)

Proof: To prove the lemma, we use the fact that

H p 1 2 ( ,   L q ( Ω ) ) = ( L p ( ,   L q ( Ω ) ) , H p 1 ( ,   L q ( Ω ) ) ) [ 1 2 ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIealmaaDaaajeaibaqcLbmacaWGWbaajeaibaWcdaWc aaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaaaaqcLbsapa Gaaiika8qacqWIDesOcaGGSaGaaeiiaiaadYeajuaGdaWgaaqcbasa aKqzadGaamyCaaWcbeaajugibiaacIcacqqHPoWvcaGGPaGaaiykai abg2da98aacaGGOaWdbiaadYeajuaGdaWgaaqcbasaaKqzadGaamiC aaWcbeaajugibiaacIcacqWIDesOcaGGSaGaaeiiaiaadYeajuaGda WgaaqcbasaaKqzadGaamyCaaWcbeaajugibiaacIcacqqHPoWvcaGG PaGaaiykaiaacYcacaWGibWcdaqhaaqcbasaaKqzadGaamiCaaqcba saaKqzadGaaGymaaaajugib8aacaGGOaWdbiabl2riHkaacYcacaqG GaGaamitaKqbaoaaBaaajeaibaqcLbmacaWGXbaaleqaaKqzGeGaai ikaiabfM6axjaacMcacaGGPaGaaiykaKqbaoaaBaaajeaibaWcdaWa daqcbasaaSWaaSaaaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaik daaaaajeaicaGLBbGaayzxaaaaleqaaKqbakaaykW7caaMc8Uaaiil aaaa@7AAF@ (40)

where ( · , · ) [ σ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacaGG3cGaaiilaiaacElapaGaaiykaKqbaoaaBaaa jeaibaqcLbmacaGGBbGaeq4WdmNaaiyxaaWcbeaaaaa@40C8@ denotes a complex interpolation functor. Let q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Noting that f ( x ,   t )   =   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgajuaGpaWaaeWaaOqaaKqzGeWdbiaadIhacaGGSaGa aeiiaiaadshaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0 Jaaeiiaiaaicdaaaa@4166@ for ( x ,   t ) B R × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacaWG4bGaaiilaiaabccacaWG0baak8aa caGLOaGaayzkaaqcLbsacqGHjiYZcaWGcbqcfa4aaSbaaKqaGeaaju gWaiaadkfaaSqabaqcLbsacqGHxdaTcqWIDesOaaa@4603@ , we have

t ( f g ) L q ( Ω ) t f L ( Ω ) g L q 2 ( Ω ) + f L ( Ω ) + t g L q 2 ( Ω ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeGaeyOaIyBcfa4aaSbaaKqbGeaajugWaiaa dshaaKqbagqaaKqzGeGaaGPaVlaacIcacaWGMbWexLMBb50ujbqeg0 uAJj3BZ9Mz0bcvHLgimvgaiuGacqWFNbWzcqWFPaqkaKqbakaawMa7 caGLkWoadaWgaaqaaKqzGeGaamitaKqbaoaaBaaajqwba9FaaKqzad GaamyCaaqcfayabaqcLbsacaGGOaGaeuyQdCLaaiykaaqcfayabaqc LbsacqGHKjYOjuaGdaqbdaqaaKqzGeGaeyOaIyBcfa4aaSbaaKqbGe aajugWaiaadshaaKqbagqaaKqzGeGaamOzaaqcfaOaayzcSlaawQa7 amaaBaaabaqcLbsacaWGmbqcfa4aaSbaaKazfa0=baqcLbmacqGHEi sPaKqbagqaaKqzGeGaaiikaiabfM6axjaacMcacaaMc8oajuaGbeaa daqbdaqaaKqzGeGae83zaCgajuaGcaGLjWUaayPcSdWaaSbaaeaaju gibiaadYeajuaGdaWgaaqcKvaq=haajugWaiaadghalmaaBaaajqwb G8FaaKqzadGaaGOmaaqcKvai=hqaaaqcfayabaqcLbsacaGGOaGaeu yQdCLaaiykaaqcfayabaqcLbsacqGHRaWkjuaGdaqbdaqaaKqzGeGa e8NzaygajuaGcaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGda WgaaqcKvaq=haajugWaiabg6HiLcqcfayabaqcLbsacaGGOaGaeuyQ dCLaaiykaaqcfayabaqcLbsacqGHRaWkjuaGdaqbdaqaaKqzGeGaey OaIyBcfa4aaSbaaeaajugWaiaadshaaKqbagqaaKqzGeGae83zaCga juaGcaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcKv aq=haajugWaiaadghalmaaBaaajqwbG8FaaKqzadGaaGOmaaqcKvai =hqaaaqcfayabaqcLbsacaGGOaGaeuyQdCLaaiykaaqcfayabaqcLb sacaGGSaaaaa@B8D7@

and therefore

t ( f g ) L p ( ,   L q ( Ω ) ) C f H 1 ( ,   L ( Ω ) ) g H p 1 ( ,   L q 2 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeGaeyOaIyBcfa4aaSbaaKqbGeaajugWaiaa dshaaKqbagqaaKqzGeGaaGPaVlaacIcacaWGMbWexLMBb50ujbqeg0 uAJj3BZ9Mz0bcvHLgimvgaiuGacqWFNbWzcqWFPaqkaKqbakaawMa7 caGLkWoadaWgaaqaaKqzGeWdaiaadYeajuaGdaWgaaqcfasaaKqzad GaamiCaaqcfayabaqcLbsacaGGOaWdbiabl2riHkaacYcacaqGGaGa amitaKqbaoaaBaaajuaibaqcLbmacaWGXbaajuaGbeaajugibiaacI cacqqHPoWvcaGGPaGaaiykaaqcfayabaqcLbsacqGHKjYOcaWGdbqc fa4aauWaaeaajugibiaadAgaaKqbakaawMa7caGLkWoadaWgaaqaaK qzGeGaamisaSWaa0baaKqbGeaajugWaiabg6HiLcqcfasaaKqzadGa aGymaaaajugib8aacaGGOaWdbiabl2riHkaacYcacaqGGaGaamitaK qbaoaaBaaajuaibaqcLbmacqGHEisPaKqbagqaaKqzGeGaaiikaiab fM6axjaacMcacaGGPaGaaGPaVdqcfayabaWaauWaaeaajugibiab=D gaNbqcfaOaayzcSlaawQa7amaaBaaabaqcLbsacaWGibWcdaqhaaqc fasaaKqzadGaamiCaaqcfasaaiaaigdaaaqcLbsapaGaaiika8qacq WIDesOcaGGSaGaaeiiaiaadYeajuaGdaWgaaqcfasaaKqzadGaamyC aWWaaSbaaKazfa4=baqcLbkacaaIYaaajqwba+FabaaajuaGbeaaju gibiaacIcacqqHPoWvcaGGPaGaaiykaaqcfayabaaaaa@9C5C@ .

for any q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Moreover, we easily see that

( f g ) L p ( ,   L q ( Ω ) ) C f L ( ,   L ( Ω ) ) g L p ( ,   L q 2 ( Ω ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeGaaGPaVlaacIcacaWGMbWexLMBb50ujbqe g0uAJj3BZ9Mz0bcvHLgimvgaiuGacqWFNbWzcqWFPaqkaKqbakaawM a7caGLkWoadaWgaaqaaKqzGeWdaiaadYeajuaGdaWgaaqcfasaaKqz adGaamiCaaqcfayabaqcLbsacaGGOaWdbiabl2riHkaacYcacaqGGa GaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbaajuaGbeaajugibiaa cIcacqqHPoWvcaGGPaGaaiykaaqcfayabaqcLbsacqGHKjYOcaWGdb qcfa4aauWaaeaajugibiaadAgaaKqbakaawMa7caGLkWoadaWgaaqa aKqzGeGaamitaKqbaoaaBaaajuaibaqcLbmacqGHEisPaKqbagqaaK qzGeWdaiaacIcapeGaeSyhHeQaaiilaiaabccacaWGmbqcfa4aaSba aKqbGeaajugWaiabg6HiLcqcfayabaqcLbsacaGGOaGaeuyQdCLaai ykaiaacMcacaaMc8oajuaGbeaadaqbdaqaaKqzGeGae83zaCgajuaG caGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcfasaaK qzadGaamiCaaqcfayabaqcLbsapaGaaiika8qacqWIDesOcaGGSaGa aeiiaiaadYeajuaGdaWgaaqcfasaaKqzadGaamyCaWWaaSbaaKazfa 4=baqcLbkacaaIYaaajqwba+FabaaajuaGbeaajugibiaacIcacqqH PoWvcaGGPaGaaiykaaqcfayabaGaaiOlaaaa@96AF@

Thus, by (40), we have (39), which completes the proof of Lemma 5.

To use the maximal Lp-Lq estimate, we have to extend 𝔤, g and h to R. For this purpose, we introduce an extension operator e ˜ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadwgagaacaKqbaoaaBaaajeaibaqcLbmacaWGubaaleqa aaaa@3A89@ . Let f be a function defined on (0, T ) such that f | t = T   =   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgapaGaaiiFaKqba+qadaWgaaqaaKqzGeGaamiDaKqb akabg2da9iaadsfaaeqaaKqzGeGaaiiOaiabg2da9iaabccacaaIWa aaaa@4169@ , and then e ˜ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiqadwgagaacaKqbaoaaBaaajeaibaqcLbmacaWGubaaleqa aaaa@3A89@ is an operator acting on f defined by

[ e ˜ T f ] ( t ) = { 0 ( t > T ) , f ( t ) ( 0 < t < T ) , f ( t ) ( T < t < 0 ) , 0 ( t < T ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGBbqcLbsaceWGLbGbaGaajuaGdaWgaaqcbasaaKqzadGa amivaaWcbeaajugibiaadAgacaGGDbGaaiikaOGaamiDaKqzGeGaai ykaiabg2da9KqbaoaaceaaeaqabeaacaaIWaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaamiDaiabg6da+iaads facaGGPaGaaiilaaqaaiaadAgacaGGOaGaamiDaiaacMcacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaacIcacaaIWaGaeyipaWJa amiDaiabgYda8iaadsfacaGGPaGaaiilaaqaaiaadAgacaGGOaGaey OeI0IaamiDaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaiikaiabgkHiTiaadsfacq GH8aapcaWG0bGaeyipaWJaaGimaiaacMcacaGGSaaabaGaaGimaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaamiDaiabgY da8iabgkHiTiaadsfacaGGPaGaaGPaVlaac6caaaGaay5Eaaaaaa@D1A8@ (41)

Lemma 6

Let 1   <   p   <   ,   1     q     q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaigdacaGGGcGaeyipaWJaaiiOaiaadchacaGGGcGaeyip aWJaaiiOaiabg6HiLkaacYcacaGGGcGaaGymaiaacckacqGHKjYOca qGGaGaamyCaiaacckacqGHKjYOcaqGGaGaamyCaKqbaoaaBaaajeai baqcLbmacaaIYaaaleqaaaaa@4E9F@ and 0     a     b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacaGGGcGaeyizImQaaeiiaiaadggacaGGGcGaeyiz ImQaaeiiaiaadkgaaaa@4024@ . Let f H 1 ( 0 , T ,   L ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgacqGHiiIZcaWGibWcdaqhaaqcbasaaKqzadGaeyOh IukajeaibaqcLbmacaaIXaaaaKqzGeWdaiaacIcapeGaaGimaiaacY cacaWGubGaaiilaiaabccacaWGmbqcfa4aaSbaaKqaGeaajugWaiab g6HiLcWcbeaajugibiaacIcacqqHPoWvcaGGPaGaaiykaaaa@4C51@ and g H p 1 ( ( 0 , T ) , L q 2 ( Ω ) ) L p ( ( 0 , T ) H q 2 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb qeg0uAJj3BZ9Mz0bcvHLgimvgaiuGajugibabaaaaaaaaapeGae83z aCMaeyicI4SaamisaSWaa0baaKazba4=baqcLbmacaWGWbaajqwaa+ FaaKqzadGaaGymaaaajugib8aacaGGOaGaaiikaiaaicdacaGGSaGa aiivaiaacMcacaGGSaWdbiaadYeajuaGdaWgaaqcfasaaKqzadGaam yCaSWaaSbaaWqaaiaaikdaaeqaaaqcfayabaqcLbsacaGGOaGaeuyQ dCLaaiykaiaacMcacqGHPiYXcaWGmbqcfa4aaSbaaKqbGeaajugWai aadchaaKqbagqaaKqzGeWdaiaacIcacaGGOaGaaGimaiaacYcacaGG ubGaaiykaiaadIealmaaDaaajuaibaqcLbmacaWGXbaajuaibaqcLb macaaIYaaaaKqzGeWdbiaacIcacqqHPoWvcaGGPaGaaiykaaaa@6E48@ . Assume f | t = T   =   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgapaGaaiiFaKqba+qadaWgaaqaaKqzGeGaamiDaKqb akabg2da9iaadsfaaeqaaKqzGeGaaiiOaiabg2da9iaabccacaaIWa aaaa@4169@ and f = 0 f o r ( x ,   t ) B R × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgacqGH9aqpcaaIWaGaaGPaVlaaykW7caWGMbGaam4B aiaadkhacaaMc8Ecfa4damaabmaakeaajugib8qacaWG4bGaaiilai aabccacaWG0baak8aacaGLOaGaayzkaaqcLbsacqGHjiYZcaWGcbqc fa4aaSbaaKazba4=baqcLbmacaWGsbaaleqaaKqzGeGaey41aqRaeS yhHekaaa@5296@ . Let < t > = ( 1 + t 2 ) 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgYda8iaadshacqGH+aGpcqGH9aqppaGaaiika8qacaaI XaGaey4kaSIaamiDaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaK qzGeWdaiaacMcajuaGdaahaaWcbeqcbasaaKqzadGaaGymaiaac+ca caaIYaaaaaaa@4668@ . Then we have

e ˜ T   ( < t > a f g ) H p 1 2 ( ,   L q ( Ω ) ) C < t > N 2 q 2 f H 1 ( ( 0 , ) , L ( Ω ) ) × ( < g L p ( ( 0 , T ) H q 2 ( Ω ) ) + < t > b   N 2 q 2 t g L p ( ( 0 , T ) , L q 2 ( Ω ) ) + g | t = 0 B q 2 , p 2 ( 1 1 / p ) ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafmaakeaajugibiaaykW7ceWGLbGbaGaajuaGdaWg aaqcbasaaKqzadGaamivaaWcbeaajugibiaacckapaGaaiika8qacq GH8aapcaWG0bGaeyOpa4tcfa4aaWbaaSqabKqaGeaajugWaiaadgga aaqcLbsacaaMc8UaamOzaiabgEGirpXvP5wqonvsaeHbnL2yY92CVz gDGqvyPbctLbacfiGae83zaCMaaiykaiaaykW7aOGaayzcSlaawQa7 aKqbaoaaBaaaleaajugibiaadIealmaaDaaajiaibaqcLbmacaWGWb aajiaibaWcdaWcaaqccasaaKqzadGaaGymaaqccasaaKqzadGaaGOm aaaaaaqcLbsapaGaaiika8qacqWIDesOcaGGSaGaaeiiaiaadYeaju aGdaWgaaqccasaaKqzadGaamyCaaadbeaajugibiaacIcacqqHPoWv caGGPaGaaiykaiaaykW7caaMc8oaleqaaKqzGeGaeyizImQaam4qai abgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcbasaaSWaaSaaaKqa GeaajugWaiaad6eaaKqaGeaajugWaiaaikdacaWGXbWcdaWgaaqcca saaKqzGcGaaGOmaaqccasabaaaaaaajugibiaaykW7cqWFMbGzjuaG daqbbaGcbaqcfa4aaSbaaSqaaKqzGeGaamisaSWaa0baaKGaGeaaju gWaiabg6HiLcqccasaaKqzadGaaGymaaaajugib8aacaGGOaGaaiik a8qacaaIWaGaaiilaiabg6HiLkaacMcacaGGSaGaamitaKqbaoaaBa aajiaibaqcLbmacqGHEisPaWqabaqcLbsacaGGOaGaeuyQdCLaaiyk a8aacaGGPaaal8qabeaaaOGaayzcSdaabaqcfaOaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7jugibiabgEna0MqbaoaabmaabaWaauqaaeaa aiaawMa7aiabgYda8maafiaabaGae83zaCgacaGLkWoadaWgaaqaai aadYeadaWgaaqaaiaadchaaeqaa8aacaGGOaGaaiikaiaaicdacaGG SaGaaiivaiaacMcacaWGibWaa0baaeaacaWGXbaabaGaaGOmaaaape GaaiikaiabfM6axjaacMcacaGGPaaabeaacqGHRaWkdaqbbaqaaaGa ayzcSdGaeyipaWJaamiDaiabg6da+maaCaaabeqaaiaadkgacqGHsi slcaGGGcWaaSaaaeaacaWGobaabaGaaGOmaiaadghadaWgaaqaaiaa ikdaaeqaaaaaaaWaauGaaeaacqGHciITdaWgaaqaaiaadshaaeqaai ab=DgaNbGaayPcSdWaaSbaaeaacaWGmbWaaSbaaeaacaWGWbaabeaa paGaaiikaiaacIcacaaIWaGaaiilaiaadsfacaGGPaGaaiilaiaadY eadaWgaaqaaiaadghadaWgaaqaamaaBaaabaGaaGOmaaqabaaabeaa aeqaamaabmaabaGaeuyQdCfacaGLOaGaayzkaaGaaiykaaWdbeqaai abgUcaRmaafmaabaWaaqGaaeaacqWFNbWzaiaawIa7amaaBaaabaGa amiDaiabg2da9iaaicdaaeqaaaGaayzcSlaawQa7amaaBaaabaGaam OqamaaDaaabaGaamyCamaaBaaabaGaaGOmaaqabaGaaiilaiaadcha aeaacaaIYaWdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVaGaam iCa8aacaGGPaaaaiaacIcacqqHPoWvcaGGPaaapeqabaaacaGLOaGa ayzkaaaaaaa@F13F@ (42)

Proof: Let f 0 ( t ) = < t > a b + N 2 q 2 f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaGGOaGaamiD aiaacMcacqGH9aqpcqGH8aapcaWG0bGaeyOpa4tcfa4aaWbaaSqabK qaGeaajugWaiaadggacqGHsislcaWGIbGaey4kaSYcdaWcaaqcbasa aKqzadGaamOtaaqcbasaaKqzadGaaGOmaiaadghalmaaBaaajiaiba qcLbmacaaIYaaajiaibeaaaaaaaKqzGeGaamOzaiaacIcacaWG0bGa aiykaaaa@525F@ and g 0   ( t )   = <   t   > b + N 2 q 2 g   ( t )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb qeg0uAJj3BZ9Mz0bcvHLgimvgaiuGajugibabaaaaaaaaapeGae83z aCwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaGGGcqcfa 4damaabmaakeaajugib8qacaWG0baak8aacaGLOaGaayzkaaqcLbsa peGaaiiOaiabg2da9iabgYda8iaacckacaWG0bGaaiiOaiabg6da+K qba+aadaahaaWcbeqcbasaaKqzadGaamOyaiabgUcaRSWaaSaaaKqa GeaajugWaiaad6eaaKqaGeaajugWaiaaikdacaWGXbWcdaWgaaqcca saaKqzGcGaaGOmaaqccasabaaaaaaajugib8qacqWFNbWzcaGGGcqc fa4damaabmaakeaajugib8qacaWG0baak8aacaGLOaGaayzkaaqcLb sapeGaaiiOaaaa@6506@ , and then <   t   > a     f g   = f 0 g 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGH8aapcaGGGcGaamiDaiaacckacqGH+aGpdaahaaWcbeqaaiaa dggaaaGccaGGGcGaaiiOaiaadAgacqGHhis0tCvAUfKttLearyqtPn MCVn3BMrhiufwAGWuzaGqbcKqzGeGae83zaCMccaGGGcGaeyypa0tc LbsapaGaamOzaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaOWdbi abgEGirNqzGeGae83zaCwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baaaaa@5849@ . Let   T   ( t )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacckatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbciab=nr8ujaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadshaaO WdaiaawIcacaGLPaaajugib8qacaGGGcaaaa@4979@ be the operator given in (30) and let h be a function in B q 2 , p 2 ( 1 1 / p ) ( N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadkealmaaDaaajeaibaqcLbmacaWGXbWcdaWgaaqccasa aKqzadGaaGOmaaqccasabaqcLbmacaGGSaGaamiCaaqcbasaaKqzad GaaGOma8aacaGGOaWdbiaaigdacqGHsislcaaIXaGaai4laiaadcha paGaaiykaaaajugibiaacIcacqWIDesOjuaGdaahaaWcbeqcbasaaK qzadGaaiOtaaaajugibiaacMcaaaa@4D98@ such that h = g | t = 0 i n Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb Gaeyypa0tcfaieaaaaaaaaa8qadaabcaqaamXvP5wqonvsaeHbnL2y Y92CVzgDGqvyPbctLbacfiqcLbsacqWFNbWzaKqbakaawIa7amaaBa aabaqcLbsacaWG0bGaeyypa0JaaGimaaqcfayabaqcLbsacaaMc8Ua aGPaVlaadMgacaWGUbGaaGPaVlaaykW7cqqHPoWvaaa@53A4@ and h = g | t = 0 h B q 2 , p 2 ( 1 1 / p ) ( Ω ) g | t = 0 B q 2 , p 2 ( 1 1 / p ) ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGOb Gaeyypa0tcfaieaaaaaaaaa8qadaabcaqaamXvP5wqonvsaeHbnL2y Y92CVzgDGqvyPbctLbacfiqcLbsacqWFNbWzaKqbakaawIa7amaaBa aabaqcLbsacaWG0bGaeyypa0JaaGimaaqcfayabaqcLbsacaaMc8Ua aGPaVNqbaoaafmaabaqcLbsacaWGObaajuaGcaGLjWUaayPcSdWaaS baaSqaaKqzGeGaamOqaSWaa0baaKGaGeaajugWaiaadghalmaaBaaa jiaibaqcLbmacaaIYaaajiaibeaajugWaiaacYcacaWGWbaajiaiba qcLbmacaaIYaWdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVaGa amiCa8aacaGGPaaaaKqzGeWdbiaacIcacqqHPoWvcaGGPaaaleqaaK qzGeGaeyizImAcfa4aauWaaOqaaKqbaoaaeiaakeaajugibiab=Dga NbGccaGLiWoajuaGdaWgaaWcbaqcLbsacaWG0bGaeyypa0JaaGimaa WcbeaaaOGaayzcSlaawQa7aKqbaoaaBaaaleaajugibiaadkealmaa DaaajiaibaqcLbmacaWGXbWcdaWgaaqccasaaKqzadGaaGOmaaqcca sabaqcLbmacaGGSaGaamiCaaqccasaaKqzadGaaGOma8aacaGGOaWd biaaigdacqGHsislcaaIXaGaai4laiaadchapaGaaiykaaaajugibi aacIcacqqHPoWvcaGGPaaal8qabeaaaaa@8A8A@ . Recall the operator eT defined in (32) and note that   g 0   | t = 0 = g   | t = 0 = T ( t ) h | t = 0 i n Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGPaVN qzGeaeaaaaaaaaa8qacaGGGcqcfa4aaqGaaeaatCvAUfKttLearyqt PnMCVn3BMrhiufwAGWuzaGqbcKqzGeGae83zaCwcfa4aaSbaaKazfa 0=baqcLbmacaaIWaaajuaGbeaajugibiaacckaaKqbakaawIa7amaa BaaabaqcLbsacaWG0bGaeyypa0JaaGimaaqcfayabaqcLbsacaaMc8 Uaeyypa0tcfa4aaqGaaeaajugibiab=DgaNjaacckaaKqbakaawIa7 amaaBaaabaqcLbsacaWG0bGaeyypa0JaaGimaaqcfayabaqcLbsacq GH9aqptuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbciab +nr8ujaacIcacaGG0bGaaiykaiaadIgajuaGdaabbaqaamaaBaaaba qcLbsacaWG0bGaeyypa0JaaGimaiaaykW7caaMc8UaamyAaiaad6ga caaMc8UaaGPaVlabfM6axbqcfayabaaacaGLhWoaaaa@7E0D@ . Let g ˜ ( t ) = e T   [ g 0     T ( · ) h ] ( t ) + T ( t ) h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb qeg0uAJj3BZ9Mz0bcvHLgimvgaiuGajugibabaaaaaaaaapeGaf83z aCMbaGaapaGaaiika8qacaWG0bWdaiaacMcapeGaeyypa0JaamyzaK qbaoaaBaaajeaibaqcLbmacaWGubaaleqaaKqzGeGaaiiOa8aacaGG BbWdbiab=DgaNLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGe GaaiiOaiaacckacqGHsisltuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy 0Hgip5wzaGGbciab+nr8u9aacaGGOaWdbiaacElapaGaaiyka8qaca WGObWdaiaac2facaGGOaWdbiaadshapaGaaiyka8qacqGHRaWkcqGF tepvpaGaaiika8qacaWG0bWdaiaacMcapeGaamiAaaaa@6B32@

for t > 0 and let

[ ι g ] ( t ) = { g ˜ ( t ) ( t > 0 ) , g ˜ ( t ) ( t < 0 ) , [ ι f ] ( t ) = { 0 ( t > T ) , f 0 ( t ) ( 0 < t < T ) , f 0 ( t ) ( T < t < 0 ) , 0 ( t < T ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGBb aeaaaaaaaaa8qacqaH5oqAtCvAUfKttLearyqtPnMCVn3BMrhiufwA GWuzaGqbciab=DgaN9aacaGGDbGaaiika8qacaWG0bWdaiaacMcacq GH9aqpjuaGdaGabaqcLbsaeaqabOqaaKqzGeWdbiqb=DgaNzaaiaWd aiaacIcapeGaamiDa8aacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caGGOaGaamiDaiabg6da+iaaicdacaGGPaGaaiilaa GcbaqcLbsapeGaf83zaCMbaGaapaGaaiikaiabgkHiT8qacaWG0bWd aiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaacIcacaWG0bGaeyipaWJaaGim aiaacMcacaGGSaaaaOGaay5EaaqcLbsacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaai4wa8qa cqaH5oqAcaWGMbWdaiaac2facaGGOaWdbiaadshapaGaaiykaiabg2 da9Kqba+qadaGabaqcLbsaeaqabKqbagaajugibiaaicdacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaacIcacaWG0bGaeyOpa4JaamivaiaacMcacaGGSaaajuaGbaqc LbsacaWGMbqcfa4aaSbaaKqbGeaajugWaiaaicdaaKqbagqaaKqzGe GaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaiikaiaaicdacqGH8aapcaWG0bGaeyipaWJaamiv aiaacMcacaGGSaaajuaGbaqcLbsacaWGMbqcfa4aaSbaaKqbGeaaju gWaiaaicdaaKqbagqaaKqzGeGaaiikaiabgkHiTiaadshacaGGPaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaiikaiabgkHiTiaadsfacqGH8aap caWG0bGaeyipaWJaaGimaiaacMcacaGGSaaajuaGbaqcLbsacaaIWa GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caGGOaGaamiDaiabgYda8iabgkHiTiaadsfacaGGPa GaaGPaVlaac6caaaqcfaOaay5Eaaaaaa@47CC@

Since g ˜ ( t )   =   g 0   ( t )   f o r   0 <   t < T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb qeg0uAJj3BZ9Mz0bcvHLgimvgaiuGajugibabaaaaaaaaapeGaf83z aCMbaGaapaGaaiika8qacaWG0bWdaiaacMcacaaMc8UaaGPaV=qaca qGGaGaeyypa0Jaaeiiaiab=DgaNLqbaoaaBaaajqwaa+FaaKqzadGa aGimaaWcbeaajugibiaacckajuaGpaWaaeWaaOqaaKqzGeWdbiaads haaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaamOzaiaad+gacaWG YbGaaeiiaiaaicdacqGH8aapcaqGGaGaamiDaiabgYda8iaadsfaaa a@5DB8@ , we have

e ˜ T   [ < t > a     f g ] ( t ) = { 0 ( t > T ) , f 0 ( t ) g 0 ( t ) ( 0 < t < T ) , f 0 ( t ) g 0 ( t ) ( T < t < 0 ) , 0 ( t < T ) . = { 0 ( t > T ) , f 0 ( t ) g ˜ ( t ) ( 0 < t < T ) , f 0 ( t ) g ˜ ( t ) ( T < t < 0 ) , 0 ( t < T ) . = [ ι f ] ( t ) [ ι g ] ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aaykW7caaMc8UaaGPaVdbaaaaaaaaapeGabmyzayaaiaqcfa4aaSba aKqaGeaajugWaiaadsfaaSqabaqcLbsacaGGGcWdaiaacUfapeGaey ipaWJaamiDaiabg6da+KqbaoaaCaaaleqajeaibaqcLbmacaWGHbaa aKqzGeGaaiiOaiaacckacaWGMbGaey4bIe9exLMBb50ujbqeg0uAJj 3BZ9Mz0bcvHLgimvgaiuGacqWFNbWzpaGaaiyxaiaacIcapeGaamiD a8aacaGGPaGaeyypa0tcfa4dbmaaceaajugibqaabeqcfayaaKqzGe GaaGimaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caGGOaGaamiDaiabg6da+iaadsfaca GGPaGaaiilaaqcfayaaKqzGeGaamOzaKqbaoaaBaaajqwba9FaaKqz adGaaGimaaqcfayabaqcLbsacaGGOaGaamiDaiaacMcacaaMc8Uaey 4bIeTae83zaCwcfa4aaSbaaKqbGeaajugWaiaaicdaaKqbagqaaKqz GeGaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaacIcacaaIWaGaeyipaWJaamiDaiabgY da8iaadsfacaGGPaGaaiilaaqcfayaaKqzGeGaamOzaKqbaoaaBaaa jqwba9FaaKqzadGaaGimaaqcfayabaqcLbsacaGGOaGaeyOeI0Iaam iDaiaacMcacqGHhis0cqWFNbWzjuaGdaWgaaqcfasaaKqzadGaaGim aaqcfayabaqcLbsacaGGOaGaeyOeI0IaamiDaiaacMcacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaiikaiabgkHiTiaadsfacqGH8aapcaWG0bGaeyipaWJaaGimai aacMcacaGGSaaajuaGbaqcLbsacaaIWaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaacIcacaWG0bGaeyipaWJaeyOeI0Iaamivaiaa cMcacaaMc8UaaiOlaaaajuaGcaGL7baacqGH9aqpdaGabaqcLbsaea qabKqbagaajugibiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaacIcaca WG0bGaeyOpa4JaamivaiaacMcacaGGSaaajuaGbaqcLbsacaWGMbqc fa4aaSbaaKazfa0=baqcLbmacaaIWaaajuaGbeaajugibiaacIcaca WG0bGaaiykaiaaykW7cqGHhis0cuWFNbWzgaacaiaacIcacaWG0bGa aiykaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caGGOaGaaGimaiabgYda8iaadshacq GH8aapcaWGubGaaiykaiaacYcaaKqbagaajugibiaadAgajuaGdaWg aaqcKvaq=haajugWaiaaicdaaKqbagqaaKqzGeGaaiikaiabgkHiTi aadshacaGGPaGaey4bIeTaf83zaCMbaGaacaGGOaGaeyOeI0IaamiD aiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaeyOeI0Iaamiv aiabgYda8iaadshacqGH8aapcaaIWaGaaiykaiaacYcaaKqbagaaju gibiaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaaiikai aadshacqGH8aapcqGHsislcaWGubGaaiykaiaaykW7caGGUaaaaKqb akaawUhaaaGcbaqcfaOaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7cqGH9aqpjugib8aacaGGBbWdbiabeM7aPjaadAga paGaaiyxaiaacIcapeGaamiDa8aacaGGPaWdbiabgEGir=aacaGGBb WdbiabeM7aPjaadEgapaGaaiyxaiaacIcapeGaamiDa8aacaGGPaWd biaac6caaaaa@BCD7@

By Lemma 5,

e ˜ T   [ < t > a     f g ] H p 1 2 ( ,   L q ( Ω ) ) = [ ι f ] [ ι g ] H p 1 2 ( ,   L q ( Ω ) ) C [ ι f ] H 1 ( ,   L q ( Ω ) ) ( ι g ) H p 1 2 ( ,   L q ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeGabmyzayaaiaqcfa4aaSbaaKqbGeaajugW aiaadsfaaKqbagqaaKqzGeGaaiiOa8aacaGGBbWdbiabgYda8iaads hacqGH+aGpjuaGdaahaaqabKqbGeaajugWaiaadggaaaqcLbsacaGG GcGaaiiOaiaadAgacqGHhis0tCvAUfKttLearyqtPnMCVn3BMrhiuf wAGWuzaGqbciab=DgaN9aacaGGDbGaaGPaVdqcfa4dbiaawMa7caGL kWoadaWgaaqaaKqzGeGaamisaSWaa0baaKqbGeaajugWaiaadchaaK qbGeaalmaalaaajuaibaqcLbmacaaIXaaajuaibaqcLbmacaaIYaaa aaaajugib8aacaGGOaWdbiabl2riHkaacYcacaqGGaGaamitaKqbao aaBaaajuaibaqcLbmacaWGXbaajuaGbeaajugibiaacIcacqqHPoWv caGGPaGaaiykaiaaykW7aKqbagqaaKqzGeWdaiabg2da9iaaykW7ca aMc8Ecfa4aauWaaeaajugibiaaykW7caGGBbWdbiabeM7aPjaadAga paGaaiyxa8qacqGHhis0paGaai4wa8qacqaH5oqAcaWGNbWdaiaac2 facaaMc8oajuaGcaGLjWUaayPcSdWaaSbaaeaajugib8qacaWGibWc daqhaaqcfasaaKqzadGaamiCaaqcfasaaSWaaSaaaKqbGeaajugWai aaigdaaKqbGeaajugWaiaaikdaaaaaaKqzGeWdaiaacIcapeGaeSyh HeQaaiilaiaabccacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghaaK qbagqaaKqzGeGaaiikaiabfM6axjaacMcacaGGPaGaaGPaVlaaykW7 caaMc8oajuaGpaqabaqcLbsacqGHKjYOcaWGdbqcfa4aauWaaeaaju gibiaaykW7caGGBbWdbiabeM7aPjaadAgapaGaaiyxaiaaykW7aKqb akaawMa7caGLkWoadaWgaaqaaKqzGeWdbiaadIealmaaDaaajuaiba qcLbmacqGHEisPaKqbGeaajugWaiaaigdaaaqcLbsapaGaaiika8qa cqWIDesOcaGGSaGaaeiiaiaadYeajuaGdaWgaaqcfasaaKqzadGaam yCaaqcfayabaqcLbsacaGGOaGaeuyQdCLaaiykaiaacMcaaKqba+aa beaadaqbdaqaaKqzGeWdbiabgEGirlaacIcacqaH5oqAcaWGNbGaai ykaaqcfa4daiaawMa7caGLkWoadaWgaaqaaKqzGeWdbiaadIealmaa DaaajuaibaqcLbmacaWGWbaajuaibaWcdaWcaaqcfasaaKqzadGaaG ymaaqcfasaaKqzadGaaGOmaaaaaaqcLbsapaGaaiika8qacqWIDesO caGGSaGaaeiiaiaadYeajuaGdaWgaaqcfasaaKqzadGaamyCaaqcfa yabaqcLbsacaGGOaGaeuyQdCLaaiykaiaacMcacaaMc8oajuaGpaqa baaaaa@E6AF@

Since, f 0 | t = T   =   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgajuaGdaWgaaqaaKqzadGaaGimaaqcfayabaqcLbsa paGaaiiFaKqba+qadaWgaaqaaKqzGeGaamiDaKqbakabg2da9iaads faaeqaaKqzGeGaaiiOaiabg2da9iaabccacaaIWaaaaa@451D@ we have

[ ι f ] H 1 ( ,   L q ( Ω ) ) = 2 [ f 0 ] H 1 ( ( 0 , T ) , L ( Ω ) ) < t > N 2 q 2 f H 1 ( ( 0 , T ) , L ( Ω ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aajugibiaacUfaqaaaaaaaaaWdbiabeM7aPjaadAgapaGaaiyxaaqc faOaayzcSlaawQa7amaaBaaabaqcLbsapeGaamisaSWaa0baaKqbGe aajugWaiabg6HiLcqcfasaaKqzadGaaGymaaaajugib8aacaGGOaWd biabl2riHkaacYcacaqGGaGaamitaKqbaoaaBaaajuaibaqcLbmaca WGXbaajuaGbeaajugibiaacIcacqqHPoWvcaGGPaGaaiykaaqcfa4d aeqaaiabg2da9iaaikdadaqbdaqaaKqzGeGaai4wa8qacaWGMbqcfa 4aaSbaaeaajugWaiaaicdaaKqbagqaaKqzGeWdaiaac2faaKqbakaa wMa7caGLkWoadaWgaaqaa8qacaWGibWaa0baaeaacqGHEisPaeaaca aIXaaaa8aacaGGOaGaaiika8qacaaIWaGaaiilaiaadsfacaGGPaGa aiilaiaadYeadaWgaaqaaiabg6HiLcqabaGaaiikaiabfM6axjaacM capaGaaiykaaqabaGaeyizImQaaGPaVpaafeaabaaacaGLjWoajugi b8qacqGH8aapcaWG0bGaeyOpa4tcfa4aaWbaaSqabKqaGeaalmaala aajeaibaqcLbmacaWGobaajeaibaqcLbmacaaIYaGaamyCaSWaaSba aKGaGeaajugOaiaaikdaaKGaGeqaaaaaaaqcLbsacaaMc8Ecfa4aau GaaOqaaKqzGeGaamOzaaGccaGLkWoajuaGpaWaaSbaaeaapeWaaSba aeaajugibiaadIealmaaDaaajuaibaqcLbmacqGHEisPaKqbGeaaju gWaiaaigdaaaqcLbsapaGaaiikaiaacIcapeGaaGimaiaacYcacaWG ubGaaiykaiaacYcacaWGmbqcfa4aaSbaaKqbGeaajugWaiabg6HiLc qcfayabaqcLbsacaGGOaGaeuyQdCLaaiyka8aacaGGPaaajuaGpeqa baaapaqabaqcLbsapeGaaGPaVlaacYcaaaa@9E7A@

Because a   b 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGHsislcaqGGaGaamOyaiabgsMiJkaaicdaaaa@3C71@ .

To estimate ( ι g ) H p 1 2 ( ,   L q ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aajugibabaaaaaaaaapeGaey4bIeTaaiikaiabeM7aPjaadEgacaGG PaaajuaGpaGaayzcSlaawQa7amaaBaaabaqcLbsapeGaamisaSWaa0 baaKqbGeaajugWaiaadchaaKqbGeaalmaalaaajuaibaqcLbmacaaI XaaajuaibaqcLbmacaaIYaaaaaaajugib8aacaGGOaWdbiabl2riHk aacYcacaqGGaGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbaajuaG beaajugibiaacIcacqqHPoWvcaGGPaGaaiykaiaaykW7aKqba+aabe aaaaa@57BC@ , we use the fact that H p 1 ( ,   L q 2 ( Ω ) )   L p ( ,   H q 2 2 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIealmaaDaaajeaibaqcLbmacaWGWbaajeaibaqcLbma caaIXaaaaKqzGeWdaiaacIcapeGaeSyhHeQaaiilaiaabccacaWGmb qcfa4aaSbaaKqaGeaajugWaiaadghalmaaBaaajiaibaqcLbmacaaI YaaajiaibeaaaSqabaqcLbsacaGGOaGaeuyQdCLaaiykaiaacMcacq GHPiYXcaqGGaGaamitaKqbaoaaBaaajeaibaqcLbmacaWGWbaaleqa aKqzGeWdaiaacIcapeGaeSyhHeQaaiilaiaabccacaWGibqcfa4aa0 baaKqaGeaajugWaiaadghajuaGdaWgaaqccasaaKqzadGaaGOmaaqc casabaaajeaibaqcLbmacaaIYaaaaKqzGeGaaiikaiabfM6axjaacM cacaGGPaaaaa@61AB@ is continuously imbedded into H p 1 2 ( ,   H q 2 1 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIealmaaDaaajqwba9FaaKqzadGaamiCaaqcKvaq=haa lmaalaaajqwba9FaaKqzadGaaGymaaqcKvaq=haajugWaiaaikdaaa aaaKqzGeWdaiaacIcapeGaeSyhHeQaaiilaiaabccacaWGibWcdaqh aaqcfasaaKqzadGaamyCaSWaaSbaaKqbGeaalmaaBaaajqwba+FaaK qzGcGaaGOmaaqcfasabaaabeaaaeaajugWaiaaigdaaaqcLbsacaGG OaGaeuyQdCLaaiykaiaacMcacaaMc8oaaa@57E3@ which was proved by Meyries and Schnaubelt52 in case of p = q2 and by Shibata30 for any 1 < p ,   q 2   < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaigdacqGH8aapcaWGWbGaaiilaiaabccacaWGXbqcfa4a aSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacaGGGcGaeyipaWJaey OhIukaaa@4298@ . Using this fact and (31), we have

( ι g ) H p 1 2 ( ,   L q 2 ( Ω ) ) C ( ι g ) H p 1 ( ,   L q 2 ( Ω ) ) + ( ι g ) L p ( ,   H q 2 2 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aajugibabaaaaaaaaapeGaey4bIeTaaiikaiabeM7aPnXvP5wqonvs aeHbnL2yY92CVzgDGqvyPbctLbacfiGae83zaCMaaiykaaqcfa4dai aawMa7caGLkWoadaWgaaqaaKqzGeWdbiaadIealmaaDaaajqwba9Fa aKqzadGaamiCaaqcKvaq=haalmaalaaajqwba9FaaKqzadGaaGymaa qcKvaq=haajugWaiaaikdaaaaaaKqzGeWdaiaacIcapeGaeSyhHeQa aiilaiaabccacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghalmaaBa aajuaibaqcLbmacaaIYaaajuaibeaaaKqbagqaaKqzGeGaaiikaiab fM6axjaacMcacaGGPaGaaGPaVdqcfa4daeqaaKqzGeWdbiabgsMiJk aadoeapaGaaGPaVNqbaoaafmaabaqcLbsapeGaaiikaiabeM7aPjab =DgaNjaacMcaaKqba+aacaGLjWUaayPcSdWaaSbaaeaajugib8qaca WGibWcdaqhaaqcKvaq=haajugWaiaadchaaKazfa0=baqcLbmacaaI XaaaaKqzGeWdaiaacIcapeGaeSyhHeQaaiilaiaabccacaWGmbqcfa 4aaSbaaKqbGeaajugWaiaadghalmaaBaaajuaibaqcLbmacaaIYaaa juaibeaaaKqbagqaaKqzGeGaaiikaiabfM6axjaacMcacaGGPaGaaG PaVdqcfa4daeqaaKqzGeGaey4kaSscfa4aauWaaeaajugib8qacaGG OaGaeqyUdKMae83zaCMaaiykaaqcfa4daiaawMa7caGLkWoadaWgaa qaaKqzGeWdbiaadYeajuaGdaWgaaqcfasaaKqzadGaamiCaaqcfaya baqcLbsapaGaaiika8qacqWIDesOcaGGSaGaaeiiaiaadIealmaaDa aajuaibaqcLbmacaWGXbWcdaWgaaqcfasaaKqzadGaaGOmaaqcfasa baaabaqcLbmacaaIYaaaaKqzGeGaaiikaiabfM6axjaacMcacaGGPa aajuaGpaqabaaaaa@B1BD@

C ( g ˜ H p 1 ( ( 0 , ) , L q 2 ( Ω ) ) = g ˜ L p ( ( 0 , ) , H q 2 2 ( Ω ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgsMiJkaadoeajuaGdaqadaqaa8aadaqbdaqaamXvP5wq onvsaeHbnL2yY92CVzgDGqvyPbctLbacfiqcLbsapeGaf83zaCMbaG aaaKqba+aacaGLjWUaayPcSdWaaSbaaeaajugib8qacaWGibWcdaqh aaqcfasaaKqzadGaamiCaaqcfasaaKqzadGaaGymaaaajugib8aaca GGOaGaaiika8qacaaIWaGaaiilaiabg6HiLkaacMcacaGGSaGaamit aKqbaoaaBaaajuaibaqcLbmacaWGXbWcdaWgaaqcfasaaKqzadGaaG OmaaqcfasabaaajuaGbeaajugibiaacIcacqqHPoWvcaGGPaWdaiaa cMcaaKqbagqaaKqzGeGaeyypa0JaaGPaVNqbaoaafmaabaqcLbsape Gaf83zaCMbaGaaaKqba+aacaGLjWUaayPcSdWaaSbaaeaajugib8qa caWGmbqcfa4aaSbaaKqbGeaajugWaiaadchaaKqbagqaaKqzGeWdai aacIcacaGGOaWdbiaaicdacaGGSaGaeyOhIuQaaiykaiaacYcacaWG ibWcdaqhaaqcfasaaKqzadGaamyCaSWaaSbaaKqbGeaajugWaiaaik daaKqbGeqaaaqaaKqzadGaaGOmaaaajugibiaacIcacqqHPoWvcaGG PaGaaiykaaqcfa4daeqaaaWdbiaawIcacaGLPaaaaaa@829E@

C ( g 0 - T ( · ) h H p 1 ( ( 0 , T ) , L q 2 ( Ω ) ) + g 0 - T ( · ) h L p ( ( 0 , T ) , H q 2 2 ( Ω ) ) + T ( · ) h H p 1 ( ( 0 , T ) , L q 2 ( Ω ) ) + T ( · ) h L p ( ( 0 , ) , H q 2 2 ( Ω ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeyizImQaam4qaiaacIcapaGaaGPaVNqbaoaafmaa baWexLMBb50ujbqeg0uAJj3BZ9Mz0bcvHLgimvgaiuGajugib8qacq WFNbWzjuaGdaWgaaqaaKqzadGae8hmaadajuaGbeaajugibiaab2ca tuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbaiab+nr8u9 aacaGGOaGaeS4JPF2dbiaacMcacaWGObaajuaGpaGaayzcSlaawQa7 amaaBaaabaqcLbsapeGaamisaSWaa0baaKazfa0=baqcLbmacaWGWb aajqwba9FaaKqzadGaaGymaaaajugib8aacaGGOaGaaiika8qacaaI WaGaaiilaiaadsfacaGGPaGaaiilaiaadYeajuaGdaWgaaqcfasaaK qzadGaamyCaSWaaSbaaKqbGeaajugWaiaaikdaaKqbGeqaaaqcfaya baqcLbsacaGGOaGaeuyQdCLaaiyka8aacaGGPaaajuaGbeaajugibi abgUcaRiaaykW7caaMc8Ecfa4aauWaaeaajugib8qacqWFNbWzjuaG daWgaaqcfasaaKqzadGae8hmaadajuaGbeaajugibiaab2cacqGFte pvpaGaaiikaiabl+y6N9qacaGGPaGaamiAaaqcfa4daiaawMa7caGL kWoadaWgaaqaaKqzGeWdbiaadYeajuaGdaWgaaqcfasaaKqzadGaam iCaaqcfayabaqcLbsapaGaaiikaiaacIcapeGaaGimaiaacYcacaWG ubGaaiykaiaacYcacaWGibWcdaqhaaqcfasaaKqzadGaamyCaSWaaS baaKqbGeaajugWaiaaikdaaKqbGeqaaaqaaKqzadGaaGOmaaaajugi biaacIcacqqHPoWvcaGGPaWdaiaacMcaaKqbagqaaaGcbaqcLbsacq GHRaWkjuaGdaqbdaqaaKqzGeWdbiab+nr8u9aacaGGOaGaeS4JPF2d biaacMcacaWGObaajuaGpaGaayzcSlaawQa7amaaBaaabaqcLbsape GaamisaSWaa0baaKazfa0=baqcLbmacaWGWbaajqwba9FaaKqzadGa aGymaaaajugib8aacaGGOaGaaiika8qacaaIWaGaaiilaiaadsfaca GGPaGaaiilaiaadYeajuaGdaWgaaqcfasaaKqzadGaamyCaSWaaSba aKqbGeaajugWaiaaikdaaKqbGeqaaaqcfayabaqcLbsacaGGOaGaeu yQdCLaaiyka8aacaGGPaaajuaGbeaajugibiabgUcaRKqbaoaafmaa baqcLbsapeGae43eXt1daiaacIcacqWIpM+zpeGaaiykaiaadIgaaK qba+aacaGLjWUaayPcSdWaaSbaaeaajugib8qacaWGmbqcfa4aaSba aKqbGeaajugWaiaadchaaKqbagqaaKqzGeWdaiaacIcacaGGOaWdbi aaicdacaGGSaGaeyOhIuQaaiykaiaacYcacaWGibWcdaqhaaqcfasa aKqzadGaamyCaSWaaSbaaKqbGeaajugWaiaaikdaaKqbGeqaaaqaaK qzadGaaGOmaaaajugibiaacIcacqqHPoWvcaGGPaWdaiaacMcaaKqb agqaaKqzGeGaaiykaaaaaa@F42D@

C ( < t > b   N 2 q 2 t g L p ( ( 0 , T ) , L q 2 ( Ω ) ) ) + < t > b   N 2 q 2 t g L p ( ( 0 , T ) H q 2 ( Ω ) ) + g | t = 0 B q 2 , p 2 ( 1 1 / p ) ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgsMiJkaadoeacaGGOaqcfa4aauqaaeaaaiaawMa7aKqz GeGaeyipaWJaamiDaiabg6da+KqbaoaaCaaaleqajeaibaqcLbmaca WGIbGaeyOeI0IaaiiOaSWaaSaaaKqaGeaajugWaiaad6eaaKqaGeaa jugWaiaaikdacaWGXbWcdaWgaaqccasaaKqzadGaaGOmaaqccasaba aaaaaajuaGdaqbcaGcbaqcLbsacqGHciITjuaGdaWgaaqcbasaaKqz adGaamiDaaWcbeaatCvAUfKttLearyqtPnMCVn3BMrhiufwAGWuzaG qbcKqzGeGae83zaCgakiaawQa7aKqbaoaaBaaaleaajugibiaadYea juaGdaWgaaqccasaaKqzadGaamiCaaadbeaajugib8aacaGGOaGaai ikaiaaicdacaGGSaGaamivaiaacMcacaGGSaGaamitaKqbaoaaBaaa jiaibaqcLbmacaWGXbWcdaWgaaqccasaaSWaaSbaaKGaGeaajugWai aaikdaaKGaGeqaaaqabaaameqaaKqbaoaabmaaleaajugibiabfM6a xbWccaGLOaGaayzkaaqcLbsacaGGPaaal8qabeaajugibiaacMcacq GHRaWkjuaGdaqbbaGcbaaacaGLjWoajugibiabgYda8iaadshacqGH +aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyaiabgkHiTiaacckalm aalaaajeaibaqcLbmacaWGobaajeaibaqcLbmacaaIYaGaamyCaSWa aSbaaKGaGeaajugWaiaaikdaaKGaGeqaaaaaaaqcfa4aauGaaOqaaK qzGeGaeyOaIyBcfa4aaSbaaeaajugWaiaadshaaKqbagqaaKqzGeGa e83zaCgakiaawQa7aKqbaoaaBaaaleaajugibiaadYeajuaGdaWgaa qccasaaKqzadGaamiCaaadbeaajugib8aacaGGOaGaaiikaiaaicda caGGSaGaaiivaiaacMcacaWGibqcfa4aa0baaKGaGeaajugWaiaadg haaKGaGeaajugWaiaaikdaaaqcLbsapeGaaiikaiabfM6axjaacMca caGGPaaaleqaaKqzGeGaey4kaSscfa4aauWaaOqaaKqbaoaaeiaake aajugibiab=DgaNbGccaGLiWoajuaGdaWgaaWcbaqcLbsacaWG0bGa eyypa0JaaGimaaWcbeaaaOGaayzcSlaawQa7aKqbaoaaBaaaleaaju gibiaadkeajuaGdaqhaaqccasaaKqzadGaamyCaKqbaoaaBaaajiai baqcLbmacaaIYaaajiaibeaajugWaiaacYcacaWGWbaajiaibaqcLb macaaIYaWdaiaacIcapeGaaGymaiabgkHiTiaaigdacaGGVaGaamiC a8aacaGGPaaaaKqzGeGaaiikaiabfM6axjaacMcaaSWdbeqaaaaa@CA69@

This completes the proof of Lemma 6.

Recall the definitions of g(v) and hm(v) given in (24) and (25). By Lemma 6 and (36)

e ˜ T   ( < t > a g (v) H p 1 2 ( ,   L q ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsacaaMc8Uabmyzayaaiaqcfa4aaSbaaKqa GeaajugWaiaadsfaaSqabaqcLbsacaGGGcWdaiaacIcapeGaeyipaW JaamiDaiabg6da+KqbaoaaCaaaleqajeaibaqcLbmacaWGHbaaaKqz GeGaaGPaVpXvP5wqonvsaeHbnL2yY92CVzgDGqvyPbctLbacfiGae8 3zaCMaaeikaiaabAhacaqGPaGaaGPaVdGccaGLjWUaayPcSdqcfa4a aSbaaSqaaKqzGeGaamisaSWaa0baaKGaGeaajugWaiaadchaaKGaGe aalmaalaaajiaibaqcLbmacaaIXaaajiaibaqcLbmacaaIYaaaaaaa jugib8aacaGGOaWdbiabl2riHkaacYcacaqGGaGaamitaKqbaoaaBa aajiaibaqcLbmacaWGXbaameqaaKqzGeGaaiikaiabfM6axjaacMca caGGPaGaaGPaVlaaykW7aSqabaaaaa@7034@

j , k = 1 N < t > N 2 q 2 ( J ( T ) A k j   ( · ) + T ( · ) a k j   ( · ) ) H 1     ( ( 0 , T   ) , L ( Ω ) ) × ( < t > b   N 2 q 2 v L p ( ( 0 , T ) H q 2 2 ( Ω ) ) + < t > b   N 2 q 2 t v L p ( ( 0 , T ) , L q 2 ( Ω ) ) + u 0 B q 2 , p 2 ( 1 1 / p ) ( Ω ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeyizImAcfa4aaabCaeaadaqbbaqaaaGaayzcSdaa juaibaqcLbmacaWGQbGaaiilaiaadUgacqGH9aqpcaaIXaaajuaiba qcLbmacaWGobaajugibiabggHiLdGaeyipaWJaamiDaiabg6da+Kqb aoaaCaaaleqajeaibaWcdaWcaaqcbasaaKqzadGaamOtaaqcbasaaK qzadGaaGOmaiaadghalmaaBaaajiaibaqcLbmacaaIYaaajiaibeaa aaaaaKqzGeWdaiaacIcapeGaamOsa8aacaGGOaWdbiaadsfapaGaai yka8qacaWGbbqcfa4aaSbaaKqaGeaajugWaiaadUgacaWGQbaaleqa aKqzGeGaaiiOa8aacaGGOaWdbiaacElapaGaaiyka8qacqGHRaWkca WGubWdaiaacIcapeGaai4Ta8aacaGGPaWdbiaadggajuaGdaWgaaqc basaaKqzadGaam4AaiaadQgaaSqabaqcLbsacaGGGcWdaiaacIcape Gaai4Ta8aacaGGPaGaaiyka8qacqWILicucaWGibWcdaqhaaqcbasa aKqzadGaeyOhIukajeaibaqcLbmacaaIXaaaaKqzGeGaaiiOaiaacc kapaGaaiikaiaacIcapeGaaGimaiaacYcacaWGubGaaiiOa8aacaGG PaWdbiaacYcacaWGmbqcfa4aaSbaaKqaGeaajugWaiabg6HiLcWcbe aajugibiaacIcacqqHPoWvcaGGPaWdaiaacMcaaOqaaKqzGeWdbiab gEna0kaacIcajuaGdaqbbaqaaaGaayzcSdqcLbsacqGH8aapcaWG0b GaeyOpa4tcfa4aaWbaaSqabKqaGeaajugWaiaadkgacqGHsislcaGG GcWcdaWcaaqcbasaaKqzadGaamOtaaqcbasaaKqzadGaaGOmaiaadg halmaaBaaajiaibaqcLbmacaaIYaaajiaibeaaaaaaaKqbaoaafiaa keaajugibiaabAhaaOGaayPcSdqcfa4damaaBaaaleaajugib8qaca WGmbqcfa4aaSbaaKGaGeaajugWaiaadchaaWqabaqcLbsapaGaaiik aiaacIcacaaIWaGaaiilaiaadsfacaGGPaGaamisaSWaa0baaKGaGe aajugWaiaadghalmaaBaaajiaibaqcLbmacaaIYaaajiaibeaaaeaa jugWaiaaikdaaaqcLbsapeGaaiikaiabfM6axjaacMcacaGGPaaal8 aabeaajugibiabgUcaRKqbaoaafeaakeaaaiaawMa7aKqzGeWdbiab gYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyai abgkHiTiaacckalmaalaaajeaibaqcLbmacaWGobaajeaibaqcLbma caaIYaGaamyCaSWaaSbaaKGaGeaajugWaiaaikdaaKGaGeqaaaaaaa qcfa4aauGaaOqaaKqzGeGaeyOaIyBcfa4aaSbaaKqaGeaajugWaiaa dshaaSqabaqcLbsacaqG2baakiaawQa7aKqbaoaaBaaaleaajugibi aadYeajuaGdaWgaaqccasaaKqzadGaamiCaaadbeaajugib8aacaGG OaGaaiikaiaaicdacaGGSaGaamivaiaacMcacaGGSaGaamitaKqbao aaBaaajiaibaqcLbmacaWGXbqcfa4aaSbaaKGaGeaajuaGdaWgaaqc casaaKqzadGaaGOmaaqccasabaaabeaaaWqabaqcfa4aaeWaaSqaaK qzGeGaeuyQdCfaliaawIcacaGLPaaajugibiaacMcaaSWdbeqaaKqz GeGaey4kaSscfa4aauWaaOqaaKqzGeGaaeyDaKqbaoaaBaaaleaaju gibiaaicdaaSqabaaakiaawMa7caGLkWoajuaGdaWgaaWcbaqcLbsa caWGcbqcfa4aa0baaKGaGeaajugWaiaadghajuaGdaWgaaqccasaaK qzadGaaGOmaaqccasabaqcLbmacaGGSaGaamiCaaqccasaaKqzadGa aGOma8aacaGGOaWdbiaaigdacqGHsislcaaIXaGaai4laiaadchapa GaaiykaaaajugibiaacIcacqqHPoWvcaGGPaaal8qabeaaaOqaaKqz GeGaeyizImQaam4qaiaacIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbciab=brijjaabUcacaGGBbGaaCODaiaac2fajuaG daqhaaqcKvai=haajugWaiaadsfaaKazfaY=baqcLbmacaaIYaaaaK qzGeGaaiykaaaaaa@2401@ (43)

for any a [ 0 ,   b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGHiiIZjuaGpaWaamWaaOqaaKqzGeWdbiaaicda caGGSaGaaeiiaiaadkgaaOWdaiaawUfacaGLDbaaaaa@3F54@ and q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Analogously, we have

e ˜ T   ( < t > a h (v) H p 1 2 ( ,   L q ( Ω ) ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsacaaMc8Uabmyzayaaiaqcfa4aaSbaaKaz ba4=baqcLbmacaWGubaaleqaaKqzGeGaaiiOa8aacaGGOaWdbiabgY da8iaadshacqGH+aGpjuaGdaahaaWcbeqcKfaG=haajugWaiaadgga aaqcLbsacaaMc8UaamiAaiaabIcacaqG2bGaaeykaiaaykW7aOGaay zcSlaawQa7aKqbaoaaBaaaleaajugibiaadIealmaaDaaajiaibaqc LbmacaWGWbaajiaibaWcdaWcaaqccasaaKqzadGaaGymaaqccasaaK qzadGaaGOmaaaaaaqcLbsapaGaaiika8qacqWIDesOcaGGSaGaaeii aiaadYeajuaGdaWgaaqccasaaKqzadGaamyCaaadbeaajugibiaacI cacqqHPoWvcaGGPaGaaiykaiaaykW7aSqabaqcLbsacqGHKjYOcaWG dbGaaiikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfi Gae8heHKKaae4kaiaacUfacaWH2bGaaiyxaSWaa0baaKazfaY=baqc LbmacaWGubaajqwbG8FaaKqzadGaaGOmaaaajugibiaacMcacaaMc8 oaaa@8529@ (44)

for any a [ 0 ,   b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGHiiIZjuaGpaWaamWaaOqaaKqzGeWdbiaaicda caGGSaGaaeiiaiaadkgaaOWdaiaawUfacaGLDbaaaaa@3F54@ and q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Analogously, we have

Next, by (36), (37) and (41),

e ˜ T   [ < t > a g (v)] L p ( ,   H q 1 ( Ω ) ) j , k = 1 N < t > N 2 q 2 ( J ( T ) A k j ( · ) + J ( · ) a k j   ( · ) ) L ( ( 0 , T ) , L ( Ω ) ) < t > b   N 2 q 2 v L p ( ( 0 , T ) H q 2 2 ( Ω ) ) C [ v ] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafmaakeaajugibiaaykW7ceWGLbGbaGaajuaGdaWg aaqcKfaG=haajugWaiaadsfaaSqabaqcLbsacaGGGcGaai4waiabgY da8iaadshacqGH+aGpjuaGdaahaaWcbeqcKfaG=haajugWaiaadgga aaqcLbsacaaMc8+exLMBb50ujbqeg0uAJj3BZ9Mz0bcvHLgimvgaiu GacqWFNbWzcaqGOaGaaeODaiaabMcacaqGDbGaaGPaVdGccaGLjWUa ayPcSdqcfa4aaSbaaeaajugibiaadYeajuaGdaWgaaqcfasaaKqzad GaamiCaaqcfayabaqcLbsapaGaaiika8qacqWIDesOcaGGSaGaaeii aiaadIealmaaDaaajuaibaqcLbmacaWGXbaajuaibaqcLbmacaaIXa aaaKqzGeGaaiikaiabfM6axjaacMcacaGGPaGaaGPaVdqcfayabaaa keaajugibiabgsMiJMqbaoaaqahabaWaauqaaeaaaiaawMa7aaqcKv aq=haajugWaiaadQgacaGGSaGaam4Aaiabg2da9iaaigdaaKazfa0= baqcLbmacaWGobaajugibiabggHiLdGaeyipaWJaamiDaiabg6da+K qbaoaaCaaaleqajqwaa+FaaSWaaSaaaKazba4=baqcLbmacaWGobaa jqwaa+FaaKqzadGaaGOmaiaadghalmaaBaaajiaibaqcLbmacaaIYa aajiaibeaaaaaaaKqzGeWdaiaacIcapeGaamOsa8aacaGGOaWdbiaa dsfapaGaaiyka8qacaWGbbqcfa4aaSbaaKazba4=baqcLbmacaWGRb GaamOAaaWcbeaajugib8aacaGGOaWdbiaacElapaGaaiyka8qacqGH RaWktuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGbciab+L q8k9aacaGGOaWdbiaacElapaGaaiyka8qacaWGHbqcfa4aaSbaaKaz ba4=baqcLbmacaWGRbGaamOAaaWcbeaajugibiaacckapaGaaiika8 qacaGG3cWdaiaacMcacaGGPaqcfa4aauGaaeaaaiaawQa7a8qadaWg aaqaaKqzGeGaamitaKqbaoaaBaaajuaibaqcLbmacqGHEisPaKqbag qaaKqzGeWdaiaacIcacaGGOaGaaGimaiaacYcacaWGubGaaiykaiaa cYcacaWGmbqcfa4aaSbaaKqbGeaajugWaiabg6HiLcqcfayabaWaae WaaeaajugibiabfM6axbqcfaOaayjkaiaawMcaaKqzGeGaaiykaaqc fa4dbeqaamaafeaabaaacaGLjWoajugibiabgYda8iaadshacqGH+a GpjuaGdaahaaWcbeqcKfaG=haajugWaiaadkgacqGHsislcaGGGcWc daWcaaqcKfaG=haajugWaiaad6eaaKazba4=baqcLbmacaaIYaGaam yCaSWaaSbaaKGaGeaajugWaiaaikdaaKGaGeqaaaaaaaqcfa4aauGa aOqaaKqzGeGaaeODaaGccaGLkWoajuaGpaWaaSbaaSqaaKqzGeWdbi aadYeajuaGdaWgaaqccasaaKqzadGaamiCaaadbeaajugib8aacaGG OaGaaiikaiaaicdacaGGSaGaamivaiaacMcacaWGibWcdaqhaaqcca saaKqzadGaamyCaSWaaSbaaKGaGeaajugWaiaaikdaaKGaGeqaaaqa aKqzadGaaGOmaaaajugib8qacaGGOaGaeuyQdCLaaiykaiaacMcaaS WdaeqaaaGcbaqcLbsapeGaeyizImQaam4qaiaacUfacaWH2bGaaiyx aSWaa0baaKazfaY=baqcLbmacaWGubaajqwbG8FaaKqzadGaaGOmaa aaaaaa@1481@ (45)

for any a [ 0 ,   b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGHiiIZjuaGpaWaamWaaOqaaKqzGeWdbiaaicda caGGSaGaaeiiaiaadkgaaOWdaiaawUfacaGLDbaaaaa@3F54@ and q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Analogously, we have

e ˜ T   ( < t > b h(v) L p ( ( 0 , T ) H q 1 ( Ω ) ) C [ v ] T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsacaaMc8Uabmyzayaaiaqcfa4aaSbaaKaz ba4=baqcLbmacaWGubaaleqaaKqzGeGaaiiOa8aacaGGOaWdbiabgY da8iaadshacqGH+aGpjuaGdaahaaWcbeqcKfaG=haajugWaiaadkga aaqcLbsacaaMc8UaaeiAaiaabIcacaqG2bGaaeykaiaaykW7aOGaay zcSlaawQa7aKqbaoaaBaaabaqcLbsacaWGmbqcfa4aaSbaaKqbGeaa jugWaiaadchaaKqbagqaaKqzGeWdaiaacIcacaGGOaGaaGimaiaacY cacaWGubGaaiykaiaadIealmaaDaaajuaibaqcLbmacaWGXbaajuai baqcLbmacaaIXaaaaKqzGeWdbiaacIcacqqHPoWvcaGGPaGaaiykaa qcfayabaqcLbsacqGHKjYOcaWGdbGaai4waiaahAhacaGGDbWcdaqh aaqcKvai=haajugWaiaadsfaaKazfaY=baqcLbmacaaIYaaaaaaa@7472@ (46)

for any a [ 0 ,   b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGHiiIZjuaGpaWaamWaaOqaaKqzGeWdbiaaicda caGGSaGaaeiiaiaadkgaaOWdaiaawUfacaGLDbaaaaa@3F54@ and q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ . Since

t g k ( v ) = j = 1 N ( J ( T ) t A k j ( t ) + ( t J ( t ) a k j   ( t ) + J ( t ) t a k j   ( t ) ) v j + j = 1 N ( J ( T ) A k j ( t ) + J ( t ) a k j   ( t ) ) v j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgkGi2MqbaoaaBaaajeaibaqcLbmacaWG0baaleqaamXv P5wqonvsaeHbnL2yY92CVzgDGqvyPbctLbacfiqcLbsacqWFNbWzju aGdaWgaaqcbasaaKqzadGaam4AaaWcbeaajugibiaacIcacaqG2bGa aiykaiabg2da9KqbaoaaqahabaWaauqaaeaaaiaawMa7aaqcKvaq=h aajugWaiaadQgacqGH9aqpcaaIXaaajqwba9FaaKqzadGaamOtaaqc LbsacqGHris5a8aacaGGOaWdbiaadQeapaGaaiika8qacaWGubWdai aacMcapeGaeyOaIyBcfa4aaSbaaKqaGeaajugWaiaadshaaSqabaqc LbsacaWGbbqcfa4aaSbaaKazba4=baqcLbmacaWGRbGaamOAaaWcbe aajugib8aacaGGOaGaamiDaiaacMcapeGaey4kaSIaaiikaiabgkGi 2MqbaoaaBaaajeaibaqcLbmacaWG0baaleqaamrr1ngBPrwtHrhAXa qehuuDJXwAKbstHrhAG8KBLbacgiqcLbsacqGFjeVspaGaaiikaiaa dshacaGGPaWdbiaadggajuaGdaWgaaqcKfaG=haajugWaiaadUgaca WGQbaaleqaaKqzGeGaaiiOa8aacaGGOaGaamiDaiaacMcacqGHRaWk peGae4xcXR0daiaacIcacaWG0bGaaiyka8qacqGHciITjuaGdaWgaa qcbasaaKqzadGaamiDaaWcbeaajugibiaadggajuaGdaWgaaqcKfaG =haajugWaiaadUgacaWGQbaaleqaaKqzGeGaaiiOa8aacaGGOaGaam iDaiaacMcacaGGPaGaamODaKqbaoaaBaaajuaibaqcLbmacaWGQbaa juaGbeaajugibiabgUcaRKqba+qadaaeWbqaamaafeaabaaacaGLjW oaaKazfa0=baqcLbmacaWGQbGaeyypa0JaaGymaaqcKvaq=haajugW aiaad6eaaKqzGeGaeyyeIuoapaGaaiika8qacaWGkbWdaiaacIcape Gaamiva8aacaGGPaWdbiaadgeajuaGdaWgaaqcKfaG=haajugWaiaa dUgacaWGQbaaleqaaKqzGeWdaiaacIcacaWG0bGaaiyka8qacqGHRa WkcqGFjeVspaGaaiikaiaadshacaGGPaWdbiaadggajuaGdaWgaaqc KfaG=haajugWaiaadUgacaWGQbaaleqaaKqzGeGaaiiOa8aacaGGOa GaamiDaiaacMcacaGGPaGaamODaKqbaoaaBaaabaqcLbmacGaASmOA aaqcfayabaaaaa@D872@

and since J ( T ) a k j ( t ) J ( t ) L ( Ω ) C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeGaamOsa8aacaGGOaWdbiaadsfapaGaaiyk a8qacaWGHbqcfa4aaSbaaKqbGeaajugWaiaadUgacaWGQbaajuaGbe aajugib8aacaGGOaGaamiDaiaacMcatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbc8qacqWFjeVspaGaaiikaiaadshacaGGPa aajuaGpeGaayzcSlaawQa7amaaBaaabaqcLbsapaGaamitaKqbaoaa BaaajuaibaqcLbmacqGHEisPaKqbagqaamaabmaabaqcLbsacqqHPo WvaKqbakaawIcacaGLPaaaa8qabeaajugibiabgsMiJkaadoeaaaa@6135@ as follows from (36), by (37) we have

e ˜ T   [ < t > a t g k (v)] L p ( ( 0 , T ) , L q ( Ω ) ) j = 1 N ( < t > N 2 q 2 t ( A k j , J , a k j ) L ( ( 0 , T ) , L ( Ω ) ) < t > b   N 2 q 2 v L p ( ( 0 , T ) L q 2 ( Ω ) + ( < t > N 2 q 2 ( A k j , J ) L ( ( 0 , T ) , L ( Ω ) ) < t > b   N 2 q 2 t v L p ( ( 0 , T ) L q 2 ( Ω ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaaGPaVNqbaoaafmaakeaajugibiaaykW7ceWGLbGb aGaajuaGdaWgaaqcKfaG=haajugWaiaadsfaaSqabaqcLbsacaGGGc Gaai4waiabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcKfaG=haa jugWaiaadggaaaqcLbsacaaMc8UaeyOaIyBcfa4aaSbaaKqaGeaaju gWaiaadshaaSqabaWexLMBb50ujbqeg0uAJj3BZ9Mz0bcvHLgimvga iuGajugibiab=DgaNLqbaoaaBaaajeaibaqcLbmacaWGRbaaleqaaK qzGeGaaeikaiaabAhacaqGPaGaaeyxaiaaykW7aOGaayzcSlaawQa7 aKqbaoaaBaaabaqcLbsacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadc haaKqbagqaaKqzGeWdaiaacIcacaGGOaGaaGimaiaacYcacaWGubGa aiykaiaacYcacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghaaKqbag qaaKqzGeWdbiaaykW7caGGOaWdaiabfM6ax9qacaGGPaGaaiykaaqc fayabaaakeaajuaGcqGHKjYOdaaeWbqaaaqcKvaq=haajugWaiaadQ gacqGH9aqpcaaIXaaajqwba9FaaKqzadGaamOtaaqcLbsacqGHris5 aiaacIcacqGH8aapcaWG0bGaeyOpa4tcfa4aaWbaaSqabKazba4=ba WcdaWcaaqcKfaG=haajugWaiaad6eaaKazba4=baqcLbmacaaIYaGa amyCaSWaaSbaaKGaGeaajugOaiaaikdaaKGaGeqaaaaaaaqcLbsacq GHciITjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugib8aacaGG OaWdbiaadgeajuaGdaWgaaqcKfaG=haajugWaiaadUgacaWGQbaale qaaKqzGeGaaiilamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KB LbacgiGae4xcXRKaaiilaiaadggajuaGdaWgaaqcKfaG=haajugWai aadUgacaWGQbaaleqaaKqzGeWdaiaacMcajuaGdaqbcaqaaaGaayPc SdWaaSbaaSqaaKqzGeGaamitaKqbaoaaBaaajiaibaqcLbmacqGHEi sPaWqabaqcLbsacaGGOaGaaiikaiaaicdacaGGSaGaamivaiaacMca caGGSaGaamitaKqbaoaaBaaajiaibaqcLbmacqGHEisPaWqabaqcfa 4aaeWaaSqaaKqzGeGaeuyQdCfaliaawIcacaGLPaaajugibiaacMca aSqabaqcfa4dbmaafeaabaaacaGLjWoajugibiabgYda8iaadshacq GH+aGpjuaGdaahaaWcbeqcKfaG=haajugWaiaadkgacqGHsislcaGG Gcqcfa4aaSaaaKazba4=baqcLbmacaWGobaajqwaa+FaaKqzadGaaG OmaiaadghajuaGdaWgaaqccasaaKqzadGaaGOmaaqccasabaaaaaaa juaGdaqbcaGcbaqcLbsacaqG2baakiaawQa7aKqba+aadaWgaaWcba qcLbsapeGaamitaKqbaoaaBaaajiaibaqcLbmacaWGWbaameqaaKqz GeWdaiaacIcacaGGOaGaaGimaiaacYcacaWGubGaaiykaiaadYeaju aGdaWgaaqccasaaKqzadGaamyCaKqbaoaaBaaajiaybaqcLbkacaaI YaaajiaibeaaaWqabaqcfa4aaeWaaSqaaKqzGeGaeuyQdCfaliaawI cacaGLPaaaaeqaaKqzGeWdbiaaykW7aOqaaKqzGeGaey4kaSIaaiik aiabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcKfaG=haajuaGda WcaaqcKfaG=haajugWaiaad6eaaKazba4=baqcLbmacaaIYaGaamyC aKqbaoaaBaaajiaibaqcLbmacaaIYaaajiaibeaaaaaaaKqzGeWdai aacIcapeGaamyqaKqbaoaaBaaajqwaa+FaaKqzadGaam4AaiaadQga aSqabaqcLbsacaGGSaGae4xcXR0daiaacMcajuaGdaqbcaqaaaGaay PcSdWaaSbaaeaajugib8qacaWGmbqcfa4aaSbaaKqbGeaajugWaiab g6HiLcqcfayabaqcLbsapaGaaiikaiaacIcacaaIWaGaaiilaiaads facaGGPaGaaiilaiaadYeajuaGdaWgaaqcfasaaKqzadGaeyOhIuka juaGbeaadaqadaqaaKqzGeGaeuyQdCfajuaGcaGLOaGaayzkaaqcLb sacaGGPaaajuaGbeaapeWaauqaaeaaaiaawMa7aKqzGeGaeyipaWJa amiDaiabg6da+KqbaoaaCaaaleqajqwaa+FaaKqzadGaamOyaiabgk HiTiaacckajuaGdaWcaaqcKfaG=haajugWaiaad6eaaKazba4=baqc LbmacaaIYaGaamyCaKqbaoaaBaaajiaibaqcLbmacaaIYaaajiaibe aaaaaaaKqbaoaafiaakeaajugibiabgkGi2MqbaoaaBaaajeaibaqc LbmacaWG0baaleqaaKqzGeGaaeODaaGccaGLkWoajuaGpaWaaSbaaS qaaKqzGeWdbiaadYeajuaGdaWgaaqccasaaKqzadGaamiCaaadbeaa jugib8aacaGGOaGaaiikaiaaicdacaGGSaGaamivaiaacMcacaWGmb qcfa4aaSbaaKGaGeaajugWaiaadghajuaGdaWgaaqccasaaKqzGcGa aGOmaaqccasabaaameqaaKqbaoaabmaaleaajugibiabfM6axbWcca GLOaGaayzkaaaabeaajugibiaaykW7caaMc8Uaaiilaaaaaa@7C1A@

which, combined with (36), furnishes that

e ˜ T   [ < t > a g (v)] L p ( , L q ( Ω ) ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaykW7juaGdaqbdaGcbaqcLbsacaaMc8Uabmyzayaaiaqc fa4aaSbaaKazba4=baqcLbmacaWGubaaleqaaKqzGeGaaiiOaiaacU facqGH8aapcaWG0bGaeyOpa4tcfa4aaWbaaSqabKazba4=baqcLbma caWGHbaaaKqzGeGaaGPaVlaahEgacaqGOaGaaeODaiaabMcacaqGDb GaaGPaVdGccaGLjWUaayPcSdqcfa4aaSbaaeaajugibiaadYeajuaG daWgaaqcfasaaKqzadGaamiCaaqcfayabaqcLbsapaGaaiikaiabl2 riHkaacYcapeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbaajuaG beaajugibiaacIcacqqHPoWvcaGGPaWdaiaacMcapeGaaGPaVdqcfa yabaqcLbsacqGHKjYOcaWGdbGaaiikamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8heHKKaae4kaiaacUfacaWH2bGaai yxaSWaa0baaKazfaY=baqcLbmacaWGubaajqwbG8FaaKqzadGaaGOm aaaajugibiaacMcaaaa@83D0@ (47)

for any a [ 0 ,   b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadggacqGHiiIZjuaGpaWaamWaaOqaaKqzGeWdbiaaicda caGGSaGaaeiiaiaadkgaaOWdaiaawUfacaGLDbaaaaa@3F54@ and q     [ 1 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyicI4SaaeiiaKqba+aadaWadaGcbaqc LbsapeGaaGymaiaacYcacaqGGaGaamyCaKqbaoaaBaaajuaibaqcLb macaaIYaaajuaGbeaaaOWdaiaawUfacaGLDbaaaaa@440F@ .

Prolongation of local in time solutions

Before proving Theorem 1, we state a unique existence theorem of locally in time solutions to Eq. (5), which can be proved by a standard argumentation based on maximal Lp-Lq regularity theorem for the Stokes equations with free boundary condition.29,40

Theorem 7

Let N < q 2 < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob GaeyipaWJaamyCaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqz GeGaeyipaWJaeyOhIuQaaGPaVdaa@40AF@ and 2 < p < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaeyipaWJaamiCaiabgYda8iabg6HiLcaa@3BAF@ . Assume that 2/p + N/q2 < 1. Then, given T > 0, there exists an 0 >   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHii IZjuaGdaWgaaqcfasaaiaaicdaaKqbagqaaKqzGeaeaaaaaaaaa8qa cqGH+aGpcaqGGaGaaGimaaaa@3D42@ depending on T such that if initial data u 0 B q 2 , p 2 ( 1 1 / p ) ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabwhajuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaal8aa beaajugib8qacqGHiiIZcaWGcbWcdaqhaaqcbasaaKqzadGaamyCaS WaaSbaaKGaGeaajugWaiaaikdaaKGaGeqaaKqzadGaaiilaiaadcha aKqaGeaajugWaiaaikdapaGaaiika8qacaaIXaGaeyOeI0IaaGymai aac+cacaWGWbWdaiaacMcaaaqcLbsacaGGOaGaeuyQdCLaaiykaaaa @5057@ satisfies the condition:

u 0 B q 2 , p 2 ( 1 1 / p ) ( Ω ) 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aaqaaaaaaaaaWdbiaabwhapaWaaSbaaeaapeGaaGimaaWdaeqaaaGa ayzcSlaawQa7aOWaaSbaaSqaa8qacaWGcbWaa0baaWqaaiaadghada WgaaqaaiaaikdaaeqaaiaacYcacaWGWbaabaGaaGOma8aacaGGOaWd biaaigdacqGHsislcaaIXaGaai4laiaadchapaGaaiykaaaaliaacI cacqqHPoWvcaGGPaaabeaajugibiabgsMiJkabgIGioNqbaoaaBaaa juaibaGaaGimaaqcfayabaaaaa@4FAC@                 (48)

and the compatibility condition (9), then Eq. (5) admits unique solutions v and q with

v H p 1 ( ( 0 , T ) , L q 2 ( Ω ) N ) L p ( ( 0 , T ) , H q 2 2 ( Ω ) N ) ,       q L p ( ( 0 , T ) , H q 2 1     ( Ω ) + H ^ q 2 , 0 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahAhacqGHiiIZcaWGibWcdaqhaaqcbasaaKqzadGaamiC aaqcbasaaKqzadGaaGymaaaajugib8aacaGGOaGaaiika8qacaaIWa GaaiilaiaadsfapaGaaiyka8qacaGGSaGaamitaKqbaoaaBaaajeai baqcLbmacaWGXbWcdaWgaaqccasaaKqzadGaaGOmaaqccasabaaale qaamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuaajugibiaa=Hca cqqHPoWvcaWFPaqcfa4aaWbaaSqabKqaGeaajugWaiaa=5eaaaqcLb sapaGaaiyka8qacqGHPiYXcaWGmbqcfa4aaSbaaKqaGeaajugWaiaa dchaaSqabaqcLbsapaGaaiikaiaacIcapeGaaGimaiaacYcacaWGub WdaiaacMcapeGaaiilaiaadIealmaaDaaajeaibaqcLbmacaWGXbWc daWgaaqccasaaKqzadGaaGOmaaqccasabaaajeaibaqcLbmacaaIYa aaaKqzGeGaa8hkaiabfM6axjaa=LcajuaGdaahaaWcbeqcbasaaKqz adGaa8Ntaaaajugib8aacaGGPaWdbiaacYcacaGGGcGaaiiOaiaacc kacaaMc8+efv3ySLgzgjxyRrxDYbqehuuDJXwAKbIrYf2A0vNCaGGb ciab+Pc8XjabgIGiolaadYeajuaGdaWgaaqcbasaaKqzadGaamiCaa Wcbeaajugib8aacaGGOaGaaiika8qacaaIWaGaaiilaiaadsfapaGa aiyka8qacaGGSaGaamisaSWaa0baaKqaGeaajugWaiaadghalmaaBa aajiaibaqcLbmacaaIYaaajiaibeaaaKqaGeaajugWaiaaigdaaaqc LbsacaGGGcGaaiiOaiaa=HcacqqHPoWvcaWFPaGaey4kaSIabmisay aajaWcdaqhaaqcbasaaKqzadGaamyCaSWaaSbaaKGaGeaajugWaiaa ikdaaKGaGeqaaKqzadGaaiilaiaaicdaaKqaGeaajugWaiaaigdaaa qcLbsacaGGPaaaaa@ACC7@

Let T be a positive number > 2 and let v and q be solutions of Eq. (5) satisfying (13) and (3). In
view of Theorem 7, such solutions v and q exist uniquely provided that

u 0 B q 2 , p 2 ( 1 1 / p ) ( Ω ) 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aaqaaaaaaaaaWdbiaabwhapaWaaSbaaeaapeGaaGimaaWdaeqaaaGa ayzcSlaawQa7aOWaaSbaaSqaa8qacaWGcbWaa0baaWqaaiaadghada WgaaqaaiaaikdaaeqaaiaacYcacaWGWbaabaGaaGOma8aacaGGOaWd biaaigdacqGHsislcaaIXaGaai4laiaadchapaGaaiykaaaaliaacI cacqqHPoWvcaGGPaaabeaajugibiabgsMiJkabgIGioNqbaoaaBaaa juaibaGaaGimaaqcfayabaaaaa@4FAC@ (49)

Thus, we assume that 0 <   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaicdacqGH8aapcaaMc8UaaGPaVlabgIGiolaaykW7caaM c8UaeyizImQaaeiiaiabgIGioNqbaoaaBaaajuaibaqcLbmacaaIWa aajuaGbeaaaaa@4742@ in Theorem 1. Let [v]T and I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibabaaaaaaaaapeGa e8heHKeaaa@4130@ be the quantities defined in Theorem 1 in Sect. 1 Introduction. And then, if we prove that there exists a constant M > 0 independent of ϵ and T such that

[ v ] T M ( I +   [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeaeaaaaaaaaa8qacaWH2baak8aacaGLBbGaayzxaaqcfa4d bmaaBaaajeaibaqcLbmacaWGubaaleqaaKqzGeGaeyizImQaamyta8 aacaGGOaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGa peGae8heHKKaey4kaSIaaeiiaKqba+aadaWadaGcbaqcLbsapeGaaC ODaaGcpaGaay5waiaaw2faaSWaa0baaKqaGeaajugWaiaadsfaaKqa GeaajugWaiaaikdaaaqcLbsacaGGPaaaaa@5731@ (50)

then we can prolong v and q beyond T. Namely, there exist v1 and q1 with

v 1 H p 1   ( ( T , T + 1 ) , L q 2 ( Ω ) N ) L p ( ( T , T + 1 ) H q 2 2   ( Ω ) N ) , q 1 L p ( ( T , T + 1 ) , H q 2 1     ( Ω ) H ^ q 2 , 0 1 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaahAhajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugi biabgIGiolaadIealmaaDaaajeaibaqcLbmacaWGWbaajeaibaqcLb macaaIXaaaaKqzGeGaaiiOa8aacaGGOaGaaiikaiaadsfacaGGSaGa amivaiabgUcaRiaaigdacaGGPaGaaiila8qacaWGmbqcfa4aaSbaaK qaGeaajugWaiaadghalmaaBaaajiaibaqcLbmacaaIYaaajiaibeaa aSqabaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGqbaKqzGeGaa8 hkaiabfM6axjaa=LcajuaGdaahaaWcbeqcbasaaKqzadGaa8Ntaaaa jugib8aacaGGPaWdbiabgMIihlaadYeajuaGdaWgaaqcbasaaKqzad GaamiCaaWcbeaajugib8aacaGGOaGaaiikaiaadsfacaGGSaGaamiv aiabgUcaRiaaigdacaGGPaWdbiaadIealmaaDaaajeaibaqcLbmaca WGXbWcdaWgaaqccasaaKqzadGaaGOmaaqccasabaaajeaibaqcLbma caaIYaaaaKqzGeGaaiiOaiaa=HcacqqHPoWvcaWFPaqcfa4aaWbaaS qabKqaGeaajugWaiaa=5eaaaqcLbsacaGGPaGaaiilaiaaykW7caaM c8UaaGPaVlaaykW7tuuDJXwAKzKCHTgD1jharCqr1ngBPrgigjxyRr xDYbacgiGae4NkWhxcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacqGHiiIZcaWGmbqcfa4aaSbaaKqaGeaajugWaiaadchaaSqaba qcLbsapaGaaiikaiaacIcacaWGubGaaiilaiaadsfacqGHRaWkcaaI XaGaaiykaiaacYcapeGaamisaSWaa0baaKqaGeaajugWaiaadghalm aaBaaajiaibaqcLbmacaaIYaaajiaibeaaaKqaGeaajugWaiaaigda aaqcLbsacaGGGcGaaiiOaiaa=HcacqqHPoWvcaWFPaGabmisayaaja WcdaqhaaqcbasaaKqzadGaamyCaSWaaSbaaKGaGeaajugWaiaaikda aKGaGeqaaKqzadGaaiilaiaaicdaaKqaGeaajugWaiaaigdaaaqcLb sacaWFOaGaeuyQdCLaa8xkaiaacMcaaaa@BD03@

such that v1 and q1 are solutions to the equations:

{ t v 1 Div ( µ D ( v 1 ) q I ) = f ( v 1 ) , in Ω × ( T , T + 1 ) , div v 1 = g ( v 1 )   = div g ( v 1 ) in  Ω × ( T , T + 1 ) , ( µ D ( v 1 ) q I ) n = h ( v 1 ) on Γ × ( 0 , T ) , v 1 | t = T     = v( · , T)                   in Ω . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibabaaaaaaaaapeGaeyOaIyBcfa4aaSbaaKqb GeaajugWaiaadshaaKqbagqaaKqzGeGaaCODaKqbaoaaBaaajuaiba qcLbmacaaIXaaajuaGbeaajugibiabgkHiTiaabseacaqGPbGaaeOD a8aacaGGOaWdbiaadwlacaWHebWdaiaacIcapeGaaCODaKqbaoaaBa aajuaibaqcLbmacaaIXaaajuaGbeaajugib8aacaGGPaWdbiabgkHi Tmrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuGacqWFQa FCcaWHjbWdaiaacMcapeGaeyypa0JaaCOza8aacaGGOaWdbiaahAha juaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsapaGaaiyka8 qacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaeyAaiaab6gacaaMc8UaaGPaVlabfM6axjabgE na0+aacaGGOaGaamivaiaacYcacaWGubGaey4kaSIaaGymaiaacMca caGGSaaakeaajugib8qacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaabsgacaqGPbGaaeODaiaaykW7caWH2bqcfa4aaSbaaKqbGe aajugWaiaaigdaaKqbagqaaKqzGeGaeyypa0Jaam4za8aacaGGOaWd biaahAhajuaGdaWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsapa Gaaiyka8qacaqGGaGaeyypa0JaaeizaiaabMgacaqG2bGaaGPaVlaa hEgapaGaaiika8qacaWH2bqcfa4aaSbaaKqbGeaajugWaiaaigdaaK qbagqaaKqzGeWdaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+dbiaabMgacaqGUbGaae iiaiabfM6axjabgEna0+aacaGGOaGaamivaiaacYcacaWGubGaey4k aSIaaGymaiaacMcacaGGSaaakeaajugibiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7juaGdaqadaGcbaqcLbsapeGaamyTaiaahseapaGaai ika8qacaWH2bqcfa4aaSbaaKqbGeaajugWaiaaigdaaKqbagqaaKqz GeWdaiaacMcapeGaeyOeI0IaamyCaiaahMeaaOWdaiaawIcacaGLPa aajugib8qacaWHUbGaeyypa0JaaCiAa8aacaGGOaWdbiaahAhajuaG daWgaaqcfasaaKqzadGaaGymaaqcfayabaqcLbsapaGaaiykaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7peGaae 4Baiaab6gacaaMc8UaaGPaVlabfo5ahjabgEna0Mqba+aadaqadaGc baqcLbsapeGaaGimaiaacYcacaWGubaak8aacaGLOaGaayzkaaqcLb sacaGGSaaakeaajugib8qacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVNqbaoaaeiaabaqcLbsacaWH2bqcfa4aaSba aeaajugibiaaigdaaKqbagqaaaGaayjcSdWaaSbaaeaajugibiaads hacqGH9aqpcaWGubaajuaGbeaajugibiaacckacaGGGcGaeyypa0Ja aeODaiaabIcacaGG3cGaaiilaiaabsfacaqGPaGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caGGGcGaaiiOaiaaykW7caqG PbGaaeOBaiaaykW7caaMc8UaeuyQdCLaaiOlaaaak8aacaGL7baaaa a@9BA4@ (51)

Here, f (v1) is consisting of some linear combinations of nonlinear terms of the forms

V 0 ( 0 T ( ( κ v ) d s + T t ( ( κ v 1 ) d s ) ) 2 v 1 , V 1 ( 0 T ( ( κ v ) d s + T t ( ( κ v 1 ) d s ) 2 v 1 ) ) t v 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajuaG daqadaGcbaWaa8qmaeaaaSqaaKqzadGaaGimaaWcbaqcLbmacaWGub aaniabgUIiYdqcLbsacGaGaIV=aaGGOaGamaiG47paay4bIe9daiac aci++daacIcapeGamaiG47paaqOUdSMaiaiG47paaCODa8aacGaGaI V=aaGGPaWdbiacaci++daadsgacGaGaIV=aaWGZbGamaiG47paay4k aSIcdGaGaIV=aaWdXaqaiaiG47paaaWcbGaGaIV=aaqcLbmacGaGaI V=aaWGubaaleacaci++daajugWaiacaci++daadshaa0GamaiG47pa ay4kIipajugibiacaciu+daacIcacWaGacL=aaGHhis0paGaiaiGq5 paaiika8qacWaGacL=aaaH6oWAcGaGacL=aaWH2bqcfa4aiaiGq5pa aSbaaKqaGeacaciu+daajugWaiacaciu+daaigdaaSqajaiGq5paaa qcLbsapaGaiaiGq5paaiyka8qacGaGacL=aaWGKbGaiaiGq5paam4C aiacaciu+daacMcaaOGaayjkaiaawMcaaKqzGeGaey4bIeDcfa4aaW baaSqabKqaGeaajugWaiaaikdaaaqcLbsacaWH2bqcfa4aaSbaaKqa GeaajugWaiaaigdaaSqabaqcLbsacaGGSaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaamOvaKqbaoaaBaaajeaibaqcLbmacaaI XaaaleqaaKqbaoaabmaakeaadaWdXaqaaaWcbaqcLbmacaaIWaaale aajugWaiaadsfaa0Gaey4kIipajugibiacacib=daacIcacWaGasW= aaGHhis0paGaiaiGe8paaiika8qacWaGasW=aaaH6oWAcGaGasW=aa WH2bWdaiacacib=daacMcapeGaiaiGe8paamizaiacacib=daadoha cqGHRaWkkmaapedabaaaleaajugWaiaadsfaaSqaaKqzadGaamiDaa qdcqGHRiI8aKqzGeGaiGaGcIcacWacaA4bIe9daiaciaOGOaWdbiad iaiH6oWAcGacaEODaKqbaoacia4gaaqcbasaiGaGjugWaiaciaiIXa aaleqciaiajugib8aacGacakyka8qacGacaoizaiacia4GZbGaiGaG cMcacWacaA4bIeDcfa4aiGaGCaaaleqciaycbasaiGaGjugWaiacia iIYaaaaKqzGeGaiGaGhAhajuaGdGacaUbaaKqaGeaciaycLbmacGac aIymaaWcbKacacqcLbsacGacakykaaGccaGLOaGaayzkaaqcLbsacq GHciITjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugibiaabAha juaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaaa@1BFD@

V 1 ( 0 T ( ( κ v ) d s + T t ( ( κ v 1 ) d s ) ) ( 0 T ( ( κ v ) d s + T t ( ( κ v 1 ) d s ) 2 v 1 ) ) v 1 , ( 1 κ ) ( A ) 1 { v 1   ( A v 1 ) } ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamOvaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqa aKqbaoaabmaakeaadaWdXaqaaaWcbaqcLbmacaaIWaaaleaajugWai aadsfaa0Gaey4kIipajugibiaacIcacqGHhis0paGaaiika8qacqaH 6oWAcaWH2bWdaiaacMcapeGaamizaiaadohacqGHRaWkkmaapedaba aaleaajugWaiaadsfaaSqaaKqzadGaamiDaaqdcqGHRiI8aKqzGeGa aiikaiabgEGir=aacaGGOaWdbiabeQ7aRjaahAhajuaGdaWgaaqcba saaKqzadGaaGymaaWcbeaajugib8aacaGGPaWdbiaadsgacaWGZbGa aiykaaGccaGLOaGaayzkaaqcLbsacaaMc8UaaGPaVlaaykW7juaGda qadaGcbaWaa8qmaeaaaSqaaKqzadGaaGimaaWcbaqcLbmacaWGubaa niabgUIiYdqcLbsacaGGOaGaey4bIe9daiaacIcapeGaeqOUdSMaaC ODa8aacaGGPaWdbiaadsgacaWGZbGaey4kaSIcdaWdXaqaaaWcbaqc LbmacaWGubaaleaajugWaiaadshaa0Gaey4kIipajugibiaacIcacq GHhis0paGaaiika8qacqaH6oWAcaWH2bqcfa4aaSbaaKqaGeaajugW aiaaigdaaSqabaqcLbsapaGaaiyka8qacaWGKbGaam4CaiaacMcacq GHhis0juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaahAha juaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaacMcaaOGaay jkaiaawMcaaKqzGeGaey4bIeTaaCODaKqbaoaaBaaajeaibaqcLbma caaIXaaaleqaaKqbakaacYcaaOqaaKqzGeWdaiaacIcapeGaaGymai abgkHiTiabeQ7aR9aacaGGPaGaaiikaKqbaoaaCeaaleqajeaibaWe fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugWa8qacW a1a+hPIujaaKqzGeGaaCyqa8aacaGGPaWdbiabgkHiTiaaigdapaGa ai4Ea8qacaWH2bqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLb sacaGGGcWdaiaacIcajuaGpeWaaWraaSqabKqaGeaajugWaiad8c4F KksLaaqcLbsacaWHbbGaey4bIeTaaCODaKqbaoaaBaaajeaibaqcLb macaaIXaaaleqaaKqzGeWdaiaacMcacaGG9bWdbiaacUdaaaaa@CAC6@

and g ( v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefWuDJLgzHb YuH52CGuLBPn2BKvgaiuGajugibabaaaaaaaaapeGaa83zaKqba+aa daqadaGcbaqcLbsapeGaaeODaKqba+aadaWgaaqcbasaaKqzadWdbi aabgdaaSWdaeqaaaGccaGLOaGaayzkaaaaaa@4566@ , g(v1) and h(v1) have the following forms:

g ( v 1 ) = V 3 ( 0 T ( ( κ v ) d s + T t ( ( κ v 1 ) d s ) ) v 1 ; g ( v 1 ) = V 4 ( 0 T ( ( κ v ) d s + T t ( ( κ v 1 ) d s ) ) v 1 ; h ( v 1 ) = V 5 ( 0 T ( ( κ v ) d s + T t ( ( κ v 1 ) d s ) ) v 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaruat1n wAKfgitfMBZbsvUL2yVrwzaGqbcKqzGeaeaaaaaaaaa8qacaWFNbqc fa4damaabmaakeaajugib8qacaqG2bqcfa4damaaBaaajeaibaqcLb mapeGaaeymaaWcpaqabaaakiaawIcacaGLPaaajugibiabg2da9iaa dAfajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaajuaGpeWaaeWaaO qaamaapedabaaaleaajugWaiaaicdaaSqaaKqzadGaamivaaqdcqGH RiI8aKqzGeGaaiikaiabgEGir=aacaGGOaWdbiabeQ7aRjaahAhapa Gaaiyka8qacaWGKbGaam4CaiabgUcaROWaa8qmaeaaaSqaaKqzadGa amivaaWcbaqcLbmacaWG0baaniabgUIiYdqcLbsacaGGOaGaey4bIe 9daiaacIcapeGaeqOUdSMaaCODaKqbaoaaBaaajeaibaqcLbmacaaI XaaaleqaaKqzGeWdaiaacMcapeGaamizaiaadohacaGGPaaakiaawI cacaGLPaaajugibiabgEGirlaahAhajuaGdaWgaaqcbasaaKqzadGa aGymaaWcbeaajuaGcaaMc8Uaai4oaKqzGeGaaGPaVlaadEgajuaGpa WaaeWaaOqaaKqzGeWdbiaabAhajuaGpaWaaSbaaKqaGeaajugWa8qa caqGXaaal8aabeaaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaamOvaK qbaoaaBaaajeaibaqcLbmacaaI0aaaleqaaKqba+qadaqadaGcbaWa a8qmaeaaaSqaaKqzadGaaGimaaWcbaqcLbmacaWGubaaniabgUIiYd qcLbsacaGGOaGaey4bIe9daiaacIcapeGaeqOUdSMaaCODa8aacaGG PaWdbiaadsgacaWGZbGaey4kaSIcdaWdXaqaaaWcbaqcLbmacaWGub aaleaajugWaiaadshaa0Gaey4kIipajugibiaacIcacqGHhis0paGa aiika8qacqaH6oWAcaWH2bqcfa4aaSbaaKqaGeaajugWaiaaigdaaS qabaqcLbsapaGaaiyka8qacaWGKbGaam4CaiaacMcaaOGaayjkaiaa wMcaaKqzGeGaaeODaKqba+aadaWgaaqcbasaaKqzadWdbiacCbyGXa aal8aabeaakiaaykW7caGG7aaabaqcLbsapeGaaeiAaKqba+aadaqa daGcbaqcLbsapeGaaeODaKqba+aadaWgaaqcbasaaKqzadWdbiaabg daaSWdaeqaaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGwbGcdaWg aaqcbasaaiaaiwdaaSqabaqcfa4dbmaabmaakeaadaWdXaqaaaWcba qcLbmacaaIWaaaleaajugWaiaadsfaa0Gaey4kIipajugibiaacIca cqGHhis0paGaaiika8qacqaH6oWAcaWH2bWdaiaacMcapeGaamizai aadohacqGHRaWkkmaapedabaaaleaajugWaiaadsfaaSqaaKqzadGa amiDaaqdcqGHRiI8aKqzGeGaaiikaiabgEGir=aacaGGOaWdbiabeQ 7aRjaahAhajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugib8aa caGGPaWdbiaadsgacaWGZbGaaiykaaGccaGLOaGaayzkaaqcLbsacq GHhis0caWH2bqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcfaOa aGPaVlaacYcaaaaa@EF49@

where Vi are the same nonlinear functions as in (6) and (7).

In fact, the inequality (50) yields that there exists a small constant ε ( 0 , ε 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabew7aLjabgIGioNqbaoaajadabaqcLbsacaaIWaGaaiil aiabew7aLLqbaoaaBaaajuaibaqcLbmacaaIWaaajuaGbeaaaiaawI cacaGLDbaaaaa@4343@ such that if I ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGa e8heHKKaeyizImQaeqyTdugaaa@448A@ , then

[ v ] T     ( 2 M ) 1     ( 2 M ) 2     I = 2 M I + O ( I 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4waa baaaaaaaaapeGaaCODa8aacaGGDbWdbmaaBaaajuaibaGaamivaaqc fayabaGaaiiOaiaacckacqGHKjYOpaGaaiika8qacaaIYaGaamyta8 aacaGGPaWdbmaaCaaabeqcfasaaiabgkHiTiaaigdaaaqcfaOaaiiO aiaacckacqGHsisldaGcaaqaa8aacaGGOaWdbiaaikdacaWGnbWdai aacMcapeWaaWbaaeqajuaibaGaeyOeI0IaaGOmaaaajuaGcaGGGcGa aiiOaiabgkHiTmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfiGae8heHKeabeaacqGH9aqpcaaIYaGaamytaiab=brijjabgUca Riaad+eapaGaaiika8qacqWFqessdaahaaqabKqbGeaacaaIYaaaaK qba+aacaGGPaWdbiaac6caaaa@65BC@

Thus, we may assume that

[ v ] T     3 M I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4waa baaaaaaaaapeGaaCODa8aacaGGDbWdbmaaBaaajuaibaGaamivaaqc fayabaGaaiiOaiaacckacqGHKjYOcaaIZaGaamytamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8heHKeaaa@4B4F@ (52)

By (29) and (52) we have

v ( · ,   T   ) B q 2 , p 2 ( 1 1 / p ) ( Ω ) M 1 ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aaqaaaaaaaaaWdbiaahAhapaGaaiika8qacaGG3cGaaiilaiaaccka caWGubGaaiiOa8aacaGGPaWdbiablwIiqbWdaiaawMa7caGLkWoada Wgaaqaa8qacaWGcbWaa0baaKqbGeaacaWGXbqcfa4aaSbaaKazfa4= baGaaGOmaaqcfasabaGaaiilaiaadchaaeaacaaIYaWdaiaacIcape GaaGymaiabgkHiTiaaigdacaGGVaGaamiCa8aacaGGPaaaaKqbakaa cIcacqqHPoWvcaGGPaaabeaacqGHKjYOcaWGnbWaaSbaaKqbGeaaca aIXaaajuaGbeaacqaH1oqzaaa@599A@

with some positive constant M1 independent of T . Thus, noting that

0 T v ( · , t ) L ( Ω )   d t C ( 0 T <   t > b p d s ) 1 / p [ v ] T   M 2 ϵ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWdXaqaaaqcKbaq=haacaaIWaaabaGaamivaaGccqGHRiI8aKqb akadaciC=daalwIiqjadaciC=daagEGirlacaciC=daahAhapaGaia iGW9paaiika8qacGaGac3=aaGG3cGaiaiGW9paaiilaiacaciC=daa dshapaGaiaiGW9paaiyka8qacWaGac3=aaWILicucGaGac3=aaWGmb WaiaiGW9paaSbaaKqbGeacaciC=daacWaGac3=aaGHEisPaKqbagqc aciC=daaa8aadGaGac3=aaqadaqaiaiGW9paa8qacWaGac3=aaqHPo Wva8aacGaGac3=aaGLOaGaiaiGW9paayzkaaWdbiacaciC=daaccka cGaGac3=aaWGKbGaiaiGW9paamiDaiabgsMiJkaadoeacaaMc8+aae Waaeaakmaapedabaaajqgaa9FaaiaaicdaaeaacaWGubaakiabgUIi YdqcfaOamaiG08paayipaWJaiaiG08paaeiiaiacacin=daadshacW aGasZ=aaGH+aGpdGaGasZ=aaahaaqajaiG08paaKqbGeacacin=daa cWaGasZ=aaGHsislcGaGasZ=aaWGIbGajaiG08paamiCayacacin=d aafaaaaKqbakacacin=daadsgacGaGasZ=aaWGZbaacaGLOaGaayzk aaWaaWbaaeqajuaibaGaaGymaiaac+caceWGWbGbauaaaaqcfa4dam aadmaabaWdbiaahAhaa8aacaGLBbGaayzxaaWdbmaaBaaajuaibaGa amivaiaacckaaKqbagqaaiabgsMiJkaad2eadaWgaaqcfasaaiaaik daaKqbagqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac fiGae8x9dipaaa@D031@

with some positive constant M2 independent of T, choosing ϵ   > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGajuaGqaaaaaaaaaWdbiab =bcaGiab=v=aYlaabccacqGH+aGpcaaIWaaaaa@45C9@ smaller if necessary, we can show the existence of v1 and q1. Thus, setting

v 2 ( , t ) = { v ( , t )             0 <   t   < T , v 1 ( · , t )       T   <   t   <   T + 1 , q 2 = { q ( , t )             0 <   t < T , q 2 ( · , t )       T <   t <   T + 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8UaaGPaVlaabAhadaWgaaqcfasaaiaabkdaaKqbagqa a8aacaGGOaWdbiaacYcacaWG0bWdaiaacMcacqGH9aqpdaGabaabae qabaWdbiaahAhapaGaaiika8qacaGGSaGaamiDa8aacaGGPaWdbiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaicdacqGH8aapca qGGaGaamiDaiaabccacqGH8aapcaWGubGaaiilaaqaaiaahAhadaWg aaqcfasaaiaaigdaaKqbagqaa8aacaGGOaWdbiaacElacaGGSaGaam iDa8aacaGGPaWdbiaacckacaGGGcGaaiiOaiaadsfacaGGGcGaeyip aWJaaeiiaiaadshacaqGGaGaeyipaWJaaeiiaiaadsfacqGHRaWkca aIXaGaaiilaaaapaGaay5EaaGaaGPaVlaaykW7caaMc8UaaGPaVprr 1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuGacqWFQaFCpe WaaSbaaKqbGeaacaqGYaaajuaGbeaacqGH9aqppaWaaiqaaqaabeqa aiab=Pc8XjaacIcapeGaaiilaiaadshapaGaaiyka8qacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaaIWaGaeyipaWJaaeiiaiaa dshacqGH8aapcaWGubGaaiilaaqaa8aacqWFQaFCpeWaaSbaaKqbGe aacaqGYaaajuaGbeaapaGaaiika8qacaGG3cGaaiilaiaadshapaGa aiyka8qacaGGGcGaaiiOaiaacckacaWGubGaeyipaWJaaeiiaiaads hacqGH8aapcaqGGaGaamivaiabgUcaRiaaigdacaGGSaaaa8aacaGL 7baacaaMc8oaaa@A646@

we see that v2 and q2 satisfy the regularity condition:

v 2     H p 1     ( ( 0 , T + 1 ) , L q 2 ( Ω ) N ) L p ( ( 0 , T + 1 ) , H q 2 2     ( Ω ) ) , q 2     L p ( ( 0 , T + 1 ) , H q 2 1     ( Ω ) + H ^ q 2 , 0 1   ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH2bGcdaWgaaWcbaGaaGOmaaqabaGccaGGGcGaaiiOaiab gIGioNqbakaadIealmaaDaaabaqcLbmacaWGWbaaleaajugWaiaaig daaaGccaGGGcGaaiiOaKqbaoaabmaabaWdaiaacIcapeGaaGimaiaa cYcacaWGubGaey4kaSIaaGyma8aacaGGPaWdbiaacYcacaaMc8Uaam itamaaBaaajuaibaGaamyCaKqbaoaaBaaajuaibaGaaGOmaaqabaaa juaGbeaacaGGOaGaeuyQdCLaaiyka8aadaahaaqabeaajugWaiaac6 eaaaaajuaGpeGaayjkaiaawMcaaOWdaiaaykW7juaGpeGaeyykICSa aGPaVlaadYeadaWgaaqcfasaaiaadchaaKqbagqaamaabmaabaWdai aacIcapeGaaGimaiaacYcacaWGubGaey4kaSIaaGyma8aacaGGPaWd biaacYcacaWGibWaa0baaKqbGeaajaaicaWGXbGcdaWgaaWcbaGaaG OmaaqcbasabaaajuaibaGaaGOmaaaajuaGcaGGGcGaaiiOaiaacIca cqqHPoWvcaGGPaaacaGLOaGaayzkaaGaaiilaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7tuuD JXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfiGae8NkWh3aaS baaKqbGeaacaaIYaaajuaGbeaacaGGGcGaaiiOaiabgIGiolaadYea daWgaaqcfasaaiaadchaaKqbagqaamaabmaabaWdaiaacIcapeGaaG imaiaacYcacaWGubGaey4kaSIaaGyma8aacaGGPaWdbiaacYcacaWG ibWaa0baaKqbGeaajaaicaWGXbGcdaWgaaWcbaGaaGOmaaqcbasaba aajuaibaGaaGymaaaacaGGGcqcfaOaaiiOa8aadaqadaqaa8qacqqH PoWva8aacaGLOaGaayzkaaGaey4kaSYdbiqadIeagaqcamaaDaaaju aibaqcaaIaamyCaOWaaSbaaSqaaiaaikdacaGGSaGaaGimaaqabaaa juaibaGaaGymaaaajuaGcaGGGcGaaiikaiabfM6axjaacMcaaiaawI cacaGLPaaaaaa@B3F6@

and Eq. (5) replacing T by T + 1. Repeating this argument, we can prolong v to time interval ( 0 , ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikaa baaaaaaaaapeGaaGimaiaacYcacqGHEisPpaGaaiykaaaa@3AE7@ .

This completes the proof of Theorem 1. Therefore, we prove (50).

A Proof of Theorem 1

Let v and q be the same N-vector of functions and the function as in Sect. 4. We prove that v satisfies (50). And, we recall that T > 2. As was seen in Sect. 2, v and q satisfy Eq. (26). To estimate v, we write v by, v = w + u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqG2bGaaeiiaiaab2dacaqGGaGaae4DaiaabccacaqGRaGa aeiiaiaabwhaaaa@3D89@ where w is a solution to the equations:

{ t w + λ 0 w J ( T ) 1 Div s ˜ ( w , r ) = f ( v ) in Ω × ( 0 , T ) , div w = e ˜ T  [g(v)]=div e ˜ T [g(v)]           in Ω × ( 0 , T ) , s ˜ ( w , r ) = e ˜ T [ h ]                               on Γ × ( 0 , T ) , w | t = 0     = u 0                            in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaq aabeqaaKqzGeaeaaaaaaaaa8qacqGHciITjuaGdaWgaaqcfasaaKqz adGaamiDaaqcfayabaqcLbsacaWH3bGaey4kaSIaeq4UdWwcfa4aaS baaKqbGeaajugWaiaaicdaaKqbagqaaKqzGeGaaC4DaiabgkHiTiaa dQeapaGaaiika8qacaWGubWdaiaacMcajuaGpeWaaWbaaeqajuaiba qcLbmacqGHsislcaaIXaaaaKqzGeGaaeiraiaabMgacaqG2bqcfa4a aacaaeaajugibiaaykW7ieqakiaa=nhaaKqbakaawoWaaKqzGeWdai aacIcapeGaaC4DaiaacYcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgi gjxyRrxDYbacfiGae43kWl3daiaacMcapeGaeyypa0JaaCOza8aaca GGOaWdbiaahAhapaGaaiykaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaV=qaca qGPbGaaeOBaiaaykW7cqqHPoWvcaaMc8Uaey41aqRaaGPaV=aacaGG OaWdbiaaicdacaGGSaGaamiva8aacaGGPaWdbiaacYcaaKqba+aaba qcLbsapeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caqGKbGaaeyAaiaabAhacaaMc8UaaC4Daiaab2dacaaMc8 Ecfa4aaacaaeaajugibiaabwgaaKqbakaawoWaamaaBaaajqwba9Fa aKqzadGaaeivaaqcfayabaqcLbsacaqGGcWdaiaabUfapeGaae4za8 aacaqGOaWdbiaabAhapaGaaeykaiaab2fapeGaaeypaiaabsgacaqG PbGaaeODaiaaykW7caaMc8Ecfa4aaacaaeaajugibiaabwgaaKqbak aawoWaamaaBaaajqwba9FaaKqzadGaaeivaaqcfayabaqcLbsapaGa ae4wa8qacaqGNbWdaiaabIcapeGaaeODa8aacaqGPaGaaeyxa8qaca qGGcGaaeiOaiaacckacaGGGcGaaiiOaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caGGGcGaaeyAaiaab6gacaaMc8Uaeu yQdCLaaGPaVlabgEna0kaaykW7paGaaiika8qacaaIWaGaaiilaiaa dsfapaGaaiyka8qacaGGSaaajuaGpaqaaKqzGeWdbiaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7juaGdaaiaaqaaKqzGeGaaGPaVRGaa83Caaqc faOaay5adaqcLbsapaGaaiika8qacaWH3bGaaiilaiab+Tc8Y9aaca GGPaWdbiabg2da9iaaykW7caaMc8Ecfa4aaacaaeaajugibiaabwga aKqbakaawoWaamaaBaaajqwba9FaaKqzadGaaeivaaqcfayabaqcLb sapaGaai4wa8qacaWHObWdaiaac2fapeGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaae4Baiaab6gacaaMc8UaaGPaVlab fo5ahjaaykW7cqGHxdaTcaaMc8UaaGPaV=aacaGGOaWdbiaaicdaca GGSaGaamiva8aacaGGPaWdbiaacYcaaKqbagaajugibiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH3bWd aiaacYhajuaGpeWaaSbaaeaajugibiaadshacqGH9aqpcaaIWaaaju aGbeaajugibiaacckacaGGGcGaeyypa0JccaWF1bqcfa4aaSbaaeaa jugibiaaicdaaKqbagqaaKqzGeGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaaykW7caaMc8UaaeiOaiaabMgacaqGUbGaaGPaVlaaykW7ca aMc8UaeuyQdCfaaKqba+aacaGL7baaaaa@D3A4@ (53)

with some pressure term r, and u is a solution to the equations:

{ t u J ( T ) 1 Div S ˜ ( u , p ) = λ 0 w in Ω × ( 0 , T ) , div u = 0           in Ω × ( 0 , T ) , S ˜ ( u , p ) = 0               on Γ × ( 0 , T ) , u | t = 0     = 0          in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaq aabeqaaKqzGeaeaaaaaaaaa8qacqGHciITjuaGdaWgaaqcfasaaKqz adGaamiDaaqcfayabaqcLbsacaqG1bGaeyOeI0IaamOsa8aacaGGOa WdbiaadsfapaGaaiykaKqba+qadaahaaqabKqbGeaajugWaiabgkHi TiaaigdaaaqcLbsacaqGebGaaeyAaiaabAhacaaMc8UabC4uayaaia WdaiaacIcacaGG1bGaaiilamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgz GyKCHTgD1jhaiuaajuaGpeGae8xkWdxcLbsapaGaaiyka8qacqGH9a qppaGaeyOeI0Iaeq4UdWwcfa4aaSbaaKqbGeaajugWaiaaicdaaKqb agqaaKqzGeGaae4DaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7peGa aeyAaiaab6gacaaMc8UaeuyQdCLaaGPaVlabgEna0kaaykW7paGaai ika8qacaaIWaGaaiilaiaadsfapaGaaiyka8qacaGGSaaajuaGpaqa aKqzGeWdbiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaabsgacaqGPbGaaeODaiaaykW7caqG1bGaaGPaVlaab2daca aMc8UaaeimaiaabckacaqGGcGaaiiOaiaacckacaGGGcGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaacckacaqGPbGaaeOBaiaaykW7cqqHPoWvcaaMc8Uaey41aqRa aGPaV=aacaGGOaWdbiaaicdacaGGSaGaamiva8aacaGGPaWdbiaacY caaKqba+aabaqcLbsapeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UabC 4uayaaiaWdaiaacIcacaGG1bGaaiilaKqba+qacqWFPapCjugib8aa caGGPaGaaGPaV=qacqGH9aqpcaaMc8UaaGPaVNqba+aacaaIWaqcLb sapeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaiiOaiaacckacaqGVbGaae OBaiaaykW7caaMc8Uaeu4KdCKaaGPaVlabgEna0kaaykW7caaMc8+d aiaacIcapeGaaGimaiaacYcacaWGubWdaiaacMcapeGaaiilaaqcfa yaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaabwhapaGaaiiFaKqba+qadaWgaaqaaKqzGeGaamiD aiabg2da9iaaicdaaKqbagqaaKqzGeGaaiiOaiaacckacqGH9aqpca aIWaGaaiiOaiaacckacaGGGcGaaiiOaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caqGGcGaaeyAaiaab6gacaaMc8UaaG PaVlaaykW7cqqHPoWvaaqcfa4daiaawUhaaaaa@EE23@ (54)

To estimate w, we quote the maximal Lp-Lq regularity theorem due to Shibata.33 Let us consider the equations:

{ t w + λ 0 w J ( T ) 1 D i v S ˜ ( w , r ) = f in Ω × ( 0 , T ) , div ˜ w = g = d i v g           in Ω × ( 0 , T ) , S ˜ ( w , r ) = h               on Γ × ( 0 , T ) , w | t = 0     = w 0           in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqajuaGbaqcLbsaqaaaaaaaaaWdbiabgkGi2MqbaoaaBaaa juaibaqcLbmacaWG0baajuaGbeaajugibiaahEhacqGHRaWkcqaH7o aBjuaGdaWgaaqcfasaaKqzadGaaGimaaqcfayabaqcLbsacaWH3bGa eyOeI0IaamOsa8aacaGGOaWdbiaadsfapaGaaiykaKqba+qadaahaa qabKqbGeaajugWaiabgkHiTiaaigdaaaqcLbsacaaMc8UaaGPaVlaa ykW7caWGebGaamyAaiaadAhacaaMc8UabC4uayaaiaWdaiaacIcape GaaC4DaiaacYcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxD YbacfiGae83kWl3daiaacMcapeGaeyypa0JaaCOza8aacaaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8+dbiaabMgacaqGUbGaaGPaVlabfM6axjaaykW7cqGHxdaT caaMc8+daiaacIcapeGaaGimaiaacYcacaWGubWdaiaacMcapeGaai ilaaqcfa4daeaajugib8qacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7juaGdaaiaaqaaKqzGeGaaeizaiaabMgacaqG 2baajuaGcaGLdmaajugibiaaykW7caWH3bGaeyypa0Jaam4zaiabg2 da9iaadsgacaWGPbGaamODaiaaykW7caWHNbGaaeiOaiaacckacaGG GcGaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caGGGcGaaeyAaiaab6gacaaMc8UaeuyQ dCLaaGPaVlabgEna0kaaykW7paGaaiika8qacaaIWaGaaiilaiaads fapaGaaiyka8qacaGGSaaajuaGpaqaaKqzGeWdbiaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlqahofagaaca8aacaGGOaWdbiaahEhacaGGSaGa e83kWl3daiaacMcapeGaeyypa0JaaCiAaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaacckacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caGGGcGaae4Baiaab6gacaaMc8UaaGPaVlabfo5ahjaaykW7cq GHxdaTcaaMc8UaaGPaV=aacaGGOaWdbiaaicdacaGGSaGaamiva8aa caGGPaWdbiaacYcaaKqbagaajugibiaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWH3bWdaiaacYhajuaGpe WaaSbaaeaajugibiaadshacqGH9aqpjug4aiaaicdaaKqbagqaaKqz GeGaaiiOaiaacckacqGH9aqpcaWH3bqcfa4aaSbaaKqbGeaajugWai aaicdaaKqbagqaaKqzGeGaaiiOaiaacckacaGGGcGaaiiOaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caqGGcGaaGPaVlaaykW7caaMc8Ua aeyAaiaab6gacaaMc8UaaGPaVlaaykW7cqqHPoWvaaqcfa4daiaawU haaKqzGeGaaGPaVlaaykW7caaMc8EcfaOaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVdaa@3701@ (55)

And then, we have

Theorem 8

Let Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabfM6axbaa@3833@ be an exterior domain in N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqWIDesOdaahaaqabeaacaWGobaaaaaa@3909@ whose boundary Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHtoWraaa@380C@ is a C2 hyper surface. Let 1 <   p ,   q < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaeyipaWJaaeiiaiaadchacaGGSaGaaGPaVlaabcca caWGXbGaeyipaWJaeyOhIukaaa@4044@ and T > 0. Assume that

w 0 B q , p 2 ( 1 1 / p ) ( Ω ) , f L p ( ( 0 , T ) , L q ( Ω ) N ) , g H p 1 2 ( ,   L q ( Ω ) ) L p ( ,   H q 1   ( Ω ) ) , g H p 1 ( ,   L q ( Ω ) N ) , h H p 1 2 ( ,   L q ( Ω ) N ) L p ( ,   H q 1   ( Ω ) N ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaabEhadaWgaaqcfasaaiaabcdaaKqbagqaaiabgIGi olaadkeadaqhaaqcfasaaiaadghacaGGSaGaamiCaaqaaiaaikdapa Gaaiika8qacaaIXaGaeyOeI0IaaGymaiaac+cacaWGWbWdaiaacMca aaqcfaOaaiikaiabfM6axjaacMcacaGGSaGaaGPaVlaaykW7caqGMb WdbiabgIGiolaadYeadaWgaaqcfasaaiaadchaaKqbagqaa8aacaGG OaGaaiika8qacaaIWaGaaiilaiaadsfapaGaaiyka8qacaGGSaGaam itamaaBaaajuaibaGaamyCaaqcfayabaGaaiikaiabfM6axjaacMca daahaaqabKqbGeaacaGGobaaaKqbakaacMcacaGGSaGaaGPaVlaayk W7tCvAUfKttLearyqtPnMCVn3BMrhiufwAGWuzaGqbciab=DgaNjab gIGiolaadIeadaqhaaqcfasaaiaadchaaeaajuaGdaWcaaqcfasaai aaigdaaeaacaaIYaaaaaaajuaGpaGaaiika8qacqWIDesOcaGGSaGa aeiiaiaadYeadaWgaaqcfasaaiaadghaaKqbagqaaiaacIcacqqHPo WvcaGGPaGaaiykaiaaykW7cqGHPiYXcaWGmbWaaSbaaKqbGeaacaWG WbaajuaGbeaapaGaaiika8qacqWIDesOcaGGSaGaaeiiaiaadIeada qhaaqcfasaaiaadghaaeaacaaIXaaaaKqbakaacckacaGGOaGaeuyQ dCLaaiykaiaacMcacaGGSaaakeaajuaGcaGGNbGaeyicI4Saamisam aaDaaajuaibaGaamiCaaqaaiaaigdaaaqcfa4daiaacIcapeGaeSyh HeQaaiilaiaabccacaWGmbWaaSbaaKqbGeaacaWGXbaajuaGbeaaca GGOaGaeuyQdCLaaiykamaaCaaabeqcfasaaiaac6eaaaqcfaOaaiyk aiaacYcacaaMc8UaaGPaVlaacIgacqGHiiIZcaWGibWaa0baaKqbGe aacaWGWbaabaqcfa4aaSaaaKqbGeaacaaIXaaabaGaaGOmaaaaaaqc fa4daiaacIcapeGaeSyhHeQaaiilaiaabccacaWGmbWaaSbaaKqbGe aacaWGXbaajuaGbeaacaGGOaGaeuyQdCLaaiykamaaCaaabeqcfasa aiaac6eaaaqcfaOaaiykaiabgMIihlaadYeadaWgaaqcfasaaiaadc haaKqbagqaa8aacaGGOaWdbiabl2riHkaacYcacaqGGaGaamisamaa DaaajuaibaGaamyCaaqaaiaaigdaaaqcfaOaaiiOaiaacIcacqqHPo WvcaGGPaWaaWbaaeqajuaibaGaaiOtaaaajuaGcaGGPaaaaaa@C7E7@

and that w0 satisfies the compatibility condition:

w 0 g | t = 0 B q , p 2 ( 1 1 / p ) ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqG3bWaaSbaaKqbGeaacaqGWaaajuaGbeaacqGHsislcaGG NbWaaqqaaeaadaWgaaqaaiaadshacqGH9aqpcaaIWaaabeaaaiaawE a7aiabgIGiolaadkeadaqhaaqcfasaaiaadghacaGGSaGaamiCaaqa aiaaikdapaGaaiika8qacaaIXaGaeyOeI0IaaGymaiaac+cacaWGWb WdaiaacMcaaaqcfaOaaiikaiabfM6axjaacMcaaaa@4E6D@

and in addition

( µ D ( w 0 ) h | t = 0 ) τ     = 0       o n Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa aeaaaaaaaaa8qacaWG1cGaaCira8aacaGGOaWdbiaahEhajuaGdaWg aaqcbasaaKqzadGaaGimaaWcbeaajugib8aacaGGPaWdbiabgkHiTi aahIgapaGaaiiFaKqba+qadaWgaaWcbaqcLbsacaWG0bGaeyypa0Ja aGimaaWcbeaajugib8aacaGGPaqcfa4dbmaaBaaabaGaeqiXdqhabe aajugibiaacckacaGGGcGaeyypa0JaaGimaiaacckacaGGGcGaaiiO aiaad+gacaWGUbGaaGPaVlaaykW7cqqHtoWraaa@588B@

If 2 / p +   1 / q <   1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaai4laiaadchacqGHRaWkcaqGGaGaaGymaiaac+ca caWGXbGaeyipaWJaaeiiaiaaigdaaaa@3F53@ , where d τ   =   d   < d ,   n > n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGKbWaaSbaaSqaaiabes8a0bqabaGccaGGGcGaeyypa0Jaaeii aiaadsgacqGHsislcaGGGcGaeyipaWJaamizaiaacYcacaqGGaGaam OBaiabg6da+iaad6gaaaa@44EF@ . Then, there exists a positive number λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBdaWgaaqcfasaaiaaicdaaKqbagqaaaaa@39EF@ such that Eq. (55) admits unique solutions w and r with

w L p ( ( 0 , T ) , H q 2 ( Ω ) N ) H p 1   ( ( 0 , T ) , L q   ( Ω ) N ) ,     r L p ( ( 0 , T ) , H q 1 ( Ω ) + H ^ q , 0 2 ( Ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH3bGaeyicI4SaamitamaaBaaajuaibaGaamiCaaqcfaya baWdaiaacIcacaGGOaWdbiaaicdacaGGSaGaamiva8aacaGGPaWdbi aacYcacaWGibWaa0baaKqbGeaacaWGXbaabaGaaGOmaaaapaGaaiik aKqbakabfM6axjaacMcadaahaaqabKqbGeaacaGGobaaaKqbakaacM capeGaeyykICSaamisamaaDaaajuaibaGaamiCaaqaaiaaigdaaaqc faOaaiiOa8aacaGGOaGaaiika8qacaaIWaGaaiilaiaadsfapaGaai yka8qacaGGSaGaamitamaaBaaajuaibaGaamyCaaqcfayabaGaaiiO a8aacaGGOaGaeuyQdCLaaiykamaaCaaabeqcfasaaiaac6eaaaqcfa Oaaiyka8qacaGGSaGaaiiOaiaacckatuuDJXwAKzKCHTgD1jharyqr 1ngBPrgigjxyRrxDYbacfaGae83kWlNaeyicI4SaamitamaaBaaaju aibaGaamiCaaqcfayabaWdaiaacIcacaGGOaWdbiaaicdacaGGSaGa amiva8aacaGGPaWdbiaacYcacaWGibWaa0baaKqbGeaacaWGXbaaba GaaGymaaaajuaGpaGaaiikaiabfM6axjaacMcapeGaey4kaSIabmis ayaajaWaa0baaKqbGeaacaWGXbGaaiilaiaaicdaaeaacaaIYaaaaK qba+aacaGGOaGaeuyQdCLaaiykaiaacMcaaaa@8725@

Possessing the estimate:

w L p ( ( 0 , T   ) , H q 2 ( Ω ) )     + t w   L p ( ( 0 , T   ) , L q ( Ω ) )     C q { w 0 B q , p 2 ( 1 1 / p ) ( Ω ) + f   L p ( ( 0 , T   ) , L q ( Ω ) ) + ( g , h ) H p 1 2 ( ,   L q ( Ω ) ) ( g ,   h ) L p ( , L q   ( Ω ) )   +   t g L p ( , L q   ( Ω ) ) } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafmaabaGaaC4DaaGaayzcSlaawQa7amaaBaaabaGa amitamaaBaaabaGaamiCaaqabaWdaiaacIcacaGGOaWdbiaaicdaca GGSaGaamivaiaacckapaGaaiyka8qacaGGSaGaamisamaaDaaabaGa amyCaaqaaiaaikdaaaGaaiikaiabfM6axjaacMcapaGaaiyka8qaca GGGcaabeaacaGGGcGaey4kaSYaauWaaeaacqGHciITdaWgaaqcfasa aiaadshaaeqaaKqbakaahEhaaiaawMa7caGLkWoacaGGGcWaaSbaae aacaWGmbWaaSbaaeaacaWGWbaabeaapaGaaiikaiaacIcapeGaaGim aiaacYcacaWGubGaaiiOa8aacaGGPaWdbiaacYcacaWGmbWaaSbaae aacaWGXbaabeaacaGGOaGaeuyQdCLaaiyka8aacaGGPaaapeqabaGc caGGGcqcfaOaeyizImQaaiiOaiaadoeadaWgaaqcfasaaiaadghaaK qbagqaamaaceaabaWdamaafmaabaWdbiaahEhadaWgaaqaaiaaicda aeqaaaWdaiaawMa7caGLkWoadaWgaaqaa8qacaWGcbWaa0baaeaaca WGXbGaaiilaiaadchaaeaacaaIYaWdaiaacIcapeGaaGymaiabgkHi TiaaigdacaGGVaGaamiCa8aacaGGPaaaaiaacIcacqqHPoWvcaGGPa aabeaacqGHRaWkpeGaeSyjIaLaaCOzaiaacckacqWILicucaWGmbWa aSbaaeaacaWGWbaabeaapaGaaiikaiaacIcapeGaaGimaiaacYcaca WGubGaaiiOa8aacaGGPaWdbiaacYcacaWGmbWaaSbaaeaacaWGXbaa beaacaGGOaGaeuyQdCLaaiyka8aacaGGPaaapeGaay5Eaaaapaqaai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaaciaabaWdbiabgUcaRm aafmaabaWdaiaacIcatCvAUfKttLearyqtPnMCVn3BMrhiufwAGWuz aGqbc8qacqWFNbWzcaGGSaGaaCiAa8aacaGGPaaapeGaayzcSlaawQ a7amaaBaaabaGaamisamaaDaaajuaibaGaamiCaaqaaKqbaoaalaaa juaibaGaaGymaaqaaiacacfIYaaaaaaajuaGpaGaaiika8qacqWIDe sOcaGGSaGaaeiiaiaadYeadaWgaaqcfasaaiaadghaaKqbagqaaiaa cIcacqqHPoWvcaGGPaGaaiykaaqabaWaauWaaeaapaGaaiika8qacq WFNbWzcaGGSaGaaiiOaiaahIgapaGaaiykaaWdbiaawMa7caGLkWoa caWGmbWaaSbaaKqbGeaacaWGWbaajuaGbeaapaGaaiika8qacqWIDe sOcaGGSaGaamitamaaBaaajuaibaGaamyCaaqcfayabaGaaiiOaiaa cIcacqqHPoWvcaGGPaWdaiaacMcapeGaaiiOaiabgUcaRiaacckada qbdaqaaiabgkGi2oaaBaaajuaibaGaamiDaaqcfayabaGaaC4zaaGa ayzcSlaawQa7amaaBaaabaGaamitamaaBaaajuaibaGaamiCaaqcfa yabaWdaiaacIcapeGaeSyhHeQaaiilaiaadYeadaWgaaqcfasaaiaa dghaaKqbagqaaiaacckacaGGOaGaeuyQdCLaaiyka8aacaGGPaaape qabaaapaGaayzFaaWdbiaacYcaaaaa@5943@

where Cq is a constant that depends on q but is independent of T. Applying Theorem 8 yields that there exists a large λ 0 > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBdaWgaaqcfasaaiaaicdaaKqbagqaaiabg6da+iaa icdaaaa@3BB1@ such that Eq. (53) admits unique solutions w and r with

w H p 1 ( ( 0 , T ) , L q ( Ω ) N ) L p   ( ( 0 , T ) , H q 2 ( Ω ) N )     ( q q 1 2 , q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH3bGaaGPaVlabgIGiolaaykW7caWGibWaa0baaKqbGeaa caWGWbaabaGaaGymaaaajuaGpaGaaiikaiaacIcapeGaaGimaiaacY cacaWGubWdaiaacMcapeGaaiilaiaadYeadaWgaaqcfasaaiaadgha aKqbagqaa8aacaGGOaGaeuyQdCLaaiykamaaCaaabeqcfasaaiaac6 eaaaqcfaOaaiykaiaaykW7peGaeyykICSaaGPaVlaadYeadaWgaaqc fasaaiaadchaaKqbagqaaiaacckapaGaaiikaiaacIcapeGaaGimai aacYcacaWGubWdaiaacMcapeGaaiilaiaadIeadaqhaaqcfasaaiaa dghaaeaacaaIYaaaaKqba+aacaGGOaGaeuyQdCLaaiykamaaCaaabe qcfasaaiaac6eaaaqcfaOaaiyka8qacaGGGcGaaiiOaiaaykW7caaM c8+aaeWaaeaacaGGXbGaaGPaVlaaykW7cqGHiiIZcaaMc8UaaGPaVl aaykW7daWccaqaaiaacghadaWgaaqcfasaaiaaigdaaeqaaaqcfaya aiaaikdaaaGaaiilaiaacghadaWgaaqcfasaaiaaikdaaKqbagqaaa GaayjkaiaawMcaaaaa@7AF7@

Possessing the estimate:

( < t > b t w L p ( ( 0 , T ) L q 1 / 2 ( Ω ) L q 2 ( Ω ) ) + < t > b t w L p ( ( 0 , T ) , H q 1 / 2 2 ( Ω ) H q 2 2 ( Ω ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaWaauqaaeaaaiaawMa7aiabgYda8iaadshacqGH+aGp daahaaqabKqbGeaacaWGIbaaaKqbaoaafiaabaGaeyOaIy7aaSbaaK qbGeaacaWG0baajuaGbeaacaqG3baacaGLkWoapaWaaSbaaKqbGeaa peGaamitaKqbaoaaBaaajuaibaGaamiCaaqabaWdaiaacIcacaGGOa GaaGimaiaacYcacaWGubGaaiykaiaadYeajuaGdaWgaaqcfasaa8qa caGGXbqcfa4aaSbaaKqbGeaacaaIXaaabeaacaGGVaGaaGOmaaWdae qaa8qacaGGOaGaeuyQdCLaaiykaiaaykW7cqGHPiYXcaaMc8UaaGPa V=aacaWGmbqcfa4aaSbaaKqbGeaacaWGXbqcfa4aaSbaaKqbGeaaju aGdaWgaaqcfasaaiaaikdaaeqaaaqabaaabeaajuaGdaqadaqcfasa aiabfM6axbGaayjkaiaawMcaa8qacaGGPaaajuaGpaqabaGaey4kaS YaauqaaeaaaiaawMa7a8qacqGH8aapcaWG0bGaeyOpa4ZaaWbaaeqa juaibaGaamOyaaaajuaGdaqbcaqaaiabgkGi2oaaBaaajuaqbaGaam iDaaqcfayabaGaae4DaaGaayPcSdWaaSbaaKqbGeaacaWGmbqcfa4a aSbaaKqbGeaacaWGWbaabeaapaGaaiikaiaacIcacaaIWaGaaiilai aadsfacaGGPaGaaiila8qacaWGibqcfa4aa0baaKqbGeaacaWGXbqc fa4aaSbaaKqbGeaacaaIXaaabeaacaGGVaGaaGOmaaqaaiaaikdaaa qcfa4damaabmaajuaibaGaeuyQdCfacaGLOaGaayzkaaWdbiabgMIi hlaadIeajuaGdaqhaaqcKvaG=haacaWGXbGaaGOmaaqaaiaaikdaaa qcfa4damaabmaajuaibaGaeuyQdCfacaGLOaGaayzkaaGaaGPaVdqc fa4dbeqaaiabgsMiJkaaykW7caWGdbGaaiikamrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbacfiGae8heHKKaae4kaiaacUfacaWH 2bGaaiyxamaaDaaajuaibaGaamivaaqaaiaaikdaaaqcfaOaaiykaa aa@A72F@ .                 (56)

In fact, f ( v ) ,   e ˜ T   [ g ( v ) ] ,   e ˜ T   [ g ( v ) ]   a n d   e ˜ T   [ h ( v ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHMbWdaiaacIcapeGaaCODa8aacaGGPaWdbiaacYcacaGG GcGabmyzayaaiaWaaSbaaKqbGeaacaWGubaajuaGbeaacaGGGcWdai aacUfatCvAUfKttLearyqtPnMCVn3BMrhiufwAGWuzaGqbc8qacqWF NbWzpaGaaiika8qacaWH2bWdaiaacMcacaGGDbWdbiaacYcacaGGGc GabmyzayaaiaWaaSbaaKqbGeaacaWGubaajuaGbeaacaGGGcWdaiaa cUfapeGaaC4za8aacaGGOaWdbiaahAhapaGaaiykaiaac2fapeGaai iOaiaadggacaWGUbGaamizaiaacckaceWGLbGbaGaadaWgaaqcfasa aiaadsfaaKqbagqaaiaacckapaGaai4wa8qacaWHObWdaiaacIcape GaaCODa8aacaGGPaGaaiyxaaaa@672E@ satisfy (27), (43), (44), (45), (46), and (47), so that we know the existence of w possessing the estimate:

t w L p ( ( 0 , T ) L q 1 / 2 ( Ω ) L q 2 ( Ω ) ) + < t > b t w L p ( ( 0 , T ) , H q 1 / 2 2 ( Ω ) H q 2 2 ( Ω ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbcaqaaiabgkGi2oaaBaaajuaibaGaamiDaaqcfayabaGa ae4DaaGaayPcSdWdamaaBaaabaWdbiaadYeadaWgaaqcfasaaiaadc haaKqbagqaa8aacaGGOaGaaiikaiaaicdacaGGSaGaamivaiaacMca caWGmbWaaSbaaKqbGeaapeGaaiyCaKqbaoaaBaaajqwba+Faaiaaig daaeqaaKqbGiaac+cacaaIYaaajuaGpaqabaWdbiaacIcacqqHPoWv caGGPaGaaGPaVlabgMIihlaaykW7caaMc8+daiaadYeadaWgaaqcfa saaiaadghajuaGdaWgaaqcKvaG=haajuaGdGaxCTbaaKazfa4=bGax CjacCXfIYaaabKaxCbaajuaibeaaaKqbagqaaiaacIcacqqHPoWvca GGPaWdbiaacMcaa8aabeaacqGHRaWkdaqbbaqaaaGaayzcSdWdbiab gYda8iaadshacqGH+aGpdaahaaqabKqbGeaacaWGIbaaaKqbaoaafi aabaGaeyOaIy7aaSbaaKqbGeaacaWG0baabeaajuaGcaqG3baacaGL kWoadaWgaaqaaiaadYeadaWgaaqcfasaaiaadchaaKqbagqaa8aaca GGOaGaaiikaiaaicdacaGGSaGaamivaiaacMcacaGGSaWdbiaadIea daqhaaqcfasaaiaadghajuaGdGaDyUbaaKazfa4=bGaDykac0HjIXa aabKaDycqcfaIaai4laiaaikdaaeaacaaIYaaaaKqba+aacaGGOaGa euyQdCLaaiykaiaaykW7caaMc8+dbiabgMIihlaaykW7caWGibWaa0 baaKqbGeaacGaDenyCaKqbaoac0r0gaaqcKvaG=hac0rKaiqhrikda aKqbagqc0reaaKqbGeaacaaIYaaaaKqba+aadaqadaqaaiabfM6axb GaayjkaiaawMcaaaWdbeqaaiabgsMiJkaaykW7caWGdbGaaiikamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8heHKKaae 4kaiaacUfacaWH2bGaaiyxamaaDaaajuaibaGaamivaaqaaiaaikda aaqcfaOaaiykaaaa@B34B@

with some constant C depending on q>sub>1

/2 and q2. Let a = min(1, b), and then w ˜ : = <t> a w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9 pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaq aafaaakeaadaaiaaqaaiaabEhaaiaawoWaaiaacQdacqGH9aqpcaqG 8aGaaeiDaiaab6dadaahaaWcbeqaaiaabggaaaGccaqG3baaaa@44EF@  satisfies the equations:

{ t w ˜ + λ 0 w ˜ J ( T ) 1 Div S ˜ ( w ˜ , < t > a r ) = < t > a f + λ 0 a t < t > a 2 w in Ω × ( 0 , T ) , div ˜ w ˜ =   e ˜ T [ < t > a g ( v ) ]   = d i v e ˜ T [ < t > a g ( v ) ]     in Ω × ( 0 , T ) , S ˜ ( w ˜ , < t > a r ) = e ˜ T [ < t > a h ]               on Γ × ( 0 , T ) , w ˜ | t = 0     = u 0           in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaq aabeqaaabaaaaaaaaapeGaeyOaIy7aaSbaaKqbGeaacaWG0baajuaG beaaceWH3bGbaGaacqGHRaWkcqaH7oaBdaWgaaqcfasaaiaaicdaaK qbagqaaiqahEhagaacaiabgkHiTiaadQeapaGaaiika8qacaWGubWd aiaacMcapeWaaWbaaeqajuaibaGaeyOeI0IaaGymaaaajuaGcaaMc8 UaaGPaVlaaykW7caqGebGaaeyAaiaabAhacaaMc8UabC4uayaaiaWd aiaacIcapeGabC4DayaaiaGaaiilaiaaykW7cqGH8aapcaaMc8UaaG PaVlaadshacaaMc8UaeyOpa4ZaaWbaaeqajuaibaGaamyyaaaajuaG caaMc8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbci ab=Tc8Y9aacaGGPaWdbiabg2da98aacaaMc8+dbiabgYda8iaaykW7 caaMc8UaamiDaiaaykW7cqGH+aGpdaahaaqabKqbGeaacaWGHbaaaK qbakaaykW7caWHMbGaey4kaSIaeq4UdW2aaSbaaKqbGeaacaaIWaaa juaGbeaacaaMc8UaamyyaiaadshacqGH8aapcaaMc8UaaGPaVlaads hacaaMc8UaeyOpa4ZaaWbaaeqabaGaamyyaiabgkHiTiaaikdaaaGa aC4Da8aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7peGaaeyAaiaab6gacaaMc8UaeuyQdCLaaG PaVlabgEna0kaaykW7paGaaiika8qacaaIWaGaaiilaiaadsfapaGa aiyka8qacaGGSaaapaqaa8qacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7daaiaaqaaiaabsgacaqGPbGaaeODaaGaay 5adaGaaGPaVlqahEhagaacaiabg2da9iaacckaceWGLbGbaGaadaWg aaqcfasaaiaadsfaaKqbagqaaiaacUfacqGH8aapcaaMc8UaaGPaVl aadshacaaMc8UaeyOpa4ZaaWbaaeqajuaibaGaamyyaaaajuaGcaaM c8+exLMBb50ujbqeh0uAJj3BZ9Mz0bcvHLgimvgaiyGacqGFNbWzpa Gaaiika8qacaWH2bWdaiaacMcapeGaaiyxaiaacckacqGH9aqpcaGG KbGaaiyAaiaacAhaceWGLbGbaGaadaWgaaqcfasaaiaadsfaaKqbag qaaiaacUfacqGH8aapcaaMc8UaaGPaVlaadshacaaMc8UaeyOpa4Za aWbaaeqajuaibaGaamyyaaaajuaGcaaMc8+daiaadEgacaGGOaWdbi aahAhapaGaaiyka8qacaGGDbGaaiiOaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaiiOaiaabMgacaqG UbGaaGPaVlabfM6axjaaykW7cqGHxdaTcaaMc8+daiaacIcapeGaaG imaiaacYcacaWGubWdaiaacMcapeGaaiilaaWdaeaapeGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlqahofagaaca8aaca GGOaWdbiqahEhagaacaiaacYcacqGH8aapcaaMc8UaaGPaVlaadsha caaMc8UaeyOpa4ZaaWbaaeqajuaibaGaamyyaaaajuaGcaaMc8Uae8 3kWl3daiaacMcapeGaeyypa0JabmyzayaaiaWaaSbaaKqbGeaacaWG ubaajuaGbeaacaGGBbGaeyipaWJaaGPaVlaaykW7caWG0bGaaGPaVl abg6da+maaCaaabeqcfasaaiaadggaaaqcfaOaaCiAaiaac2facaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaacckacaqGVbGaaeOBaiaaykW7caaMc8Uaeu4KdCKaaGPaVlabgE na0kaaykW7caaMc8+daiaacIcapeGaaGimaiaacYcacaWGubWdaiaa cMcapeGaaiilaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlqahEhagaaca8aacaGG8bWdbmaa BaaabaGaamiDaiabg2da9KqbajaaicdaaKqbagqaaiaacckacaGGGc Gaeyypa0JaciyDamaaBaaajuaibaGaaGimaaqcfayabaGaaiiOaiaa cckacaGGGcGaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqG GcGaaGPaVlaaykW7caaMc8UaaeyAaiaab6gacaaMc8UaaGPaVlaayk W7cqqHPoWvaaWdaiaawUhaaaaa@2F59@ (57)

Since

t < t > a 2 w L p ( ( 0 , T ) , L q ( Ω ) ) w L p ( ( 0 , T ) , L q ( Ω ) ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaiaadshacqGH8aapcaaMc8UaaGPaVlaadshacaaM c8UaeyOpa4ZaaWbaaeqabaGaamyyaiabgkHiTiaaikdaaaGaaC4Da8 aacaaMc8oapeGaayzcSlaawQa7a8aadaWgaaqaa8qacaWGmbWaaSba aKqbGeaacaWGWbaajuaGbeaapaGaaiikaiaacIcacaaIWaGaaiilai aadsfacaGGPaGaaiila8qacaWGmbWaaSbaaKqbGeaacaWGXbaajuaG beaacaGGOaGaeuyQdCLaaiyka8aacaGGPaaabeaacqGHKjYOcaaMc8 UaaGPaVlaaykW7peWaauWaaeaacaWH3bWdaiaaykW7a8qacaGLjWUa ayPcSdWdamaaBaaabaWdbiaadYeadaWgaaqcfasaaiaadchaaKqbag qaa8aacaGGOaGaaiikaiaaicdacaGGSaGaamivaiaacMcacaGGSaWd biaadYeadaWgaaqcfasaaiaadghaaKqbagqaaiaacIcacqqHPoWvca GGPaWdaiaacMcaaeqaaiaaykW7cqGHKjYOcaaMc8UaaGPaV=qacaWG dbGaaiikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfi Gae8heHKKaae4kaiaacUfacaWH2bGaaiyxamaaDaaajuaibaGaamiv aaqaaiaaikdaaaqcfaOaaiykaaaa@8970@

as follows from the fact that a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbGaaGPaVlabgkHiTiaaykW7caaIXaGaaGPaVlabgsMi JkaaykW7caaMc8UaaGimaaaa@4358@ , we have

( < t > a t w L p ( ( 0 , T ) L q 1 / 2 ( Ω ) L q 2 ( Ω ) ) + < t > a w L p ( ( 0 , T ) , H q 1 / 2 2 ( Ω ) H q 2 2 ( Ω ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaWaauqaaeaaaiaawMa7aiabgYda8iaadshacqGH+aGp daahaaqabKqbGeaacaWGHbaaaKqbaoaafiaabaGaeyOaIy7aaSbaaK qbGeaacaWG0baajuaGbeaacaqG3baacaGLkWoapaWaaSbaaKqbGeaa peGaamitaKqbaoaaBaaajuaibaGaamiCaaqabaWdaiaacIcacaGGOa GaaGimaiaacYcacaWGubGaaiykaiaadYeajuaGdaWgaaqcfasaa8qa caGGXbqcfa4aaSbaaKqbGeaacaaIXaaabeaacaGGVaGaaGOmaaWdae qaa8qacaGGOaGaeuyQdCLaaiykaiaaykW7cqGHPiYXcaaMc8UaaGPa V=aacaWGmbqcfa4aaSbaaKqbGeaacaWGXbqcfa4aaSbaaKqbGeaaju aGdaWgaaqcfasaaiaaikdaaeqaaaqabaaabeaajuaGdaqadaqcfasa aiabfM6axbGaayjkaiaawMcaa8qacaGGPaaajuaGpaqabaGaey4kaS YaauqaaeaaaiaawMa7a8qacqGH8aapcaWG0bGaeyOpa4ZaaWbaaeqa juaibaGaamyyaaaajuaGdaqbcaqaaiaabEhaaiaawQa7amaaBaaaju aibaGaamitaKqbaoaaBaaajuaibaGaamiCaaqabaWdaiaacIcacaGG OaGaaGimaiaacYcacaWGubGaaiykaiaacYcapeGaamisaKqbaoaaDa aajuaibaGaamyCaKqbaoaaBaaajuaibaGaaGymaaqabaGaai4laiaa ikdaaeaacaaIYaaaaKqba+aadaqadaqcfasaaiabfM6axbGaayjkai aawMcaaKqbakaaykW7caaMc8EcfaYdbiabgMIihlaadIeajuaGdaqh aaqcKvaG=haacaWGXbGaaGOmaaqaaiaaikdaaaqcfa4damaabmaaju aibaGaeuyQdCfacaGLOaGaayzkaaGaaGPaVdqcfa4dbeqaaiabgsMi JkaaykW7caWGdbGaaiikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfiGae8heHKKaae4kaiaacUfacaWH2bGaaiyxamaaDaaa juaibaGaamivaaqaaiaaikdaaaqcfaOaaiykaaaa@A7A3@ .

Repeating this argument finite times yields (56). In particular, by (56) we have

[ w ] T C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacUfacaqG3bGaaiyxaKqbaoaaBaaajuaibaqcLbmacaGG ubaajuaGbeaajugibiabgsMiJkaaykW7caWGdbGaaiikamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8heHKKaae4kaiaa cUfacaWH2bGaaiyxaSWaa0baaKazfa0=baqcLbmacaWGubaajqwba9 FaaKqzadGaaGOmaaaajugibiaacMcaaaa@58C7@ (58)

Next, we consider g. Let { T ( t ) } t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeaeaaaaaaaaa8qacaWGubqcfa4damaabmaakeaajugib8qa caWG0baak8aacaGLOaGaayzkaaaacaGL7bGaayzFaaqcfa4dbmaaBa aajeaObaqcLbuacaWG0bGaeyyzImRaaGimaaWcbeaaaaa@43C4@ be a C0 analytic semigroup associated with problem (54). Shibata33 proved the existence of { T ( t ) } t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeaeaaaaaaaaa8qacaWGubqcfa4damaabmaakeaajugib8qa caWG0baak8aacaGLOaGaayzkaaaacaGL7bGaayzFaaqcfa4dbmaaBa aajeaObaqcLbuacaWG0bGaeyyzImRaaGimaaWcbeaaaaa@43C4@ satisfying the estimates:

T ( t ) f L p ( Ω ) C t N 2 ( 1 q 1 p ) f L q ( Ω ) , Δ T ( t ) f L p ( Ω ) C t 1 2 N 2 ( 1 q 1 p ) f L q ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaGcbaqcLbsacaWGubWdaiaacIcapeGaamiDa8aacaGG PaWdbiaahAgaaOGaayzcSlaawQa7aKqbaoaaBaaaleaajugibiaadY eajuaGdaWgaaqccasaaKqzadGaamiCaaadbeaajugibiaacIcacqqH PoWvcaGGPaaaleqaaKqzGeGaeyizImQaam4qaiaadshajuaGdaahaa WcbeqcbasaaKqzadGaeyOeI0YcdaWcaaqcbasaaKqzadGaamOtaaqc basaaKqzadGaaGOmaaaalmaabmaajeaibaWcdaWcaaqcbasaaKqzad GaaGymaaqcbasaaKqzadGaamyCaaaacqGHsisllmaalaaajeaibaqc LbmacaaIXaaajeaibaqcLbmacaWGWbaaaaqcbaIaayjkaiaawMcaaa aajuaGdaqbdaGcbaqcLbsacaWHMbaakiaawMa7caGLkWoajuaGdaWg aaWcbaqcLbsacaWGmbqcfa4aaSbaaKGaGeaajugWaiaadghaaWqaba qcLbsacaGGOaGaeuyQdCLaaiykaaWcbeaajugibiaacYcacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVNqbaoaafmaakeaajugibiabgs5aej aadsfapaGaaiika8qacaWG0bWdaiaacMcapeGaaCOzaaGccaGLjWUa ayPcSdqcfa4aaSbaaSqaaKqzGeGaamitaKqbaoaaBaaajiaibaqcLb macaWGWbaameqaaKqzGeGaaiikaiabfM6axjaacMcaaSqabaqcLbsa cqGHKjYOcaWGdbGaamiDaKqbaoaaCaaaleqajeaibaqcLbmacqGHsi sllmaalaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaiab gkHiTSWaaSaaaKqaGeaajugWaiaad6eaaKqaGeaajugWaiaaikdaaa WcdaqadaqcbasaaSWaaSaaaKqaGeaajugWaiaaigdaaKqaGeaajugW aiaadghaaaGaeyOeI0YcdaWcaaqcbasaaKqzadGaaGymaaqcbasaaK qzadGaamiCaaaaaKqaGiaawIcacaGLPaaaaaqcfa4aauWaaOqaaKqz GeGaaCOzaaGccaGLjWUaayPcSdqcfa4aaSbaaSqaaKqzGeGaamitaK qbaoaaBaaajiaibaqcLbmacaWGXbaameqaaKqzGeGaaiikaiabfM6a xjaacMcaaSqabaaaaa@B278@ (59)

for any t > 0 and f   L q ( Ω ) N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabAgacqGHiiIZcaqGGaGaamitaKqbaoaaBaaajeaibaqc LbmacaWGXbaaleqaaKqba+aadaqadaGcbaqcLbsapeGaeuyQdCfak8 aacaGLOaGaayzkaaqcfa4dbmaaCaaaleqajeaibaqcLbmacaWGobaa aaaa@44FA@ provided that 1   <   q     p     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaykW7caaMc8UaaGymaiaabccacqGH8aapcaqGGaGaamyC aiaabccacqGHKjYOcaqGGaGaamiCaiaabccacqGHKjYOcaqGGaGaey OhIukaaa@4612@ and q     q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacaqGGaGaeyizImQaaeiiaiaadghajuaGdaWgaaqc fasaaiaaikdaaKqbagqaaaaa@3DB3@ . To represent u by using { T ( t ) } t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaaO qaaKqzGeaeaaaaaaaaa8qacaWGubqcfa4damaabmaakeaajugib8qa caWG0baak8aacaGLOaGaayzkaaaacaGL7bGaayzFaaqcfa4dbmaaBa aajeaObaqcLbuacaWG0bGaeyyzImRaaGimaaWcbeaaaaa@43C4@ , we introduce the solenoidal space J q ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeajuaGdaWgaaqcbasaaKqzadGaamyCaaWcbeaajugi biaacIcacqqHPoWvcaGGPaaaaa@3DF2@ defined by

J q ( Ω ) = { f   L q ( Ω ) N | ( f , J A T φ ) Ω = 0 f o r a n y φ H ^ q , 0 1 ( Ω ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeajuaGdaWgaaqcKfaG=haajugWaiaadghaaSqabaqc LbsacaGGOaGaeuyQdCLaaiykaiabg2da9KqbaoaacmaabaqcLbsaca qGMbGaeyicI4SaaeiiaiaadYeajuaGdaWgaaqcKvaq=haajugWaiaa dghaaKqbagqaa8aadaqadaqaaKqzGeWdbiabfM6axbqcfa4daiaawI cacaGLPaaapeWaaWbaaeqajqwba9FaaKqzadGaamOtaaaajuaGdaab baqaaKqzGeGaaiikaiaabAgacaGGSaGaamOsaKqbaoaaCeaabeqcKv aq=haajugWaiacGd4GubaaaKqzGeGaaCyqaiabgEGirlabeA8aQjaa cMcajuaGdaWgaaqcfauaaKqzGdGaeuyQdCfajuaGbeaajugibiabg2 da9iaaykW7caaMc8UaaGimaiaaykW7caaMc8UaamOzaiaad+gacaWG YbGaaGPaVlaaykW7caWGHbGaamOBaiaadMhacaaMc8UaaGPaVlaayk W7cqaHgpGAcaaMc8UaeyicI4SabmisayaajaWcdaqhaaqcfasaaKqz adGabmyCayaafaGaaiilaiaaicdaaKqbGeaajugWaiaaigdaaaqcfa 4damaabmaabaqcLbsapeGaeuyQdCfajuaGpaGaayjkaiaawMcaaaWd biaawEa7aaGaay5Eaiaaw2haaaaa@911C@ (60)

Here, A is the matrix defined in (4) and J the function given in (15), and

H ^ q , 0 1 ( Ω ) = { φ L q , l o c ( Ω ) | φ L q ( Ω ) N , φ | Γ = 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGibGbaKaadaqhaaqcfasaaiqadghagaqbaiaacYcacaaI WaaabaGaaGymaaaajuaGpaWaaeWaaeaapeGaeuyQdCfapaGaayjkai aawMcaaiabg2da9maacmaabaWdbiabeA8aQjaaykW7cqGHiiIZcaaM c8UaamitamaaBaaajuaibaGabmyCayaafaGaaiilaiaadYgacaWGVb Gaam4yaiaaykW7caaMc8oajuaGbeaacaGGOaGaeuyQdCLaaiykaiaa ykW7caaMc8UaaGPaVpaaeeaabaGaey4bIeTaeqOXdOMaamitamaaBa aajuaibaGabmyCayaafaGaaGPaVlaaykW7aKqbagqaaaGaay5bSdGa aiikaiabfM6axjaacMcadaahaaqabKqbGeaacaWGobaaaKqbakaacY cacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaHgpGAdaab baqaamaaBaaajuaqbaGaeu4KdCeajuaGbeaacqGH9aqpcaaIWaaaca GLhWoaa8aacaGL7bGaayzFaaaaaa@79E0@ .

As was proved by Shibata,30 we know that for any f   L q ( Ω ) N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabAgacqGHiiIZcaqGGaGaamitaKqbaoaaBaaajuaibaqc LbmacaWGXbaajuaGbeaapaWaaeWaaeaajugib8qacqqHPoWvaKqba+ aacaGLOaGaayzkaaWdbmaaCaaabeqcfasaaKqzadGaamOtaaaaaaa@44D8@ there exists a unique solution ψ H ^ q , 0 1 ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGPaVl abeI8a5bbaaaaaaaaapeGaeyicI4SabmisayaajaWaa0baaKqbGeaa ceWGXbGbauaacaGGSaGaaGimaaqaaiaaigdaaaqcfa4damaabmaaba WdbiabfM6axbWdaiaawIcacaGLPaaaaaa@43A8@ of the variational equation

( A ψ , J A T φ ) Ω = ( f , J A T φ ) Ω = 0 f o r a n y φ H ^ q , 0 1 ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikaK qzGeaeaaaaaaaaa8qacaWHbbqcfaOaey4bIe9daiabeI8a5jaacYca caaMc8EcLbsapeGaamOsaKqbaoaaCeaabeqcfasaaiacGd4GubaaaK qzGeGaaCyqaKqbakabeA8aQjaacMcadaWgaaqaaiabfM6axbqabaGa aGPaVlabg2da9iaaykW7jugibiaacIcacaqGMbGaaiilaiaadQeaju aGdaahbaqabKazfa0=baqcLbmacGa4aoivaaaajugibiaahgeacqGH his0cqaHgpGAcaGGPaqcfa4aaSbaaKqbafaajug4aiabfM6axbqcfa yabaqcLbsacqGH9aqpcaaMc8UaaGPaVlaaicdacaaMc8UaaGPaVlaa dAgacaWGVbGaamOCaiaaykW7caaMc8Uaamyyaiaad6gacaWG5bGaaG PaVlaaykW7caaMc8UaeqOXdOMaaGPaVlabgIGiolqadIeagaqcaSWa a0baaKqbGeaajugWaiqadghagaqbaiaacYcacaaIWaaajuaibaqcLb macaaIXaaaaKqba+aadaqadaqaaKqzGeWdbiabfM6axbqcfa4daiaa wIcacaGLPaaaaaa@8727@ .          (61)

which possesses the estimate ψ L q   ( Ω )     C q f L q   ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqWILicucqGHhis0cqaHipqEcqWILicucaaMc8UcdaWgaaWc baGaamitamaaBaaameaacaWGXbaabeaaaSqabaqcfaOaaiiOa8aada qadaqaa8qacqqHPoWva8aacaGLOaGaayzkaaWdbiaacckacaGGGcGa eyizImQaam4qamaaBaaajuaibaGaamyCaaqcfayabaGaeSyjIaLaaC OzaiablwIiqPWaaSbaaSqaaiacKc4GmbWaiqkGBaaameacKcOaiqkG dghaaeqcKcialiacKcOGGcaabeaajuaGpaWaaeWaaeaapeGaeuyQdC fapaGaayjkaiaawMcaaaaa@5D1A@ . Here Cq is a constant that is independent of v and T in view of (36). Given f   L q ( Ω ) N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGMbGaeyicI4SaaeiiaiaadYeadaWgaaqcfasaaiaadgha aKqbagqaa8aadaqadaqaa8qacqqHPoWva8aacaGLOaGaayzkaaWdbm aaCaaabeqcfasaaiaad6eaaaaaaa@40D0@ let ψ H ^ q , 0 1 ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeI8a5jabgIGiolqadIeagaqcaSWaa0baaKqbGeaajugW aiqadghagaqbaiaacYcacaaIWaaajuaibaqcLbmacaaIXaaaaKqba+ aadaqadaGcbaqcLbsapeGaeuyQdCfak8aacaGLOaGaayzkaaaaaa@4556@ be a unique solution of Eq.(61), and let Pqbe an operator acting on f defined P q f = f ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHqbWdamaaBaaajuaibaWdbiaadghaaKqba+aabeaapeGa aCOzaiabg2da9iaaykW7caaMc8UaaGPaVlaaykW7caWHMbGaeyOeI0 Iaey4bIeTaeqiYdKhaaa@46DF@ . And then, P q f J q ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHqbWaaSbaaKqbGeaacaWGXbaajuaGbeaacaWHMbGaaGPa VlaaykW7cqGHiiIZcaaMc8UaaGPaVlaadQeadaWgaaqcfasaaiaadg haaKqbagqaa8aacaGGOaWdbiabfM6ax9aacaGGPaaaaa@47A6@ and

P q   f L q ( Ω )     C q f L q ( Ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGPaVl aaykW7qaaaaaaaaaWdbiablwIiqjaahcfadaWgaaqcfasaaiaadgha aKqbagqaaiaacckacaWHMbGaeSyjIa1aaSbaaeaacaWGmbWaaSbaaK qbGeaacaWGXbaajuaGbeaapaGaaiika8qacqqHPoWvpaGaaiyka8qa caGGGcaabeaacaGGGcGaeyizImQaaGPaVlaadoeajuaicaWGXbGaaG PaVNqbakablwIiqjaahAgacqWILicupaWaaSbaaeaapeGaamitaKqb GiaadghajuaGpaGaaiika8qacqqHPoWvpaGaaiykaaqabaaaaa@5957@ (62)

with some constant Cq that is independent of v and T. By Proposition 21 in Shibaata,33 we have

u ( · ,   t ) = λ 0 0 t T ( t s ) ( P w ) ( · , s ) d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWH1bWdaiaacIcapeGaai4TaiaacYcacaqGGaGaamiDa8aa caGGPaWdbiabg2da9iabgkHiTiabeU7aSnaaBaaajuaibaGaaGimaa qcfayabaGcdaWdXaqaaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipa juaGcaWGubWdaiaacIcapeGaamiDaiabgkHiTiaadohapaGaaiykam aabmaabaWdbiaahcfacaWH3baapaGaayjkaiaawMcaaiaacIcapeGa ai4TaiaacYcacaWGZbWdaiaacMcapeGaamizaiaadohaaaa@557D@ .                               (63)

Combining (59) and (62) yields that

j u ( · , t ) L r   ( Ω ) C r , q ˜ 1 0 t 1 ( t s ) j 2 N 2 ( 1 q ˜ 1 1 r ) w ( · , s ) L q ˜ 1   ( Ω ) d s + C r , q ˜ 2 0 t 1 ( t s ) j 2 N 2 ( 1 q ˜ 2 1 r ) w ( · , s ) L q ˜ 2   ( Ω ) d s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaaykW7daWgaaqaamaafmaabaGaey4bIe9aaWbaaeqa juaibaGaamOAaaaajuaGcaqG1bWdaiaacIcapeGaai4TaiaacYcaca WG0bWdaiaacMcaa8qacaGLjWUaayPcSdWdamaaBaaabaWdbiaadYea daWgaaqcfasaaiaadkhaaKqbagqaaiaacckapaWaaeWaaeaapeGaeu yQdCfapaGaayjkaiaawMcaaaqabaaapeqabaGaaGPaVlabgsMiJkaa ykW7caaMc8Uaam4qamaaBaaajuaibaGaamOCaiaacYcaceWGXbGbaG aajuaGdaWgaaqcfasaaiaaigdaaeqaaaqcfayabaGaaGPaVlaaykW7 kmaapedajuaGbaaajqwba9FaaKqzadGaiaiMicdaaKazfa0=baqcLb macGaGeniDaiadasKHsislcGaGeHymaaqcLbyacqGHRiI8aKqba+aa caGGOaWdbiaadshacqGHsislcaWGZbWdaiaacMcadaahaaqabeaape WaaWbaaeqajuaibaGaeyOeI0IaaGPaVNqbaoaalaaajuaibaGaamOA aaqaaiaaikdaaaGaaGPaVlabgkHiTiaaykW7juaGdaWcaaqcfasaai aad6eaaeaacaaIYaaaaKqbaoaabmaajuaibaqcfa4aaSaaaKqbGeaa caaIXaaabaGabmyCayaaiaqcfa4aaSbaaKqbGeaacaaIXaaabeaaaa GaeyOeI0scfa4aaSaaaKqbGeaacaaIXaaabaGaamOCaaaaaiaawIca caGLPaaaaaaaaKqbakablwIiqjaahEhapaGaaiika8qacaGG3cGaai ilaiaadohapaGaaiyka8qacqWILicucaaMc8+aaSbaaeaacaWGmbWa aSbaaKqbGeaaceWGXbGbaGaajuaGdaWgaaqcfasaaiaaigdaaeqaaa qcfayabaGaaiiOa8aadaqadaqaa8qacqqHPoWva8aacaGLOaGaayzk aaaapeqabaGaamizaiaadohaaeaacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaam4qamaaBaaaju aibaGaamOCaiaacYcaceWGXbGbaGaajuaGdaWgaaqcfasaaiaaikda aeqaaaqcfayabaGcdaWdXaqcfayaaaqcKvaq=haajugWaiacaIjIWa aajqwba9FaaKqzadGaiairdshacWaGezOeI0IaiairigdaaKqzagGa ey4kIipajuaGpaGaaiika8qacaWG0bGaeyOeI0Iaam4Ca8aacaGGPa WaaWbaaeqabaWdbmaaCaaabeqcfasaaiabgkHiTiaaykW7juaGdaWc aaqcfasaaiaadQgaaeaacaaIYaaaaiaaykW7cqGHsislcaaMc8Ecfa 4aaSaaaKqbGeaacaWGobaabaGaaGOmaaaajuaGdaqadaqcfasaaKqb aoaalaaajuaibaGaaGymaaqaaiqadghagaacaKqbaoaaBaaajuaiba GaaGOmaaqabaaaaiabgkHiTKqbaoaalaaajuaibaGaaGymaaqaaiaa dkhaaaaacaGLOaGaayzkaaaaaaaajuaGcqWILicucaWH3bWdaiaacI capeGaai4TaiaacYcacaWGZbWdaiaacMcapeGaeSyjIaLaaGPaVpaa BaaabaGaamitamaaBaaajuaibaGabmyCayaaiaqcfa4aaSbaaKqbGe aacaaIYaaabeaaaKqbagqaaiaacckapaWaaeWaaeaapeGaeuyQdCfa paGaayjkaiaawMcaaaWdbeqaaiaadsgacaWGZbaaaaa@2C48@ (64)

for j=0, 1, for any t > 1 and for any indices r ,   q ˜ 1   a n d   q ˜ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGYbGaaiilaiaabccaceWGXbGbaGaadaWgaaWcbaGaaGymaaqa baGccaqGGaGaamyyaiaad6gacaWGKbGaaeiiaiqadghagaacamaaBa aaleaacaaIYaaabeaaaaa@404B@ such that 1   <   q ˜ 1 ,   q ˜ 2     r     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIXaGaaeiiaiabgYda8iaabccaceWGXbGbaGaadaWgaaWcbaGa aGymaaqabaGccaGGSaGaaeiiaiqadghagaacamaaBaaaleaacaaIYa aabeaakiaabccacqGHKjYOcaqGGaGaamOCaiaabccacqGHKjYOcaqG GaGaeyOhIuQaaGPaVdaa@4844@ and q ˜ 1   ,   q ˜ 2     q 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaMc8UabmyCayaaiaWaaSbaaSqaaiaaigdaaeqaaOGaaeiiaiaa cYcacaqGGaGabmyCayaaiaWaaSbaaSqaaiaaikdaaeqaaOGaaeiiai abgsMiJkaabccacaWGXbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaaaa @4317@ where 0 u   =   u   a n d 1 u   = u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabgEGirNqbaoaaCaaaleqajeaibaqcLbmacaaIWaaaaKqz GeGaamyDaiaabccacqGH9aqpcaqGGaGaamyDaiaabccacaWGHbGaam OBaiaadsgacaaMc8UaaGPaVlaaykW7cqGHhis0juaGdaahaaWcbeqc basaaKqzadGaaGymaaaajugibiaadwhacaqGGaGaeyypa0Jaey4bIe TaamyDaaaa@51D3@ .

Recall that T > 2. In what follows, we prove that

( 2 T ( < t > b u ( · , t ) H 1 ( Ω ) ) p d t ) 1 p C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaqaamaapedabaGaaiikaKqzGeGaeyipaWJaamiDaiabg6da +KqbaoaaCaaaleqajeaibaqcLbmacaWGIbaaaaWcbaqcLbmacaaIYa aaleaajugWaiaadsfaa0Gaey4kIipajuaGdaqbdaGcbaqcLbsapaGa aGPaVlaahwhacaaMc8Uaaiika8qacaGG3cGaaiilaiaadshapaGaai ykaaGcpeGaayzcSlaawQa7aKqzGeGaamisaSWaa0baaKqaGeaajugW aiabg6HiLcqcbasaaKqzadGaaGymaaaajugibiaacIcacqqHPoWvca GGPaGaaiykaKqbaoaaCaaabeqcfasaaKqzadGaaiiCaaaajuaGcaWG KbGaamiDaaGccaGLOaGaayzkaaWaaWbaaSqabKqaafaalmaalmaaji aqbaqcLbmacaaIXaaajiaqbaqcLbmacaWGWbaaaaaajuaGcqGHKjYO caaMc8Uaam4qaiaacIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=brijjaabUcacaGGBbGaaCODaiaac2fadaqhaaqc fasaaiaadsfaaeaacaaIYaaaaKqbakaacMcaaaa@7D78@ (65)

S u p 2 t T ( < t > N 2 q 1 u ( · , t ) L q 1 C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWfqaqaaKqzGeGaam4uaiaadwhacaWGWbaajuaibaqcLbma caaIYaGaeyizImQaamiDaiabgsMiJkaadsfaaKqbagqaaKqzGeGaai ikaiabgYda8iaadshacqGH+aGpjuaGdaahaaWcbeqcbasaaSWaaSaa aKqaGeaajugWaiaad6eaaKqaGeaajugWaiaaikdacaWGXbWcdaWgaa qccasaaKqzadGaaGymaaqccasabaaaaaaajuaGdaqbdaGcbaqcLbsa paGaaCyDaiaacIcapeGaai4TaiaacYcacaWG0bWdaiaacMcaaOWdbi aawMa7caGLkWoajuaGdaWgaaqaaiaadYeadaWgaaqcfasaaiaadgha juaGdaWgaaqcfasaaiaaigdaaeqaaaqcfayabaaabeaajugibiabgs MiJkaaykW7caWGdbGaaiikamrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfiGae8heHKKaae4kaiaacUfacaWH2bGaaiyxaSWaa0 baaKazfa0=baqcLbmacaWGubaajqwba9FaaKqzadGaaGOmaaaajugi biaacMcaaaa@799D@ (66)

( 2 T ( < t > b N 2 q 1 u ( · , t ) H q 1 1 ( Ω ) ) p d t ) 1 p C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaqaamaapedabaGaaiikaiabgYda8Kqbakaadshakiabg6da +maaCaaaleqabaGaamOyaiabgkHiTmaalaaabaGaamOtaaqaaiaaik dacaWGXbWaaSbaaWqaaiaaigdaaeqaaaaaaaaaleaajugWaiaaikda aKqaGeaajugWaiaadsfaa0Gaey4kIipajuaGdaqbdaqaa8aacaWH1b Gaaiika8qacaGG3cGaaiilaiaadshapaGaaiykaaWdbiaawMa7caGL kWoacaWGibWaa0baaKqbGeaacaWGXbqcfa4aaSbaaKqbGeaacaaIXa aabeaaaeaacaaIXaaaaKqbakaacIcacqqHPoWvcaGGPaGaaiykamaa CaaabeqaaiaacchaaaGaamizaiaadshaaOGaayjkaiaawMcaamaaCa aaleqabaWaaSWaaWqaaiaaigdaaeaacaWGWbaaaaaajuaGcqGHKjYO caaMc8Uaam4qaiaacIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=brijjaabUcacaGGBbGaaCODaiaac2fadaqhaaqc fasaaiaadsfaaeaacaaIYaaaaKqbakaacMcaaaa@74B8@ (67)

( 2 T ( < t > b N 2 q 2 u ( · , t ) H q 2 1 ( Ω ) ) p d t ) 1 p C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaqaamaapedabaGaaiikaKqbakabgYda8iaadshacqGH+aGp daahaaqabKqbGeaacaWGIbGaeyOeI0scfa4aaSaaaKqbGeaacaWGob aabaGaaGOmaiaadghajuaGdaWgaaqcKvaG=haacaaIYaaajuaibeaa aaaaaaWcbaGaaGOmaaqaaiaadsfaa0Gaey4kIipajuaGdaqbdaqaa8 aacaGG1bGaaiika8qacaGG3cGaaiilaiaadshapaGaaiykaaWdbiaa wMa7caGLkWoacaWGibWaa0baaKqbGeaacaWGXbqcfa4aaSbaaKazfa 4=baGaaGOmaaqcfasabaaabaGaaGymaaaajuaGcaGGOaGaeuyQdCLa aiykaiaacMcadaahaaqabeaacaGGWbaaaiaadsgacaWG0baakiaawI cacaGLPaaadaahaaWcbeqaamaalmaameaacaaIXaaabaGaamiCaaaa aaqcfaOaeyizImQaaGPaVlaadoeacaGGOaWefv3ySLgznfgDOfdary qr1ngBPrginfgDObYtUvgaiuGacqWFqesscaqGRaGaai4waiaahAha caGGDbWaa0baaKqbGeaacaWGubaabaGaaGOmaaaajuaGcaGGPaaaaa@7796@ (68)

By (64) with r   =   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOCaiaabccacqGH9aqpcaqGGaGaeyOhIukaaa@3BA8@ , q ˜ 1   =   q 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmyCayaaiaWaaSbaaKqbGeaacaaIXaaajuaGbeaacaqGGaGa eyypa0JaaeiiaiaadghadaWgaaqcfasaaiaaigdaaKqbagqaaiaac+ cacaaIYaaaaa@3FDA@ and q ˜ 2   =   q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmyCayaaiaWaaSbaaKqbGeaacaaIYaaajuaGbeaacaqGGaGa eyypa0JaaeiiaiaadghadaWgaaqcfasaaiaaikdaaKqbagqaaaaa@3E6D@ ,

u ( · , t ) H 1 ( Ω ) C 0 t T ( t s ) w ( · , s ) H 1 ( Ω ) d s = C ( I ( t ) + I I ( t ) + I I I ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeWdaiaaykW7caWH1bGaaGPaVlaacIcapeGa ai4TaiaacYcacaWG0bWdaiaacMcaaKqba+qacaGLjWUaayPcSdWaaS baaeaajugibiaadIealmaaDaaajuaibaqcLbmacqGHEisPaKqbGeaa jugWaiaaigdaaaqcLbsacaGGOaGaeuyQdCLaaiykaaqcfayabaqcLb sacaaMc8UaaGPaVlabgsMiJkaaykW7caWGdbGaaGPaVlaaykW7kmaa pedajuaGbaWaauWaaeaacaWGubGaaiikaiaacshacqGHsislcaGGZb GaaiykaiaahEhapaGaaiika8qacaGG3cGaaiilaiaadohapaGaaiyk aaWdbiaawMa7caGLkWoadaWgaaqaaiaadIeadaqhaaqcfasaaiabg6 HiLcqaaiaaigdaaaqcfaOaaiikaiabfM6axjaacMcaaeqaaiaadsga caWGZbGaaGPaVlabg2da9iaaykW7caWGdbWdaiaacIcapeGaamysam aaBaaajuaibaGaeyOhIukajuaGbeaapaGaaiika8qacaWG0bWdaiaa cMcapeGaey4kaSIaamysaiaadMeadaWgaaqcfasaaiabg6HiLcqcfa yabaWdaiaacIcapeGaamiDa8aacaGGPaWdbiabgUcaRiaadMeacaWG jbGaamysamaaBaaajuaibaGaeyOhIukajuaGbeaapaGaaiika8qaca WG0bWdaiaacMcacaGGPaaajqwbG8=dbeaajugWaiaaicdaaKazfaY= baqcLbmacaWG0baajugGbiabgUIiYdaaaa@9592@

With

I ( t ) = 0 t / 2 ( t s ) N q 1 w ( · , s ) L q 1 / 2   ( Ω ) d s , I I ( t ) = t / 2 t 1 ( t s ) N q 1 w ( · , s ) L q 1 / 2   ( Ω ) d s , I I I ( t ) = t 1 t ( t s ) N 2 q 2 1 2 w ( · , s ) L q 2 / 2   ( Ω ) d s . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamysaKqbaoaaBaaajqwba9FaaKqzadGaeyOhIuka juaGbeaajugib8aacaGGOaWdbiaadshapaGaaiykaiaaykW7cqGH9a qpcaaMc8EcLbyapeGaaGPaVRWaa8qmaKqbagaaaKazfaY=baqcLbma caaIWaaajqwbG8FaaSWaaSGbaKazba4=baqcLbmacaWG0baajqwaa+ FaaKqzadGaaGOmaaaaaKqzagGaey4kIipajugibiaacIcacaGG0bGa eyOeI0Iaai4CaiaacMcajuaGdaahaaqabKqbGeaajugWaiadebOHsi slcGaraIPaVVWaiqeGlaaajuaibGaraMqzadGaiqeYd6eaaKqbGeac ebycLbmacGarSmyCaSWaiqelBaaajuaibGarSKqzadGaiqeligdaaK qbGeqceXcaaaaaaKqbaoaafmaabaqcLbsacaWH3bWdaiaacIcapeGa ai4TaiaacYcacaWGZbWdaiaacMcaaKqba+qacaGLjWUaayPcSdWaaS baaeaajugibiaadYeajuaGdaWgaaqcfasaaKqzadGaamyCaSWaaSba aKazfa0=baqcLbkacaaIXaaajuaibeaajugWaiaac+cacaaIYaaaju aGbeaajugibiaacckajuaGpaWaaeWaaeaajugib8qacqqHPoWvaKqb a+aacaGLOaGaayzkaaaapeqabaqcLbsacaWGKbGaam4CaiaacYcaaO qaaKqbakaadMeacaWGjbWaaSbaaeaacqGHEisPaeqaa8aacaGGOaWd biaadshapaGaaiykaiabg2da9OWdbmaapedajuaGbaaajqwbG8FaaS WaaSGbaKazba4=baqcLbmacaWG0baajqwaa+FaaKqzadGaaGOmaaaa aKqbGeaacaWG0bGaeyOeI0IaaGymaaqcLbyacqGHRiI8aKqbakaacI cacaGG0bGaeyOeI0Iaai4CaiaacMcadaahaaqabKqbGeaacWaraAOe I0IaiqeGykW7juaGdGaraUaaaKqbGeacebOaiqeYd6eaaeacebOaiq eldghajuaGdGarSSbaaKazfa4=bGarSiaceXcIXaaajuaibKarSaaa aaaajuaGdaqbdaqaaiaahEhapaGaaiika8qacaGG3cGaaiilaiaado hapaGaaiykaaWdbiaawMa7caGLkWoadaWgaaqaaiaadYeadaWgaaqc fasaaiaadghajuaGdaWgaaqcKvaG=haacaaIXaaajuaibeaacaGGVa GaaGOmaaqcfayabaGaaiiOa8aadaqadaqaa8qacqqHPoWva8aacaGL OaGaayzkaaaapeqabaGaamizaiaadohacaGGSaaak8aabaqcfa4dbi aadMeacaWGjbGaamysamaaBaaabaGaeyOhIukabeaapaGaaiika8qa caWG0bWdaiaacMcacqGH9aqpk8qadaWdXaqcfayaaaqaaKqzadGaam iDaiabgkHiTiaaigdaaKqbagaajugWaiaadshaaKqzagGaey4kIipa juaGcaGGOaGaaiiDaiabgkHiTiaacohacaGGPaWaaWbaaeqabaqcLb macWaraAOeI0IaiqeGykW7lmaceb4caaqcfayaiqeGjugWaiaceH8G obaajuaGbGaraMqzadGaiqeGikdacGaraoyCaKqbaoaceb4gaaqcfa saiqeGcGaraIOmaaqcfayajqeGaaaajugWaiabgkHiTiaaykW7lmaa laaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaaIYaaaaaaajuaGda qbdaqaaiaahEhapaGaaiika8qacaGG3cGaaiilaiaadohapaGaaiyk aaWdbiaawMa7caGLkWoadaWgaaqaaiaadYeadaWgaaqcfasaaiaadg hajuaGdaWgaaqcKvaG=haacaaIYaaajuaibeaacaGGVaGaaGOmaaqc fayabaGaaiiOa8aadaqadaqaa8qacqqHPoWva8aacaGLOaGaayzkaa aapeqabaGaamizaiaadohajugibiaac6caaaaa@216E@

Since

I ( t ) ( t / 2 ) N q 1 ( 0 t / 2 <   s   > b p d s ) 1 / p ( 0 t / 2 <   s   > b w ( · , s ) L q 1 / 2   ( Ω ) p d s ) 1 / p C ( b p 1 ) 1 / p ( I + [ v ] T 2 ) t N q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaadMeadaWgaaqcfasaaiabg6HiLcqcfayabaWdaiaa cIcapeGaamiDa8aacaGGPaGaaGPaVlaaykW7caaMc8+dbiabgsMiJk aaykW7caaMc8UaaGPaVlaaykW7paGaaiika8qacaWG0bGaai4laiaa ikdapaGaaiykamaaCaaabeqcfasaaiadCHPHsislcaaMc8Ecfa4aiW fMlaaajuaibGaxykacCX7GobaabGaxykacCr0GXbqcfa4aiWfrBaaa juaibGaxejacCreIXaaabKaxebaaaaaajuaGcaaMc8+aaeWaaeaak8 qadaWdXaqcfayaaiabgYda8iaabccacaWGZbGaaeiiaiabg6da+maa CaaabeqcfasaaiabgkHiTiaadkgacaWGWbGaeyOmGikaaKqbakaads gacaWGZbaajqwbG8FaaKqzadGaaGimaaqcKvai=haalmaalyaajqwb G8FaaKqzadGaamiDaaqcKvai=haajugWaiaaikdaaaaajugGbiabgU IiYdaajuaGpaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaigdacaGG VaGabmiCayaafaaaaKqbaoaabmaabaGcpeWaa8qmaKqbagaacqGH8a apcaqGGaGaam4CaiaabccacqGH+aGpdaahaaqabKqbGeaacaWGIbaa aKqbaoaafmaabaGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaam4Ca8 aacaGGPaaapeGaayzcSlaawQa7amaaBaaabaGaamitamaaBaaajuai baGaamyCaKqbaoaaBaaajuaibaGaaGymaaqabaGaai4laiaaikdaaK qbagqaaiaacckapaWaaeWaaeaapeGaeuyQdCfapaGaayjkaiaawMca aaWdbeqaamaaCaaabeqcfasaaiaadchaaaqcfaOaamizaaqcKvaq=h aajugWaiaaicdaaKazfa0=baWcdaWcgaqcKvaq=haajugWaiaadsha aKazfa0=baqcLbmacaaIYaaaaaqcLbyacqGHRiI8aKqbakaadohaa8 aacaGLOaGaayzkaaWaaWbaaeqajuaibaGaaGymaiaac+cacaWGWbaa aaqcfayaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHKjYOcaaMc8UaaGPaVlaadoeacaGGOaWdbiaadkgaca WGWbGaeyOmGiQaeyOeI0IaaGymaiaacMcadaahaaqabKqbGeaacqGH sislpaGaaGymaiaac+caceWGWbGbauaaaaqcfa4dbmaabmaabaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqWFqesscaqG RaGaai4waiaahAhacaGGDbWaa0baaKqbGeaacaWGubaabaGaaGOmaa aaaKqbakaawIcacaGLPaaacaGG0bWaaWbaaeqabaWdamaaCaaabeqc fasaaiadOHMHsisljuaGdGaAOTaaaKqbGeacOHMaiGgJd6eaaeacOH MaiGgfdghajuaGdGaAuSbaaKqbGeacOrHaiGgfigdaaeqcOrbaaaaa aaaaaaaa@FA0F@

as follows from the condition: b p >   1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaMc8UaamOyaiaadchacqGHYaIOcqGH+aGpcaqGGaGaaGym aaaa@3DF1@ in (11), by the condition: ( N q 1   b ) p   >   1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aadGaGOTaaaeacaIMaiaiJd6eaaeacaIMaiaifdghadGaGuSbaaKqb GeacasHaiaifigdaaKqbagqcasbaaaaeaaaaaaaaa8qacqGHsislca qGGaGaamOyaaWdaiaawIcacaGLPaaapeGaamiCaiaabccacqGH+aGp caqGGaGaaGymaaaa@4922@ in (11), we have

2 T ( < t > b I ( t ) ) p d t C 2 T < t > ( N q 1   b ) p d t ( I + [ v ] T 2 ) p C ( ( N q 1   b ) p 1 ) 1 ( I + [ v ] T 2 ) p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWdXaqcfayaaiaacIcacqGH8aapcaaMc8UaamiDaiaaykW7cqGH +aGpdaahaaqabKqbGeaacaWGIbaaaKqbakaadMeadaWgaaqcfasaai abg6HiLcqcfayabaWdaiaacIcapeGaamiDa8aacaGGPaGaaiykamaa Caaabeqcfasaaiaadchaaaaajqwba9=dbeaajugWaiac0rkIYaaajq wba9FaaKqzadGaiGgDdsfaaKqzagGaey4kIipajuaGpaGaamizaiaa dshacaaMc8UaaGPaVlaaykW7cqGHKjYOcaaMc8UaaGPaVlaaykW7pe Gaam4qaiaaykW7caaMc8UcdaWdXaqcfayaaiabgYda8iaaykW7caWG 0bGaaGPaVlabg6da+maaCaaabeqcfasaaiabgkHiTiaacIcajuaGpa WaiaiAlaaajuaibGaGOjacas6GobaabGaGOjacaciaaa3=dghajuaG dGaGacaaW9=gaaqcfasaiaiGaaaC=lacaciaaa3=igdaaeqcaciaaa 3=aaaapeGaeyOeI0IaaeiiaiaadkgacaGGPaGaamiCaaaaaKazfa0= baqcLbmacGaDKIOmaaqcKvaq=haajugWaiacOr3GubaajugGbiabgU IiYdqcfaOaamizaiaadshadaqadaqaamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8heHKKaae4kaiaacUfacaWH2bGaai yxamaaDaaajuaibaGaamivaaqaaiaaikdaaaaajuaGcaGLOaGaayzk aaWaaWbaaeqabaGaamiCaaaacqGHKjYOcaaMc8Uaam4qamaabmaaba Gaaiika8aadGaGOTaaaeacaIMaiaiJd6eaaeacaIMaiaifdghadGaG uSbaaKqbGeacasHaiaifigdaaKqbagqcasbaaaWdbiabgkHiTiaabc cacaWGIbGaaiykaiaadchacqGHsislcaaIXaaacaGLOaGaayzkaaWa aWbaaeqajuaibaGaeyOeI0IaaGymaaaajuaGdaqadaqaaiab=brijj aabUcacaGGBbGaaCODaiaac2fadaqhaaqcfasaaiaadsfaaeaacaaI YaaaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaiaadchaaaaaaa@CA5C@ .

By Holder’s inequality

< t > b I I ( t ) C t / 2 t 1 ( t s ) N q 1 < s > b w ( · , s ) L q 1 / 2   ( Ω ) d s C ( t / 2 t 1 ( t s ) N q 1 d s ) 1 / p ( t / 2 t 1 ( t s ) N q 1 < s > b w ( · , s ) L q 1 / 2   ( Ω ) d s ) 1 / p C ( N q 1   1 ) 1 / p ( t / 2 t 1 ( t s ) N q 1 < s > b w ( · , s ) L q 1 / 2   ( Ω ) d s ) 1 / p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeyipaWJaaGPaVlaadshacaaMc8UaeyOpa4tcfa4a aWbaaSqabKqaGeaajugWaiaadkgaaaqcLbsacaWGjbGaamysaKqbao aaBaaajuaibaqcLbmacqGHEisPaKqbagqaaKqzGeWdaiaacIcapeGa amiDa8aacaGGPaGaaGPaVlaaykW7cqGHKjYOcaaMc8UaaGPaVlaayk W7peGaam4qaiaaykW7caaMc8UcdaWdXaqcfayaaiaacIcacaWG0bGa eyOeI0Iaam4CaiaacMcaaKazfaY=baqcLbmacaWG0bGaai4laiaaik daaKazfaY=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcLbyacqGHRiI8 aKqbaoaaCaaabeqcKvaq=haajugWaiabgkHiTSWdamacaI2caaqcKv aq=hacaIwcLbmacGaGmoOtaaqcKvaq=hacaIwcLbmacGaGumyCaSWa iaifBaaajqwba9FaiaifjugWaiacasbIXaaajqwba9Fajaifaaaaaa qcLbsapeGaaGPaVlaaykW7cqGH8aapcaaMc8Uaam4Caiabg6da+Kqb aoaaCaaaleqajeaibaqcLbmacaWGIbaaaKqbaoaafmaabaqcLbsaca WH3bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaaKqba+qa caGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcfasaaK qzadGaamyCaSWaaSbaaKazfa0=baqcLbmacaaIXaaajuaibeaajugW aiaac+cacaaIYaaajuaGbeaajugibiaacckajuaGpaWaaeWaaeaaju gib8qacqqHPoWvaKqba+aacaGLOaGaayzkaaaapeqabaqcLbsacaWG KbGaam4CaaqcfayaaKqzGeWdaiaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyizImQaaG PaVlaaykW7caaMc8+dbiaadoeacaaMc8EcLbyacaGGOaGcdaWdXaqc fayaaKqzGeGaaiikaiaadshacqGHsislcaWGZbGaaiykaaqcKvai=h aajugWaiaadshacaGGVaGaaGOmaaqcKvai=haajugWaiaadshacqGH sislcaaIXaaajugGbiabgUIiYdqcfa4aaWbaaeqajuaibaqcLbmacq GHsisljuaGpaWaiaiAlaaajuaibGaGOLqzadGaiaiJd6eaaKqbGeac aIwcLbmacGaGumyCaKqbaoacasXgaaqcfasaiaifjugWaiacasbIXa aajuaibKaGuaaaaaaajugib8qacaWGKbGaam4CaKqzagGaaiykaOWa aWbaaSqabeaajugWa8aacaaIXaGaai4laiqadchagaqbaaaajugib8 qacaaMc8EcLbyacaGGOaGcdaWdXaqcfayaaaqcKvai=haajugWaiaa dshacaGGVaGaaGOmaaqcKvai=haajug4aiaadshacqGHsislcaaIXa aajugGbiabgUIiYdqcLbsacaGGOaGaamiDaiabgkHiTiaadohacaGG Paqcfa4aaWbaaeqajuaibaqcLbmacqGHsisljuaGpaWaiaiAlaaaju aibGaGOLqzadGaiaiJd6eaaKqbGeacaIwcLbmacGaGumyCaKqbaoac asXgaaqcfasaiaifjugWaiacasbIXaaajuaibKaGuaaaaaaajugib8 qacaaMc8UaaGPaVlabgYda8iaaykW7caWGZbGaeyOpa4tcfa4aaWba aeqajuaibaqcLbmacaWGIbaaaKqbaoaafmaabaqcLbsacaWH3bWdai aacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaaKqba+qacaGLjWUa ayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcfasaaKqzadGaam yCaKqbaoaaBaaajuaibaqcLbmacaaIXaaajuaibeaajugWaiaac+ca caaIYaaajuaGbeaajugibiaacckajuaGpaWaaeWaaeaajugib8qacq qHPoWvaKqba+aacaGLOaGaayzkaaaapeqabaqcLbsacaWGKbGaam4C aKqzagGaaiykaKqba+aadaahaaqabKqbGeaajugWaiaaigdacaGGVa GaamiCaaaaaKqbagaapeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8EcLbsacaaMc8UaaGPaVlaaykW7caaMc8+daiaaykW7caaMc8Ua eyizImQaaGPaVlaaykW7caaMc8+dbiaadoeajuaGdaqadaqaa8aadG aGOTaaaeacaIwcLbsacGaGmoOtaaqcfayaiaiAjugibiacasXGXbqc fa4aiaifBaaajuaibGaGuKqzadGaiaifigdaaKqbagqcasbaaaqcLb sapeGaeyOeI0IaaeiiaiaaigdaaKqbakaawIcacaGLPaaadaahaaqa bKqbGeaajugWaiabgkHiT8aacaaIXaGaai4laiqadchagaqbaaaaju gGb8qacaGGOaGcdaWdXaqcfayaaKqzGeGaaiikaiaadshacqGHsisl caWGZbGaaiykaaqcKvai=haajugWaiaadshacaGGVaGaaGOmaaqcKv ai=haajugWaiaadshacqGHsislcaaIXaaajugGbiabgUIiYdqcfa4a aWbaaeqajqwbG8FaaKqzadGaeyOeI0YcpaWaiaiAlaaajqwbG8Faia iAjugWaiacaY4GobaajqwbG8FaiaiAjugWaiacasXGXbWcdGaGuSba aKazfaY=bGaGuKqzadGaiaifigdaaKazfaY=bKaGuaaaaaaajugib8 qacaaMc8UaaGPaVlabgYda8iaaykW7caWGZbGaeyOpa4tcfa4aaWba aSqabKazba4=baqcLbmacaWGIbaaaKqbaoaafmaabaqcLbsacaWH3b WdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaaKqba+qacaGL jWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcKvaq=haaju gWaiaadghajuaGdaWgaaqcKvai=haajugOaiaaigdaaKazfa0=beaa jugWaiaac+cacaaIYaaajuaGbeaajugibiaacckajuaGpaWaaeWaae aajugib8qacqqHPoWvaKqba+aacaGLOaGaayzkaaaapeqabaqcLbsa caWGKbGaam4CaKqzagGaaiykaOWaaWbaaSqabeaapaWaaWbaaWqabS qaaKqzadGaaGymaiaac+cacaWGWbaaaaaaaaaa@2C0E@

Because N / q 1   =   N / q 2   +   1   >   1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad6eacaGGVaGaamyCaKqbaoaaBaaajuaibaqcLbmacaaI XaaajuaGbeaajugibiaabccacqGH9aqpcaqGGaGaamOtaiaac+caca WGXbqcfa4aaSbaaKqbGeaajugWaiaaikdaaKqbagqaaKqzGeGaaeii aiabgUcaRiaabccacaaIXaGaaeiiaiabg6da+iaabccacaaIXaaaaa@4B9C@ . By the change of integration order and (56),

2 T ( < t > b I I ( t ) ) p C ( N q 1   1 ) p p 2 T d t t / 2 t 1 ( t s ) N q 1 ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s C ( N q 1   1 ) p p 1 T 1 ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s s + 1 2 s ( t s ) N q 1 d t C ( N q 1   1 ) p ( I + [ v ] T 2 ) p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedajuaGbaqcLbyacaGGOaaajqwba9FaaKqzadGaaGOm aaqcKvaq=haajugWaiaadsfaaKqzagGaey4kIipajuaGcqGH8aapca aMc8UaamiDaiaaykW7cqGH+aGpdaahaaqabKqbGeaacaWGIbaaaKqb akaadMeacaWGjbWaaSbaaKqbGeaacqGHEisPaKqbagqaaiaacIcaca WG0bGaaiykaKqzagGaaiykaKqbaoaaCaaabeqaaiaadchacaaMc8oa aiaaykW7caaMc8+daiabgsMiJkaaykW7caaMc8UaaGPaVlaaykW7pe Gaam4qamaabmaabaWdamacaI2caaqaiaiAcGaGmoOtaaqaiaiAcGaG umyCamacasXgaaqcfasaiaifcGaGuGymaaqcfayajaifaaaapeGaey OeI0IaaeiiaiaaigdaaiaawIcacaGLPaaadaahaaqabKqbGeaapaGa eyOeI0IaaGPaVNqbaoaaleaajuaibaGaamiCaaqaaiqadchagaqbaa aaaaqcfa4dbiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UcdaWdXaqc fayaaKqzGeGaamizaiaadshaaKazfa0=baqcLbmacaaIYaaajqwba9 FaaKqzadGaamivaaqcLbyacqGHRiI8aOGaaGPaVlaaykW7caaMc8+a a8qmaKqbagaaaKazfa0=baqcLbmacaWG0bGaai4laiaaikdaaKazfa 0=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcLbyacqGHRiI8aKqbakaa cIcacaWG0bGaeyOeI0Iaam4CaiaacMcadaahaaqabKqbGeaacqGHsi sljuaGpaWaiaiAlaaajuaibGaGOjacaY4GobaabGaGOjacasXGXbqc fa4aiaifBaaajuaibGaGuiacasbIXaaabKaGuaaaaaaajuaGpeGaaG PaVlaaykW7jugGbiaacIcajuaGcqGH8aapcaaMc8UaaGPaVlaadoha caaMc8UaeyOpa4ZaaWbaaeqajuaibaGaamOyaaaajuaGdaqbdaqaai aahEhapaGaaiika8qacaGG3cGaaiilaiaadohapaGaaiykaaWdbiaa wMa7caGLkWoadaWgaaqaaiaadYeadaWgaaqcfasaaiaadghajuaGda WgaaqcKvaG=haacaaIXaaajuaibeaacaGGVaGaaGOmaaqcfayabaGa aiiOa8aadaqadaqaa8qacqqHPoWva8aacaGLOaGaayzkaaaapeqaba qcLbyacaGGPaqcfa4aaWbaaeqajuaibaGaamiCaaaajuaGcaWGKbGa am4CaaGcpaqaaKqzGeGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyiz ImQaaGPaVlaaykW7caaMc8+dbiaadoeajuaGdaqadaqaa8aadGaGOT aaaeacaIwcLbsacGaGmoOtaaqcfayaiaiAjugibiacasXGXbqcfa4a iaifBaaajuaibGaGuKqzadGaiaifigdaaKqbagqcasbaaaqcLbsape GaeyOeI0IaaeiiaiaaigdaaKqbakaawIcacaGLPaaadaahaaqabKqb GeaajugWa8aacqGHsislcaaMc8+cdaWcbaqcfasaaKqzadGaamiCaa qcfasaaKqzadGabmiCayaafaaaaaaak8qadaWdXaqcfayaaKqzagGa aiikaaqcKvaq=haajugWaiaaigdaaKazfa0=baqcLbmacaWGubGaey OeI0IaaGymaaqcLbyacqGHRiI8aKqzGeGaeyipaWJaam4Caiabg6da +KqbaoaaCaaabeqcfasaaKqzadGaamOyaaaajuaGdaqbdaqaaKqzGe GaaC4Da8aacaGGOaWdbiaacElacaGGSaGaam4Ca8aacaGGPaaajuaG peGaayzcSlaawQa7amaaBaaabaqcLbsacaWGmbqcfa4aaSbaaKqbGe aajugWaiaadghalmaaBaaajqwba+FaaKqzGcGaaGymaaqcfasabaqc LbmacaGGVaGaaGOmaaqcfayabaqcLbsacaGGGcqcfa4damaabmaaba qcLbsapeGaeuyQdCfajuaGpaGaayjkaiaawMcaaaWdbeqaaKqzagGa aiykaKqbaoaaCaaabeqcfasaaKqzadGaaiiCaaaajugibiaadsgaca WGZbGcdaWdXaqcfayaaKqzGeGaaiikaiaadshacqGHsislcaWGZbGa aiykaaqcKvaq=haajugWaiaadohacqGHRaWkcaaIXaaajqwba9FaaK qzadGaaGOmaiaadohaaKqzagGaey4kIipajuaGdaahaaqabKqbGeaa jugWaiabgkHiTSWdamacaI2caaqcfasaiaiAjugWaiacaY4Gobaaju aibGaGOLqzadGaiaifdghalmacasXgaaqcfasaiaifjugWaiacasbI XaaajuaibKaGuaaaaaaajugib8qacaWGKbGaamiDaaGcpaqaaKqzGe GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyizImQaaGPaVlaaykW7ca aMc8+dbiaadoeajuaGdaqadaqaa8aadGaGOTaaaeacaIwcLbsacGaG moOtaaqcfayaiaiAjugibiacasXGXbqcfa4aiaifBaaajuaibGaGuK qzGeGaiaifigdaaKqbagqcasbaaaqcLbsapeGaeyOeI0Iaaeiiaiaa igdaaKqbakaawIcacaGLPaaadaahaaqabKazfa0=baqcLbmapaGaey OeI0IaamiCaaaajuaGpeWaaeWaaeaatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbcKqzGeGae8heHKKaae4kaiaacUfacaWH2b GaaiyxaSWaa0baaKqbGeaajugWaiaadsfaaKqbGeaajugWaiaaikda aaaajuaGcaGLOaGaayzkaaWaaWbaaeqajuaibaqcLbmacaWGWbaaaK qbakaac6caaaaa@2014@

Since N 2 q 2 + 1 2 < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaqaaiaad6eaaeaacaaIYaGaamyCamaaBaaajuaibaGa aGOmaaqcfayabaaaaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaa GaaGPaVlabgYda8iaaykW7caaIXaaaaa@4210@ as follows from q2 > N, by Holder’s inequality,

< t > b I I I ( t ) C t 1 t ( t s ) N 2 q 2 1 2 < s > b w ( · , s ) L q 2   ( Ω ) d s C ( t 1 t ( t s ) N 2 q 2 1 2 d s ) 1 / p ( t 1 t ( t s ) N 2 q 2 1 2 ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s ) 1 / p C ( N 2 q 2 1 2 ) 1 / p ( t 1 t ( t s ) N 2 q 2 1 2 ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s ) 1 / p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiabgYda8iaaykW7caWG0bGaaGPaVlabg6da+maaCaaa beqcfasaaiaadkgaaaqcfaOaamysaiaadMeacaWGjbWaaSbaaKqbGe aacqGHEisPaKqbagqaaiaacIcacaWG0bGaaiykaiaaykW7paGaaGPa VlaaykW7cqGHKjYOcaaMc8UaaGPaVlaaykW7peGaam4qaiaaykW7ca aMc8UcdaWdXaqcfayaaiaacIcajugibiaadshacqGHsislcaWGZbqc faOaaiykaaqcKvaq=haajugWaiaadshacqGHsislcaaIXaaajqwba9 FaaKqzadGaamiDaaqcLbyacqGHRiI8aKqbaoaaCaaabeqcfasaaiab gkHiTiaaykW7juaGpaWaiaiAlaaajuaibGaGOjacaY4GobaabGaGOj acaYcIYaGaiaildghajuaGdGaGSSbaaKqbGeacaYIaiaifikdaaeqc aYcaaaGaaGPaVlabgkHiTiaaykW7juaGdaWcaaqcfasaaiaaigdaae aacaaIYaaaaaaajuaGpeGaaGPaVlaaykW7cqGH8aapcaaMc8Uaam4C aiabg6da+maaCaaabeqcfasaaiaadkgaaaqcfa4aauWaaeaacaWH3b WdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaa8qacaGLjWUa ayPcSdWaaSbaaeaacaWGmbWaaSbaaKqbGeaacaWGXbqcfa4aaSbaaK azfa4=baGaaGOmaaqcfayabaaabeaacaGGGcWdamaabmaabaWdbiab fM6axbWdaiaawIcacaGLPaaaa8qabeaacaWGKbGaam4Caaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaV=aacaaMc8UaeyizImQaaGPaVlaaykW7peGa aGPaVlaadoeacaaMc8EcLbyacaGGOaqcfaOaaGPaVRWaa8qmaKqbag aacaGGOaqcLbsacaWG0bGaeyOeI0Iaam4CaKqbakaacMcaaKazfa0= baqcLbmacaWG0bGaeyOeI0IaaGymaaqcKvaq=haajugWaiaadshaaK qzagGaey4kIipajuaGdaahaaqabKqbGeaacqGHsislcaaMc8Ecfa4d amacaI2caaqcfasaiaiAcGaGmoOtaaqaiaiAcGaGSGOmaiacaYYGXb qcfa4aiailBaaajuaibGaGSiacasbIYaaabKaGSaaaaiaaykW7cqGH sislcaaMc8Ecfa4aaSaaaKqbGeaacaaIXaaabaGaaGOmaaaaaaqcfa 4dbiaaykW7caaMc8UaamizaiaadohajugGbiaacMcakmaaCaaaleqa baGaaGymaiaac+caceWGWbGbauaaaaqcfaOaaGPaVNqzagGaaGPaVl aacIcakmaapedajuaGbaGaaiikaKqzGeGaamiDaiabgkHiTiaadoha juaGcaGGPaaajqwba9FaaKqzadGaamiDaiabgkHiTiaaigdaaKazfa 0=baqcLbmacaWG0baajugGbiabgUIiYdqcfa4aaWbaaeqajuaibaGa eyOeI0IaaGPaVNqba+aadGaGOTaaaKqbGeacaIMaiaiJd6eaaeacaI MaiailikdacGaGSmyCaKqbaoacaYYgaaqcfasaiailcGaGuGOmaaqa jailaaaacaaMc8UaeyOeI0IaaGPaVNqbaoaalaaajuaibaGaaGymaa qaaiaaikdaaaaaaKqba+qacaaMc8UaaGPaVlaacIcacqGH8aapcaaM c8Uaam4Caiabg6da+maaCaaabeqcfasaaiaadkgaaaqcfa4aauWaae aacaWH3bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaa8qa caGLjWUaayPcSdWaaSbaaeaacaWGmbWaaSbaaKqbGeaacaWGXbqcfa 4aaSbaaKazfa4=baGaaGOmaaqcfayabaaabeaacaGGGcWdamaabmaa baWdbiabfM6axbWdaiaawIcacaGLPaaaa8qabeaacaGGPaGcdaahaa WcbeqaaiaadchaaaqcLbsacaWGKbGaam4CaKqzagGaaiykaOWaaWba aSqabeaajugWaiaaigdacaGGVaGaamiCaaaaaKqbagaapaGaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlabgsMiJkaaykW7caaMc8+dbiaaykW7 caWGdbWaaeWaaeaacqGHsislpaWaiaiAlaaabGaGOjacaY4GobaabG aGOjacaYcIYaGaiaildghadGaGSSbaaeacaYIaiaifikdaaeqcaYca aaGaaGPaVlabgkHiTiaaykW7daWcaaqaaiaaigdaaeaacaaIYaaaa8 qacaaMc8oacaGLOaGaayzkaaWaaWbaaeqabaGcdaahaaWcbeqaaiab gkHiTiaaigdacaGGVaGabmiCayaafaaaaaaajugGbiaacIcakmaape dajuaGbaGaaiikaKqzGeGaamiDaiabgkHiTiaadohajuaGcaGGPaaa jqwba9FaaKqzadGaamiDaiabgkHiTiaaigdaaKazfa0=baqcLbmaca WG0baajugGbiabgUIiYdqcfa4aaWbaaeqajuaibaGaeyOeI0IaaGPa VNqba+aadGaGOTaaaKqbGeacaIMaiaiJd6eaaeacaIMaiailikdacG aGSmyCaKqbaoacaYYgaaqcfasaiailcGaGuGOmaaqajailaaaacaaM c8UaeyOeI0IaaGPaVNqbaoaalaaajuaibaGaaGymaaqaaiaaikdaaa aaaKqba+qacaaMc8UaaGPaVlaacIcacqGH8aapcaaMc8Uaam4Caiab g6da+maaCaaabeqcfasaaiaadkgaaaqcfa4aauWaaeaacaWH3bWdai aacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaa8qacaGLjWUaayPc SdWaaSbaaeaacaWGmbWaaSbaaKqbGeaacaWGXbqcfa4aaSbaaKazfa 4=baGaaGOmaaqcfayabaaabeaacaGGGcWdamaabmaabaWdbiabfM6a xbWdaiaawIcacaGLPaaaa8qabeaacaGGPaGcdaahaaWcbeqaaiaadc haaaqcLbsacaWGKbGaam4CaKqzagGaaiykaOWaaWbaaSqabeaajugW aiaaigdacaGGVaGaamiCaaaakiaac6caaaaa@1711@

By the change of integration order, we have

2 T ( < t > b I I I ( t ) ) p d t C ( 1 N 2 q 2 ) p p 2 T d t t 1 t ( t s ) N 2 q 2 1 2 ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s C ( 1 N 2 q 2 ) p p 1 T ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s s s + 1 ( t s ) N 2 q 2 1 2 d t C ( 1 N 2 q 2 ) p ( I + [ v ] T 2 ) p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedajuaGbaaajqwba9FaaKqzadGaaGOmaaqcKvay=haa jug4aiaadsfaaKqzagGaey4kIipacaGGOaqcfaOaeyipaWJaaGPaVl aadshacaaMc8UaeyOpa4ZaaWbaaeqajuaibaGaamOyaaaajuaGcaWG jbGaamysaiaadMeadaWgaaqcfasaaiabg6HiLcqcfayabaGaaiikai aadshacaGGPaqcLbyacaGGPaqcfa4aaWbaaeqabaGaamiCaiaaykW7 aaqcLbsacaWGKbGaamiDaKqba+aacqGHKjYOcaaMc8UaaGPaVlaayk W7caaMc8+dbiaadoeadaqadaqaaiaaigdacqGHsislpaWaiaiAlaaa bGaGOjacaY4GobaabGaGOjacaIgIYaGaiaiAdghadGaGOTbaaKqbGe acaIMaiaiuikdaaKqbagqcaIgaaaaapeGaayjkaiaawMcaaOWaaWba aSqabeaajugWa8aacqGHsislcaaMc8+cdaWcbaadbaqcLbmacaWGWb aameaajugWaiqadchagaqbaaaaaaGcpeWaa8qmaKqbagaajugibiaa dsgacaWG0baajqwba9FaaKqzadGaaGOmaaqcKvaq=haajugWaiaads faaKqzagGaey4kIipakiaaykW7caaMc8+aa8qmaKqbagaaaKazfa0= baqcLbmacaWG0bGaeyOeI0IaaGymaaqcKvaq=haajugWaiaadshaaK qzagGaey4kIipajuaGcaGGOaGaamiDaiabgkHiTiaadohacaGGPaWa aWbaaeqajuaibaGaeyOeI0scfa4damacaI2caaqcfasaiaiAcGaGmo OtaaqaiaiAcGaG4GOmaiacaIZGXbqcfa4aiaioBaaajuaibGaG4iac accIYaaajuaGbKaG4aaaaiabgkHiTSWaaSaaaKqbagaajugWaiaaig daaKqbagaajugWaiaaikdaaaaaaKqba+qacaaMc8UaaGPaVNqzagGa aiikaKqbakabgYda8iaaykW7caaMc8Uaam4CaiaaykW7cqGH+aGpda ahaaqabKqbGeaacaWGIbaaaKqbaoaafmaabaGaaC4Da8aacaGGOaWd biaacElacaGGSaGaam4Ca8aacaGGPaaapeGaayzcSlaawQa7amaaBa aabaGaamitamaaBaaabaqcLbmacaWGXbWcdaWgaaqcfauaaKqzadGa aGOmaaqcfayabaaabeaacaGGGcWdamaabmaabaWdbiabfM6axbWdai aawIcacaGLPaaaa8qabeaajugGbiaacMcajuaGdaahaaqabKqbGeaa caWGWbaaaKqbakaadsgacaWGZbaakeaajuaGpaGaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7cqGHKjYOcaaMc8UaaGPaVlaaykW7caaMc8 +dbiaadoeadaqadaqaaiaaigdacqGHsislpaWaiaiAlaaabGaGOjac aY4GobaabGaGOjacaIgIYaGaiaifdghadGaGOTbaaKqbGeacaIMaia iAikdaaKqbagqcaIgaaaaapeGaayjkaiaawMcaaOWaaWbaaSqabeaa jugWa8aacqGHsislcaaMc8+cdaWcbaadbaqcLbmacaWGWbaameaaju gWaiqadchagaqbaaaaaaGcpeWaa8qmaKqbagaaaKazfa0=baqcLbma caaIXaaajqwba9FaaKqzadGaamivaaqcLbyacqGHRiI8aOGaaGPaVN qbakaaykW7jugGbiaacIcajuaGcqGH8aapcaaMc8UaaGPaVlaadoha caaMc8UaeyOpa4ZaaWbaaeqajuaibaGaamOyaaaajuaGdaqbdaqaai aahEhapaGaaiika8qacaGG3cGaaiilaiaadohapaGaaiykaaWdbiaa wMa7caGLkWoadaWgaaqaaiaadYeadaWgaaqaaKqzadGaamyCaSWaaS baaKqbafaajugWaiaaikdaaKqbagqaaaqabaGaaiiOa8aadaqadaqa a8qacqqHPoWva8aacaGLOaGaayzkaaaapeqabaqcLbyacaGGPaqcfa 4aaWbaaeqajuaibaGaamiCaaaajuaGcaWGKbGaam4CaiaaykW7caaM c8UcdaWdXaqcfayaaaqcKvaq=haajugWaiaadohaaKazfa0=baqcLb macaWGZbGaey4kaSIaaGymaaqcLbyacqGHRiI8aOGaaGPaVNqbakaa cIcacaWG0bGaeyOeI0Iaam4CaiaacMcadaahaaqabKqbGeaacqGHsi sljuaGpaWaiaiAlaaajuaibGaGOjacaY4GobaabGaGOjacaIdIYaGa iaiodghajuaGdGaG4SbaaKqbGeacaIJaiaiiikdaaKqbagqcaIdaaa GaeyOeI0YcdaWcaaqcfayaaKqzadGaaGymaaqcfayaaKqzadGaaGOm aaaaaaqcfa4dbiaaykW7caaMc8UaamizaiaadshaaOqaaKqba+aaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHKjYOcaaMc8 UaaGPaVlaaykW7caaMc8+dbiaadoeadaqadaqaaiaaigdacqGHsisl paWaiaiAlaaabGaGOjacaY4GobaabGaGOjacaIgIYaGaiaifdghadG aGOTbaaKqbGeacaIMaiaiAikdaaKqbagqcaIgaaaaapeGaayjkaiaa wMcaaOWaaWbaaSqabeaajugWa8aacqGHsislcaaMc8UaamiCaaaaju aGpeWaaeWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbciab=brijjaabUcacaGGBbGaaCODaiaac2fadaqhaaqcfasaai aadsfaaeaacaaIYaaaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasa aiaadchaaaqcfaOaaiOlaaaaaa@56A9@

Summing up, we have obtained (65). Next, we prove (66).

By (64) with r = q 1 ,   q ˜ 1 = q 1 / 2   a n d   q ˜ 2 = q 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaeyypa0JaamyCamaaBaaajuaibaGaaGymaaqcfaya baGaaiilaiaabccacaaMc8UabmyCayaaiaWaaSbaaKqbGeaacaaIXa aajuaGbeaacqGH9aqpcaWGXbWaaSbaaKqbGeaacaaIXaaajuaGbeaa caGGVaGaaGOmaiaabccacaWGHbGaamOBaiaadsgacaqGGaGabmyCay aaiaWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcaWGXbWaaSba aKqbGeaacaaIXaaajuaGbeaaaaa@4FE7@ ,

u ( · , t ) L q 1   ( Ω ) C ( I q 1 , ( t ) + I I q 1 , 1 ( t ) + I I I q 1 , 1 ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaiaaykW7caWH1bGaaGPaV=aacaGGOaWdbiaacEla caGGSaGaaiiDa8aacaGGPaaapeGaayzcSlaawQa7amaaBaaabaGaam itamaaBaaajuaibaGaamyCaKqbaoaaBaaajqwba+FaaiaaigdaaKqb GeqaaaqcfayabaGaaiiOa8aadaqadaqaa8qacqqHPoWva8aacaGLOa GaayzkaaaapeqabaWdaiabgsMiJkaaykW7caaMc8UaaGPaV=qacaWG dbGaaiikaiaadMeadaWgaaqcfasaaiaadghajuaGdaWgaaqcKvaG=h aacaaIXaaajuaibeaacaGGSaGaeyOhIukajuaGbeaacaGGOaGaamiD aiaacMcacqGHRaWkcaWGjbGaamysamaaBaaajuaibaGaamyCaKqbao aaBaaajqwba+FaaiaaigdaaKqbGeqaaiaacYcacaaIXaaajuaGbeaa caGGOaGaamiDaiaacMcacqGHRaWkcaWGjbGaamysaiaadMeadaWgaa qcfasaaiaadghajuaGdaWgaaqcKvaG=haacaaIXaaajuaibeaacaGG SaGaaGymaaqcfayabaGaaiikaiaadshacaGGPaGaaiykaaaa@784F@

With

I q 1 , 1 ( t ) = 0 t / 2 ( t s ) N 2 q 1 w ( · , s ) L q 1 / 2   ( Ω ) d s , I I q 1 , 1 ( t ) = t / 2 t 1 ( t s ) N 2 q 1 w ( · , s ) L q 1 / 2   ( Ω ) d s , I I I q 1 , 1 ( t ) = t 1 t w ( · , s ) L q 1   ( Ω ) d s . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaadMeadaWgaaqcfasaaiaadghajuaGdaWgaaqcKvaG =haacaaIXaaajuaibeaacaGGSaGaaGymaaqcfayabaGaaiikaiaads hacaGGPaGaaGPaVlabg2da9iaaykW7kmaapedajuaGbaGaaiikaiaa dshacqGHsislcaWGZbGaaiykaaqcKvaq=haajugWaiaaicdaaKazfa 0=baqcLbmacaWG0bGaai4laiaaikdaaKqzagGaey4kIipajuaGdaah aaqabKqbGeaacqGHsisljuaGpaWaiaiAlaaajuaibGaGOjacaY4Gob aabGaGOjacaYcIYaGaiaildghajuaGdGaGSSbaaKazfa4=bGaGSiac aYcIXaaajuaibKaGSaaaaaaajuaGpeWaauWaaeaacaWH3bWdaiaacI capeGaai4TaiaacYcacaWGZbWdaiaacMcaa8qacaGLjWUaayPcSdWa aSbaaeaacaWGmbWaaSbaaKqbGeaacaWGXbqcfa4aaSbaaKazfa4=ba GaaGymaaqcfasabaGaiGgPc+cacGaAKIOmaaqcfayabaGaaiiOa8aa daqadaqaa8qacqqHPoWva8aacaGLOaGaayzkaaaapeqabaGaamizai aadohacaGGSaaabaGaamysaiaadMeadaWgaaqcfasaaiaadghajuaG daWgaaqcKvaG=haacaaIXaaajuaibeaacaGGSaGaaGymaaqcfayaba GaaiikaiaadshacaGGPaGaaGPaVlabg2da9iaaykW7kmaapedajuaG baGaaiikaiaadshacqGHsislcaWGZbGaaiykaaqcKvaq=haajugWai aadshacaGGVaGaaGOmaaqcKvaq=haajugWaiaadshacqGHsislcaaI XaaajugGbiabgUIiYdqcfa4aaWbaaeqajuaibaGaeyOeI0scfa4dam acaI2caaqcfasaiaiAcGaGmoOtaaqaiaiAcGaGSGOmaiacaYYGXbqc fa4aiailBaaajqwba+FaiailcGaGSGymaaqcfasajailaaaaaaqcfa 4dbmaafmaabaGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaam4Ca8aa caGGPaaapeGaayzcSlaawQa7amaaBaaabaGaamitamaaBaaajuaiba GaamyCaKqbaoaaBaaajqwba+FaaiaaigdaaKqbGeqaaiaac+cacaaI YaaajuaGbeaacaGGGcWdamaabmaabaWdbiabfM6axbWdaiaawIcaca GLPaaaa8qabeaacaWGKbGaam4CaiaacYcaaeaacaWGjbGaamysaiaa dMeadaWgaaqcfasaaiaadghajuaGdaWgaaqcKvaG=haacaaIXaaaju aibeaacaGGSaGaaGymaaqcfayabaGaaiikaiaadshacaGGPaGaaGPa Vlabg2da9iaaykW7kmaapedajuaGbaGaaGPaVdqcKvaq=haajugWai aadshacqGHsislcaaIXaaajqwbG9FaaKqzGdGaamiDaaqcLbyacqGH RiI8aKqbaoaafmaabaGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaam 4Ca8aacaGGPaaapeGaayzcSlaawQa7amaaBaaabaGaamitamaaBaaa juaibaGaamyCaKqbaoaaBaaajqwba+FaaiaaigdaaKqbGeqaaaqcfa yabaGaaiiOa8aadaqadaqaa8qacqqHPoWva8aacaGLOaGaayzkaaaa peqabaGaamizaiaadohacaGGUaaaaaa@FF7C@

By (56)

I q 1 , 1 ( t ) ( t / 2 ) N 2 q 1 ( 0 t / 2 < s > b p d s ) 1 / p ( 0 t / 2 < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p C t N 2 q 1 ( I + [ v ] T 2 ) p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaadMeadaWgaaqcfasaaiacOHZGXbqcfa4aiGgoBaaa jqwba+FaiGgocGaA4GymaaqcfasajGgoaiacOHJGSaGaiGgoigdaaK qbagqaaiaacIcacaWG0bGaaiykaiaaykW7caaMc8UaaGPaVlabgsMi JkaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaamiDaiaac+cacaaIYa GaaiykamaaCaaabeqaamaaCaaabeqcfasaaiadSaUHsisljuaGpaWa iWcYlaaajuaibGalilacSW+GobaabGalilacSWiIYaGaiWcJdghaju aGdGalmUbaaKazfa4=bGalmkacSWiIXaaajuaibKalmcaaaaaaaaqc fa4dbiaaykW7daqadaqaaOWaa8qmaKqbagaaaKazfa0=baqcLbmaca aIWaaajqwba9FaaKqzadGaamiDaiaac+cacaaIYaaajugGbiabgUIi YdqcfaOaeyipaWJaaGPaVlaadohacaaMc8UaeyOpa4ZaaWbaaeqaju aibaGaeyOeI0IaamOyaiqadchagaqbaaaajuaGcaWGKbGaam4CaaGa ayjkaiaawMcaaiaaykW7daahaaqabKqbGeaacGaxqHymaiacCbLGVa GajWfudchagGaxqvaaaaqcfaOaaGPaVlaaykW7caaMc8UaaGPaVpaa bmaabaGcdaWdXaqcfayaaaqcKvaq=haajugWaiaaicdaaKazfa0=ba qcLbmacaWG0bGaai4laiaaikdaaKqzagGaey4kIipajuaGcqGH8aap caaMc8Uaam4CaiaaykW7cqGH+aGpdaahaaqabKqbGeaacaWGIbaaaK qbakaaykW7daqbdaqaaiaahEhapaGaaiika8qacaGG3cGaaiilaiaa dohapaGaaiykaiaaykW7a8qacaGLjWUaayPcSdWaaSbaaeaacaWGmb WaaSbaaKqbGeaacaWGXbqcfa4aaSbaaKazfa4=baGaaGymaaqcfasa baGaai4laiaaikdaaKqbagqaaiaacckapaWaaeWaaeaapeGaeuyQdC fapaGaayjkaiaawMcaaaWdbeqaaiaacMcadaahaaqabKqbGeaacaWG WbaaaKqbakaadsgacaWGZbaacaGLOaGaayzkaaGaaGPaVlaaykW7da ahaaqabKqbGeaacGareHymaiacerKGVaGaiqerdchaaaqcfaOaaGPa VlaaykW7aOqaaKqbakaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7cGaGacaaO8pMc8UaiaiGaaak=JPaVlacaciaaW U=ykW7cWaGacaaS7VHKjYOcGaGacaaS7=GdbGaiaiGaaa7+piDamac aciaaWU=CaaabKaGacaaS7FaiaiGaaa7+pacaciaaWU=CaaabKaGac aaS7FaiaiGaaa7+pacaciaaWU=CaaabKaGacaaS7FcfasaiaiGaaa7 +ladObOHsisljuaGpaWaiGgAlaaajuaibGaAOjacOX4GobaabGaAOj acOXcIYaGaiGgldghajuaGdGaASSbaaKqbGeacOXIaiGgligdaaeqc OXcaaaaaaaaaaaqcfa4dbmacaciaaWU=bmaabGaGacaaS7=efv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacWaGacaaS7=Fqess cWaGacaaS7VHRaWkcGaGacaaS7VGBbGaiaiGaaa7+pODaiacaciaaW U=c2fadGaGacaaS7FhaaqcfasaiaiGaaa7+lacaciaaWU=dsfaaeac aciaaWU=cGaGacaaS7pIYaaaaaqcfaOaiaiGaaa7+BjkaiacaciaaW U=wMcaamacaciaaWU=CaaabKaGacaaS7FcfasaiaiGaaa7+lacacia aWU=dchaaaqcfaOaiaiGaaak=lOlaaaaaa@7686@

Analogously, by Holder’s inequality and (56),

I I q 1 , 1 ( t ) = t / 2 t 1 ( t s ) N 2 q 1 < s > b < s > b w ( · , s ) L q 1 / 2   ( Ω ) d s , C < t > b ( t / 2 t 1 ( t s ) N p 2 q 1 d s ) 1 / p ( 0 T ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p = C ( 1 N p 2 q 1 ) 1 / p < t > b N 2 q 1 + 1 p ( I + [ v ] T 2 ) C ( 1 N p 2 q 1 ) 1 / p < t > N 2 q 1 ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamysaiaadMeajuaGdaWgaaqcfasaaKqzadGaamyC aKqbaoaaBaaajqwba+FaaKqzGcGaaGymaaqcfasabaqcLbmacaGGSa GaaGymaaqcfayabaqcLbsacaGGOaGaamiDaiaacMcacaaMc8Uaeyyp a0JaaGPaVRWaa8qmaKqbagaaaKazfaY=baqcLbmacaWG0bGaai4lai aaikdaaKazfaY=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcLbyacqGH RiI8aKqzGeGaaiikaiaadshacqGHsislcaWGZbGaaiykaKqbaoaaCa aabeqcfasaaKqzadGamaiGO=pHayOeI0scfa4damacOX+caaqcfasa iGg7jugWaiacaci6=djad6eaaKqbGeacOXEcLbmacGaAWIOmaiacOb 7GXbqcfa4aiGgSBaaajuaibGaAWMqzadGaiGgSigdaaKqbGeqcObla aaaaaKqzGeWdbiabgYda8iaadohacqGH+aGpjuaGdaahaaWcbeqcba saaKqzadGaeyOeI0IaamOyaaaajugibiaaykW7caaMc8UaeyipaWJa am4Caiabg6da+KqbaoaaCaaaleqajeaibaqcLbmacaWGIbaaaKqzGe GaaGPaVlaaykW7juaGdaqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaa cElacaGGSaGaam4Ca8aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBa aabaqcLbsacaWGmbqcfa4aaSbaaKazfa0=baqcLbmacaWGXbqcfa4a aSbaaKazfaY=baqcLbkacaaIXaaajuaibeaajugWaiaac+cacaaIYa aajuaGbeaajugibiaacckajuaGpaWaaeWaaeaajugib8qacqqHPoWv aKqba+aacaGLOaGaayzkaaaapeqabaqcLbsacaWGKbGaam4CaiaacY caaOqaaKqzGeWdaiabgsMiJkaaykW7caaMc8+dbiaaykW7caWGdbGa aGPaVlaaykW7cqGH8aapcaaMc8UaamiDaiaaykW7cqGH+aGpjuaGda ahaaWcbeqcbasaaKqzadGaeyOeI0IaamOyaaaajugibiaaykW7jugO biaacIcakmaapedabaaajqwaa+FaaKqzGdGaamiDaiaac+cacaaIYa aajqwaa+FaaKqzadGaamiDaiabgkHiTiaaigdaaKqzagGaey4kIipa jugibiaacIcacaWG0bGaeyOeI0Iaam4CaiaacMcajuaGdaahaaWcbe qcbasaaKqzadGaeyOeI0scfa4damacaI2caaqcbasaiaiAjugWaiac aY4GobWdbiqcaI2GWbGbiaiAfaaajeaipaqaiaiAjugWaiacaYcIYa GaiaildghajuaGdGaGSSbaaKGaGeacaYscLbkacGaGSGymaaqccasa jailaaaaaaqcLbsapeGaamizaiaadohajugObiaacMcajuaGdaahaa WcbeqcbasaaKqzadGaaGymaiaac+caceWGWbGbauaaaaqcLbsacaaM c8UaaGPaVNqzGgGaaiikaOWaa8qmaeaacaaMc8oajqwaa+FaaKqzad GaaGimaaqcKfaG=haajugWaiaadsfaaKqzagGaey4kIipajugibiaa cIcacqGH8aapcaaMc8Uaam4CaiaaykW7cqGH+aGpjuaGdaahaaWcbe qaaKqzGeGaamOyaaaajuaGdaqbdaGcbaqcLbsacaWH3bWdaiaacIca peGaai4TaiaacYcacaWGZbWdaiaacMcaaOWdbiaawMa7caGLkWoaju aGdaWgaaWcbaqcLbsacaWGmbqcfa4aaSbaaKGaGeaajugWaiaadgha juaGdaWgaaqccasaaKqzGcGaaGymaaqccasabaqcLbmacaGGVaGaaG OmaaadbeaajugibiaacckajuaGpaWaaeWaaSqaaKqzGeWdbiabfM6a xbWcpaGaayjkaiaawMcaaaWdbeqaaKqzGeGaaiykaKqbaoaaCaaale qajeaibaqcLbmacaWGWbaaaKqzGeGaamizaiaadohajugObiaacMca juaGdaahaaWcbeqcbasaaKqzadGaaGymaiaac+cacaWGWbaaaaGcba qcLbsacaaMc8UaaGPaVlabg2da9iaadoeacaGGOaGaaGymaiabgkHi TiabgkHiTKqba+aadGaGOTaaaOqaiaiAjugibiacaY4GobWdbiqcaI 2GWbGbiaiAfaaak8aabGaGOLqzGeGaiailikdacGaGSmyCaKqbaoac aYYgaaqcbasaiailjugWaiacaYcIXaaaleqcaYcaaaqcLbsapeGaai ykaKqbaoaaCaaaleqajeaibaqcLbmacaaIXaGaai4laiqadchagaqb aaaajugibiabgYda8iaaykW7caWG0bGaaGPaVlabg6da+KqbaoaaCa aaleqajeaibaqcLbmacWarSBOeI0Iaiqe7dkgacWarSBOeI0scfa4d amacer9caaqcbasaiqe1jugWaiaceH=GobaajeaibGaruNqzadGaiq eMikdacGaryoyCaKqbaoaceH5gaaqccasaiqeMjugWaiaceHjIXaaa jiaibKarycaaaKqzadGamqe7gUcaRKqbaoaceX+caaqcbasaiqe7ju gWaiaceXoIXaaajeaibGarSNqzadWdbiqceX+GWbGbiqe7faaaaaaa jugibiaaykW7caaMc8UaaGPaVNqbaoaabmaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbcKqzGeGae8heHKKaae4kaiaa cUfacaWH2bGaaiyxaKqbaoaaDaaajeaibaqcLbmacaWGubaajeaiba qcLbmacaaIYaaaaaGccaGLOaGaayzkaaaabaqcLbsapaGaeyizImQa aGPaVlaaykW7peGaaGPaVlaadoeacaGGOaGaaGymaiabgkHiTiabgk HiTKqba+aadGaGOTaaaOqaiaiAjugibiacaY4GobWdbiqcaI2GWbGb iaiAfaaak8aabGaGOLqzGeGaiailikdacGaGSmyCaKqbaoacaYYgaa WcbGaGSKqzGeGaiailigdaaSqajailaaaajugib8qacaGGPaqcfa4a aWbaaSqabKqaGeaajugWaiaaigdacaGGVaGabmiCayaafaaaaKqzGe GaeyipaWJaaGPaVlaadshacaaMc8UaeyOpa4tcfa4aaWbaaSqabKqa GeaajuaGpaWaiWfDlaaajeaibGax0LqzadGaiWfMd6eaaKqaGeacCr xcLbmacGax4GOmaiacCHZGXbqcfa4aiWfoBaaajiaibGax4KqzadGa iWfoigdaaKGaGeqcCHdaaaaaaKqzGeWdbiaaykW7juaGdaqadaGcba qcLbsacqWFqesscaqGRaGaai4waiaahAhacaGGDbqcfa4aa0baaSqa aKqzGeGaamivaaWcbaqcLbsacaaIYaaaaaGccaGLOaGaayzkaaaaaa a@F334@

because b > 1 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGIbGaeyOpa4ZdamaalaaabaGaaGymaaqaa8qaceWGWbGb auaaaaaaaa@3A7E@ . Finally, by (56),

I I I q 1 , 1 ( t ) C t b t 1 t < s > b w ( · , s ) L q 1 / 2   ( Ω ) d s C t b ( t 1 t d s ) 1 / p ) ( 0 T < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p C t b ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamysaiaadMeacaWGjbqcfa4aaSbaaKqbGeaajugW aiacCH2GXbWcdGaxOTbaaKazfa4=bGaxOLqzGcGaiWfAigdaaKqbGe qcCHgajugWaiacCHMGSaGaiWfAigdaaKqbagqaaKqzGeGaaiikaiaa dshacaGGPaGaaGPaVlaaykW7caaMc8UaeyizImQaam4qaiaaykW7ca WG0bqcfa4aaWbaaSqabKqaGeaajugWaiabgkHiTiaadkgaaaGcdGa1 a+qmaKqbagacudiajqwbG8FaiqnGjugWaiacud4G0bGamqnGgkHiTi acudiIXaaajqwbG8FaiqnGjugWaiacud4G0baajugGbiadudOHRiI8 aKqzGeGaaGPaVlaaykW7cWafaAipaWJaiqbGdohacWafaAOpa4tcfa 4aiqbGCaaaleqcuaycbasaiqbGjugWaiacua4GIbaaaKqzGeGaaGPa VlaaykW7juaGdaqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacElaca GGSaGaam4Ca8aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaabaqc LbsacaWGmbqcfa4aaSbaaKazfa0=baqcLbmacaWGXbWcdaWgaaqcKv ai=haajugOaiaaigdaaKqbGeqaaKqzadGaai4laiaaikdaaKqbagqa aKqzGeGaaiiOaKqba+aadaqadaqaaKqzGeWdbiabfM6axbqcfa4dai aawIcacaGLPaaaa8qabeaajugibiaadsgacaWGZbGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7aOqaaKqzGeGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7cqGHKjYOcaWGdbGaaGPaVlaadshajuaG daahaaWcbeqcbasaaKqzadGaeyOeI0IaamOyaaaajugObiaacIcakm aapedabaqcLbsacaWGKbGaam4CaaqcKfaG=haajugWaiaadshacqGH sislcaaIXaaajeaibaqcLbmacaWG0baajugGbiabgUIiYdGaaGPaVN qzGeGaaiykaKqbaoaaCaaaleqabaqcfa4aaWbaaWqabKGaGeaajugW aiaaigdacaGGVaGabmiCayaafaaaaaaajugObiaacMcajugibiaayk W7jugObiaacIcakmaapedabaGaaGPaVdqcKfaG=haajugWaiaaicda aKazba4=baqcLbmacaWGubaajugGbiabgUIiYdqcLbsacqGH8aapca aMc8Uaam4CaiaaykW7cqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGa amOyaaaajuaGdaqbdaGcbaqcLbsacaWH3bWdaiaacIcapeGaai4Tai aacYcacaWGZbWdaiaacMcaaOWdbiaawMa7caGLkWoajuaGdaWgaaWc baqcLbsacaWGmbqcfa4aaSbaaKGaGeaajugWaiaadghajuaGdaWgaa qccasaaKqzGcGaaGymaaqccasabaqcLbmacaGGVaGaaGOmaaadbeaa jugibiaacckajuaGpaWaaeWaaSqaaKqzGeWdbiabfM6axbWcpaGaay jkaiaawMcaaaWdbeqaaKqzGeGaaiykaKqbaoaaCaaaleqajeaibaqc LbmacaWGWbaaaKqzGeGaamizaiaadohajugObiaacMcajuaGdaahaa WcbeqcbasaaKqzadGaaGymaiaac+cacaWGWbaaaaGcbaqcLbsacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgsMiJkaado eacaaMc8UaamiDaKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcaWG IbaaaKqbaoaabmaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbcKqzGeGae8heHKKaae4kaiaacUfacaWH2bGaaiyxaKqb aoaaDaaajeaibaqcLbmacaWGubaajeaibaqcLbmacaaIYaaaaaGcca GLOaGaayzkaaqcLbsacaGGUaaaaaa@7713@

Summing up, we have obtained (66). Next, we prove (67). By (64),

u ( · , t ) H q 1 1   ( Ω ) C ( I q 1 , 2 ( t ) + I I q 1 , 2 ( t ) + I I I q 1 , 2 ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaiaaykW7caWH1bGaaGPaV=aacaGGOaWdbiaacEla caGGSaGaaiiDa8aacaGGPaaapeGaayzcSlaawQa7amaaBaaabaGaam isaSWaa0baaKqbagaajugWaiacOr0GXbWcdGaAeTbaaKqbagacOruc LbmacGaAeHymaaqcfayajGgraaqaaKqzadGaaGymaaaajuaGcaGGGc WdamaabmaabaWdbiabfM6axbWdaiaawIcacaGLPaaaa8qabeaapaGa eyizImQaaGPaVlaaykW7caaMc8+dbiaadoeacaGGOaGaamysamaaBa aajuaibaGaamyCaKqbaoaaBaaajqwba+FaaiaaigdaaKqbGeqaaiaa cYcacaaIYaaajuaGbeaacaGGOaGaamiDaiaacMcacqGHRaWkcaWGjb GaamysamaaBaaajuaibaGaamyCaKqbaoaaBaaajqwba+Faaiaaigda aKqbGeqaaiaacYcacaaIYaaajuaGbeaacaGGOaGaamiDaiaacMcacq GHRaWkcaWGjbGaamysaiaadMeadaWgaaqcfasaaiaadghajuaGdaWg aaqcKvaG=haacaaIXaaajuaibeaacaGGSaGaaGOmaaqcfayabaGaai ikaiaadshacaGGPaGaaiykaaaa@7E47@

with

I q 1 , 2 ( t ) = 0 t / 2 ( t s ) N 2 q 1 w ( · , s ) L q 1 / 2   ( Ω ) d s , I I q 1 , 2 ( t ) = t / 2 t 1 ( t s ) N 2 q 1 w ( · , s ) L q 1 / 2   ( Ω ) d s , I I I q 1 , 2 ( t ) = t 1 t ( t s ) 1 2 w ( · , s ) L q 1   ( Ω ) d s . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaadMeadaWgaaqcfasaaiaadghajuaGdaWgaaqcKvaG =haacaaIXaaajuaibeaacaGGSaGaaGOmaaqcfayabaGaaiikaiaads hacaGGPaGaaGPaVlabg2da9iaaykW7kmaapedajuaGbaGaaiikaiaa dshacqGHsislcaWGZbGaaiykaaqcKvaq=haajugWaiaaicdaaKazfa 0=baqcLbmacaWG0bGaai4laiaaikdaaKqzagGaey4kIipajuaGdaah aaqabKqbGeaacqGHsisljuaGpaWaiaiAlaaajuaibGaGOjacaY4Gob aabGaGOjacaYcIYaGaiaildghajuaGdGaGSSbaaKazfa4=bGaGSiac aYcIXaaajuaibKaGSaaaaaaajuaGpeWaauWaaeaacaWH3bWdaiaacI capeGaai4TaiaacYcacaWGZbWdaiaacMcaa8qacaGLjWUaayPcSdWa aSbaaeaacaWGmbWaaSbaaKqbGeaacaWGXbqcfa4aaSbaaKazfa4=ba GaaGymaaqcfasabaGaiGgPc+cacGaAKIOmaaqcfayabaGaaiiOa8aa daqadaqaa8qacqqHPoWva8aacaGLOaGaayzkaaaapeqabaGaaGPaVl aadsgacaWGZbGaaiilaaqaaiaadMeacaWGjbWaaSbaaKqbGeaacaWG Xbqcfa4aaSbaaKazfa4=baGaaGymaaqcfasabaGaaiilaiaaikdaaK qbagqaaiaacIcacaWG0bGaaiykaiaaykW7cqGH9aqpcaaMc8UcdaWd XaqcfayaaiaacIcacaWG0bGaeyOeI0Iaam4CaiaacMcaaKazfa0=ba qcLbmacaWG0bGaai4laiaaikdaaKazfa0=baqcLbmacaWG0bGaeyOe I0IaaGymaaqcLbyacqGHRiI8aKqbaoaaCaaabeqcfasaaiabgkHiTK qba+aadGaGOTaaaKqbGeacaIMaiaiJd6eaaeacaIMaiailikdacGaG SmyCaKqbaoacaYYgaaqcKvaG=hacaYIaiailigdaaKqbGeqcaYcaaa aaaKqba+qadaqbdaqaaiaahEhapaGaaiika8qacaGG3cGaaiilaiaa dohapaGaaiykaaWdbiaawMa7caGLkWoadaWgaaqaaiaadYeadaWgaa qcfasaaiaadghajuaGdaWgaaqcKvaG=haacaaIXaaajuaibeaacaGG VaGaaGOmaaqcfayabaGaaiiOa8aadaqadaqaa8qacqqHPoWva8aaca GLOaGaayzkaaaapeqabaGaaGPaVlaaykW7caWGKbGaam4CaiaacYca aeaacaWGjbGaamysaiaadMeadaWgaaqcfasaaiaadghajuaGdaWgaa qcKvaG=haacaaIXaaajuaibeaacaGGSaGaaGOmaaqcfayabaGaaiik aiaadshacaGGPaGaaGPaVlabg2da9iaaykW7kmaapedajuaGbaGaaG PaVlaacIcacaWG0bGaeyOeI0Iaam4CaiaacMcadaahaaqabKqbGeaa cWaoaAOeI0scfa4aiGdGlaaajuaibGaoakac4alIXaaabGaoakac4q bIYaaaaaaaaKazfa0=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcKvay =haajug4aiaadshaaKqzagGaey4kIipajuaGdaqbdaqaaiaahEhapa Gaaiika8qacaGG3cGaaiilaiaadohapaGaaiykaaWdbiaawMa7caGL kWoadaWgaaqaaiaadYeadaWgaaqcfasaaiaadghajuaGdaWgaaqcKv aG=haacaaIXaaajuaibeaaaKqbagqaaiaacckapaWaaeWaaeaapeGa euyQdCfapaGaayjkaiaawMcaaaWdbeqaaiaaykW7caaMc8Uaamizai aadohacaGGUaaaaaa@1331@

By (56),

I q 1 , 2 ( t ) ( t / 2 ) N 2 q 1 ( 0 t / 2 < s > b p d s ) 1 / p ( 0 t / 2 < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p C t N 2 q 1 ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaadMeadaWgaaqcfasaaiacOHZGXbqcfa4aiGgoBaaa jqwba+FaiGgocGaA4GymaaqcfasajGgoaiacOHJGSaGaaGOmaaqcfa yabaGaaiikaiaadshacaGGPaGaaGPaVlaaykW7caaMc8UaeyizImQa aGPaVlaaykW7caaMc8UaaGPaVlaacIcacaWG0bGaai4laiaaikdaca GGPaWaaWbaaeqabaWaaWbaaeqajuaibaGamaiGu+pKayOeI0scfa4d amacuG=caaqcfasaiqb+cGaGas5=CcWGobaabGaf4lacuWlIYaGaiq bVdghajuaGdGaf8UbaaKazfa4=bGaf8kacuWlIXaaajuaibKaf8caa aaaaaaqcfa4dbiaaykW7daqadaqaaOWaa8qmaKqbagaaaKazfa0=ba qcLbmacaaIWaaajqwba9FaaKqzadGaamiDaiaac+cacaaIYaaajugG biabgUIiYdqcfaOaeyipaWJaaGPaVlaadohacaaMc8UaeyOpa4ZaaW baaeqajuaibaGaeyOeI0IaamOyaiqadchagaqbaaaajuaGcaWGKbGa am4CaaGaayjkaiaawMcaaiaaykW7daahaaqabKqbGeaacGaxqHymai acCbLGVaGajWfudchagGaxqvaaaaqcfaOaaGPaVlaaykW7caaMc8Ua aGPaVpaabmaabaGcdaWdXaqcfayaaaqcKvaq=haajugWaiaaicdaaK azfa0=baqcLbmacaWG0bGaai4laiaaikdaaKqzagGaey4kIipajuaG cqGH8aapcaaMc8Uaam4CaiaaykW7cqGH+aGpdaahaaqabKqbGeaaca WGIbaaaKqbakaaykW7daqbdaqaaiaahEhapaGaaiika8qacaGG3cGa aiilaiaadohapaGaaiykaiaaykW7a8qacaGLjWUaayPcSdWaaSbaae aacaWGmbWaaSbaaKqbGeaacaWGXbqcfa4aaSbaaKazfa4=baGaaGym aaqcfasabaGaai4laiaaikdaaKqbagqaaiaacckapaWaaeWaaeaape GaeuyQdCfapaGaayjkaiaawMcaaaWdbeqaaiaacMcadaahaaqabKqb GeaacaWGWbaaaKqbakaadsgacaWGZbaacaGLOaGaayzkaaGaaGPaVl aaykW7daahaaqabKqbGeaacGareHymaiacerKGVaGaiqerdchaaaqc faOaaGPaVlaaykW7aOqaaKqbakaaykW7cGaGacdaa9pMc8UaiaiGWa aq=JPaVlacacimaa0=ykW7cGaGacdaa9pMc8UaiaiGWaaq=JPaVlac acimaa0=ykW7cGaGacdaa9pMc8UaiaiGWaaq=JPaVlacacimaa0=yk W7cGaGacdaa9pMc8UaiaiGWaaq=JPaVlacacimaa0=ykW7cGaGacda a9pMc8UaiaiGWaaq=JPaVlacacimaa0=ykW7cGaGacdaO5pMc8Uaia iGWaaA+JPaVlacacimaWI=ykW7cWaGacdaS4VHKjYOcGaGacdaS4=G dbGaiaiGWaal+piDamacacimaWI=CaaabKaGacdaS4FaiaiGWaal+p acacimaWI=CaaabKaGacdaS4FaiaiGWaal+pacacimaWI=CaaabKaG acdaS4FcfasaiaiGWaal+ladacigaa0=gkHiTKqba+aadGaGaIbaO8 =caaqcfasaiaiGyaak=lacacigaW0=d6eaaeacacigaGY=cGaGaIba S7pIYaGaiaiGyaa7+pyCaKqbaoacacigaWU=BaaajuaibGaGaIbaS7 VaiaiGyaa7+JymaaqajaiGyaa7+daaaaaaaaaaaKqba+qadGaGacda S4FadaqaiaiGWaal+prr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbacfiGamaiGWaal+=heHKKamaiGWaal+B4kaSIaiaiGWaal+l4w aiacacimaWI=dAhacGaGacdaS4VGDbWaiaiGWaal+3baaKqbGeacac imaWI=cGaGacdaS4=GubaabGaGacdaS4VaiaiGWaal+JOmaaaaaKqb akacacimaWI=wIcacGaGacdaS4VLPaaacGaGacdaO5VGUaaaaaa@9A1F@

so that by the condition: ( N q 1 b ) p > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGOaWdamacaI2caaqaiaiAcGaGmoOtaaqaiaiAcGaGSmyC amacaYYgaaqaiailcGaGSGymaaqajailaaaacqGHsislcaWGIbGaai ykaiaadchacqGH+aGpcaaIXaaaaa@46B5@ in (11)

( 2 T ( < t > b N 2 q 1 I q 1 , 2 ( t ) ) p d t ) 1 / p C ( ( N q 1 b ) p 1 ) 1 / p ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaykW7caaMc8EcLbAacaGGOaqcLbsacaaMc8UcdaWdXaqc fayaaKqzafGaaiikaKqzGeGaeyipaWdajqwbG8FaaKqzadGaaGOmaa qcKvai=haajugWaiaadsfaaKqzagGaey4kIipacaaMc8EcLbsacaWG 0bGaaGPaVlabg6da+KqbaoaaCaaaleqajeaibaqcLbmacGaxupOyai adCrTHsisll8aadGax8UaaaKqaGeacCXBcLbmacGaxGpOtaaqcbasa iWfVjugWaiacCbiIYaGaiWfGdghalmacCb4gaaqccasaiWfGjugWai acCbiIXaaajiaibKaxacaaaaaajugib8qacaWGjbqcfa4aaSbaaKqb GeaajugWaiaadghammaaBaaajqwba+FaaKqzGcGaaGymaaqcKvaG=h qaaKqzadGaaiilaiaaikdaaKqbagqaaKqzGeGaaiikaiaadshacaGG PaqcLbuacaGGPaqcfa4aaWbaaeqajuaibaqcLbmacaWGWbaaaKqzGe GaamizaiaadshajugObiaacMcajuaGdaahaaqabKqbGeaajugWaiaa igdacaGGVaGaamiCaaaajugibiabgsMiJkaadoeajuaGdaqadaqaai aacIcapaWaiWfVlaaabGax8kacCb+GobaabGax8kacCb4GXbWaiWfG BaaajuaibGaxakacCbiIXaaajuaGbKaxacaaaiabgkHiTiaadkgaca GGPaGaamiCaiabgkHiTiaaigdaa8qacaGLOaGaayzkaaWaaWbaaeqa juaibaGaeyOeI0IaaGymaiaac+cacaWGWbaaaKqbaoaabmaabaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibiab=bri jjaabUcacaGGBbGaaCODaiaac2falmaaDaaajuaibaqcLbmacaWGub aajuaibaqcLbmacaaIYaaaaaqcfaOaayjkaiaawMcaaiaac6caaaa@B7C1@

By Holder’s inequality,

< t > b N 2 q 1 I I q 1 , 2 ( t ) C < t > N 2 q 1 t / 2 t 1 ( t s ) N 2 q 1 < s > b w ( · , s ) L q 1 / 2   ( Ω ) d s C < t > N 2 q 1 ( t / 2 t 1 ( t s ) N p 2 q 1 d s ) 1 / p ( o T ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p C ( 1 + t ) ( N q 1 1 p ) ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeyipaWJaaGPaVlaaykW7caWG0bGaaGPaVlaaykW7 cqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyaiabgkHiTSWdam acaI2caaqcbasaiaiAjugWaiacaY4GobaajeaibGaGOLqzadGaiail ikdacGaGSmyCaSWaiailBaaajiaibGaGSKqzadGaiailigdaaKGaGe qcaYcaaaaaaKqzGeWdbiaadMeacaWGjbqcfa4aaSbaaKqbGeaacaWG Xbqcfa4aaSbaaKazfa4=baGaaGymaaqcfasabaGaaiilaiaaikdaaK qbagqaaKqzGeWdaiaacIcapeGaamiDa8aacaGGPaGaaGPaVlaaykW7 cqGHKjYOcaaMc8UaaGPaVlaaykW7peGaam4qaiaaykW7caaMc8UaaG PaVlabgYda8iaaykW7caaMc8UaamiDaiaaykW7cqGH+aGpjuaGdaah aaqabKqbGeaacWarSBOeI0scfa4damacer9caaqcfasaiqe1cGar4p Otaaqaiqe1cGaryIOmaiaceH5GXbqcfa4aiqeMBaaajuaibGarykac eHjIXaaabKarycaaaaaajugib8qacaaMc8UaaGPaVRWaa8qmaKqbag aacaGGOaGaamiDaiabgkHiTiaadohacaGGPaaajqwbG8FaaKqzadGa amiDaiaac+cacaaIYaaajqwbG8FaaKqzadGaamiDaiabgkHiTiaaig daaKqzagGaey4kIipajuaGdaahaaqabKazfa0=baqcLbmacqGHsisl l8aadGaGOTaaaKazfa0=bGaGOLqzadGaiaiJd6eaaKazfa0=bGaGOL qzadGaiWifikdacGaGumyCaSWaiaifBaaajqwba9FaiaifjugWaiac asbIXaaajqwba9FajaifaaaaaaqcLbsapeGaaGPaVlaaykW7cqGH8a apcaaMc8UaaGPaVlaadohacqGH+aGpjuaGdaahaaWcbeqcbasaaKqz adGaamOyaaaajuaGdaqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacE lacaGGSaGaam4Ca8aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaa baqcLbsacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghalmaaBaaajq wba9FaaKqzadGaaGymaaqcfasabaqcLbmacaGGVaGaaGOmaaqcfaya baqcLbsacaGGGcqcfa4damaabmaabaqcLbsapeGaeuyQdCfajuaGpa GaayjkaiaawMcaaaWdbeqaaKqzGeGaamizaiaadohaaKqbagaajugi b8aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlabgsMiJkaaykW7caaMc8UaaGPaV=qaca WGdbGaaGPaVNqbakabgYda8iaaykW7caaMc8UaamiDaiaaykW7cqGH +aGpdaahaaqabKqbGeaacWal8AOeI0scfa4damacSq6caaqcfasaiW cPcGalipOtaaqaiWcPcGalOHOmaiacSG2GXbqcfa4aiWcABaaajuai bGalOjacSGgIXaaabKalObaaaaaajugGb8qacaGGOaGcdaWdXaqcfa yaaKqzGeGaaiikaiaadshacqGHsislcaWGZbGaaiykaaqcKvai=haa jugWaiaadshacaGGVaGaaGOmaaqcKvai=haajugWaiaadshacqGHsi slcaaIXaaajugGbiabgUIiYdqcfa4aaWbaaeqajuaibaqcLbmacqGH sisljuaGpaWaiaiAlaaajuaibGaGOLqzadGaiaiJd6eacKaGOniCay acaIwbaaqcfasaiaiAjugWaiacmsbIYaGaiaifdghajuaGdGaGuSba aKqbGeacasrcLbmacGaGuGymaaqcfasajaifaaaaaaqcLbsapeGaam izaiaadohajugGbiaacMcakmaaCaaaleqabaqcLbmapaGaaGymaiaa c+caceWGWbGbauaaaaqcLbsapeGaaGPaVNqzagGaaiikaOWaa8qmaK qbagaaaKazfaY=baqcLbmacaWGVbaajqwbG8FaaKqzGdGaamivaaqc LbyacqGHRiI8aKqzafGaaiikaKqzGeGaeyipaWJaaGPaVlaaykW7ca WGZbGaaGPaVlabg6da+KqbaoaaCaaabeqcfasaaKqzadGaamOyaaaa juaGdaqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaam 4Ca8aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaabaqcLbsacaWG mbqcfa4aaSbaaKqbGeaajugWaiaadghajuaGdaWgaaqcfasaaKqzad GaaGymaaqcfasabaqcLbmacaGGVaGaaGOmaaqcfayabaqcLbsacaGG Gcqcfa4damaabmaabaqcLbsapeGaeuyQdCfajuaGpaGaayjkaiaawM caaaWdbeqaaKqzafGaaiykaSWaaWbaaWqabeaacaWGWbaaaKqzGeGa amizaiaadohajugGbiaacMcajuaGpaWaaWbaaeqajuaibaqcLbmaca aIXaGaai4laiaadchaaaaajuaGbaWdbiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVNqzGeGaaGPaVlaaykW7caaMc8UaaGPaV=aacaaM c8UaaGPaVlabgsMiJkaaykW7caaMc8UaaGPaV=qacaWGdbqcfa4aae WaaeaacaaIXaGaey4kaSIaamiDaaGaayjkaiaawMcaamaaCaaabeqc fasaaiaderHHsislcGaruiikaKqbaoacerXcaaqcfasaiqefcGarum OtaaqaiqefcGaGaY6=C8=GXbqcKvaG=lacaciI=d3=igdaaaqcfaIa mqefgkHiTKqbaoacerXcaaqcfasaiqefcGaruGymaaqaiqefcKaGas 8=y9=GWbGbiaiGe=pw=xaaaaGaiqefcMcaaaqcfa4aaeWaaeaatuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=brijjaabU cacaGGBbGaaCODaiaac2fadaqhaaqcfasaaiaadsfaaeaacaaIYaaa aaqcfaOaayjkaiaawMcaaiaaykW7caaMc8UaaiOlaaaaaa@2AE8@

Since ( N q 1 1 p ) p > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaamaalaaabaGaamOtaaqaaiaadghadaWgaaqcfasa aiaaigdaaKqbagqaaaaacqGHsisldaWcaaqaaiaaigdaaeaaceWGWb GbauaaaaaacaGLOaGaayzkaaGaamiCaiaaykW7cqGH+aGpcaaMc8Ua aGymaaaa@4425@ as follows from N q 1 = 1 + N q 2 > 1 = 1 p + 1 p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaqaaiaad6eaaeaacaWGXbWaaSbaaKqbGeaacaaIXaaa juaGbeaaaaGaeyypa0JaaGymaiabgUcaRmaalaaabaGaamOtaaqaai aadghadaWgaaqcfasaaiaaikdaaKqbagqaaaaacqGH+aGpcaaMc8Ua aGymaiabg2da9maalaaabaGaaGymaaqaaiaadchaaaGaey4kaSYaaS aaaeaacaaIXaaabaGabmiCayaafaaaaaaa@48EC@ , we have

( 2 T ( < t > b N q 1 I I q 1 , 2 ( t ) ) p d t ) 1 / p C ( ( N q 1 b ) p 1 ) 1 / p ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaqaamaapedabaaaleaacaaIYaaabaGaamivaaqdcqGHRiI8 aKqzafGaaiikaKqzGeGaeyipaWJaaGPaVlaadshacaaMc8UaeyOpa4 tcfa4aaWbaaSqabKqaGeaajugWaiacSW+GIbGamWc7gkHiTSWaiWc7 laaajeaibGalSNqzadGaiWc7d6eaaKqaGeacSWEcLbmacGaf8oyCaS WaiqbVBaaajiaibGaf8MqzGcGaiqbVigdaaKGaGeqcuWlaaaaaaKqz GeGaaGPaVlaaykW7caWGjbGaamysaKqbaoaaBaaajeaibaqcLbmaca WGXbWcdaWgaaqccasaaKqzGcGaaGymaaqccasabaqcLbmacaGGSaGa aGOmaaWcbeaajugibiaacIcacaWG0bGaaiykaKqzafGaaiykaKqbao aaCaaaleqajeaibaqcLbmacaWGWbaaaKqzGeGaamizaiaadshaaOGa ayjkaiaawMcaaKqbaoaaCaaabeqcfasaaiaaigdacaGGVaGaamiCaa aajuaGcqGHKjYOcaaMc8UaaGPaVlaaykW7caWGdbWaaeWaaeaacaGG OaWaaSaaaeaacaWGobaabaGaamyCamaaBaaajuaibaGaaGymaaqcfa yabaaaaiabgkHiTiaadkgacaGGPaGaamiCaiabgkHiTiaaigdaaiaa wIcacaGLPaaadaahaaqabeaacqGHsislcaaIXaGaai4laiaadchaaa WaaeWaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb ciab=brijjaabUcacaGGBbGaaCODaiaac2fadaqhaaqcfasaaiaads faaeaacaaIYaaaaaqcfaOaayjkaiaawMcaaiaaykW7aaa@9CB0@

Since q 1 / 2   <   q 1   <   q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyCamaaBaaajuaibaGaaGymaaqcfayabaGaai4laiaaikda caqGGaGaeyipaWJaaeiiaiaadghadaWgaaqcfasaaiaaigdaaKqbag qaaiaabccacqGH8aapcaqGGaGaamyCamaaBaaajuaibaGaaGOmaaqc fayabaaaaa@44A2@ , we have

w ( · , t ) L q 1   ( Ω ) w ( · , t ) L q 1 / 2   ( Ω ) q 2 N + 2 q 2 w ( · , t ) L q 2   ( Ω ) N + q 2 N + 2 q 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacElacaGGSaGa amiDa8aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaabaqcLbsaca WGmbqcfa4aaSbaaKazfa0=baqcLbmacaWGXbWcdaWgaaqcKvai=haa jugOaiaaigdaaKazfa0=beaaaKqbagqaaKqzGeGaaiiOaKqba+aada qadaqaaKqzGeWdbiabfM6axbqcfa4daiaawIcacaGLPaaaa8qabeaa jugibiaaykW7caaMc8+daiabgsMiJkaaykW7caaMc8Ecfa4dbmaafm aabaqcLbsacaWH3bWdaiaacIcapeGaai4TaiaacYcacaWG0bWdaiaa cMcaaKqba+qacaGLjWUaayPcSdWaaSbaaeaadaqhaaqaaKqzGeGaiW fodYeajuaGdGax4SbaaKazfa0=bGax4KqzadGaiWfodghammacCHZg aaqcKvai=hacCHtcLbkacGax4GymaaqcKvai=hqcCHdajugWaiacCH JGVaGaiWfoikdaaKqbagqcCHdajugibiacCHJGGcqcfa4damacCHta daqaiWfojugib8qacWax4uyQdCfajuaGpaGaiWfowIcacGax4yzkaa aajuaipeqaaSWdamaceb1caaqcfasaiqeujugWaiaceb1GXbqcLbka cGalmIOmaaqcfasaiqeujugWaiacebYGobGamqeigUcaRiacaciX=t 2=ikdacGaGas8=K9=GXbWcdGaGas8=K9=gaaqcfasaiaiGe=pz=Nqz adGaiaiGe=pz=JOmaaqcfasajaiGe=pz=daaaaaaaKqba+qabeaada qbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaamiDa8aa caGGPaaajuaGpeGaayzcSlaawQa7aSWaaSbaaKqbGeaalmaaDaaaju aibaqcLbsacaWGmbWcdaWgaaqcKvaq=haajugWaiaadghalmaaBaaa jqwba9FaaKqzadGaaGOmaaqcKvaq=hqaaaqcfasabaqcLbmacaGGGc WcpaWaaeWaaKqbGeaajugWa8qacqqHPoWvaKqbG8aacaGLOaGaayzk aaaapeqaaSWdamacer3caaqcfasaiqeDjugWaiaceX4GobGamqeJgU caRiaceX4GXbGaiGd1ikdaaKqbGeacerxcLbmacGar4mOtaiadeHJH RaWkcGaGas8=89pIYaGaiaiGe=pF=pyCaSWaiaiGe=pF=VbaaKqbGe acaciX=Z3=jugWaiacaciX=Z3=ikdaaKqbGeqcaciX=Z3=aaaaaaaa peqabaqcLbmapaGaaGPaVlaac6caaaa@FB83@

Let α = q 2 N + 2 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde Maeyypa0ZaiqeulaaabGarqjaceb1GXbWaiqeuBaaajuaibGarqjac 4WfIYaaajuaGbKarqbaabGarqjacer3GobGamqeDgUcaRiaceHdIYa GaiqeodghadGar4SbaaKqbGeaceHJaiqeoikdaaKqbagqceHdaaaaa aa@4A40@ and β = N + q 2 N + 2 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi Maeyypa0ZaiqeulaaabGarqjaceb1GobGamqeugUcaRiaceb1GXbWa iqeuBaaajuaibGarqjac4WfIYaaajuaGbKarqbaabGarqjacer3Gob GamqeDgUcaRiaceHdIYaGaiqeodghadGar4SbaaKqbGeaceHJaiqeo ikdaaKqbagqceHdaaaaaaa@4D2F@ then α + β   = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGHRaWkcqaHYoGycaqGGaGaeyypa0JaaGymaaaa @3D2A@ , so that by (56) and Holder’s inequality

< t > b w L p ( ( 0 , T ) , L q 1 ( Ω ) ) ( 0 T ( < t > b w ( · , t ) L q 1 / 2   ( Ω ) ) p α ( < t > b w ( · , t ) L q 2   ( Ω ) ) p β d t ) 1 / p ( 0 T ( < t > b w ( · , t ) L q 1 / 2   ( Ω ) ) p d t ) α / p ( 0 T ( < t > b w ( · , t ) L q 2   ( Ω ) ) p d t ) β / p C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafmaabaqcLbsacqGH8aapcaaMc8UaamiDaiabg6da +KqbaoaaCaaabeqcfasaaKqzadGaamOyaaaajugibiaahEhacaaMc8 oajuaGcaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqc fasaaKqzadGaamiCaaqcfayabaqcLbsacaGGOaGaaiikaiaaicdaca GGSaGaaiivaiaacMcacaGGSaGaamitaKqbaoaaBaaajuaibaqcLbma caWGXbWcdaWgaaqcKvaG=haajugOaiaaigdaaKqbGeqaaaqcfayaba qcLbsacaGGOaGaeuyQdCLaaiykaiaacMcacaaMc8oajuaGbeaaaeaa jugibiabgsMiJkaaykW7caaMc8Ecfa4aaeWaaeaakmaapedajuaGba aajqwba9FaaKqzadGaaGimaaqcKvaq=haajugWaiaadsfaaKqzagGa ey4kIipacaGGOaqcLbsacqGH8aapcaaMc8UaamiDaiabg6da+Kqbao aaCaaabeqcfasaaKqzadGaamOyaaaajuaGdaqbdaqaaKqzGeGaaC4D a8aacaGGOaWdbiaacElacaGGSaGaamiDa8aacaGGPaGaaGPaVdqcfa 4dbiaawMa7caGLkWoadaWgaaqaaKqzGeGaamitaKqbaoaaBaaajuai baqcLbmacaWGXbWcdaWgaaqcKvaG=haajugOaiaaigdaaKqbGeqaaK qzadGaai4laiaaikdaaKqbagqaaKqzGeGaaiiOaiaacIcacqqHPoWv caGGPaaajuaGbeaajugGbiaacMcajuaGdaahaaqabKqbGeaajugWai aadchacqaHXoqyaaqcLbyacaGGOaqcLbsacqGH8aapcaaMc8UaamiD aiabg6da+KqbaoaaCaaabeqcfasaaKqzadGaamOyaaaajuaGdaqbda qaaKqzGeGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaamiDa8aacaGG PaGaaGPaVdqcfa4dbiaawMa7caGLkWoadaWgaaqaaKqzGeGaamitaK qbaoaaBaaajuaibaqcLbmacaWGXbWcdaWgaaadbaGaaGOmaaqabaaa juaGbeaajugibiaacckacaGGOaGaeuyQdCLaaiykaaqcfayabaqcLb yacaGGPaqcfa4aaWbaaeqajuaibaqcLbmacaWGWbGaeqOSdigaaKqz GeGaamizaiaadshaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaaju gWaiaaigdacaGGVaGaamiCaaaaaKqbagaajugibiabgsMiJkaaykW7 caaMc8Ecfa4aaeWaaeaakmaapedajuaGbaaajqwba9FaaKqzadGaaG imaaqcKvaq=haajugWaiaadsfaaKqzagGaey4kIipacaGGOaqcLbsa cqGH8aapcaaMc8UaamiDaiabg6da+KqbaoaaCaaabeqcfasaaKqzad GaamOyaaaajuaGdaqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacEla caGGSaGaamiDa8aacaGGPaGaaGPaVdqcfa4dbiaawMa7caGLkWoada WgaaqaaKqzGeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbWcdaWg aaqcKvaG=haajugOaiaaigdaaKqbGeqaaKqzadGaai4laiaaikdaaK qbagqaaKqzGeGaaiiOaiaacIcacqqHPoWvcaGGPaaajuaGbeaajugG biaacMcajuaGdaahaaqabKqbGeaajugWaiaadchaaaqcLbsacaWGKb GaamiDaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaKqzadGaeqyS deMaai4laiaadchaaaqcfa4aaeWaaeaakmaapedajuaGbaaajqwba9 FaaKqzadGaaGimaaqcKvaq=haajugWaiaadsfaaKqzagGaey4kIipa caGGOaqcLbsacqGH8aapcaaMc8UaamiDaiabg6da+KqbaoaaCaaabe qcfasaaKqzadGaamOyaaaajuaGdaqbdaqaaKqzGeGaaC4Da8aacaGG OaWdbiaacElacaGGSaGaamiDa8aacaGGPaGaaGPaVdqcfa4dbiaawM a7caGLkWoadaWgaaqaaKqzGeGaamitaKqbaoaaBaaajuaibaqcLbma caWGXbWcdaWgaaadbaGaaGOmaaqabaaajuaGbeaajugibiaacckaca GGOaGaeuyQdCLaaiykaaqcfayabaqcLbyacaGGPaqcfa4aaWbaaeqa juaibaqcLbmacaWGWbaaaKqzGeGaamizaiaadshaaKqbakaawIcaca GLPaaadaahaaqabKqbGeaajugWaiabek7aIjaac+cacaWGWbaaaaGc baqcLbsapaGaeyizImQaaGPaVlaaykW7caaMc8+dbiaadoeajuaGda qadaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiqc LbsacqWFqesscaqGRaGaai4waiaahAhacaGGDbWcdaqhaaqcfasaaK qzadGaamivaaqcfasaaKqzadGaaGOmaaaaaKqbakaawIcacaGLPaaa aaaa@6620@ (69)

Since

< t > b N 2 q 1 I I I q 1 , 2 ( t ) t 1 t ( t s ) 1 2 < s > b N 2 q 1 w ( · , s ) L q 1   ( Ω ) d s ( t 1 t ( t s ) 1 2 d s ) 1 / p ( t 1 t ( t s ) 1 2 d s ( < s > b w ( · , s ) L q 1   ( Ω ) ) p d s ) 1 / p , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiabgYda8iaaykW7caWG0bGaaGPaVlabg6da+maaCaaa beqcfasaaiacCX7GIbGamWfVgkHiTiacCXlMc8Ecfa4damacCr6caa qcfasaiWfPcGaxipOtaaqaiWfPcGaxOHOmaiacCH2GXbqcfa4aiWfA BaaajuaibGaxOjacCHgIXaaabKaxObaaaaaajuaGpeGaamysaiaadM eacaWGjbWaaSbaaKqbGeaacaWGXbqcfa4aaSbaaKqbGeaacaaIXaaa juaGbeaacaGGSaqcfaIaaGOmaaqcfayabaGaaiikaiaadshacaGGPa GaaGPaV=aacaaMc8UaaGPaVlabgsMiJkaaykW7caaMc8UaaGPaV=qa caaMc8UcdaWdXaqcfayaaiaacIcacaWG0bGaeyOeI0Iaam4CaiaacM caaKazfaY=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcKvai=haajugW aiaadshaaKqzagGaey4kIipajuaGdaahaaqabKqbGeaapaGaiGd1yk W7cWaouBOeI0IaiGd1ykW7juaGdGaouVaaaKqbGeac4qTaiGd1igda aeac4qTaiGdMikdaaaaaaKqba+qacaaMc8UaaGPaVlabgYda8iaayk W7caWGZbGaeyOpa4ZaaWbaaeqajuaibaGaamOyaiabgkHiTiaaykW7 juaGpaWaiaiAlaaajuaibGaGOjacaY4GobaabGaGOjacaYcIYaGaia ildghajuaGdGaGSSbaaKqbGeacaYIaiailigdaaeqcaYcaaaaaaKqb a+qadaqbdaqaaiaahEhapaGaaiika8qacaGG3cGaaiilaiaadohapa GaaiykaaWdbiaawMa7caGLkWoadaWgaaqaaiaadYeadaWgaaqcfasa aiaadghajuaGdaWgaaqcKvaG=haacaaIXaaajuaGbeaaaeqaaiaacc kapaWaaeWaaeaapeGaeuyQdCfapaGaayjkaiaawMcaaaWdbeqaaiaa dsgacaWGZbaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+daiaaykW7cqGHKj YOcaaMc8UaaGPaVNqzagWdbiaacIcajuaGcaaMc8UcdaWdXaqcfaya aiaacIcacaWG0bGaeyOeI0Iaam4CaiaacMcaaKazfaY=baqcLbmaca WG0bGaeyOeI0IaaGymaaqcKvai=haajugWaiaadshaaKqzagGaey4k IipajuaGdaahaaqabKqbGeaapaGaaGPaVlabgkHiTiaaykW7juaGda WcaaqcfasaaiaaigdaaeaacaaIYaaaaaaajuaGpeGaaGPaVlaaykW7 caWGKbGaam4CaKqzagGaaiykaOWaaWbaaSqabeaacaaIXaGaai4lai qadchagaqbaaaajuaGcaaMc8EcLbyacaaMc8EcLbAacaGGOaGcdaWd XaqcfayaaaqcKvai=haajugWaiaadshacqGHsislcaaIXaaajqwbG8 FaaKqzadGaamiDaaqcLbyacqGHRiI8aKqbakaacIcajugibiaadsha cqGHsislcaWGZbqcfaOaaiykamaaCaaabeqcfasaa8aacWai4yOeI0 IaiacoykW7juaGdGai4SaaaKqbGeacGGJaiacoigdaaeacGGJaiaiG G+pz=JOmaaaaaaqcfa4dbiaaykW7caWGKbGaam4CaiaaykW7caGGOa GaeyipaWJaaGPaVlaadohacqGH+aGpdaahaaqabKqbGeaacaWGIbaa aKqbaoaafmaabaGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaam4Ca8 aacaGGPaaapeGaayzcSlaawQa7amaaBaaabaGaamitamaaBaaajuai baGaamyCaKqbaoaaBaaajqwba+FaaiaaigdaaKqbagqaaaqabaGaai iOa8aadaqadaqaa8qacqqHPoWva8aacaGLOaGaayzkaaaapeqabaGa aiykaOWaaWbaaSqabeaacaWGWbaaaKqzGeGaamizaiaadohajugObi aacMcakmaaCaaaleqabaqcLbmacaaIXaGaai4laiaadchaaaGccaGG Saaaaaa@6AE4@

by the change of integration order, we have

2 T ( < t > b N 2 q 1 I I I q 1 , 2 ( t ) ) p d t 2 p p 2 T d t t 1 t ( t s ) 1 2 ( < s > b w ( · , s ) L q 1   ( Ω ) ) p d s 2 p p 0 T ( < s > b w ( · , s ) L q 1   ( Ω ) ) p d s s s + 1 ( t s ) 1 2 d t = 2 p < t > b w L p ( ( 0 , T ) , L q 1 ( Ω ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedajuaGbaaajqwba9FaaKqzadGaaGOmaaqcKvaq=haa jugWaiaadsfaaKqzagGaey4kIipacaGGOaqcLbsacqGH8aapcaaMc8 UaamiDaiaaykW7cqGH+aGpjuaGdaahaaqabKqbGeaajugWaiacCX7G IbGamWfVgkHiTiacCXlMc8+cpaWaiWfPlaaajuaibGaxKMqzadGaiW fYd6eaaKqbGeacCrAcLbmacGaxOHOmaiacCH2GXbWcdGaxOTbaaKqb GeacCHwcLbmacGaxOHymaaqcfasajWfAaaaaaaqcLbsapeGaamysai aadMeacaWGjbqcfa4aaSbaaKqbGeaajugWaiaadghalmaaBaaajqwb a+FaaKqzGcGaaGymaaqcfasabaqcLbmacaGGSaGaaGOmaaqcfayaba qcLbsacaGGOaGaamiDaiaacMcajugGbiaacMcajuaGdaahaaqabKqb GeaajugWaiaadchaaaqcLbsacaWGKbGaamiDaiaaykW7cqGHKjYOca aMc8UaaGPaVlaaykW7caaIYaqcfa4aaWbaaeqajuaibaWcdaWcaaqc fasaaKqzadGaamiCaaqcfasaaKqzadGajaiidchagGaGGuaaaaaaaO Waa8qmaKqbagaacaWGKbGaamiDaaqcKvaq=haajugWaiaaikdaaKaz fa0=baqcLbmacaWGubaajugGbiabgUIiYdGaaGPaVlaaykW7caaMc8 UcdaWdXaqcfayaaiaacIcacaWG0bGaeyOeI0Iaam4CaiaacMcaaKaz fa0=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcKvaq=haajugWaiaads haaKqzagGaey4kIipajuaGdaahaaqabKqbGeaajugWaiabgkHiTSWa aSaaaKqbGeaajugWaiaaigdaaKqbGeaajugWaiacaYfIYaaaaaaaju gGbiaacIcajugibiabgYda8iaaykW7caWGZbGaeyOpa4tcfa4aaWba aeqajuaibaqcLbmacaWGIbaaaKqbaoaafmaabaqcLbsacaWH3bWdai aacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaaKqba+qacaGLjWUa ayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcfasaaKqzadGaam yCaSWaaSbaaKqbGeaajugWaiaaigdaaKqbGeqaaaqcfayabaqcLbsa caGGGcqcfa4damaabmaabaqcLbsapeGaeuyQdCfajuaGpaGaayjkai aawMcaaaWdbeqaaKqzagGaaiykaOWaaWbaaSqabeaacaWGWbaaaKqz GeGaamizaiaadohaaOqaaKqzGeGaeyizImQaaGPaVlaaykW7caaMc8 UaaGOmaKqbaoaaCaaabeqcfasaaKqbaoaalaaajuaibaqcLbmacaWG WbaajuaibaqcLbmacKaGGmiCayacacsbaaaaaaGcdaWdXaqcfayaaa qcKvaq=haajugWaiaaicdaaKazfa0=baqcLbmacaWGubaajugGbiab gUIiYdGaaiikaKqzGeGaeyipaWJaaGPaVlaadohacqGH+aGpjuaGda ahaaqabKqbGeaajugWaiaadkgaaaqcfa4aauWaaeaajugibiaahEha paGaaiika8qacaGG3cGaaiilaiaadohapaGaaiykaaqcfa4dbiaawM a7caGLkWoadaWgaaqaaKqzGeGaamitaKqbaoaaBaaajuaibaqcLbma caWGXbqcfa4aaSbaaKazfa4=baqcLbkacaaIXaaajuaibeaaaKqbag qaaKqzGeGaaiiOaKqba+aadaqadaqaaKqzGeWdbiabfM6axbqcfa4d aiaawIcacaGLPaaaa8qabeaajugGbiaacMcajuaGdaahaaqabKqbGe aajugWaiaadchaaaqcLbsacaWGKbGaam4CaiaaykW7kmaapedajuaG baGaaiikaiaadshacqGHsislcaWGZbGaaiykaaqcKvaq=haajugWai aadohaaKazfa0=baqcLbmacaWGZbGaey4kaSIaaGymaaqcLbyacqGH RiI8aKqbaoaaCaaabeqcfasaaKqzadGaeyOeI0scfa4aaSaaaKqbGe aajugWaiaaigdaaKqbGeaajugWaiacaIdIYaaaaaaajugibiaaykW7 caWGKbGaamiDaiabg2da9iaaikdajuaGdaahaaqabKqbGeaajugWai aadchaaaqcLbsacaaMc8UaaGPaVNqbaoaafmaabaqcLbsacqGH8aap caaMc8UaamiDaiabg6da+KqbaoaaCaaabeqcfasaaKqzadGaamOyaa aajugibiaahEhapaGaaGPaVdqcfa4dbiaawMa7caGLkWoadaWgaaqa aKqzGeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGWbaajuaGbeaaju gibiaacIcacaGGOaGaaGimaiaacYcacaGGubGaaiykaiaacYcacaWG mbqcfa4aaSbaaKqbGeaajugWaiaadghajuaGdaWgaaqcKvaG=haaju gOaiaaigdaaKqbGeqaaaqcfayabaqcLbsacaGGOaGaeuyQdCLaaiyk aiaacMcacaaMc8oajuaGbeaajugibiaacYcaaaaa@718E@

which, combined with (69), furnishes that

( 2 T ( < t > b N 2 q 1 I I I q 1 , 2 ( t ) ) p d t ) 1 / p C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbyaqaaaaa aaaaWdbiaacIcakmaapedajuaGbaGaaiikaiabgYda8aqcKvaq=haa jugWaiaaikdaaKazfa0=baqcLbmacaWGubaajugGbiabgUIiYdqcfa OaaGPaVlaadshacaaMc8UaeyOpa4ZaaWbaaeqajuaibaGaiWfVdkga cWax8AOeI0IaiWfVykW7juaGpaWaiWfPlaaajuaibGaxKkacCH8Gob aabGaxKkacCbfIYaGaiWfudghajuaGdGaxqTbaaKqbGeacCbLaiWfu igdaaeqcCbfaaaaaaKqba+qacaWGjbGaamysaiaadMeadaWgaaqcfa saaiaadghajuaGdaWgaaqcKvaG=haacaaIXaaajuaibeaacaGGSaGa aGOmaaqcfayabaGaaiikaiaadshacaGGPaGaaiykamaaCaaabeqcfa saaiaadchaaaqcfaOaamizaiaadshajugGbiaacMcajuaGdaahaaqa bKqbGeaacaaIXaGaai4laiaadchaaaqcfa4daiabgsMiJkaaykW7ca aMc8UaaGPaV=qacaWGdbWaaeWaaeaatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbciab=brijjaabUcacaGGBbGaaCODaiaac2 fadaqhaaqcfasaaiaadsfaaeaacaaIYaaaaaqcfaOaayjkaiaawMca aaaa@8D94@

Summing up, we have obtained (67).

Finally, we prove (68). By (64) with r   =   q 2 ,   q ˜ 1   =   q 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaaeiiaiabg2da9iaabccacaWGXbWaaSbaaKqbGeaa caaIYaaajuaGbeaacaGGSaGaaeiiaiqadghagaacamaaBaaajuaiba GaaGymaaqcfayabaGaaeiiaiabg2da9iaabccacaWGXbWaaSbaaKqb GeaacaaIXaaajuaGbeaacaGGVaGaaGOmaaaa@46AF@ and   q ˜ 2 =   q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGGaGabmyCayaaiaWaaSbaaKqbGeaacaaIYaaajuaGbeaa cqGH9aqpcaqGGaGaamyCamaaBaaajuaibaGaaGOmaaqcfayabaaaaa@3E1D@ ,

u ( · , t ) L q 2   ( Ω ) C ( I q 2 ( t ) + I I q 2 ( t ) + I I I q 2 ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaiaaykW7caWH1bGaaGPaV=aacaGGOaWdbiaacEla caGGSaGaamiDa8aacaGGPaaapeGaayzcSlaawQa7amaaBaaabaqcLb sacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghalmaaBaaajqwba+Fa aKqzGcGaaGOmaaqcfasabaaajuaGbeaacaGGGcWdamaabmaabaWdbi abfM6axbWdaiaawIcacaGLPaaaa8qabeaapaGaeyizImQaaGPaVlaa ykW7caaMc8+dbiaadoeacaGGOaGaamysamaaBaaajuaibaqcLbmaca WGXbWcdaWgaaqcKvaG=haajugOaiaaikdaaKqbGeqaaaqcfayabaGa aiikaiaadshacaGGPaGaey4kaSIaamysaiaadMeadaWgaaqcfasaaK qzadGaamyCaSWaaSbaaKazfa4=baqcLbkacaaIYaaajuaibeaaaKqb agqaaiaacIcacaWG0bGaaiykaiabgUcaRiaadMeacaWGjbGaamysam aaBaaajuaibaqcLbmacaWGXbWcdaWgaaqcKvaG=haajugOaiaaikda aKqbGeqaaaqcfayabaGaaiikaiaadshacaGGPaGaaiykaaaa@7B5E@

with

I q 2 ( t ) = 0 t / 2 ( t s ) N 2 ( 2 q 1 + 1 q 2 ) w ( · , s ) L q 1 / 2   ( Ω ) d s , I I q 2 ( t ) = t / 2 t 1 ( t s ) N 2 ( 2 q 1 + 1 q 2 ) w ( · , s ) L q 1 / 2   ( Ω ) d s , I I I q 2 ( t ) = t 1 t w ( · , s ) L q 2   ( Ω ) d s . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaadMeadaWgaaqcfasaaiaadghajuaGdaWgaaqcfasa aiaaikdaaeqaaaqcfayabaGaaiikaiaadshacaGGPaGaaGPaVlabg2 da9iaaykW7kmaapedajuaGbaGaaiikaiaadshacqGHsislcaWGZbGa aiykamaaCaaabeqcfasaaiabgkHiTKqba+aadGaGOTaaaKqbGeacaI MaiaiJd6eaaeacaIMaiaiiikdaaaqcLbqacaGGOaqcfa4aiWfPlaaa juaibGaxKkacCrkIYaaabGaxKkacCHWGXbqcfa4aiWfcBaaajqwba+ FaiWfccGaxiGymaaqcfasajWfcaaaacqGHRaWkcaaMc8Ecfa4aiWfP laaajuaibGaxKkacCrkIXaaabGaxKkacCXYGXbqcfa4aiWflBaaajq wba+FaiWflcGaxSGOmaaqcfasajWflaaaajugabiaacMcaaaaajqwb a9=dbeaajugWaiaaicdaaKazfa0=baqcLbmacaWG0bGaai4laiaaik daaKqzagGaey4kIipakiacCXlMc8Ecfa4aauWaaeaacaWH3bWdaiaa cIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaa8qacaGLjWUaayPcSd WaaSbaaeaacaWGmbWaaSbaaKqbGeaacaWGXbqcfa4aaSbaaKazfa4= baGaaGymaaqcfasabaGaiGgPc+cacGaAKIOmaaqcfayabaGaaiiOa8 aadaqadaqaa8qacqqHPoWva8aacaGLOaGaayzkaaaapeqabaGaaGPa VlaadsgacaWGZbGaaiilaaqaaiaadMeacaWGjbWaaSbaaKqbGeaaca WGXbqcfa4aaSbaaKqbGeaacaaIYaaabeaaaKqbagqaaiaacIcacaWG 0bGaaiykaiaaykW7cqGH9aqpcaaMc8UcdaWdXaqcfayaaiaacIcaca WG0bGaeyOeI0Iaam4CaiaacMcaaKazfa0=baqcLbmacaWG0bGaai4l aiaaikdaaKazfa0=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcLbyacq GHRiI8aOWaaWbaaSqabeaacqGHsislpaWaiaiAlaaabGaGOjacaY4G obaabGaGOjac0bfIYaaaaiaacIcadGaxKUaaaeacCrQaiWfPikdaae acCrQaiWfudghadGaxqTbaaWqaiWfucGaxqHymaaqajWfuaaaaliab gUcaRiaaykW7dGaxKUaaaeacCrQaiWfPigdaaeacCrQaiWfudghadG axqTbaaWqaiWfucGaxqHOmaaqajWfuaaaaliaacMcacaaMc8UaaGPa VdaajuaGpeWaauWaaeaacaWH3bWdaiaacIcapeGaai4TaiaacYcaca WGZbWdaiaacMcaa8qacaGLjWUaayPcSdWaaSbaaeaacaWGmbWaaSba aKqbGeaacaWGXbqcfa4aaSbaaKazfa4=baGaaGymaaqcfasabaGaai 4laiaaikdaaKqbagqaaiaacckapaWaaeWaaeaapeGaeuyQdCfapaGa ayjkaiaawMcaaaWdbeqaaiaaykW7caaMc8UaamizaiaadohacaGGSa aabaGaamysaiaadMeacaWGjbWaaSbaaKqbGeaacaWGXbqcfa4aaSba aKqbGeaacaaIYaaabeaaaKqbagqaaiaacIcacaWG0bGaaiykaiaayk W7cqGH9aqpcaaMc8UcdaWdXaqcfayaaiaaykW7aKazfa0=baqcLbma caWG0bGaeyOeI0IaaGymaaqcKvay=haajug4aiaadshaaKqzagGaey 4kIipajuaGdaqbdaqaaiaahEhapaGaaiika8qacaGG3cGaaiilaiaa dohapaGaaiykaaWdbiaawMa7caGLkWoadaWgaaqaaiaadYeadaWgaa qcfasaaiaadghajuaGdaWgaaqcKvaG=haacaaIYaaajuaibeaaaKqb agqaaiaacckapaWaaeWaaeaapeGaeuyQdCfapaGaayjkaiaawMcaaa WdbeqaaiaaykW7caaMc8UaamizaiaadohacaGGUaaaaaa@2759@

By Holder’s inequality,

I q 2 ( t ) ( t / 2 ) N 2 ( 2 q 1 + 1 q 2 ) ( 0 t / 2 < s > b p d s ) 1 / p ( 0 t / 2 < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p C < t > N 2 ( 2 q 1 + 1 q 2 ) ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaamysaKqbaoaaBaaajuaqbaqcLboacaWGXbWcdaWg aaqcKvaG=haajugOaiaaikdaaKqbafqaaaqcfayabaqcLbsacaGGOa GaamiDaiaacMcacqGHKjYOcaaMc8UaaGPaVlaaykW7caaMc8Uaaiik aiaadshacaGGVaGaaGOmaiaacMcajuaGpaWaaWbaaeqajuaibaqcLb mapeGaeyOeI0scfa4damacaI2caaqcfasaiaiAjugWaiacaY4Gobaa juaibGaGOLqzadGaiqhcikdaaaGaaiikaKqbaoacCr6caaqcfasaiW fPjugWaiacCrkIYaaajuaibGaxKMqzadGaiWffdghajuaGdGaxuSba aKqbGeacCrrcLbmacGaxuGymaaqcfasajWffaaaajugWaiabgUcaRi aaykW7juaGdGaxKUaaaKqbGeacCrAcLbmacGaxKIymaaqcfasaiWfP jugWaiacCbYGXbqcfa4aiWfiBaaajuaibGaxGKqzadGaiWfiikdaaK qbGeqcCbcaaaqcLbmacaGGPaaaaKqzGeGaaGPaVlaaykW7juaGdaqa daqaaOWdbmaapedajuaGbaqcLbsacqGH8aapcaaMc8oajqwba9FaaK qzadGaaGimaaqcKvaq=haajugWaiaadshacaGGVaGaaGOmaaqcLbya cqGHRiI8aKqzGeGaam4Caiabg6da+KqbaoaaCaaabeqcfasaaKqzad GaamOyaiqadchagaqbaaaajugibiaadsgacaWGZbaajuaGpaGaayjk aiaawMcaamaaCaaabeqcfasaaKqzadGaaGymaiaac+caceWGWbGbau aaaaqcfa4aaeWaaeaak8qadaWdXaqcfayaaKqzGeGaeyipaWdajqwb a9FaaKqzadGaaGimaaqcKvaq=haajugWaiaadshacaGGVaGaaGOmaa qcLbyacqGHRiI8aKqzGeGaaGPaVlaadohacqGH+aGpjuaGdaahaaqa bKqbGeaajugWaiaadkgaaaqcfa4aauWaaeaajugibiaahEhapaGaai ika8qacaGG3cGaaiilaiaadohapaGaaiykaaqcfa4dbiaawMa7caGL kWoadaWgaaqaaKqzGeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXb qcfa4aaSbaaKqbGeaajuaGdaWgaaqcKvaG=haajugOaiacOreIXaaa juaibeaaaeqaaKqzadGaiqeGc+cacGaraIOmaaqcfayabaqcLbsaca GGGcqcfa4damaabmaabaqcLbsapeGaeuyQdCfajuaGpaGaayjkaiaa wMcaaaWdbeqaaKqzGeGaaiykaKqbaoaaCaaabeqcfasaaKqzadGaam iCaaaajugibiaadsgacaWGZbaajuaGpaGaayjkaiaawMcaamaaCaaa beqcfasaaKqzadGaaGymaiaac+cacaWGWbaaaaqcfayaaKqzGeGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgs MiJkaaykW7caaMc8UaaGPaV=qacaWGdbGaaGPaVlaaykW7cqGH8aap caaMc8UaaGPaVlaadshacaaMc8UaeyOpa4tcfa4aaWbaaeqajuaiba qcLbmacqGHsisljuaGpaWaiaiAlaaajuaibGaGOLqzadGaiaiJd6ea aKqbGeacaIwcLbmacGaDqHOmaaaacaGGOaqcfa4aiWfPlaaajuaibG axKMqzadGaiWfPikdaaKqbGeacCrAcLbmacGaxqnyCaKqbaoacCb1g aaqcfasaiWfujugWaiacCbfIXaaajuaibKaxqbaaaKqzadGaey4kaS IaaGPaVNqbaoacCr6caaqcfasaiWfPjugWaiacCrkIXaaajuaibGax KMqzadGaiWfudghajuaGdGaxqTbaaKqbGeacCbvcLbmacGaxqHOmaa qcfasajWfuaaaajugWaiaacMcaaaqcLbsapeGaaGPaVlaaykW7juaG daqadaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfi qcLbsacqWFqesscaqGRaGaai4waiaahAhacaGGDbqcfa4aa0baaKqb GeaajugWaiaadsfaaKqbGeaajugWaiaaikdaaaaajuaGcaGLOaGaay zkaaGaaGPaVlaaykW7jugibiaac6caaaaa@5F5B@

for t     2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaaeiiaiabgwMiZkaabccacaaIYaaaaa@3B65@ . Since N 2 ( 2 q 1 + 1 q 2 ) ( b N 2 q 2 ) = N q 1 b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aiaiAla aabGaGOjacaY4GobaabGaGOjac0bfIYaaaamaabmaabaWaiWfPlaaa bGaxKkacCrkIYaaabGaxKkacCb1GXbWaiWfuBaaajuaibGaxqjacCb fIXaaajuaGbKaxqbaaaiabgUcaRiaaykW7dGaxKUaaaeacCrQaiWfP igdaaeacCrQaiWfudghadGaxqTbaaKqbGeacCbLaiWfuikdaaKqbag qcCbfaaaaacaGLOaGaayzkaaGaeyOeI0YaaeWaaeaaqaaaaaaaaaWd biacCX7GIbGamWfVgkHiTiacCXlMc8+damacCr6caaqaiWfPcGaxip OtaaqaiWfPcGaxOHOmaiacCH2GXbWaiWfABaaajuaibGaxOjacCHgI YaaajuaGbKaxObaaaaGaayjkaiaawMcaaiabg2da9iaaykW7caaMc8 UaaGPaVpacCr6caaqaiWfPcGaxipOtaaqaiWfPcGaxOnyCamacCH2g aaqcfasaiWfAcGaxOHymaaqcfayajWfAaaaacqGHsislcaWGIbaaaa@808F@

by the condition: ( N q 1 b ) p > 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aadGaxKUaaaeacCrQaiWfYd6eaaeacCrQaiWfAdghadGaxOTbaaKqb GeacCHMaiWfAigdaaKqbagqcCHgaaaGaeyOeI0IaamOyaaGaayjkai aawMcaaabaaaaaaaaapeGaamiCaiabg6da+iaaigdaaaa@486A@ in (11),

( 2 T ( < t > b N 2 q 2 I q 2 ( t ) ) p d t ) 1 / p C ( 2 T t ( N q 1 b ) p d t ) 1 / p ( I + [ v ] T 2 ) C ( ( N q 1 b ) p 1 ) 1 / p ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaabmaabaGcdaWdXaqcfayaaKqzagGaaiikaaqcKvaq =haajugWaiaaikdaaKazfa0=baqcLbmacaWGubaajugGbiabgUIiYd qcfaOaeyipaWJaaGPaVlaadshacaaMc8UaeyOpa4ZaaWbaaeqajuai baGaiWfVdkgacWax8AOeI0IaiWfVykW7juaGpaWaiWfPlaaajuaibG axKkacCH8GobaabGaxKkacCHgIYaGaiWfAdghajuaGdGaxOTbaaKaz fa4=bGaxOjacCHgIYaaajuaibKaxObaaaaaajuaGpeGaamysamaaBa aajuaibaGaamyCaKqbaoaaBaaajqwba+FaaiaaikdaaKqbGeqaaaqc fayabaGaaiikaiaadshacaGGPaGaaiykamaaCaaabeqcfasaaiaadc haaaqcfaOaamizaiaadshaaiaawIcacaGLPaaadaahaaqabKqbGeaa jugWaiaaigdacaGGVaGaamiCaaaajugibiabgsMiJkaaykW7caaMc8 Uaam4qaiaaykW7caaMc8Ecfa4aaeWaaeaakmaapedajuaGbaaajqwb a9FaaKqzadGaaGOmaaqcKvaq=haajugWaiaadsfaaKqzagGaey4kIi pajugibiaadshajuaGdaahaaqabKqbGeaajugWa8aacqGHsisljugi biaacIcalmacCr6caaqcfasaiWfPjugWaiacCH8GobaajuaibGaxKM qzadGaiWfodghalmacCHZgaaqcfasaiWfojugWaiacCHdIXaaajuai bKax4aaaaKqzadGaeyOeI0IaamOyaKqzGeGaaiykaKqzadGaamiCaa aajugib8qacaWGKbGaamiDaaqcfaOaayjkaiaawMcaamaaCaaabeqc fasaaKqzadGaaGymaiaac+cacaWGWbaaaKqbaoaabmaabaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGajugibiab=brijjaa bUcacaGGBbGaaCODaiaac2falmaaDaaajuaibaqcLbmacaWGubaaju aibaqcLbmacaaIYaaaaaqcfaOaayjkaiaawMcaaaqaaKqzGeWdaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHKjYOcaaMc8UaaGPaVl aaykW7peGaam4qaKqbaoaabmaabaqcLbAapaGaaiikaKqbaoacCr6c aaqaiWfPjugibiacCH8GobaajuaGbGaxKMqzGeGaiWfAdghajuaGdG axOTbaaeacCHwcLbsacGaxOHymaaqcfayajWfAaaaajugibiabgkHi TiaadkgajugObiaacMcajugib8qacaWGWbGaeyOeI0IaaGymaaqcfa OaayjkaiaawMcaamaaCaaabeqcfasaaKqzadGaeyOeI0IaaGymaiaa c+cacaWGWbaaaKqbaoaabmaabaqcLbsacqWFqesscaqGRaGaai4wai aahAhacaGGDbWcdaqhaaqcfasaaKqzadGaamivaaqcfasaaKqzadGa aGOmaaaaaKqbakaawIcacaGLPaaajugibiaaykW7caaMc8UaaiOlaa aaaa@64D0@

Since

N 2 ( 2 q 1 1 q 2 ) = N 2 ( 1 q 2 + 2 N ) = N 2 q 2 + 1 > 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamOtaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaWG XbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaaGaeyOeI0YaaSaaaeaaca aIXaaabaGaamyCamaaBaaajuaibaGaaGOmaaqcfayabaaaaaGaayjk aiaawMcaaiabg2da9maalaaabaGaamOtaaqaaiaaikdaaaWaaeWaae aadaWcaaqaaiaaigdaaeaacaWGXbWaaSbaaKqbGeaacaaIYaaajuaG beaaaaGaey4kaSYaaSaaaeaacaaIYaaabaGaamOtaaaaaiaawIcaca GLPaaacqGH9aqpdaWcaaqaaiaad6eaaeaacaaIYaGaamyCamaaBaaa juaibaGaaGOmaaqcfayabaaaaiabgUcaRiaaigdacaaMc8UaeyOpa4 JaaGPaVlaaigdacaGGSaaaaa@5800@

by Holder’s inequality

< t > b N 2 q 2 I I q 2 ( t ) C t / 2 t 1 ( t s ) ( N 2 q 2 + 1 ) < s > b N 2 q 2 w ( · , s ) L q 1 / 2   ( Ω ) d s C ( t / 2 t 1 ( t s ) ( N 2 q 2 + 1 ) d s ) 1 / p ( t / 2 t 1 ( t - s ) ( N 2 q 2 + 1 ) ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p C ( N 2 q 2 ) 1 / p ( t / 2 t 1 ( t - s ) ( N 2 q 2 + 1 ) ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s ) 1 / p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeyipaWJaaGPaVlaaykW7caWG0bGaaGPaVlaaykW7 cqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyaiabgkHiTSWdam acaI2caaqcbasaiaiAjugWaiacaY4GobaajeaibGaGOLqzadGaiail ikdacGaGSmyCaSWaiailBaaajiaibGaGSKqzadGaiailikdaaKGaGe qcaYcaaaaaaKqzGeWdbiaadMeacaWGjbqcfa4aaSbaaKqbGeaacaWG Xbqcfa4aaSbaaKazfa4=baGaaGOmaaqcfasabaaajuaGbeaajugib8 aacaGGOaWdbiaadshapaGaaiykaiaaykW7caaMc8UaeyizImQaaGPa VlaaykW7caaMc8+dbiaadoeacaaMc8UaaGPaVRWaa8qmaKqbagaaca GGOaGaamiDaiabgkHiTiaadohacaGGPaaajqwbG8FaaKqzadGaamiD aiaac+cacaaIYaaajqwbG8FaaKqzadGaamiDaiabgkHiTiaaigdaaK qzagGaey4kIipajuaGdaahaaqabKqbGeaajuaGpaGaeyOeI0Iaaiik aSWaiaiAlaaajuaibGaGOLqzadGaiaiJd6eaaKqbGeacaIwcLbmacG aGSGOmaiacaYYGXbWcdGaGSSbaaKazfa2=bGaGSKqzGcGaiailikda aKqbGeqcaYcaaaqcLbmacqGHRaWkcaaIXaqcfaOaaiykaaaajugib8 qacaaMc8UaeyipaWJaaGPaVlaaykW7caWGZbGaeyOpa4tcfa4aaWba aeqabaqcLbmacaWGIbGaeyOeI0YcpaWaiaiAlaaajuaGbGaGOLqzad GaiaiJd6eaaKqbagacaIwcLbmacGaGSGOmaiacaYYGXbWcdGaGSSba aKqbGfacaYscLbkacGaGSGOmaaqcfayajailaaaaaaWdbmaafmaaba qcLbsacaWH3bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMca aKqba+qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaa qcfasaaKqzadGaamyCaSWaaSbaaKazfa0=baqcLbmacaaIXaaajuai beaajugWaiaac+cacaaIYaaajuaGbeaajugibiaacckajuaGpaWaae Waaeaajugib8qacqqHPoWvaKqba+aacaGLOaGaayzkaaaapeqabaqc LbsacaWGKbGaam4CaaqcfayaaKqzGeWdaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey izImQaaGPaVlaaykW7caaMc8EcfaOaaGPaV=qacaWGdbGaaGPaVlaa ykW7caaMc8UaaGPaVNqzagGaaiikaOWaa8qmaKqbagaajugibiaacI cacaWG0bGaeyOeI0Iaam4CaiaacMcaaKazfaY=baqcLbmacaWG0bGa ai4laiaaikdaaKazfaY=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcLb yacqGHRiI8aOWaaWbaaSqabeaapaGaeyOeI0IaaiikamacaI2caaqa iaiAcGaGmoOtaaqaiaiAcGaGSGOmaiacaYYGXbWaiailBaaameacaY IaiailikdaaeqcaYcaaaWccqGHRaWkcaaIXaGaaiykaaaajugib8qa caWGKbGaam4CaKqzagGaaiykaOWaaWbaaSqabeaajugWa8aacaaIXa Gaai4laiqadchagaqbaaaajugib8qacaaMc8EcLbyacaGGOaGcdaWd XaqcfayaaKqzafGaaiikaKqzGeGaamiDaiaac2cacaWGZbqcLbuaca GGPaqcfa4aaWbaaeqajuaibaWdaiabgkHiTiaacIcajuaGdGaGOTaa aKqbGeacaIMaiaiJd6eaaeacaIMaiailikdacGaGSmyCaKqbaoacaY YgaaqcKvaG=hacaYIaiailikdaaKqbGeqcaYcaaaGaey4kaSIaaGym aiaacMcaaaqcLbuapeGaaiikaaqcKvai=haajugWaiaadshacaGGVa GaaGOmaaqcKvai=haajugWaiaadshacqGHsislcaaIXaaajugGbiab gUIiYdqcLbsacqGH8aapcaaMc8UaaGPaVlaadohacaaMc8UaeyOpa4 tcfa4aaWbaaeqajuaibaqcLbmacaWGIbaaaKqbaoaafmaabaqcLbsa caWH3bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaacMcaaKqba+ qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcfasa aKqzadGaamyCaKqbaoaaBaaajqwba+FaaKqzGcGaaGymaaqcfasaba qcLbmacaGGVaGaaGOmaaqcfayabaqcLbsacaGGGcqcfa4damaabmaa baqcLbsapeGaeuyQdCfajuaGpaGaayjkaiaawMcaaaWdbeqaaKqzaf GaaiykaSWaaWbaaWqabeaacaWGWbaaaKqzGeGaamizaiaadohajugG biaacMcajuaGpaWaaWbaaeqajuaibaqcLbmacaaIXaGaai4laiaadc haaaaajuaGbaWdbiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVN qzGeGaaGPaVlaaykW7caaMc8+daiaaykW7cqGHKjYOcaaMc8UaaGPa VlaaykW7peGaam4qaKqbaoaabmaabaWaaSaaaeaacaWGobaabaGaaG OmaiaadghadaWgaaqcfasaaiaaikdaaKqbagqaaaaaaiaawIcacaGL PaaadaahaaqabKqbGeaajugWaiabgkHiTiaaigdacaGGVaGabmiCay aafaaaaKqbakaaykW7jugGbiaacIcakmaapedajuaGbaqcLbuacaGG OaqcLbsacaWG0bGaaiylaiaadohajugqbiaacMcajuaGdaahaaqabK qbGeaapaGaeyOeI0IaaiikaKqbaoacaI2caaqcfasaiaiAcGaGmoOt aaqaiaiAcGaGSGOmaiacaYYGXbqcfa4aiailBaaajqwba+FaiailcG aGSGOmaaqcfasajailaaaacqGHRaWkcaaIXaGaaiykaaaajugqb8qa caGGOaaajqwbG8FaaKqzadGaamiDaiaac+cacaaIYaaajqwbG8FaaK qzadGaamiDaiabgkHiTiaaigdaaKqzagGaey4kIipajugibiabgYda 8iaaykW7caaMc8Uaam4CaiaaykW7cqGH+aGpjuaGdaahaaqabKqbGe aajugWaiaadkgaaaqcfa4aauWaaeaajugibiaahEhapaGaaiika8qa caGG3cGaaiilaiaadohapaGaaiykaaqcfa4dbiaawMa7caGLkWoada WgaaqaaKqzGeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbqcfa4a aSbaaKazfa4=baqcLbkacaaIXaaajuaibeaajugWaiaac+cacaaIYa aajuaGbeaajugibiaacckajuaGpaWaaeWaaeaajugib8qacqqHPoWv aKqba+aacaGLOaGaayzkaaaapeqabaqcLbuacaGGPaWcdaahaaadbe qaaiaadchaaaqcLbsacaWGKbGaam4CaKqzagGaaiykaKqba+aadaah aaqabKqbGeaajugWaiaaigdacaGGVaGaamiCaaaajugib8qacaaMc8 UaaiOlaaaaaa@5180@

so that by the change of integration order and (56)

2 T ( < t > b N 2 q 1 I I q 2 ( t ) ) p d t C ( N 2 q 2 ) p p 2 T d t t / 2 t 1 ( t s ) ( N 2 q 2 + 1 ) ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s C ( N 2 q 2 ) p p 0 T ( < s > b w ( · , s ) L q 1 / 2   ( Ω ) ) p d s s + 1 2 s ( t s ) ( N 2 q 2 + 1 ) d t C ( N 2 q 2 ) p ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedajuaGbaaajqwba9FaaKqzadGaaGOmaaqcKvaq=haa jugWaiaadsfaaKqzagGaey4kIipacaGGOaqcLbsacqGH8aapcaaMc8 UaamiDaiaaykW7cqGH+aGpjuaGdaahaaqabKqbGeaajugWaiacCX7G IbGamWfVgkHiTiacCXlMc8+cpaWaiWfPlaaajuaibGaxKMqzadGaiW fYd6eaaKqbGeacCrAcLbmacGaxOHOmaiacCH2GXbWcdGaxOTbaaKqb GeacCHwcLbmacGaxOHymaaqcfasajWfAaaaaaaqcLbsapeGaamysai aadMeajuaGdaWgaaqcfasaaKqzadGaamyCaKqbaoaaBaaajuaibaGa aGOmaaqcfayabaaabeaajugibiaacIcacaWG0bGaaiykaKqzagGaai ykaKqbaoaaCaaabeqcfasaaKqzadGaamiCaaaajugibiaadsgacaWG 0bGaaGPaVlabgsMiJkaaykW7caaMc8Uaam4qaKqbaoaabmaabaWaaS aaaeaacaWGobaabaGaaGOmaiaadghadaWgaaqaaiaaikdaaeqaaaaa aiaawIcacaGLPaaajugibiaaykW7juaGdaahaaqabKqbGeaaliabgk HiTmaalaaajuaibaqcLbmacaWGWbaajuaibaqcLbmacKaGGmiCayac acsbaaaaaaGcdaWdXaqcfayaaiaadsgacaWG0baajqwba9FaaKqzad GaaGOmaaqcKvaq=haajugWaiaadsfaaKqzagGaey4kIipacaaMc8Ua aGPaVlaaykW7kmaapedajuaGbaGaaiikaiaadshacqGHsislcaWGZb GaaiykaaqcKvaq=haajugWaiaadshacaGGVaGaaGOmaaqcKvaq=haa jugWaiaadshacqGHsislcaaIXaaajugGbiabgUIiYdqcfa4aaWbaae qajuaibaqcLbmacqGHsisllmaabmaabaWaaSaaaeaacaWGobaabaGa aGOmaiaadghadaWgaaadbaGaaGOmaaqabaaaaSGaey4kaSIaaGymaa GaayjkaiaawMcaaaaajugGbiaacIcajugibiabgYda8iaaykW7caWG ZbGaeyOpa4tcfa4aaWbaaeqajuaibaqcLbmacaWGIbaaaKqbaoaafm aabaqcLbsacaWH3bWdaiaacIcapeGaai4TaiaacYcacaWGZbWdaiaa cMcaaKqba+qacaGLjWUaayPcSdWaaSbaaeaajugibiaadYeajuaGda WgaaqcfasaaKqzadGaamyCaSWaaSbaaKqbGeaajugWaiaaigdaaKqb GeqaaSGaai4laiaaikdaaKqbagqaaKqzGeGaaiiOaKqba+aadaqada qaaKqzGeWdbiabfM6axbqcfa4daiaawIcacaGLPaaaa8qabeaajugG biaacMcakmaaCaaaleqabaGaamiCaaaajugibiaadsgacaWGZbaake aajugibiabgsMiJkaaykW7caaMc8Uaam4qaKqbaoaabmaabaWaaSaa aeaacaWGobaabaGaaGOmaiaadghadaWgaaqaaiaaikdaaeqaaaaaai aawIcacaGLPaaajugibiaaykW7juaGdaahaaqabKqbGeaaliabgkHi TmaalaaajuaibaqcLbmacaWGWbaajuaibaqcLbmacKaGGmiCayacac sbaaaaaaGcdaWdXaqcfayaaaqcKvaq=haajugWaiaaicdaaKazfa0= baqcLbmacaWGubaajugGbiabgUIiYdGaaiikaKqzGeGaeyipaWJaaG PaVlaadohacqGH+aGpjuaGdaahaaqabKqbGeaajugWaiaadkgaaaqc fa4aauWaaeaajugibiaahEhapaGaaiika8qacaGG3cGaaiilaiaado hapaGaaiykaaqcfa4dbiaawMa7caGLkWoadaWgaaqaaKqzGeGaamit aKqbaoaaBaaajuaibaqcLbmacaWGXbqcfa4aaSbaaKazfa4=baqcLb kacaaIXaaajuaibeaalmaaBaaabaGaai4laiaaikdaaeqaaaqcfaya baqcLbsacaGGGcqcfa4damaabmaabaqcLbsapeGaeuyQdCfajuaGpa GaayjkaiaawMcaaaWdbeqaaKqzagGaaiykaKqbaoaaCaaabeqcfasa aKqzadGaamiCaaaajugibiaadsgacaWGZbGaaGPaVRWaa8qmaKqbag aacaGGOaGaamiDaiabgkHiTiaadohacaGGPaaajqwba9FaaKqzadGa am4CaiabgUcaRiaaigdaaKGbagaajugWaiacaYcIYaGaiaildohaaK qzagGaey4kIipajuaGdaahaaqabKqbGeaajugWaiabgkHiTSWaaeWa aeaadaWcaaqaaiaad6eaaeaacaaIYaGaamyCamaaBaaameaacaaIYa aabeaaaaWccqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaKqzGeGaaGPa VlaadsgacaWG0bGaeyizImQaaGPaVlaadoeajuaGdaqadaqaamaala aabaGaamOtaaqaaiaaikdacaWGXbWaaSbaaKqbGeaacaaIYaaajuaG beaaaaaacaGLOaGaayzkaaqcLbsacaaMc8Ecfa4aaWbaaeqajuaiba GaeyOeI0IaamiCaaaajuaGdaqadaqaamrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfiGae8heHKKaae4kaiaacUfacaWH2bGaai yxamaaDaaajuaibaGaamivaaqaaiaaikdaaaaajuaGcaGLOaGaayzk aaGccaaMc8UaaiOlaaaaaa@727C@

Analogously, by Holder’s inequality

< t > b N 2 q 2 I I I q 2 ( t ) C t 1 t < s > b N 2 q 2 w ( · , s ) L q 2   ( Ω ) d s , C ( t 1 t d s ) 1 / p ( t 1 t ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s ) 1 / p ( t 1 t ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s ) 1 / p , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba baaaaaaaaapeGaeyipaWJaaGPaVlaaykW7caWG0bGaaGPaVlaaykW7 cqGH+aGpjuaGdaahaaWcbeqcbasaaKqzadGaamOyaiabgkHiTSWdam acaI2caaqcbasaiaiAjugWaiacaY4GobaajeaibGaGOLqzadGaiail ikdacGaGSmyCaSWaiailBaaajiaibGaGSKqzadGaiailikdaaKGaGe qcaYcaaaaaaKqzGeWdbiaadMeacaWGjbGaamysaKqbaoaaBaaajuai baGaamyCaKqbaoaaBaaajuaibaGaaGOmaaqcfayabaaabeaajugib8 aacaGGOaWdbiaadshapaGaaiykaiaaykW7caaMc8UaeyizImQaaGPa VlaaykW7caaMc8+dbiaadoeacaaMc8UaaGPaVRWaa8qmaKqbagaacq GH8aapcaaMc8Uaam4CaiaaykW7cqGH+aGpaKazfaY=baqcLbmacaWG 0bGaeyOeI0IaaGymaaqcKvai=haajugWaiaadshaaKqzagGaey4kIi pajuaGdaahaaqabKqbGeaajugWa8aacaWGIbqcfaOaeyOeI0YaiaiA laaajuaibGaGOjacaY4GobaabGaGOjacaYcIYaGaiaildghajuaGdG aGSSbaaKazfa4=bGaGSiacaYcIYaaajuaibKaGSaaaaaaajugib8qa caaMc8Ecfa4aauWaaeaajugibiaahEhapaGaaiika8qacaGG3cGaai ilaiaadohapaGaaiykaaqcfa4dbiaawMa7caGLkWoadaWgaaqaaKqz GeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbqcfa4aaSbaaKqbGe aacaaIYaaajuaGbeaaaeqaaKqzGeGaaiiOaKqba+aadaqadaqaaKqz GeWdbiabfM6axbqcfa4daiaawIcacaGLPaaaa8qabeaajugibiaads gacaWGZbGaaiilaaqcfayaaKqzGeWdaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaeyiz ImQaaGPaVlaaykW7caaMc8EcfaOaaGPaV=qacaWGdbGaaGPaVlaayk W7caaMc8EcLbyacaGGOaGcdaWdXaqcfayaaKqzGeGaamizaiaadoha aKazfaY=baqcLbmacaWG0bGaeyOeI0IaaGymaaqcKvai=haajugWai aadshaaKqzagGaey4kIipacaGGPaGcdaahaaWcbeqaaKqzadWdaiaa igdacaGGVaGabmiCayaafaaaaKqzGeWdbiaaykW7jugGbiaacIcakm aapedajuaGbaqcLbuacaGGOaaajqwbG8FaaKqzadGaamiDaiabgkHi TiaaigdaaKazfaY=baqcLbmacaWG0baajugGbiabgUIiYdqcLbsacq GH8aapcaaMc8UaaGPaVlaadohacaaMc8UaeyOpa4tcfa4aaWbaaeqa juaibaqcLbmacaWGIbaaaKqbaoaafmaabaqcLbsacaWH3bWdaiaacI capeGaai4TaiaacYcacaWGZbWdaiaacMcaaKqba+qacaGLjWUaayPc SdWaaSbaaeaajugibiaadYeajuaGdaWgaaqcfasaaKqzadGaamyCaK qbaoaaBaaajuaibaGaaGOmaaqcfayabaaabeaajugibiaacckajuaG paWaaeWaaeaajugib8qacqqHPoWvaKqba+aacaGLOaGaayzkaaaape qabaqcLbuacaGGPaWcdaahaaadbeqaaiaadchaaaqcLbsacaWGKbGa am4CaKqzagGaaiykaKqba+aadaahaaqabKqbGeaajugWaiaaigdaca GGVaGaamiCaaaaaKqbagaapeGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8EcLbsacaaMc8UaaGPaVlaaykW7caaMc8+daiaaykW7cqGH KjYOcaaMc8UaaGPaVlaaykW7jugGb8qacaGGOaGcdaWdXaqcfayaaK qzafGaaiikaaqcKvai=haajugWaiaadshacqGHsislcaaIXaaajqwb G8FaaKqzadGaamiDaaqcLbyacqGHRiI8aKqzGeGaeyipaWJaaGPaVl aaykW7caWGZbGaaGPaVlabg6da+KqbaoaaCaaabeqcfasaaKqzadGa amOyaaaajuaGdaqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacElaca GGSaGaam4Ca8aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaabaqc LbsacaWGmbqcfa4aaSbaaKqbGeaajugWaiaadghajuaGdaWgaaqcfa saaiaaikdaaKqbagqaaaqabaqcLbsacaGGGcqcfa4damaabmaabaqc LbsapeGaeuyQdCfajuaGpaGaayjkaiaawMcaaaWdbeqaaKqzafGaai ykaSWaaWbaaWqabeaacaWGWbaaaKqzGeGaamizaiaadohajugGbiaa cMcajuaGpaWaaWbaaeqajuaibaqcLbmacaaIXaGaai4laiaadchaaa qcLbsapeGaaGPaVlaaykW7caGGSaaaaaa@C75E@

so that by the change of integration order and (56)

2 T ( < t > b N 2 q 2 I I I q 2 ( t ) ) p d t C 2 T d t t 1 t ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s C 0 T ( < s > b w ( · , s ) L q 2   ( Ω ) ) p d s s s + 1 d t C ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaapedajuaGbaaajqwba9FaaKqzadGaaGOmaaqcKvaq=haa jugWaiaadsfaaKqzagGaey4kIipacaGGOaqcLbsacqGH8aapcaaMc8 UaamiDaiaaykW7cqGH+aGpjuaGdaahaaqabKqbGeaajugWaiacCX7G IbGamWfVgkHiTiacCXlMc8+cpaWaiWfPlaaajuaibGaxKMqzadGaiW fYd6eaaKqbGeacCrAcLbmacGaxOHOmaiacCH2GXbWcdGaxOTbaaKqb GeacCHwcLbmacGaxOHOmaaqcfasajWfAaaaaaaqcLbsapeGaamysai aadMeacaWGjbqcfa4aaSbaaKqbGeaajugWaiaadghajuaGdaWgaaqc fasaaiaaikdaaKqbagqaaaqabaqcLbsacaGGOaGaamiDaiaacMcaju gGbiaacMcajuaGdaahaaqabKqbGeaajugWaiaadchaaaqcLbsacaWG KbGaamiDaiaaykW7cqGHKjYOcaaMc8UaaGPaVlaadoeakmaapedaju aGbaGaamizaiaadshaaKazfa0=baqcLbmacaaIYaaajqwba9FaaKqz adGaamivaaqcLbyacqGHRiI8aiaaykW7caaMc8UaaGPaVRWaa8qmaK qbagaacaGGOaaajqwba9FaaKqzadGaamiDaiabgkHiTiaaigdaaKaz fa0=baqcLbmacaWG0baajugGbiabgUIiYdqcLbsacqGH8aapcaaMc8 Uaam4Caiabg6da+KqbaoaaCaaabeqcfasaaKqzadGaamOyaaaajuaG daqbdaqaaKqzGeGaaC4Da8aacaGGOaWdbiaacElacaGGSaGaam4Ca8 aacaGGPaaajuaGpeGaayzcSlaawQa7amaaBaaabaqcLbsacaWGmbqc fa4aaSbaaKqbGeaajugWaiaadghajuaGdaWgaaqcfasaaiaaikdaaK qbagqaaaqabaqcLbsacaGGGcqcfa4damaabmaabaqcLbsapeGaeuyQ dCfajuaGpaGaayjkaiaawMcaaaWdbeqaaKqzagGaaiykaOWaaWbaaS qabeaacaWGWbaaaKqzGeGaamizaiaadohaaOqaaKqzGeGaeyizImQa aGPaVlaaykW7caWGdbGcdaWdXaqcfayaaaqcKvaq=haajugWaiaaic daaKazfa0=baqcLbmacaWGubaajugGbiabgUIiYdGaaiikaKqzGeGa eyipaWJaaGPaVlaadohacqGH+aGpjuaGdaahaaqabKqbGeaajugWai aadkgaaaqcfa4aauWaaeaajugibiaahEhapaGaaiika8qacaGG3cGa aiilaiaadohapaGaaiykaaqcfa4dbiaawMa7caGLkWoadaWgaaqaaK qzGeGaamitaKqbaoaaBaaajuaibaqcLbmacaWGXbqcfa4aaSbaaKqb GeaacaaIYaaajuaGbeaaaeqaaKqzGeGaaiiOaKqba+aadaqadaqaaK qzGeWdbiabfM6axbqcfa4daiaawIcacaGLPaaaa8qabeaajugGbiaa cMcajuaGdaahaaqabKqbGeaajugWaiaadchaaaqcLbsacaWGKbGaam 4CaiaaykW7kmaapedajuaGbaGaamizaaqcKvaq=haajugWaiaadoha aKGbagaajugWaiacacYGZbGamaiigUcaRiacaccIXaaajugGbiabgU IiYdqcLbsacaWG0bGaeyizImQaaGPaVlaadoeajuaGdaqadaqaamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8heHKKaae 4kaiaacUfacaWH2bGaaiyxamaaDaaajuaibaGaamivaaqaaiaaikda aaaajuaGcaGLOaGaayzkaaGccaaMc8UaaiOlaaaaaa@224A@

Summing up, we have obtained (68).

Recalling that T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubGaeyyzImRaaGOmaaaa@39FF@ , applying the maximal Lp-Lq regularity theorem due to Shibata33 to Eq. (54) and using (56) give that

u L p ( ( 0 , 2 ) , H q 2 ( Ω ) ) + t u L p ( ( 0 , 2 ) , L q ( Ω ) ) C q λ 0 w L p ( ( 0 , 2 ) , L q ( Ω ) ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqbdaqaaiaahwhaaiaawMa7caGLkWoadaWgaaqaaiaadYea daWgaaqcfasaaiaadchaaKqbagqaamaabmaabaGaaiikaiaaicdaca GGSaGaaGOmaiaacMcacaGGSaGaamisamaaDaaajuaibaGaamyCaaqa aiaaikdaaaqcfaOaaiikaiabfM6axjaacMcaaiaawIcacaGLPaaaae qaaiabgUcaRiaaykW7caaMc8+aauWaaeaacqGHciITjuaicaWG0bGa aGPaVNqbakaahwhaaiaawMa7caGLkWoadaWgaaqaaiaadYeadaWgaa qcfasaaiaadchaaKqbagqaamaabmaabaGaaiikaiaaicdacaGGSaGa aGOmaiaacMcacaGGSaGaamitamaaBaaajuaibaGaamyCaaqcfayaba GaaiikaiabfM6axjaacMcaaiaawIcacaGLPaaaaeqaaiaaykW7caaM c8UaeyizImQaaGPaVlaaykW7caWGdbqcfaIaamyCaKqbaoaafmaaba Gaae4UdmaaBaaajuaibaGaaeimaaqcfayabaGaaC4DaaGaayzcSlaa wQa7amaaBaaabaGaamitamaaBaaajuaibaGaamiCaaqcfayabaWaae WaaeaacaGGOaGaaGimaiaacYcacaaIYaGaaiykaiaacYcacaWGmbWa aSbaaKqbGeaacaWGXbaajuaGbeaacaGGOaGaeuyQdCLaaiykaaGaay jkaiaawMcaaaqabaGaaGPaVNqzGeWdaiabgsMiJkaaykW7caaMc8Ua aGPaV=qacaWGdbWdaiaaykW7juaGpeWaaeWaaeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbcKqzGeGae8heHKKaae4kaiaa cUfacaWH2bGaaiyxaSWaa0baaKqbGeaajugWaiaadsfaaKqbGeaaju gWaiaaikdaaaaajuaGcaGLOaGaayzkaaqcLbsacaaMc8oaaa@A66E@ (70)

For any q     [ q 1 / 2 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbGaaeiiaiabgIGiolaabccapaWaamWaaeaapeGaamyC amaaBaaajuaibaGaaGymaaqcfayabaGaai4laiaaikdacaGGSaGaae iiaiaadghadaWgaaqaaKqbGiaaikdaaKqbagqaaaWdaiaawUfacaGL Dbaaaaa@4463@ . Employing the same argumentation as that in proving (29), by real interpolation,we have

sup 0 < t < 2 u ( · , t ) B q , p 2 ( 1 1 / p ) ( Ω ) C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuae qajuaibaGaiaiGaaaF=JimaiaaykW7cWaGacaa89VH8aapcGaGacaa 89=G0bGaaGPaVladaciaaW3=gYda8iaaykW7cGaGacaa89pIYaaaju aGbeqaaiGacohacaGG1bGaaiiCaaaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7qaaaaaaaaaWdbmaafmaabaGaaCyDa8aacaGGOa WdbiaacElacaGGSaGaamiDa8aacaGGPaaapeGaayzcSlaawQa7amaa BaaabaGaamOqamaaDaaajuaibaGaamyCaiaacYcacaWGWbaabaGaaG OmaiaacIcacaaIXaGaeyOeI0IaaGymaiaac+cacaGGWbGaaiykaaaa juaGcaGGOaGaeuyQdCLaaiykaaqabaWdaiabgsMiJkaaykW7caaMc8 UaaGPaV=qacaWGdbWdaiaaykW7peWaaeWaaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=brijjaabUcacaGGBbGaaC ODaiaac2fadaqhaaqcfasaaiaadsfaaeaacaaIYaaaaaqcfaOaayjk aiaawMcaaaaa@8A80@ (71)

for any q     [ q 1 / 2 ,   q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbGaaeiiaiabgIGiolaabccapaWaamWaaeaapeGaamyC amaaBaaajuaibaGaaGymaaqcfayabaGaai4laiaaikdacaGGSaGaae iiaiaadghadaWgaaqaaKqbGiaaikdaaKqbagqaaaWdaiaawUfacaGL Dbaaaaa@4463@ . Combining (65), (66), (67), (68), (70), (71) and the Sobolev imbedding theorem, we have

< t > b u L p ( ( 0 , T ) H 1 ( Ω ) ) + < t > N 2 q 1 u L ( ( 0 , T ) , L q 1 ( Ω ) ) + < t > b   N 2 q 1 u L p ( ( 0 , T ) H q 1 1 ( Ω ) ) + < t > b   N 2 q 2 u L p ( ( 0 , T ) , L q 2 ( Ω ) ) C ( I + [ v ] T 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafeaabaGaeyipaWdacaGLjWoacaWG0bGaeyOpa4Za aWbaaeqajuaibaGaamOyaaaajuaGdaqbcaqaaiaahwhaaiaawQa7a8 aadaWgaaqaa8qacaWGmbWaaSbaaKqbGeaacaWGWbaajuaGbeaapaGa aiikaiaacIcacaaIWaGaaiilaiaadsfacaGGPaGaamisamaaDaaaju aibaGaeyOhIukabaGaaGymaaaajuaGpeGaaiikaiabfM6axjaacMca caGGPaaapaqabaGaey4kaSIaaGPaVpaafeaabaWdbiabgYda8aWdai aawMa7a8qacaWG0bGaeyOpa4ZaaWbaaeqajuaibaqcfa4aaSaaaKqb GeaacaWGobaabaGaaGOmaiaadghajuaGdaWgaaqcKvaG=haacaaIXa aajuaibeaaaaaaaKqbaoaafiaabaGaaCyDaaGaayPcSdWaaSbaaeaa caWGmbWaaSbaaKqbGeaapaGaeyOhIukajuaGpeqabaWdaiaacIcaca GGOaGaaGimaiaacYcacaWGubGaaiykaiaacYcacaWGmbWaaSbaaKqb GeaacaWGXbqcfa4aaSbaaKqbGeaajuaGdaWgaaqcKvaG=haacGaAeH ymaaqcfasabaaabeaaaKqbagqaamaabmaabaGaeuyQdCfacaGLOaGa ayzkaaGaaiykaaWdbeqaaaGcbaqcfaOaey4kaSYaauqaaeaacqGH8a apaiaawMa7aiaadshacqGH+aGpdaahaaqabKqbGeaacGaAyoOyaiad OHPHsislcGaAykiOaKqbaoacOH5caaqcfasaiGgMcGaAyoOtaaqaiG gMcGaA0HOmaiacOr3GXbqcfa4aiGgDBaaajuaibGaA0jacOrhIXaaa bKaA0baaaaaajuaGdaqbcaqaaiaahwhaaiaawQa7a8aadaWgaaqaa8 qacaWGmbWaaSbaaKqbGeaacaWGWbaajuaGbeaapaGaaiikaiaacIca caaIWaGaaiilaiaadsfacaGGPaGaamisamaaDaaajuaibaGaamyCaK qbaoaaBaaajqwba+FaaiaaigdaaKqbGeqaaaqaaiaaigdaaaqcfa4d biaacIcacqqHPoWvcaGGPaGaaiykaaWdaeqaaiabgUcaRmaafeaaba WdbiabgYda8aWdaiaawMa7a8qacaWG0bGaeyOpa4ZaaWbaaeqajuai baGaiGgYdkgacWaAiBOeI0IaiGgYcckajuaGdGaAiVaaaKqbGeacOH SaiGgYd6eaaeacOHSaiGgJikdacGaAmoyCaKqbaoacOX4gaaqcfasa iGgJcGaAmIOmaaqajGgJaaaaaaqcfa4aauGaaeaacaWH1baacaGLkW oadaWgaaqaaiaadYeadaWgaaqcfasaaiaadchaaKqbagqaa8aacaGG OaGaaiikaiaaicdacaGGSaGaamivaiaacMcacaGGSaGaamitamaaBa aajuaibaGaamyCaKqbaoaaBaaajuaibaqcfa4aaSbaaKazfa4=baGa iGguikdaaKqbGeqaaaqabaaajuaGbeaadaqadaqaaiabfM6axbGaay jkaiaawMcaaiaacMcaa8qabeaacqGHKjYOcaWGdbGaaiikamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfiGae8heHKKaae4kai aacUfacaWH2bGaaiyxamaaDaaajuaibaGaamivaaqaaiaaikdaaaqc faOaaiykaiaac6caaaaa@EB85@ (72)

From (54), u satisfies the equations:

{ t u + λ 0 v- J ( T ) 1 Div S ˜ ( u , p ) = λ 0 w+ λ 0 u in Ω × ( 0 , T ) , div u ˜ = 0           in Ω × ( 0 , T ) , S ˜ ( u , p ) = 0               on Γ × ( 0 , T ) , u | t = 0     = 0          in Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaq aabeqaaKqzGeaeaaaaaaaaa8qacqGHciITjuaGdaWgaaqcfasaaKqz adGaamiDaaqcfayabaqcLbsacaWH1bGaey4kaSIaeq4UdWwcfa4aaS baaKqbGeaajugWaiaaicdaaKqbagqaaiaabAhacaqGTaqcLbsacaWG kbWdaiaacIcapeGaamiva8aacaGGPaqcfa4dbmaaCaaabeqcfasaaK qzadGaeyOeI0IaaGymaaaajugibiaabseacaqGPbGaaeODaiaaykW7 ceWHtbGbaGaapaGaaiika8qacaWH1bWdaiaacYcatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaqcfa4dbiab=Lc8WLqzGeWd aiaacMcapeGaeyypa0ZdaiabgkHiTiabeU7aSLqbaoaaBaaajuaiba qcLbmacaaIWaaajuaGbeaajugibiaabEhacaqGRaWdbiabeU7aSLqb aoaaBaaajuaibaqcLbmacaaIWaaajuaGbeaajugibiaahwhapaGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaV=qacaqGPbGaaeOBaiaaykW7cq qHPoWvcaaMc8Uaey41aqRaaGPaV=aacaGGOaWdbiaaicdacaGGSaGa amiva8aacaGGPaWdbiaacYcaaKqba+aabaqcLbsapeGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVNqbaoaaGaaabaqcLbsacaqGKbGaaeyAaiaabAhacaaM c8UaaCyDaaqcfaOaay5adaqcLbsacaaMc8UaaeypaiaaykW7caqGWa GaaeiOaiaabckacaGGGcGaaiiOaiaacckacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaiiOaiaabMgacaqGUbGaaGPaVlabfM6axjaaykW7cqGHxdaT caaMc8+daiaacIcapeGaaGimaiaacYcacaWGubWdaiaacMcapeGaai ilaaqcfa4daeaajugib8qacaaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7ceWHtbGbaGaapaGaaiika8qacaWH1bWdaiaa cYcajuaGpeGae8xkWdxcLbsapaGaaiykaiaaykW7peGaeyypa0JaaG PaVlaaykW7juaGpaGaaGimaKqzGeWdbiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaacckacaGGGcGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaae4Baiaab6gacaaMc8UaaGPa Vlabfo5ahjaaykW7cqGHxdaTcaaMc8UaaGPaV=aacaGGOaWdbiaaic dacaGGSaGaamiva8aacaGGPaWdbiaacYcaaKqbagaajugibiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahwhapaGa aiiFaKqba+qadaWgaaqaaKqzGeGaamiDaiabg2da9iaaicdaaKqbag qaaKqzGeGaaiiOaiaacckacqGH9aqpcaaIWaGaaiiOaiaacckacaGG GcGaaiiOaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaeiOaiaabMga caqGUbGaaGPaVlaaykW7caaMc8UaeuyQdCfaaKqba+aacaGL7baaaa a@62CE@

so that by Theorem 8,

< t > b   N 2 q 2 u L p ( ( 0 , T ) H q 2 2 ( Ω ) ) + < t > b   N 2 q 2 t u L p ( ( 0 , T ) , L q 2 ( Ω ) ) + C < t > b   N 2 q 2 ( u , w ) L p ( ( 0 , T ) L q 2 ( Ω ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbmaafeaabaGaeyipaWdacaGLjWoacaWG0bGaeyOpa4Za aWbaaeqajuaibaGaiGgYdkgacWaAiBOeI0IaiGgYcckajuaGdGaAiV aaaKqbGeacOHSaiGgYd6eaaeacOHSaiGgJikdacGaAmoyCaKqbaoac OX4gaaqcfasaiGgJcGaAmIOmaaqajGgJaaaaaaqcfa4aauGaaeaaca WH1baacaGLkWoapaWaaSbaaeaapeGaamitamaaBaaajuaibaGaamiC aaqcfayabaWdaiaacIcacaGGOaGaaGimaiaacYcacaWGubGaaiykai aadIeadaqhaaqcfasaaiaadghajuaGdaWgaaqcKvaG=haacaaIYaaa juaGbeaaaKqbGeaacaaIYaaaaKqba+qacaGGOaGaeuyQdCLaaiykai aacMcaa8aabeaacqGHRaWkcaaMc8+aauqaaeaapeGaeyipaWdapaGa ayzcSdWdbiaadshacqGH+aGpdaahaaqabKqbGeaacGaAipOyaiadOH SHsislcGaAiliOaKqbaoacOH8caaqcfasaiGgYcGaAipOtaaqaiGgY cGaAmIOmaiacOX4GXbqcfa4aiGgJBaaajuaibGaAmkacOXiIYaaabK aAmcaaaaaajuaGdaqbcaqaaiabgkGi2oaaBaaajuaibaGaamiDaaqc fayabaGaaCyDaaGaayPcSdWaaSbaaeaacaWGmbWaaSbaaKqbGeaapa GaamiCaaqcfa4dbeqaa8aacaGGOaGaaiikaiaaicdacaGGSaGaamiv aiaacMcacaGGSaGaamitamaaBaaajuaibaGaamyCaKqbaoaaBaaaju aibaqcfa4aiGgrBaaajqwba+FaiGgrcGaAeHOmaaqcfasajGgraaqa baaajuaGbeaadaqadaqaaiabfM6axbGaayjkaiaawMcaaiaacMcaa8 qabeaaaOqaaKqbakaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaado eadaqbbaqaaiabgYda8aGaayzcSdGaamiDaiabg6da+maaCaaabeqc fasaaiacOH5GIbGamGgMgkHiTiacOHPGGcqcfa4aiGgMlaaajuaibG aAykacOH5GobaabGaAykacOrhIYaGaiGgDdghajuaGdGaA0TbaaKqb GeacOrNaiGgDikdaaeqcOrhaaaaaaKqbaoaafiaabaGaaiikaiaahw hacaGGSaGaaC4DaiaacMcaaiaawQa7a8aadaWgaaqaa8qacaWGmbWa aSbaaKqbGeaacaWGWbaajuaGbeaapaGaaiikaiaacIcacaaIWaGaai ilaiaadsfacaGGPaGaamitamaaBaaajuaibaGaamyCaKqbaoaaBaaa juaibaqcfa4aaSbaaKazfa4=baGaiWfuikdaaKqbGeqaaaqabaaaju aGbeaapeGaaiikaiabfM6axjaacMcacaGGPaaapaqabaGaaiilaaaa aa@E8F2@

which, combined with (72), furnishes that

[ u ] T C ( I + [ v ] T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGBbGaaCyDaiaac2fadaWgaaqcfasaaiaadsfaaKqbagqa aiabgsMiJkaadoeacaGGOaWefv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuGacqWFqesscaqGRaGaai4waiaahAhacaGGDbWaa0ba aKqbGeaacaWGubaabaGaaGOmaaaajuaGcaGGPaaaaa@4F59@ (73)

Since v = w+u, by (58) and (73), we see that v satisfies the inequality (50), which completes the proof of Theorem 1.53-56

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Solonnikov VA. Solvability of the problem of evolution of an isolated amount of a viscous incom-pressible capillary fluid. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI. 1984;140:179‒186.
  2. Solonnikov VA. On nonstationary motion of a finite isolated mass of self-gravitating fluid. Algebra I Analiz. 1990;1(1):207‒249.
  3. Solonnikov VA. Solvability of the problem of evolution of a viscous incompressible fluid bouded by a free surface on a finite time interval. Algebra i Analiz. 1991;3(1):222‒257.
  4. Solonnikov VA. Lectures on evolution free boundary problems: classical solutions. Mathematical aspects of evolving interfaces, Lecture Notes in Math. 2003;1812:123‒175.
  5. Schweizer B. Free boundary fluid systems in a semigroup approach and oscillatory behavior. SIAM J Math Anal. 1997;28(5):1135‒1157.
  6. Moglievskii SH, Solonnikov VA. On the solvability of a free boundary problem for the Navier-Stokes equations in the Holder space of functions. Nonlinear Analysis Sc Norm Super di Pisa Quaderni Scuola Norm. 1991. p. 257‒271.
  7. Solonnikov VA. On the transient motion of an isolated volume of viscous incompressible fluid. USSR Izvestiya. 1988;31(2):381‒405.
  8. Mucha PB, Zajaczkowski W. On the existence for the Cauchy-Neumann problem for the Stokes system in the Lp-framework. Studia Math. 2000;143(1):75‒101.
  9. Mucha PB, Zajaczkowski W. On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion. Appl Math. 2000;27(3):319‒333.
  10. Shibata Y, Shimizu S. On a free boundary problem for the Navier-Stokes equations. Dierential Integral Equations. 2007;20(3):241‒276.
  11. Shibata Y, Shimizu S. On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J Reine Angew Math. 2008;61:157‒209.
  12. Shibata Y. On some free boundary problem of the Navier-Stokes equations in the maximal Lp-Lq regularity class. J Dierential Equations. 2015;258(12):4127‒4155.
  13. Solonnikov VA. Unsteady flow of a finite mass of a fluid bounded by a free surface. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI. 1986;152:137‒157.
  14. Padula M, Solonnikov VA. On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation. Quad Mat. 2002;10:185‒218.
  15. Shibata Y. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. 2002.
  16. Allain G. Small-time existence for Navier-Stokes equations with a free surface. Appl Math Optim. 1987;16(1):37‒50.
  17. Beale JT. The initial value problem for the Navier-Stokes equations with a free surface. Commun Pure Appl Math. 1981;34(3):359‒392.
  18. Tani A. Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface. Arch Rational Mech Anal. 1996;133(4):299‒331.
  19. Abels H. The initial-value problem for the Navier-Stokes equations with a free surface in Lq-Sobolev spaces. Adv Dierential Equations. 2005;10(1):45‒64.
  20. Beale T. Large-time regularity of viscous surface waves. Arch Rational Mech Anal. 1984;84(4):307‒352.
  21. Tani I, Tanaka N. Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch Rational Mech anal. 1995;130(4):303‒314.
  22. Donna Lynn, Gates Sylvester. Large time existence of small viscous surface waves without surface tension. Partial Dierential Equations. 1990;15(6):823‒903.
  23. Beale JT, Nishida T. Large-time behaviour of viscous surface waves. Recent topics in nonlinear PDE, North-Holland Math. Stud, Amsterdam, Netherlands; 1985. p. 1‒14.
  24. Sylvester DLG. Decay rate for a two-dimensional viscous ocean of finite depth. J Math Anal Appl. 1996;202(0340):659‒666.
  25. Hataya Y. Decaying solution of a Navier-Stokes flow without surface tension. J Math Kyoto Univ. 2009;49(4):691‒717.
  26. Hataya Y, Kawashima S. Decaying solution of the Navier-Stokes flow of infinite volume without surface tension. Nonlinear Analysis. 2009;71:2535‒2539.
  27. Saito H, Shibata Y. On decay properties of solutions to the Stokes equations with surface tension and gravity in the half space. J Math Soc Japan. 2016;68(4):1559‒1614.
  28. Saito H, Shibata Y. Global existence and large-time behavior of solutions to the Navier-Stokes equations with a free surface.
  29. Shibata Y. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete and Continuous Dynamical Systems Series S. 2016;9(1):315‒342.
  30. Shibata Y. Local well-posedness for the free boundary problem of the Navier-Stokes equations in an exterior domain.
  31. Abels H. On generalized solutions of two-phase flows for viscous incompressible fluids. Interfaces Free Bound. 2007;9(1):31‒65.
  32. Denisova V. A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium. Proc Steklov Inst Math. 1991;188:1‒24.
  33. Denisova V. Problem of the motion of two viscous incompressible fluids separated by a closed free interface. Acta Appl Math. 1994;37(1‒2):31‒40.
  34. Denisova V, Solonnikov VA. Classical solvability of the problem on the motion of two viscous incompressible fluids. Petersburg Math. 1996;7(5):755‒786.
  35. Giga Y, Takahashi SH. On global weak solutions of the nonstationary two-phase Stokes flow. SIAM J Math Anal. 1994;25(3):876‒893.
  36. Köhne M, Pruss J, Wilke M. Qualitative behavior of solutions for the two-phase Navier-Stokes equations with surface tension. Math Ann. 2013;356(2):737‒792.
  37. Maryani S, Saito H. On the R-boundedness of solution operator families for two-phase Stokes resolvent equations. Di Int Eqs. 2017;30(1/2):1‒52.
  38. Nouri A, Poupaud F. An existence theorem for the multifluid Navier-Stokes problem. J Deferential Equations. 1995;122:71‒88.
  39. Pruess J, Simonett G. On the two-phase Navier-Stokes equations with surface tension. Interfaces and Free Boundaries. 2010;12(3):311‒345.
  40. Pruess J, Simonett G. Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity, Progress in Nonlinear Dierential Equations and Their Applications. 2011;80:507‒540.
  41. Pruess J, Simonett G. Moving Interfaces and Quasilinear Parabolic Evolution Equations. Birkhauser Monographs in Mathematics. USA: Springer International Publishing; 2016. 609 p.
  42. Shibata Y, Shimizu S. On the resolvent estimate of the interface problem for the Stokes system in a bounded domain. J Dierential Equations. 2003;191:408‒444.
  43. Shibata Y, Shimizu S. Maximal Lp-Lq regularity for the two-phase Stokes equations; Model problems. J Dierential Equations. 2011;251(2):373‒419.
  44. Simonett G, Wilke V. Stability of equilibrium shapes in some free boundary problems involving fluids. Handbook of Mathematical Analysis in Mechanics Viscous Fluids. 2017:1‒46.
  45. Takahashi SH. On global weak solutions of the nonstationary two-phase Navier-Stokes flow. Adv Math Sci Appl. 1995;5(1):321‒342.
  46. Tanaka N. Two-phase free boundary problem for viscous incompressible thermocapillary convection. Japan J Math (New Series). 1995;21(1):1‒42.
  47. Shibata Y. On Lp-Lq decay estimate for Stokes equations with free boudary condition in an exterior domain. 2001.
  48. Shibata Y, Shimizu S. Decay properties of the Stokes semigroup in exterior domains with Neumann boundary condition. J Math Soc Japan. 2007;59(1):1‒34.
  49. Shibata Y. On the R-boundedness of solution operators for the Stokes equations with free boundary condition. Di Int Eqns. 2014;27(3/4):313‒368.
  50. Shibata Y. On the R-bounded solution opeator and the maximal Lp-Lq regularity of the Stokes equations with free boundary condition. Mathamtical Fluid Dynamics, Present and Future. 2016;183:203‒285.
  51. Tanabe H. Functional Analytic Methods for Parital Dierential Equations. Pure and Applied Mathematics. New York: A Series of Monographs and Textbooks, Marcel Dekker; 1997. 414 p.
  52. Meyries M, Schnaubelt R. Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights. J Func Anal. 2012;262:1200‒1229.
  53. Shibata Y, Shimizu S. On the maximal Lp-Lq regularity of the Stokes problem with first order boundary condition; model problems. J Math Soc Japan. 2012;64(2):561‒626.
  54. Shimizu S. Local solvability of free boundary problems for two-phase Navier-Stokes equations with surface tension in the whole space. Progr Nonlinear Dierential Equations Appl. 2011;80:647‒686.
  55. Solonnikov VA. Estimates of solutions of an initial-boundary value problem for the linear non-stationary Navier-Stokes system. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI. 1976;59:178‒254.
  56. Solonnikov VA. Unsteady flow of a finite mass of a fluid bounded by a free surface. Zap Nauchn Sem Leningrad Otdel mat Inst Steklov LOMI. 1986;152:137‒157.
Creative Commons Attribution License

©2017 Shibata. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.