Submit manuscript...
eISSN: 2575-906X

Biodiversity International Journal

Research Article Volume 2 Issue 5

Diversity of floor vegetation in various levels in South Central Timor, East Nusa Tenggara, Indonesia

Fransisca Xaveriana Serafina Lio, Maria Paulin Sari Dewi

Fakultas Keguruan dan Ilmu Pendidikan, Universitas Katolik Widya Mandira, Indonesia

Correspondence: Fransisca Xaveriana Serafina Lio, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Katolik Widya Mandira, Jalan San Juan Penfui, Penfui Timur, Nusa Tenggara Timur, Indonesia

Received: October 08, 2018 | Published: October 31, 2018

Citation: Serafina FXL, Dewi MPS. Diversity of floor vegetation in various levels in South Central Timor, East Nusa Tenggara, Indonesia. Biodiversity Int J. 2018;2(5):476-482. DOI: 10.15406/bij.2018.02.00102

Download PDF

Abstract

The topographic conditions in South Central Timor which are prone to damage, require special attention in their utilization, such as through the application of the principles of soil and water conservation. This principle is not spared from the role of floor vegetation as grounding the blow of rainwater and surface flow so as to minimize the danger of erosion. This study aims to examine the diversity of floor vegetation in the karst ecosystem at various altitudes in South Central Timor. A total of 15 plots were placed along the elevation gradient starting from altitude of 307m asl to 1782m asl. Data was sampled using a 1mx1m subplot placed in plots of 20m x 20m. The results showed that the highest number of species was found in upland zone; as many as 61 species with the highest IV occupied by Cyperus rotundus L with a value of 40.2%. In middle and and highland zones were Eleusine indica (L.) Gaertn and C. rotundus respectively, with 60.9% and 20.9% of IV. Diversity index at the research location was also classified as medium.

Keywords: diversity, floor vegetation, south central timor

Introduction

Biodiversity is currently considered as one of the most important criteria for the sustainability of forest production. The main component of forest ecosystems, other than trees, is floor vegetation.1 Floor vegetation plays an important role in maintaining the structure and function of forest ecosystems,2 facilitating energy flows and nutrient cycles, and influencing canopy succession as a driver of forest ecosystems.3 Although floor vegetation contributes relatively little to total forest vegetation biomass, floor vegetation contributes the largest proportion of floristic diversity.4 In addition, the variety of floor vegetation can increase the complexity of the forest structure and provide habitat and food for other biotic groups; and increase the diversity of the floor vegetation itself. Understanding floor vegetation is also very important for forest regeneration, because floor vegetation can affect germination, survival and growth of tree seedlings by competing for light, water and nutrition or by allelopathic effects.5

Floor vegetation is used as an indicator of soil fertility and litter production in improving soil fertility. In addition to ecological functions, several types of understorey have been identified as plants that can be used as food, medicinal plants, and as alternative energy sources. But not infrequently also the understorey can act as a weed that inhibits tree regeneration, especially in cultivated monocultures.6

Based on its biophysical conditions, 72.27% of the area of ​​South Central Timor Regency is in topographic conditions that are prone to damage, thus requiring special attention in its utilization, among others through the application of soil and water conservation principles. Attention is needed because the potential for surface erosion and landslides is high due to the opening of dry agricultural land or gardens, the use of fire in farming traditions, livestock cultivation; and the application of soil and water conservation principles are still very limited.7 The principle of soil and water conservation is not spared from the role of floor vegetation as grounding the blow of rainwater and surface flow so as to minimize the danger of erosion. More research has been carried out in the western part of West Timor, while biodiversity in the northern and southern parts of the island of Timor (Belu Regency, parts of South Central Timor and North Central Timor has not been explored much8 This study aims to examine the diversity of floor vegetation in the Karst Ecosystem at various altitudes in South Central Timor.

Method

A total of 15 plots were placed along the elevation gradient starting from a height of 300m above sea level to 1800m above sea level, divided into 3 zones namely the Middleland zone (307-382m asl), upland (784-1031m asl) and highland (1665-1782m asl). In the middleland zone, 4 plots were placed; in the upland zone as many as 7 plots and 4 in the highland zones. South Central Timor regency, which has a height of more than 500m above sea level is approximately 51%, while the rest is at an altitude of less than 500m above sea level to the coastline area of 49% (BPS TTS, 2016) (Figure 1).

 

Figure 1 Research Location.

Floor vegetation is vegetation with a height of less than 1m.9 Floor vegetation is classified into several life forms such as shrubs and tree seedlings, herbs, nails, and non-vascular plants.10

Floor vegetation parameters measured include:

  1. Plant species
  2. Number of individuals of each type
  3. Density
  4. Frequency of each species

To sample vegetation data, a 1m x 1m sub plot was placed in a plot measuring 20mx20m.11 Floor vegetation is classified into several life forms such as shrubs and tree seedlings, herbs, nails, and other non-vascular plants.10

Data analysis

Vegetation - After the measurement data from the field is obtained, the data is tabulated and entered into MS Excel as a tool to calculate. The calculation for obtaining Important Value (IV) (Barbour et al, 1987) is as follows:

Density of species A = individual count of species A Area wide MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacaqGPbGaaeOBaiaabsgacaqGPbGaaeODaiaabMgacaqG KbGaaeyDaiaabggacaqGSbGaaeiOaiaabogacaqGVbGaaeyDaiaab6 gacaqG0bGaaeiOaiaab+gacaqGMbGaaeiOaiaabohacaqGWbGaaeyz aiaabogacaqGPbGaaeyzaiaabohacaqGGcGaaeyqaaWdaeaapeGaae yqaiaabkhacaqGLbGaaeyyaiaabckacaqG3bGaaeyAaiaabsgacaqG Lbaaaaaa@5B95@

Relative density of species A = a total count of species A density of whole species MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacaqGHbGaaeiOaiaabshacaqGVbGaaeiDaiaabggacaqG SbGaaeiOaiaabogacaqGVbGaaeyDaiaab6gacaqG0bGaaeiOaiaab+ gacaqGMbGaaeiOaiaabohacaqGWbGaaeyzaiaabogacaqGPbGaaeyz aiaabohacaqGGcGaaeyqaaWdaeaapeGaaeizaiaabwgacaqGUbGaae 4CaiaabMgacaqG0bGaaeyEaiaabckacaqGVbGaaeOzaiaabckacaqG 3bGaaeiAaiaab+gacaqGSbGaaeyzaiaabckacaqGZbGaaeiCaiaabw gacaqGJbGaaeyAaiaabwgacaqGZbaaaaaa@67B3@ x 100 %

Frequency of species A = number of plots found species A number of whole plot MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacaqGUbGaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqG GcGaae4BaiaabAgacaqGGcGaaeiCaiaabYgacaqGVbGaaeiDaiaabo hacaqGGcGaaeOzaiaab+gacaqG1bGaaeOBaiaabsgacaqGGcGaae4C aiaabchacaqGLbGaae4yaiaabMgacaqGLbGaae4CaiaabckacaqGbb aapaqaa8qacaqGUbGaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqG GcGaae4BaiaabAgacaqGGcGaae4DaiaabIgacaqGVbGaaeiBaiaabw gacaqGGcGaaeiCaiaabYgacaqGVbGaaeiDaaaaaaa@68BB@

Frequency relative of species A = frequency of species A frequency of whole species MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacaqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqG UbGaae4yaiaabMhacaqGGcGaae4BaiaabAgacaqGGcGaae4Caiaabc hacaqGLbGaae4yaiaabMgacaqGLbGaae4CaiaabckacaqGbbaapaqa a8qacaqGMbGaaeOCaiaabwgacaqGXbGaaeyDaiaabwgacaqGUbGaae 4yaiaabMhacaqGGcGaae4BaiaabAgacaqGGcGaae4DaiaabIgacaqG VbGaaeiBaiaabwgacaqGGcGaae4CaiaabchacaqGLbGaae4yaiaabM gacaqGLbGaae4Caaaaaaa@6563@ x 100 %

Wide of basal area of species A = π (stem radius of species A)2

Wide of relative basal area of species A = wide of basal area of species A wide of basal area of whole species MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacaqG3bGaaeyAaiaabsgacaqGLbGaaeiOaiaab+gacaqG MbGaaeiOaiaabkgacaqGHbGaae4CaiaabggacaqGSbGaaeiOaiaabg gacaqGYbGaaeyzaiaabggacaqGGcGaae4BaiaabAgacaqGGcGaae4C aiaabchacaqGLbGaae4yaiaabMgacaqGLbGaae4CaiaabckacaqGbb aapaqaa8qacaqG3bGaaeyAaiaabsgacaqGLbGaaeiOaiaab+gacaqG MbGaaeiOaiaabkgacaqGHbGaae4CaiaabggacaqGSbGaaeiOaiaabg gacaqGYbGaaeyzaiaabggacaqGGcGaae4BaiaabAgacaqGGcGaae4D aiaabIgacaqGVbGaaeiBaiaabwgacaqGGcGaae4CaiaabchacaqGLb Gaae4yaiaabMgacaqGLbGaae4Caaaaaaa@76E9@ x 100%

Canopy wide of spesies A = π (lengths x width) canopy          

Relative canopy wide of spesies A   = canopy wide of species A canopy wide of whole species MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacaqGJbGaaeyyaiaab6gacaqGVbGaaeiCaiaabMhacaqG GcGaae4DaiaabMgacaqGKbGaaeyzaiaabckacaqGVbGaaeOzaiaabc kacaqGZbGaaeiCaiaabwgacaqGJbGaaeyAaiaabwgacaqGZbGaaeiO aiaabgeaa8aabaWdbiaabogacaqGHbGaaeOBaiaab+gacaqGWbGaae yEaiaabckacaqG3bGaaeyAaiaabsgacaqGLbGaaeiOaiaab+gacaqG MbGaaeiOaiaabEhacaqGObGaae4BaiaabYgacaqGLbGaaeiOaiaabo hacaqGWbGaaeyzaiaabogacaqGPbGaaeyzaiaabohaaaaaaa@6971@ x 100 %

IV of species A=Relative density of species A + Relative frequency of species A + Wide of basal area of species + Relative canopy wide of species A

To predict species diversity for each study location, the Shannon diversity index was calculated12 using the formula:

Description: H = ' i=1 s pilnpi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaahba WcbeqaaiaacEcaaaGccqGH9aqpcqGHsisldaaeWbqaaiaadchacaWG PbGaciiBaiaac6gacaWGWbGaamyAaaWcbaGaamyAaiabg2da9iaaig daaeaacaWGZbaaniabggHiLdaaaa@4674@

Pi = individual number of each type (i = 1, 2, 3, ....)

S = number of types

H'= index number

In = logarithm naturally

Results and discussion

Floor vegetation species

A total of 27 species, 61 species and 30 species were found in the middle, upland and highland zones respectively. The types that have the most individuals in the middle zone are Eleusine indica (L.) Gaertn with a density of 2267 individuals/0.16ha and Important Value (IV) of 60.93%. Cyperus rotundus L is has the most individuals in the upland zone with a density of 2889 individuals /0.28ha and IV of 40.02%, while in the highland zone Cyperus rotundus L. is also occupied with a density of 2253 individuals / 0.16 ha and IV of 29.69%. An et al.13 revealed that E. indica is a herb that has a high level of fecundity and a wide tolerance to habitats that have various environmental factors. Types that have high IV indicate that the species is more adaptive and more able to adjust to environmental conditions than other types. The type that has the highest IV means that the species is able to utilize available resources better than other types. This is explained by Soerianegara & Indrawan14 that plants have a very real correlation with their growth. Vegetation with high IV has an important role and can adapt to the environment, using energy sources in the community.15 The most important value owned by different species in the three sandalwood forests, indicates that these species have a great opportunity to spur growth and maintain the sustainability of the species (It meant floor vegetation).16 Based on the results of the analysis it was found that as many as 27 species belonging to 17 families were found in the middle land zone, with the family having the most number of individuals being poaceae (Table 1). The Poaceae has a light breeding tool, is easily dispersed and also has simple life requirements in various habitats. Poaceae has microscopic sized seeds that are easily carried by the wind; it has a high adaptability; distribution is very broad, and Poaceae family members are able to grow both on dry and inundated land. The properties possessed by the Poaceae family cause the members of the Poaceae family to be distributed widely in various habitats.17

No

Local name

Species name

Family

Density (Ind./Ha)

IV (%)

1

Huk you

Eleusine indica (L.) Gaertn

Poaceae

2267

60.9

2

Species A

Portulaca oleracea L.

Portulacaceae

513

16.7

3

Huk Pisu

Axonopus compressus (Sw.) P. Beauv.

Poaceae

355

10

4

Teak

Tectona grandis L.f.

Lamiaceae 

169

9.8

5

Purple flower

Stachytarpheta acuminata DC. ex Schauer

Verbenaceae

159

8.1

6

Tapak Liman

Elephantopus scaber L.

Compositae

131

8.9

7

Suf Muti

Chromolaena odorata (L.) R.M. King & H.Rob.

Compositae

95

8

8

Leaf paste clothes

Toxicodendron radicans (L.) Kuntze

Anacardiaceae

76

6.1

9

Caliandra

Calliandra biflora Tharp

Leguminosae

57

5.6

10

Acacia

Acacia mangium Wild.

Leguminosae

52

8.4

11

Kabesak

Acacia leucophloea (Roxb.) Willd

Leguminosae

49

6.9

12

Eucalyptus

Melaleuca leucadendra (L.) L.

Myrtaceae

31

6.4

13

Temulawak

Curcuma aeruginosa Roxb.

Zingiberaceae

25

2

14

Timu

Timonius sereceus (Desf) K. Schum

Rubiaceae

24

3.4

15

Kusambi

Schleichera oleosa (Lour.) Merr.

Sapindaceae

19

6.1

16

Mahogany

Swietenia macrophylla King

Meliaceae 

13

3.1

18

Kebo excerpts

Euphorbia hirta L.

Euphorbiaceae

12

4.5

17

Masi

Bauhinia purpurea L

Leguminosae

12

4.5

20

Guava

Psidium guajava L

Myrtaceae 

10

3.1

19

Sandalwood

Santalum album L.

Santalaceae 

10

3.1

21

Biduri

Calotropis gigantea (L.) W.T. Aiton

Apocynaceae

6

1.5

22

White flower

Hippobroma longiflora (L.) G.Don

Campanulaceae

6

1.5

23

Petes

Leucaena leucocephala (Lam.) de Wit

Leguminosae

5

2.9

24

White teak

Gmelina arborea Roxb.

Lamiaceae 

4

4.3

25

Mint leaves

Plectranthus amboinicus (Lour.) Spreng

Lamiaceae 

3

1.5

26

Mimosa

Mimosa pudica L.

Fabaceae

2

1.4

27

Papih

Syzygium aromaticum (L.) Merr. L. M. Perry

Myrtaceae

1

1.4

Table 1 Floor Vegetation in the Middle land Zone

Based on the results of the analysis, it is known that the species that dominate the research locations are also different (Table 2). This difference is due to each species dominating different regions. In addition, environmental conditions lead to competition between one species and another. Competition will increase the fighting power to sustain life, so that strong species will win and suppress other species. The losing species become less adaptive and cause low reproductive rates and are found in small numbers.18 Each type of plant has a minimum, maximum and optimum condition for the existing environmental factors. The species that dominates has e a wider range of tolerance. So that a wide range of tolerance for environmental factors enables this species to have a wide distribution.19,20

Species

Zone

Middleland

Upland

Highland

Eleusine indica (L.) Gaertn

Cyperus rotundus L

Cyperus rotundus L.

Portulaca oleracea L.

Plectranthus amboinicus (Lour.) Spreng

Centella asiatica (L.) Urb.

Axonopus compressus (Sw.) P.Beauv.

Axonopus compressus (Sw.) P.Beauv.

Elephantopus scaber L.

Table 2 Dominant Species in Research Sites

A total of 61 species belonging to 33 families were found in the upland zone, where families with the highest number of individuals were cyperaceae (Table 3). The cyperaceae family has an extraordinary diversity, with species found in almost all habitats except deserts and aquatic ecosystems. The majority of cyperaceae are plants that live in moist to wet habitats, such as ponds, grasslands, swamps and savannas. This species likes moist areas such as trenches and canal. Many cyperaceae species are also found in various types of forests, both temperate and tropical.21

No

Local name

Species name

Family

Density (Ind./0.28 ha)

IV (%)

1

Cyperus

Cyperus rotundus L

Cyperaceae 

2889

40

2

Mint leaves

Plectranthus amboinicus (Lour.) Spreng

Lamiaceae 

685

8.9

3

Huk Pisu

Axonopus compressus (Sw.) P.Beauv.

Poaceae

613

8.9

4

Purple flower

Stachytarpheta acuminata DC. ex Schauer

Verbenaceae

559

12.4

5

Crocodile nest grass

Lophatherum gracile Brongn.

Poaceae

475

7.2

6

Reeds

Imperata cylindrica (L.) Raeusch

Poaceae

432

5.9

7

Leaves

Plantago major L.

Plantaginaceae

397

6.3

8

Papo'e

Arachis pintoi Krapov. & W.C Greg

Leguminosae

337

8.1

9

Elephant grass

Poa trivialis L.

Poaceae

303

4.4

10

Species A

Portulaca oleracea L.

Portulacaceae

226

4.3

11

Leaf shape of the heart

Mikania micrantha Kunth

Compositae

158

3.5

12

Sapotilii

Ficus natalensis Hochst.

Moraceae 

157

3.5

13

Kebo excerpts

Euphorbia hirta L.

Euphorbiaceae

154

4.3

14

Suf Muti

Chromolaena odorata (L.) R.M.King & H.Rob.

Compositae

153

6

15

Fua Koti

Phyllanthus urinaria L.

Phyllanthaceae

136

3.2

16

Kiun'ut

Cosmos caudatus Kunth.

Compositae

116

3

17

Petes

Leucaena leucocephala (Lam.) de Wit

Leguminosae

92

5.2

18

Liman footprint

Elephantopus scaber L.

Compositae

88

1.8

19

Maleku

Oxalis corniculata L.

Oxalidaceae

72

1.6

20

White flower

Hippobroma longiflora (L.) G.Don

Campanulaceae

62

3.2

21

Guava

Psidium guajava L

Myrtaceae 

48

4.7

22

Sandalwood

Santalum album L

Santalaceae 

31

1.2

23

Species C

Emilia sonchifolia (L.) DC. ex DC.

Compositae

26

1.9

24

King rass

Pennisetum purpureum Schumach.

Poaceae

26

1.1

25

Bakoma'a

Hyptis capitata Jacq.

Lamiaceae

23

1.9

26

Mahogany

Swietenia macrophylla King

Meliaceae 

20

1.9

27

Pangkase

Lantana camara L.

Verbenaceae 

20

2.7

28

White teak

Gmelina arborea Roxb.

Lamiaceae 

19

2.7

29

Caliandra

Calliandra biflora Tharp

Leguminosae

18

2.7

30

Acacia

Acacia mangium Wild.

Leguminosae

17

4.4

31

Pulai

Alstonia scholaris (L.) R. Br.

Apocynaceae

15

1

32

Bandotan

Ageratum conyzoides (L.) L.

Compositae

14

1.8

33

Kuk Nefo

Tridax procumbens (L.) L.

Compositae

14

1.8

34

Mimosa

Mimosa pudica L.

Fabaceae

11

0.9

35

Euporbia

Euphorbia heterophylla L.

Euphorbiaceae 

6

0.9

36

Venus

Senna siamea (Lam.) H.S.Irwin & Barneby

Leguminosae

6

1.7

37

Put'puta

Polygala paniculata L.

Polygalaceae

5

0.8

38

Paria forest

Tithonia diversifolia (Hemsl.) A.Gray

Compositae

4

0.8

39

Nombesa

 Talinum fruticosum (L.) Juss

Talinaceae

4

0.8

40

White flower trumpet

Hymenocallis acutifolia (Herb. ex Sims) Sweet

Amaryllidaceae

3

1.7

41

Papa'i

Sida cordifolia L.

Malvaceae

3

0.8

42

Gotu kola

Centella asiatica (L.) Urb.

Apiaceae

2

0.8

43

Biduri

Calotropis gigantea (L.) Dryand

Apocynaceae

2

0.8

44

Teak

Tectona grandis L.f.

Lamiaceae 

2

1.7

45

Kusambi

Schleichera oleosa (Lour.) Merr.

Sapindaceae

2

0.8

46

Red ginger

Zingiber officinale Roscoe

Zingiberaceae

2

0.8

47

Baunoet

Spigelia anthelmia L.

 Loganiaceae

1

0.85

48

Nabasbot

 Hibiscus trionum L.

 Malvaceae

1

0.8

49

Bonsai

Streblus asper Lour

 Moraceae

1

0.8

50

Yellow flowers

 Tribulus terrestris L.

 Zygophyllaceae

1

0.8

51

Taro

Colocasia esculenta (L.) Schott

Araceae

1

0.8

52

Sweet potato leaves

Manihot esculenta Crantz

Euphorbiaceae 

1

0.8

53

Kate is gold

Euphorbia heterophylla L.

Euphorbiaceae 

1

0.8

54

Gamal

Gliricidia sepium (Jacq.) Kunth ex Walp.

Leguminosae

1

0.8

55

Masi

Bauhinia purpurea L

Leguminosae

1

0.8

56

Species E

Sida rhombifolia L.

Malvaceae

1

0.8

57

Nails of deer horns

Platycerium bifurcatum (Cav.) C. Chr

Polypodiaceae

1

0.8

58

Pearl grass

Oldenlandia corymbosa L.

Rubiaceae

1

0.8

59

Stir

Brucea javanica (L.) Merr

Simaroubaceae

1

0.8

60

eggplant

Solanum melongena L.

Solanaceae

1

0.8

61

Turmeric

Curcuma longa L.

Zingiberaceae

1

0.8

Table 3 Floor vegetation in Upland Zone

The highland zone is included in the Mount Mutis Nature Reserve. Mount Mutis forest has a distinctive ecology. The Mount Mutis forest has a homogeneous vegetation composition, namely ampupu (Eucalyptus urophylla). This type of ecosystem does not exist in other regions. In addition, the Mount Mutis forest is located in a transition zone between Asia and Australia so that in the forest of Mount Mutis there are flora and fauna from both Asia and Australia.22 A total of 30 species belonging to 19 families were found in the highland zone (Table 4). The family that has the highest number of individuals is cyperaceae. In the highland zone several types of orchids, fungi, moss and lichens are also found. Types of fungi found include Pleurotus ostreatus, Ganoderma applanatum and Pleurotus cystidiosus. Types of moss found include Pellia endiviifolia, Anthoceros punctatus, and Polytrichum abbreviatum. Usnea sp. and Parmalia sp. also found in the highland zone. The orchid species found, live commensally with ampupu plants, as well as species of moss and lichens.

No

Local name

Species name

Family

Density

IV (%)

1

Cyperus

Cyperus rotundus L.

Cyperaceae 

2253

29.6

2

Gotu kola

Centella asiatica (L.) Urb.

Apiaceae

1454

27.8

3

Liman footprint

Elephantopus scaber L.

Compositae

911

18.4

4

Huk Pisu

Axonopus compressus (Sw.) P.Beauv.

Poaceae

649

8.6

5

Crocodile nest grass

Lophatherum gracile Brongn.

Poaceae

395

7.4

6

Elephant grass

Poa trivialis L.

Poaceae

276

5.7

7

Kangkung Hutan

Ipomoea pes-caprae (L.) R. Br.

Convolvulaceae

218

3.8

8

Leaf god

Gynura divaricata (L.) DC

Compositae

215

1.9

9

Kebo excerpts

Euphorbia hirta L.

Euphorbiaceae

183

8.3

10

Bunga mayana

Coleus aromaticus Benth.

Lamiaceae

106

2.5

11

Reeds

Imperata cylindrica (L.) Raeusch

Poaceae

79

4.4

12

Leaves

Plantago major L.

Plantaginaceae

75

4.9

13

Papoe

Arachis pintoi Krapov. & W.C Greg

Leguminosae

64

2.8

14

Bandotan

Ageratum conyzoides (L.) L.

Compositae

54

1.9

15

White flower

Hippobroma longiflora (L.) G.Don

Campanulaceae

46

4

16

Ampupu

Eucalyptus urophylla S.T.Blake

Myrtaceae

43

4.5

17

Cocor bebek

Bryophyllum pinnatum (Lam.) Oken

Crassulaceae

39

18

18

Taro

Colocasia esculenta (L.) Schott

Araceae

32

2.3

19

Kiun'ut

Cosmos caudatus Kunth.

Compositae

30

2.3

20

Forest nuts

Senna occidentalis (L.) Link

Leguminosae

27

6.8

21

The jungle forest

Spondias pinnata (L.F.) Kurz

Anacardiaceae

16

2.1

22

Purple flower

Stachytarpheta acuminata DC. ex Schauer

Verbenaceae

16

1.9

23

White umbrella mushroom

Pleurotus ostreatus (Jacq.) P. Kumm.

Pleurotaceae

6

6.1

24

Betel stem forest

Peperomia luisana Trel. & Standl.

Piperaceae

4

3.3

25

Wood mushrooms

Ganoderma applanatum (Pers.) Pat.

Ganodermataceae

2

1.9

26

Cat leaves

Plectranthus amboinicus (Lour.) Spreng

Lamiaceae

2

1.9

27

Eucalyptus

Melaleuca leucadendra (L.) L.

Myrtaceae

2

2.3

28

Chocolate umbrella mushrooms

Pleurotus cystidiosus O.K.Mill.

Pleurotaceae

2

3.9

29

Forest cherry

Syzygium cumini (L.) Skeels

 Myrtaceae

1

2.4

30

Pomegranate

Punica granatum L.

Lythraceae

1

6.2

Table 4 Floor vegetation in the Highland Zone

Solikin23 revealed that the Mount Mutis Nature Reserve is dominated by ampupu plants, especially in savanna areas. Species of orchids found in Mount Mutis Nature Reserve include Bulbophyllum ovalifolium, Bulbophyllum odoratum, Ceratostylis radiate, Dendrobium kuhlii, Eria retusa, Eria rhynchostyloides and Pholidota rubra. In the highland zone grazing wild animals such as cattle and horses were also found. Livestock grazing in the Gunung Mutis forest has been long-standing and is the culture of the local community. This makes the grazing of livestock in the Mount Mutis forest difficult to prevent by the government. Pasture has an impact on tree regeneration so that the forest area used for grazing cannot change into forest again. This happened to the pasture fields in the Mutis forest area. Conversely, forests that have dense vegetation cannot produce animal feed so they cannot be used for livestock grazing. Local people prefer the condition of forests which have low canopy density because they can be used for grazing and feeding their livestock.22

The grazing of wild animals can also change the structure and composition of the forest constituents. Grass eating animals are the main key in the dynamics of vegetation in the ecosystem in general. However, with its position as a key driver, this affects the structure and composition of vegetation because the explosion of grazing animals can affect the process of vegetation regeneration, as well as change the structure and composition of vegetation.24‒26 Increasing herbivory density results in decreased growth and the amount of seedling and sapling changing the woody-plant composition and native flora in an ecosystem,24,25,27 as well as potentially increasing the growth of other vegetation which is not used as food.26 The effects of high herbivory densities over a long period of time need special attention, especially in terms of conservation.26 The grazing of livestock in the wild can affect seed density, species richness and composition of bank seeds, and affect the amount of seeds produced through the reproduction process.28 Pol et al.29 revealed that grazing intensity can reduce productivity of productive plant parts so that the photesynthesis process decreases and the flowering process becomes inhibited, and thus causing a decrease in the amount of seed produced so that the availability of the seed bank in the soil is reduced.

Diversity index

A community is said to have high species diversity when it exists of many species. Conversely, a community is said to have low species diversity when it exists by a small number of species and if there are only a few dominant species.30 Based on the results of the analysis, it was found that the diversity index in all study locations was classified as medium (Table 5).

Zone         

Diversity index

Middleland

1.19

Upland

1.51

Highland

1.29

Table 5 Diversity Index Value

The diversity index classified as high when the value is more than 3, and classified as low wehen the values is less than 1. The diversity of species classified as moderate is caused by environmental conditions that are less supportive for the growth and breeding of a plant species. The research area belongs to the karst region which has a nutrient-poor soil layer so that the species that grow in this karst area are only plant species that are able to adapt31 and have a high tolerance for drought.32‒34

Conclusion

Based on the results of the analysis it can be concluded that the floor vegetation in the study location has a moderate level of diversity, with the highest number of species found in the upland zone. Dominant species are also different due to differences in location. The grazing of wild animals in the highland zone can reduce the diversity of floor vegetation so that the interference of the government is needed by offering alternatives to the community.35

Acknowledgements

A thank you research team conveyed to the Directorate of Research and Community Service - Directorate General of Research and Development Strengthening - Ministry of Research. Technology, and Republic of Indonesia Higher Education that has funded this research. Also presented to the Research and Community Service Institute, Widya Mandira Catholic University which has helped the research team to provide research letters and facilitate the distribution of research funds.

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Burinaek V, Novotny R, Hellebrandova K, et al. Ground Vegetation as an Important in the Biodiversity of Forest Ecosystem and Its Evaluation in regard to Nitrogen Deposition. Journal of Forest Science. 2013;59(6):238‒252.
  2. Augusto l, Dupouey J, Ranger J. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Forest Science. 2003;60(8):823–831.
  3. Hart SA, Chen HYH. Fire,logging,and overstory affect understory abundance, diversity, and composition in boreal forest. Ecological Monographs. 2008;78(1):123–140.
  4. Gilliam FS. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience. 2007;57(10):845‒858.
  5. Huo H, Feng Q, Su YH. The Influences of Canopy Species and Topographic Variables on Understory Species Diversity and Composition in Coniferous Forests. The Sciencetific Journal. 2014;2014:1‒8.
  6. Hilwan I, Idealisa M. Keanekaragaman Jenis Tumbuhan Bawah di Gunung Papandayan Bagian Timur, Garut, Jawa Barat. Jurnal Silvikultur Tropika. 2015;6(2):119‒125.
  7. Djurumana GND. Ekologi dan Pemanfaatan Nitas (Sterculia foetida L.) di Kabupaten Timor Tengah Selatan, Nusa Tenggara Timur (Ecology and Utilization of Nitas (Sterculia foetida L.) on Timor Tengah Selatan Regency, East Nusa Tenggara). Jurnal Penelitian Hutan dan Konservasi.2011;8(1):35‒44.
  8. Lesmana D, Trainor C, Gatur A. Arti Penting Hutan di Daratan Timor Bagian Barat. BirdLife International-Indonesia Programme. Bogor, Indonesia; 2000.
  9. Relva MA, Westerholm CL, Kitszberger T. Effects of Introduced            Ungulates on Forest Understory Communities in Northern Patagonia are Modified by Timing and Severity of Stand Mortality. Journal Plant Ecology 2009;201(1):11‒22.
  10. Chen HYH, Légaré S, Bergeron Yves. Variation of the understory composition and diversity along a gradient of productivity in Populus tremuloides stands of northern British Columbia, Canada. Canadian Journal of Botany. 2004;82(9):1314‒1323.
  11. Djohan TS. Petunjuk Praktikum Ekologi Lanjut Biologi. Universitas Gadjah Mada, Fakultas Biologi, Laboratorium Ekologi dan Konservasi. Yogyakarta; 2014.
  12. Odum EP. Dasar-Dasar Ekologi. Edisi Ketiga. Diterjemahkan oleh T. Samingan, Yogyakarta: Universitas Gadjah Mada; 1993.
  13. An JX, Shen X, Ma Q, et al. Transcriptome Profiling to Discover Putative Genes Associated with Paraquat Resistance in Goosegrass (Eleusineindica L.). PLOS One. 2014;9:1‒14.
  14. Soerianegara I dan A. Indrawan. Ekologi Hutan Indonesia. Bogor: Laboratorium Ekologi Hutan. Fakultas Kehutanan. Institut Pertanian Bogor; 1998.
  15. Fatimatuzzahra R, Sancayaningsih P, Saputra dan A. Analisis Vegetasi Lantai Sebagai Penahan Limpasan Air di Sekitar Mata Air. Seminar Nasional XI Pendidikan Biologi FKIP UNS. Universitas Negeri Surakarta; 2014:AA617‒621.
  16. Mawazin, Subiakto A. Keanekaragaman dan Komposisi Jenis Permudaan Alam Hutan Rawa Gambut Bekas Tebangan di Riau (Species Diversity and Compositionof Logged Over Peat Swamp Forest in Riau). Forest             Rehabilitation. 2013;1:59‒73.
  17. Rukmana R, dan Saputra US. Gulma dan Teknik Pengendalian. Jakarta: Kanisius; 1999.
  18. Syamsuri IWR. Lingkungan Hidup Kita. Malang: PKPKLH IKIP Malang; 1997.
  19. Barbour MG, Burk JH, Pitts WD. Terresterial Plant Ecology. 2nd ed. The Banjamin/Cummings Publishing Company, Inc; 1987.
  20. Syafei ES. Pengantar Ekologi Tumbuhan. Bandung: Institut Teknologi Bandung; 1990.
  21. Barret RL. Ecological Importance of Sedges: a survey of the Australasian Cyperaceae genus Lepidosperma. Annals of Botany 2013;111(4):499‒529.
  22. Kurniadi R, Purnomo H, Wijayanto N, et al. Model Pengelolaan Ternak di Sekitar Hutan Gunung Mutis dan Dampaknya terhadap Kelestarian Hutan. Jurnal Ilmu Kehutanan. 2017;11(2):156‒172.
  23. Solikin. The Exploration of Plant Spesies in Nature Reserve of Mount East Nusa Tenggara Province. Journal of Biological Researches. 2015;21:51‒55.
  24. Koda R, Fujita N. Is Deer Herbivory Directly Proportional to Deer Population Density? Comparison of Deer Feeding Frequencies among Six Forests with Different Deer Density. Forest Ecology and Management. 2011;262(3):432–439.
  25. Randall JA, Walters MB. Deer Density Effects on Vegetation in Aspen Forest Understories Over Site Productivity and Stand Age Gradients. Forest Ecology and Management 2011;261:408‒415.
  26. White MA. Long Term-Effects of Deer Browsing: Composition, Structure and Productivity in a Northeastern Minnesota Old-Growth Forest. Forest Ecology and Management. 2012;269:222‒228.
  27. Koh S, Bazely DR, Tanentzap AJ, et al. Trillium Grandiflorum Height is an Indicator of White-Tailed Deer Density at Local and Regional Scales. Forest Ecology and Management. 2010;259(8):1472–1479.
  28. Loydi A, Zalba SM, Diestel RA. Viable Seed Banks Under Grazing and Exclosure Conditions in Montane Mesic Grasslands of Argentina. Acta Oecologica.2012;43:8‒15.
  29. Pol RG, Sagario MC, Marone L. Grazing Impact on Desert Plants and Soil Seed Banks: Implications for Seed-Eating Animals. Acta Oecologica. 2014;55:58‒65.
  30. Indriyanto. Ekologi Hutan. PT Bumi Aksara. Jakarta; 2006.
  31. Marwiyati. Ekologi Vegetasi dan Etnobotani Kawasan Karst Gunung Cibodas, Ciampea, Bogor. Departemen Biologi, Fakultas Matematika danIlmu Pengetahuan Alam. Institut Pertanian Bogor; 2012.
  32. Heilman JL, Mclnnes KJ, Kjelgaard JF, et al. Energy Balance and Water Use in Subtropical Karst Woodland on the Edwards Plateau, Texas. Journal of Hidrology.2009;373(3‒4):426‒435.
  33. Lu X, Toda H, Ding F, et al. Effect of Vegetation Types on Chemical and Biological Properties of Soils of Karst Ecosystems. European Journal of Soil Biology. 2014;61:49‒57.
  34. Liu CC, Liu YG, Fan DY, et al. Plant Drought Tolerance Assessment for Re-vegetation in Heterogeneous Karst Landscape of Southwestern China. Flora. 2012;207(1):30‒38.
  35. Badan Pusat Statistik. Timor Tengah Selatan dalam Angka. Soe: BPS Kabupaten Timor Tengah Selatan; 2016.
Creative Commons Attribution License

©2018 Serafina, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.