Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 3 Issue 2

On modeling of lifetime data using one parameter akash, lindley and exponential distributions

Rama Shanker,1 Hagos Fesshaye,2 Sujatha Selvaraj3

1Department of Statistics, Eritrea Institute of Technology, Eritrea
2Department of Economics, College of Business and Economics, Eritrea
3Department of Banking and Finance, Jimma University, Ethiopia

Correspondence: Rama Shanker, Department of Statistics, Eritrea Institute of Technology, Asmara, Eritrea

Received: December 02, 2015 | Published: January 28, 2016

Citation: Shanker R, Fesshaye H, Selvaraj S. On modeling of lifetime data using one parameter akash, lindley and exponential distributions. Biom Biostat Int J. 2016;3(2):56-62. DOI: 10.15406/bbij.2016.03.00061

Download PDF

Abstract

The analysis and modeling of lifetime data are crucial in almost all applied sciences including medicine, insurance, engineering, and finance, amongst others. In the present paper an attempt has been made to discuss applications of Akash distribution introduced by Shanker,1 Lindley distribution and exponential distributions for modeling lifetime data from various fields. Firstly a table for values of the various characteristics of Akash distribution and Lindley distribution has been presented for various values of their parameter which reflects their nature and behavior. The expressions for the index of dispersion of Akash, Lindley and exponential distributions have been obtained and the conditions under which Akash, Lindley and exponential distributions are over-dispersed, equi-dispersed, and under-dispersed has been given. Several lifetime data from medical science and engineering have been fitted using Akash distribution along with Lindley and exponential distributions to study the advantages and disadvantages of these distributions for modeling lifetime data.

Keywords: akash distribution, lindley distribution, exponential distribution, index of dispersion, estimation of parameter, goodness of fit

Introduction

The time to the occurrence of event of interest is known as lifetime or survival time or failure time in reliability analysis. The event may be failure of a piece of equipment, death of a person, development (or remission) of symptoms of disease, health code violation (or compliance). The modeling and statistical analysis of lifetime data are crucial for statisticians and research workers in almost all applied sciences including engineering, medical science/biological science, insurance and finance, amongst others.

Recently Shanker1 has introduced a one parameter continuous distribution named, “Akash distribution” for modeling lifetime data from engineering and medical science and studied its various mathematical properties, estimation of its parameter, and its applications. A number of continuous distributions for modeling lifetime data have been introduced in statistical literature including exponential, Lindley, gamma, lognormal and Weibull, amongst others. The exponential, Lindley and the Weibull distributions are more popular in practice than the gamma and the lognormal distributions because the survival functions of the gamma and the lognormal distributions cannot be expressed in closed forms and both require numerical integration. Though Akash, Lindley and exponential distributions are of one parameter, Akash and Lindley distributions have advantage over the exponential distribution that the exponential distribution has constant hazard rate and mean residual life function whereas the Akash and Lindley distributions have increasing hazard rate and decreasing mean residual life function. Further, Akash distribution of Shanker1 has flexibility over both Lindley and exponential distributions.

Exponential, Lindley and Akash distributions

  1. Exponential distribution
  2. In statistical literature, exponential distribution was the first widely used lifetime distribution model in areas ranging from studies on the lifetimes of manufactured items Davis,2 Epstein & Sobel,3 Epstein4 to research involving survival or remission times in chronic diseases Feigl & Zelen.5 The main reason for its wide usefulness and applicability as lifetime model is partly because of the availability of simple statistical methods for it Epstein & Sobel3 and partly because it appeared suitable for representing the lifetimes of many things such as various types of manufactured items Davis.2

  3. Lindley distribution
  4. The Lindley distribution is a two-component mixture of an exponential distribution having scale parameter θθ  and a gamma distribution having shape parameter 2 and scale parameter θθ  with mixing proportions θθ+1θθ+1 and 1θ+11θ+1  and is given by Lindley6 in the context of Bayesian Statistics as a counter example of fiducial Statistics. A detailed study about its various mathematical properties, estimation of parameter and application showing the superiority of Lindley distribution over exponential distribution for the waiting times before service of the bank customers has been done by Ghitany et al.7 The Lindley distribution has been generalized, extended, modified and its detailed applications in reliability and other fields of knowledge by different researchers including Hussain,8 Zakerzadeh & Dolati,9 Nadarajah et al.,10 Deniz & Ojeda,11 Bakouch et al.,12 Shanker & Mishra,13,14 Shanker et al.,15 Elbatal et al.,16 Ghitany et al.,17 Merovci,18 Liyanage & Pararai,19 Ashour & Eltehiwy,20 Oluyede & Yang,21 Singh et al.22 Sharma et al.23 Shanker et al.,24 Alkarni,25 Pararai et al.,26 Abouammoh et al.27 are some among others.

    Although the Lindley distribution has been used to model lifetime data by many researchers and Hussain8 has shown that the Lindley distribution is important for studying stress-strength reliability modeling, it has been observed that there are many situations in the modeling of lifetime data where the Lindley distribution may not be suitable from a theoretical or applied point of view. In fact, Shanker et al.24 has detailed comparative study about the applicability of Lindley and exponential distributions for modeling various types of lifetime data and observed that none is a suitable model in all cases.

  5. Akash distribution

Shanker1 introduced a new distribution named, ‘Akash distribution’ which is flexible than the Lindley distribution for modeling lifetime data in reliability and in terms of its hazard rate shapes. Akash distribution is a two- component mixture of an exponential distribution having scale parameter θθ  and a gamma distribution having shape parameter 3 and scale parameter θθ  with mixing proportions θ2θ2+2θ2θ2+2 and 1θ2+21θ2+2 and has been shown by Shanker1 that Akash distribution gives better fit than Lindley and exponential distributions in modeling lifetime data.

Let TT be a continuous random variable representing the lifetimes of individuals in some population. The expressions for probability density function, f(t)f(t)  , cumulative distribution function, F(t)F(t)  , survival function, S(t)S(t) , hazard rate function, h(t)h(t) , mean residual life function, m(t)m(t) , mean μ1μ1 , variance μ2μ2 , third moment about mean μ3μ3  , fourth moment about mean μ4μ4 , coefficient of variation (C.V.), coefficient of Skewness (β1)(β1) , coefficient of Kurtosis (β2)(β2) , and index of dispersion (γ)(γ)  of exponential, Lindley and Akash distributions are summarized in the following .

Exponential distribution

Lindley distribution

Akash distribution

f(t)=θeθtf(t)=θeθt

f(t)=θ2θ+1(1+t)eθtf(t)=θ2θ+1(1+t)eθt

f(t)=θ3θ2+2(1+t2)eθtf(t)=θ3θ2+2(1+t2)eθt

F(t)=1eθtF(t)=1eθt

F(t)=1θ+1+θtθ+1eθtF(t)=1θ+1+θtθ+1eθt

F(t)=1[1+θt(θt+2)θ2+2]eθtF(t)=1[1+θt(θt+2)θ2+2]eθt

S(t)=eθtS(t)=eθt

S(t)=θ+1+θtθ+1eθtS(t)=θ+1+θtθ+1eθt

S(t)=[1+θt(θt+2)θ2+2]eθtS(t)=[1+θt(θt+2)θ2+2]eθt

h(t)=θh(t)=θ

h(t)=θ2(1+t)θ+1+θth(t)=θ2(1+t)θ+1+θt

h(t)=θ3(1+t2)θt(θt+2)+(θ2+2)h(t)=θ3(1+t2)θt(θt+2)+(θ2+2)

m(t)=1θm(t)=1θ

m(t)=θ+2+θtθ(θ+1+θt)m(t)=θ+2+θtθ(θ+1+θt)

m(t)=θ2t2+4θt+(θ2+6)θ[θt(θt+2)+(θ2+2)]m(t)=θ2t2+4θt+(θ2+6)θ[θt(θt+2)+(θ2+2)]

μ1=1θμ1=1θ

μ1=θ+2θ(θ+1)μ1=θ+2θ(θ+1)

μ1=θ2+6θ(θ2+2)μ1=θ2+6θ(θ2+2)

μ2=1θ2μ2=1θ2

μ2=θ2+4θ+2θ2(θ+1)2μ2=θ2+4θ+2θ2(θ+1)2

μ2=θ4+16θ2+12θ2(θ2+2)2μ2=θ4+16θ2+12θ2(θ2+2)2

μ3=2θ3μ3=2θ3

μ3=2(θ3+6θ2+6θ+2)θ3(θ+1)3μ3=2(θ3+6θ2+6θ+2)θ3(θ+1)3

μ3=2(θ6+30θ4+36θ2+24)θ3(θ2+2)3μ3=2(θ6+30θ4+36θ2+24)θ3(θ2+2)3

μ4=9θ4μ4=9θ4

μ4=3(3θ4+24θ3+44θ2+32θ+8)θ4(θ+1)4μ4=3(3θ4+24θ3+44θ2+32θ+8)θ4(θ+1)4

μ4=3(3θ8+128θ6+408θ4+576θ2+240)θ4(θ2+2)4μ4=3(3θ8+128θ6+408θ4+576θ2+240)θ4(θ2+2)4

C.V=σμ1=1C.V=σμ1=1

C.V=σμ1=θ2+4θ+2θ+2C.V=σμ1=θ2+4θ+2θ+2

C.V=σμ1=θ4+16θ2+12θ2+6C.V=σμ1=θ4+16θ2+12θ2+6

 

β1=2β1=2

β1=2(θ3+6θ2+6θ+2)(θ2+4θ+2)3/2β1=2(θ3+6θ2+6θ+2)(θ2+4θ+2)3/2

β1=2(θ6+30θ4+36θ2+24)(θ4+16θ2+12)3/2β1=2(θ6+30θ4+36θ2+24)(θ4+16θ2+12)3/2

 

β2=9β2=9

β2=3(3θ4+24θ3+44θ2+32θ+8)(θ2+4θ+2)2β2=3(3θ4+24θ3+44θ2+32θ+8)(θ2+4θ+2)2

β2=3(3θ8+128θ6+408θ4+576θ2+240)(θ4+16θ2+12)2β2=3(3θ8+128θ6+408θ4+576θ2+240)(θ4+16θ2+12)2

γ=σ2μ1=1θγ=σ2μ1=1θ

γ=σ2μ1=θ2+4θ+2θ(θ+1)(θ+2)γ=σ2μ1=θ2+4θ+2θ(θ+1)(θ+2)

γ=σ2μ1=θ4+16θ2+12θ(θ2+2)(θ2+6)γ=σ2μ1=θ4+16θ2+12θ(θ2+2)(θ2+6)

Table 1 Characteristics of Exponential, Lindley and Akash Distributions

It can be easily verified that the Akash distribution is over- dispersed (μ<σ2)(μ<σ2) , equi-dispersed (μ=σ2)(μ=σ2)  and under-dispersed (μ>σ2)(μ>σ2)  for θ<(=)>θ=1.515400063θ<(=)>θ=1.515400063  respectively. Further, Lindley distribution is over- dispersed (μ<σ2)(μ<σ2) , equi-dispersed (μ=σ2)(μ=σ2)  and under-dispersed (μ>σ2)(μ>σ2)  for θ<(=)>θ=1.170086487θ<(=)>θ=1.170086487  respectively, whereas as exponential distribution is over- dispersed (μ<σ2)(μ<σ2) , equi-dispersed (μ=σ2)(μ=σ2)  and under- dispersed (μ>σ2)(μ>σ2)  for θ<(=)>θ=1θ<(=)>θ=1  respectively.

A table of values for coefficient of variation (C.V.), coefficient of Skewness (β1)(β1) , coefficient of Kurtosis (β2)(β2) , and index of dispersion (γ)(γ)  for Akash and Lindley distributions for various values of their parameter for comparative study are summarized in the Table 2.

Values of θθ  for Akash Distribution

 

0.01

0.05

0.09

0.5

0.8

1.5

2

C.V

0.577379

0.578071

0.579679

0.641249

0.716741

0.882958

0.959166

β1β1

1.154643

1.153268

1.150133

1.083974

1.10564

1.388077

1.61372

β2β2

4.999867

4.996681

4.989352

4.784948

4.735717

5.472724

6.391304

γγ

100.0067

20.03328

11.17079

2.284444

1.615097

1.008913

0.766667

Values of θθ  for Lindley Distribution

 

0.01

0.05

0.09

0.5

0.8

1.5

2

C.V

0.710607

0.723943

0.736298

0.824621

0.863075

0.914732

0.935414

β1β1

1.414317

1.416546

1.421076

1.512281

1.580387

1.698866

1.756288

β2β2

6.000294

6.006807

6.020488

6.342561

6.621505

7.172516

7.469388

γγ

100.4926

20.46458

11.55007

2.266667

1.448413

0.780952

0.583333

Table 2 Values of C.V β1β1 , β2β2 and γγ of Akash and Lindley Distributions for varying values of the parameter θθ

Applications

The Akash, Lindley and exponential distributions have been fitted to a number of real lifetime data - sets to tests their goodness of fit. Goodness of fit tests for sixteen real lifetime data- sets have been presented here. In order to compare Akash, Lindley and exponential distributions, 2lnL2lnL , AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected), BIC (Bayesian Information Criterion), K-S Statistics ( Kolmogorov-Smirnov Statistics) for all sixteen real lifetime data- sets have been computed Table 3. The formulae for computing AIC, AICC, BIC, and K-S Statistics are as follows:

 

Model

Parameter
Estimate

-2ln L

AIC

AICC

BIC

K-S
Statistic

Data 1

Akash
Lindley

1.355445
0.996116

163.73
162.56

165.73
164.56

165.79
164.62

169.93
166.70

0.355
0.371

 

Exponential

0.663647

177.66

179.66

179.73

181.80

0.402

Data 2

Akash
Lindley

0.043876
0.028859

950.97 983.11

952.97
985.11

953.01
985.15

955.58
987.71

0.184
0.242

 

Exponential

0.014635

1044.87

1046.87

1046.91

1049.48

0.357

Data 3

Akash
Lindley

0.04151
0.027321

227.06
231.47

229.06
233.47

229.25
233.66

230.20
234.61

0.107
0.149

 

Exponential

0.013845

242.87

244.87

245.06

246.01

0.263

Data 4

Akash
Lindley

0.013514
0.00897

1255.83
1251.34

1257.83
1253.34

1257.87
1253.38

1260.43
1255.95

0.071
0.098

 

Exponential

0.004505

1280.52

1282.52

1282.56

1285.12

0.190

Data 5

Akash
Lindley

0.030045
0.019841

794.70
789.04

796.70
791.04

796.76
791.10

798.98
793.32

0.184
0.133

 

Exponential

0.010018

806.88

808.88

808.94

811.16

0.198

Data 6

Akash
Lindley

0.11961
0.077247

981.28
1041.64

983.28
1043.64

983.31
1043.68

986.18
1046.54

0.393
0.448

 

Exponential

0.04006

1130.26

1132.26

1132.29

1135.16

0.525

Data 7

Akash
Lindley

0.013263
0.008804

803.96
763.75

805.96
765.75

806.02
765.82

810.01
767.81

0.298
0.245

 

Exponential

0.004421

744.87

746.87

746.94

748.93

0.166

Data 8

Akash
Lindley

0.013423
0.00891

609.93
579.16

611.93
581.16

612.02
581.26

613.71
582.95

0.280
0.219

 

Exponential

0.004475

564.02

566.02

566.11

567.80

0.145

Data 9

Akash
Lindley

0.3105
0.196045

887.89
839.06

889.89
841.06

889.92
841.09

892.74
843.91

0.198
0.116

 

Exponential

0.106773

828.68

830.68

830.72

833.54

0.077

Data 10

Akash
Lindley

0.050293
0.033021

354.88
323.27

356.88
325.27

357.02
325.42

358.28
326.67

0.421
0.345

 

Exponential

0.016779

305.26

307.26

307.40

308.66

0.213

Data 11

Akash
Lindley

1.165719
0.823821

115.15
112.61

117.15
114.61

117.28
114.73

118.68
116.13

0.156
0.133

 

Exponential

0.532081

110.91

112.91

113.03

114.43

0.089

Data 12

Akash
Lindley

0.295277
0.186571

641.93
638.07

643.93
640.07

643.95
640.12

646.51
642.68

0.100
0.058

 

Exponential

0.101245

658.04

660.04

660.08

662.65

0.163

Data 13

Akash
Lindley

0.024734
0.01636

194.30
181.34

196.30
183.34

196.61
183.65

197.01
184.05

0.456
0.386

 

Exponential

0.008246

173.94

175.94

176.25

176.65

0.277

Data 14

Akash
Lindley

1.156923
0.816118

59.52
60.50

61.52
62.50

61.74
62.72

62.51
63.49

0.320
0.341

 

Exponential

0.526316

65.67

67.67

67.90

68.67

0.389

Data 15

Akash
Lindley
Exponential

0.097062
0.062988
0.032455

240.68
253.99
274.53

242.68
255.99
276.53

242.82
256.13
276.67

244.11
257.42
277.96

0.266
0.333
0.426

Data 16

Akash
Lindley
Exponential

0.964726
0.659000
0.407941

224.28
238.38
261.74

226.28
240.38
263.74

226.34
240.44
263.80

228.51
242.61
265.97

0.348
0.390
0.434

Table 3 MLE’s, -2ln L, AIC, AICC, BIC, K-S Statistics of the fitted distributions of data sets 1-16

AIC=2lnL+2kAIC=2lnL+2k , AICC=AIC+2k(k+1)(nk1)AICC=AIC+2k(k+1)(nk1) , BIC=2lnL+klnnBIC=2lnL+klnn and D=Supx|Fn(x)F0(x)|D=Supx|Fn(x)F0(x)| , where kk the number of parameters, nn is the sample size and Fn(x)Fn(x) is the empirical distribution function. The best distribution corresponds to lower values of 2lnL2lnL , AIC, AICC, BIC, and K-S statistics. The fittings of Akash, Lindley and exponential distributions are based on maximum likelihood estimates (MLE).

Let t1,t2,....,tnt1,t2,....,tn be a random sample of size n from exponential distribution. The likelihood function, LL and the log likelihood function, lnLlnL of exponential distribution are given by L=θnenθˉtL=θnenθ¯t and lnL=nlnθnθˉtlnL=nlnθnθ¯t . The MLE ˆθˆθ of the parameter θθ of exponential distribution is the solution of the equation dlnLdθ=0dlnLdθ=0 and is given by ˆθ=1ˉtˆθ=1¯t , where ˉt¯t is the sample mean.

Let t1,t2,....,tnt1,t2,....,tn be a random sample of size n from Lindley distribution. The likelihood function, LL and the log likelihood function, lnLlnL of Lindley distribution are given by L=(θ2θ+1)nni=1(1+ti)enθˉtL=(θ2θ+1)nni=1(1+ti)enθ¯t and lnL=nln(θ2θ+1)+ni=1ln(1+ti)nθˉtlnL=nln(θ2θ+1)+ni=1ln(1+ti)nθ¯t . The MLE ˆθ of the parameter θ of Lindley distribution is the solution of the equation dlnLdθ=0 and is given by ˆθ=(ˉt1)+(ˉt1)2+8ˉt2ˉt;ˉt>0 , where ˉt is the sample mean.

Let t1,t2,....,tn be a random sample of size n from Akash distribution. The likelihood function, L and the log likelihood function, lnL of Akash distribution are given by L=(θ3θ2+2)nni=1(1+ti2)enθˉt and lnL=nln(θ3θ2+2)+ni=1ln(1+ti2)nθˉt . The MLE ˆθ of the parameter θ of Akash distribution is the solution of the equation dlnLdθ=0 is the solution of following non-linear equation ˉtθ3θ2+2ˉtθ6=0 , where ˉt is the sample mean.

It is obvious from the goodness of fit of Akash, Lindley and exponential distributions that the Akash distribution provides better fit than the Lindley and exponential distributions in data-sets 2, 3, 6, 14, 15, and 16; the Lindley distribution gives better fit than the exponential and Akash distributions in data-sets 1, 4, 5 and 12; the exponential distribution gives better fit than the Lindley and the Akash distributions in data sets 7, 8, 9, 10, 11, and 13.

0.55

0.93

1.25

1.36

1.49

1.52

1.58

1.61

1.64

1.68

1.73

1.81

2

0.74

1.04

1.27

1.39

1.49

1.53

1.59

1.61

1.66

1.68

1.76

1.82

2.01

0.77

1.11

1.28

1.42

1.5

1.54

1.6

1.62

1.66

1.69

1.76

1.84

2.24

0.81

1.13

1.29

1.48

1.5

1.55

1.61

1.62

1.66

1.7

1.77

1.84

0.84

1.24

1.3

1.48

1.51

1.55

1.61

1.63

1.67

1.7

1.78

1.89

Data Set 1: The data set represents the strength of 1.5cm glass fibers measured at the National Physical Laboratory, England. Unfortunately, the units of measurements are not given in the paper, and they are taken from Smith & Naylor.28

5

25

31

32

34

35

38

39

39

40

42

43

43

43

44

44

47

47

48

49

49

49

51

54

55

55

55

56

56

56

58

59

59

59

59

59

63

63

64

64

65

65

65

66

66

66

66

66

67

67

67

68

69

69

69

69

71

71

72

73

73

73

74

74

76

76

77

77

77

77

77

77

79

79

80

81

83

83

84

86

86

87

90

91

92

92

92

92

93

94

97

98

98

99

101

103

105

109

136

147

Data Set 2: The data is given by Birnbaum & Saunders29 on the fatigue life of 6061 – T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data set consists of 101 observations with maximum stress per cycle 31,000 psi. The data ( × 103 ) are presented below (after subtracting 65).

17.88

28.92

33

41.5

42.12

45.6

48.8

51.8

52

54.12

55.56

67.8

68.44

68.64

68.9

84.1

93.12

98.6

105

106

128

128

173.4

Data Set 3: The data set is from Lawless.30 The data given arose in tests on endurance of deep groove ball bearings. The data are the number of million revolutions before failure for each of the 23 ball bearings in the life tests and they are.

86

146

251

653

98

249

400

292

131

169

175

176

76

264

15

364

195

262

88

264

157

220

42

321

180

198

38

20

61

121

282

224

149

180

325

250

196

90

229

166

38

337

65

151

341

40

40

135

597

246

211

180

93

315

353

571

124

279

81

186

497

182

423

185

229

400

338

290

398

71

246

185

188

568

55

55

61

244

20

284

393

396

203

829

239

236

286

194

277

143

198

264

105

203

124

137

135

350

193

188

 

 

 

 

Data Set 4: The data is from Picciotto 31 and arose in test on the cycle at which the Yarn failed. The data are the number of cycles until failure of the yarn and they are.

12

15

22

24

24

32

32

33

34

38

38

43

44

48

52

53

54

54

55

56

57

58

58

59

60

60

60

60

61

62

63

65

65

67

68

70

70

72

73

75

76

76

81

83

84

85

87

91

95

96

98

99

109

110

121

127

129

131

143

146

146

175

175

211

233

258

258

263

297

341

341

376

Data Set 5: This data represents the survival times (in days) of 72 guinna pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal.32

19(16)

20(15)

21(14)

22(9)

23(12)

24(10)

25(6)    

26(9)

27(8)

28(5)

29(6)

30(4)

 31(3)

32(4)

33

34

35(4)

36(2)

37(2)

39

42   44

Data Set 6: This data is related with behavioral sciences, collected by Balakrishnan N, Victor Leiva & Antonio Sanhueza:33 The scale “General Rating of Affective Symptoms for Preschoolers (GRASP)” measures behavioral and emotional problems of children, which can be classified with depressive condition or not according to this scale. A study conducted by the authors in a city located at      the south part of Chile has allowed collecting real data corresponding to the scores of the GRASP scale of children with frequency in parenthesis, which are.

6.53

7

10.42

14.48

16.1

22.7

34

41.55

42

45.28

49.4

53.62

63

64

83

84

91

108

112

129

133

133

139

140

140

146

149

154

157

160

160

165

146

149

154

157

160

160

165

173

176

218

225

241

248

273

277

297

405

417

420

440

523

583

594

1101

1146

1417

Data Set 7: The data set reported by Efron34 represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using radiotherapy (RT).

12.2

23.56

23.74

25.87

31.98

37

41.35

47.38

55.46

58.36

63.47

68.46

78.26

74.47

81.43

84

92

94

110

112

119

127

130

133

140

146

155

159

173

179

194

195

209

249

281

319

339

432

469

519

633

725

817

1776

Data Set 8: The data set reported by Efron34 represent the survival times of a group of patients suffering from Head and Neck cancer disease and treated using a combination of radiotherapy and chemotherapy (RT+CT).

0.08

2.09

3.48

4.87

6.94

8.66

13.11

23.63

0.2

2.23

3.52

4.98

6.97

9.02

13.29

0.4

2.26

3.57

5.06

7.09

9.22

13.8

25.74

0.5

2.46

3.64

5.09

7.26

9.47

14.24

25.82

0.51

2.54

3.7

5.17

7.28

9.74

14.76

6.31

0.81

2.62

3.82

5.32

7.32

10.06

14.77

32.15

2.64

3.88

5.32

7.39

10.34

14.83

34.26

0.9

2.69

4.18

5.34

7.59

10.66

15.96

36.66

1.05

2.69

4.23

5.41

7.62

10.75

16.62

43.01

1.19

2.75

4.26

5.41

7.63

17.12

46.12

1.26

2.83

4.33

5.49

7.66

11.25

17.14

79.05

1.35

2.87

5.62

7.87

11.64

17.36

1.4

3.02

4.34

5.71

7.93

11.79

18.1

1.46

4.4

5.85

8.26

11.98

19.13

1.76

3.25

4.5

6.25

8.37

12.02

2.02

3.31

4.51

6.54

8.53

12.03

20.28

2.02

3.36

6.76

12.07

21.73

2.07

3.36

6.93

8.65

12.63

22.69

Data Set 9: This data set represents remission times (in months) of a random sample of 128 bladder cancer patients reported in Lee & Wang.35

23

261

87

7

120

14

62

47

225

71

246

21

42

20

5

12

120

11

3

14

71

11

14

11

16

90

1

16

52

95

Data Set 10: This data set is given by Linhart & Zucchini [36], which represents the failure times of the air conditioning system of an airplane.

5.1

1.2

1.3

0.6

0.5

2.4

0.5

1.1

8

0.8

0.4

0.6

0.9

0.4

2

0.5

5.3

3.2

2.7

2.9

2.5

2.3

1

0.2

0.1

0.1

1.8

0.9

2

4

6.8

1.2

0.4

0.2

Data Set 11: This data set used by Bhaumik et al.,37 is vinyl chloride data obtained from clean up gradient monitoring wells in mg/l.

0.8,

0.8,

1.3,

1.5,

1.8,

1.9,

1.9,

2.1,

2.6,

2.7,

2.9,

3.1,

3.2,

3.3,

3.5,

3.6,

4.0,

4.1,

4.2,

4.2,

4.3,

4.3,

4.4,

4.4,

4.6,

4.7,

4.7,

4.8,

4.9,

4.9,

5.0,

5.3,

5.5,

5.7,

5.7,

6.1,

6.2,

6.2,

6.2,

6.3,

6.7,

6.9,

7.1,

7.1,

7.1,

7.1,

7.4,

7.6,

7.7,

8.0,

8.2,

8.6,

8.6,

8.6,

8.8,

8.8,

8.9,

8.9,

9.5,

9.6,

9.7,

9.8,

10.7,

10.9,

11.0,

11.0,

11.1,

11.2,

11.2,

11.5,

11.9,

12.4,

12.5,

12.9,

13.0,

13.1,

13.3,

13.6,

13.7,

13.9,

14.1,

15.4,

15.4,

17.3,

17.3,

18.1,

18.2,

18.4,

18.9,

19.0,

19.9,

20.6,

21.3,

21.4,

21.9,

23.0,

27.0,

31.6,

33.1,

38.5

Data Set 12: This data set represents the waiting times (in minutes) before service of 100 Bank customers and examined and analyzed by Ghitany et al.7 for fitting the Lindley6 distribution.

74

57

48

29

502

12

70

21

29

386

59

27

153

26

326

Data Set 13: This data is for the times between successive failures of air conditioning equipment in a Boeing 720 airplane, Proschan.38

1.1

1.4

1.3

1.7

1.9

1.8

1.6

2.2

1.7

2.7

4.1

1.8

1.5

1.2

1.4

3

1.7

2.3

1.6

2

Data Set 14: This data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross & Clark.39

18.83

20.8

21.66

23.03

23.23

24.05

24.321

25.5

25.52

25.8

26.69

26.77

26.78

27.05

27.67

29.9

31.11

33.2

33.73

33.76

33.89

34.76

35.75

35.91

36.98

37.08

37.09

39.58

44.05

45.29

45.381

Data Set 15: This data set is the strength data of glass of the aircraft window reported by Fuller et al [40].

1.312

1.314

1.479

1.552

1.7

1.803

1.861

1.865

1.944

1.958

1.966

1.997

2.006

2.021

2.027

2.055

2.063

2.098

2.14

2.179

2.224

2.24

2.253

2.27

2.272

2.274

2.301

2.301

2.359

2.382

2.382

2.426

2.434

2.435

2.478

2.49

2.511

2.514

2.535

2.554

2.566

2.57

2.586

2.629

2.633

2.642

2.648

2.684

2.697

2.726

2.77

2.773

2.8

2.809

2.818

2.821

2.848

2.88

2.954

3.012

3.067

3.084

3.09

3.096

3.128

3.233

3.433

3.585

3.858

Data Set 16: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm.41-44

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Shanker R. Akash distribution and Its Applications to appear in International Journal of probability and Statistics. 2015;4(3).
  2. Davis DJ. An analysis of some failure data. Journal of American Statistical Association. 1952;47(258):113−150.
  3. Epstein B, Sobel M. Life testing. Journal of American Statistical Association. 1953;48:486−502.
  4. Epstein B. The exponential distribution and its role in Life -testing. Ind Qual Control. 1958;15:2−7.
  5.  Feil P, Zelen M. Estimation of exponential survival probabilities with concomitant information. Biometrics. 1965;21(4):826−838.
  6. Lindley DV. Fiducial distributions and Bayes’ Theorem. Journal of the Royal Statistical Society Series. 1958;20(1):102−107.
  7. Ghitany ME, Atieh B, Nadarajah S. Lidley distribution and its Applications. Mathematics and Computers in Simulation. 2008;78(4):493−506.
  8. Hussain E. The non-linear functions of Order Statistics and Their Properties in selected probability models. Pakistan; 2006.
  9. Zakerzadeh H, Dolati A. Generalized Lindley distribution. Journal of Mathematical extension. 2009;3(2):13−25.
  10. Nadarajah S, Bakouch HS, Tahmasbi R. A generalized Lindley distribution. Sankhya Series. 2011;73(2):331−359.
  11. Deniz EG, Ojeda EC. The discrete Lindley distribution-Properties and Applications. Journal of Statistical Computation and Simulation. 2011;81(11):1405−1416.
  12. Bakouch SH, Al-Zahrani BM, Al-Shomrani AA, et al. An extended Lindley distribution. Journal of Korean Statistical Society. 2012;41(1):75−85.
  13. Shanker R, Mishra A. A quasi Lindley distribution. African journal of Mathematics and Computer Science Research. 2013a;6(4):64−71.
  14. Shanker R, Mishra A. A two-parameter Lindley distribution. Statistics in transition new series. 2013b;14(1):45−56.
  15. Shanker R, Sharma S, Shanker R. A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics. 2013;4(2):363−368.
  16. Elbatal I, Merovi F, Elgarhy M. A new generalized Lindley distribution. Mathematical theory and Modeling. 2013;3(13):30−47.
  17. Ghitany M, Al-Mutairi D, Balakrishnan N, et al. Power Lindley distribution and associated inference. Computational Statistics & Data Analysis. 2013;64:20−33.
  18. Merovci F. Transmuted Lindley distribution. International Journal of Open Problems in Computer Science and Mathematics. 2013;6:63−72.
  19. Liyanage GW, Pararai M. A generalized Power Lindley distribution with applications. Asian journal of Mathematics and Applications. 2014;1−23.
  20. Ashour S, Eltehiwy M. Exponentiated Power Lindley distribution. Journal of Advanced Research. 2014;6(6):895−905.
  21. Oluyede BO, Yang T. A new class of generalized Lindley distribution with applications. Journal of Statistical Computation and Simulation. 2014;85(10):2072−2100.
  22. Singh SK, Singh U, Sharma VK. The Truncated Lindley distribution-inference and Application. Journal of Statistics Applications & Probability. 2014;3(2):219−228.
  23. Sharma V, Singh S, Singh U, et al. The inverse Lindley distribution-A stress-strength reliability model with applications to head and neck cancer data. Journal of Industrial & Production Engineering. 2015;32(3):162−173.
  24. Shanker R, Hagos F, Sujatha S. On modeling of Lifetimes data using exponential and Lindley distributions. Biometrics & Biostatistics International Journal. 2015;2(5):1−9.
  25. Alkarni S. Extended Power Lindley distribution-A new Statistical model for non-monotone survival data. European journal of statistics and probability. 2015;3(3):19−34.
  26. Pararai M, Liyanage GW, Oluyede BO. A new class of generalized Power Lindley distribution with applications to lifetime data. Theoretical Mathematics & Applications. 2015;5(1):53−96.
  27. Abouammoh AM, Alshangiti AM, Ragab IE. A new generalized Lindley distribution. Journal of Statistical Computation and Simulation preprint. 2015.
  28. Smith RL, Naylor JC. A comparison of Maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. Applied Statistics. 1987;36(3):358−369.
  29. Birnbaum ZW, Saunders SC. Estimation for a family of life distributions with applications to fatigue. Journal of Applied Probability 1969;6(2):328−347.
  30. Lawless JF. Statistical models and methods for lifetime data. John Wiley and Sons, New York, USA; 1982.
  31. Picciotto R. Tensile fatigue characteristics of a sized polyester/viscose yarn and their effect on weaving performance. North Carolina State, University at Raleigh, USA; 1970.
  32. Bjerkedal T. Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. Am J Hyg. 1960;72(1):130−148.
  33. Balakrishnan N, Victor L, Antonio S. A mixture model based on Birnhaum-Saunders Distributions, A study conducted by Authors regarding the Scores of the GRASP (General Rating of Affective Symptoms for Preschoolers), in a city located at South Part of the Chile. 2010.
  34. Efron B. Logistic regression survival analysis and the Kaplan-Meier curve. Journal of the American Statistical Association. 1988;83(402):414−425.
  35. Lee ET, Wang JW. Statistical methods for survival data analysis. 3rd ed, USA: John Wiley and Sons, New York; 2003.
  36. Linhart H, Zucchini W. Model Selection. USA: John Wiley, New York; 1986.
  37. Bhaumik DK, Kapur K, Gibbons RD. Testing Parameters of a Gamma Distribution for Small Samples. Technometrics. 2009;51(3):326−334.
  38. Proschan F. Theoretical explanation of observed decreasing failure rate. Technometrics. 1963;5(3):375−383.
  39. Gross AJ, Clark VA. Survival Distributions: Reliability Applications in the Biometrical Sciences. USA: John Wiley, New York; 1975.
  40. Fuller EJ, Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass aircraft windows: A case study. SPIE Proc. 1994;2286:419−430.
  41. Bader MG, Priest AM. Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, et al. editors. Progress in Science in Engineering Composites. Canada: ICCM-IV, Tokyo; 1982. p. 1129−1136.
  42. Sankaran M. The discrete Poisson-Lindley distribution. Biometrics. 1970;26(1):145−149.
  43. Shanker R, Amanuel AG. A new quasi Lindley distribution. International Journal of Statistics and systems. 2013;9(1):87−94.
  44. Mazucheli J, Achcar JA. The Lindley distribution applied to competing risks lifetime data. Comput Methods Programs Biomed. 2011;104(2):188−192.
Creative Commons Attribution License

©2016 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.