Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 10 Issue 4

The seven-parameter lindley distribution 

Abdul Hadi N Ahmed,1 Zohdy M Nofal,2 Rania MA Osman2

1Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt
2Department of Statistics, Mathematics and Insurance Benha University, Egypt

Correspondence: Rania M. A. Osman, Department of Statistics, Mathematics and Insurance, Benha University, Benha 13518, Egypt

Received: September 10, 2021 | Published: November 25, 2021

Citation: Ahmed AHN, Nofal ZM, Osman RMA. The seven-parameter lindley distribution. Biom Biostat Int J. 2021;10(4):166-174. DOI: 10.15406/bbij.2021.10.00344

Download PDF

Abstract

In this paper, a seven parameter Lindley Distribution (SPL) distribution is proposed as a new generalization of the basic Lindley distribution. The structural properties of the new distribution are investigated. These include the compounding representation of the distribution, reliability analysis and statistical measures. Expressions for Lorenz and Bonferroni curves and Renyi entropy as a measure for uncertainty reduction are derived. Maximum likelihood estimation is used to evaluate the parameters. The new model contains twelve lifetime distributions as special cases such as the Lindley, Quasi Lindley, gamma, and exponential distributions, among others. This model has the advantage of being capable of modeling various shapes of aging and failure criteria. Finally, the usefulness of the new model for modeling reliability data is illustrated using a real data set.

Keywords: lindley distribution, mixture, reliability analysis, moment generating function, order statistics, maximum likelihood estimation

Introduction

In many applied sciences such as medicine, engineering, and finance, amongst others, modeling and analyzing lifetime data are crucial. Several lifetime distributions have been used to model such kinds of data. The quality of the procedures used in a statistical analysis depends heavily on the assumed probability model or distribution along with relevant statistical methodologies. However, there remain many important problems where the real data does not follow any of the classical or standard probability models.

The one parameter family of distributions with density function

f( x;θ )= θ 2 θ+1 ( 1+x ) e θx ;x>0,θ>0,                    ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOzamaabmaapaqaa8qacaWG4bGaai4oaiabeI7aXbGaayjkaiaa wMcaaiabg2da9maalaaapaqaa8qacqaH4oqCpaWaaWbaaSqabeaape GaaGOmaaaaaOWdaeaapeGaeqiUdeNaey4kaSIaaGymaaaadaqadaWd aeaapeGaaGymaiabgUcaRiaadIhaaiaawIcacaGLPaaacaWGLbWdam aaCaaaleqabaWdbiabgkHiTiabeI7aXjaadIhaaaGccaGG7aGaamiE aiabg6da+iaaicdacaGGSaGaeqiUdeNaeyOpa4JaaGimaiaacYcaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaaacaGLOaGa ayzkaaaaaa@6F4C@

is used by Lindley1 to illustrate the difference between fiducial distribution and posterior distribution. Sankaran2 introduced the discrete Poisson-Lindley distribution by combining the Poisson and Lindley distributions. Ghitany et al.3 have discussed various properties of (4.1). Another discrete version of this distribution has been suggested by Deniz and Ojeda4 with applications in count data related to insurance. Ghitany et al.5 obtained size-biased and zero-truncated version of Poisson-Lindley distribution with various properties and applications.

The aim of this chapter is to introduce a new generalization of Lindley1 distribution. This generalization is flexible enough to model different types of lifetime data having different forms of failure rate. The new distribution can accommodate both decreasing and increasing failure rates as its antecessors, as well as unimodal and bathtub shaped failure rates. The Lindley distribution is generalized by mixing. Several authors have considered versions from usual density functions by following this idea. For instance, Zakerzadeh and Dolati6 considered a generalized Lindley distribution as a generalization of the usual Lindley distribution, Rama and Mishra7 studied quasi-Lindley distribution, Rama et al.8 introduced a new distribution for generalizing the Lindley model which called Janardan distribution, and Elbatal et al.9 have suggested a new generalized Lindley distribution.

The introduced model will be named Seven Parameter Lindley Distribution (SPL) distribution. The basic idea behind this generalization is to use a unified approach that accommodates all the proceeding generalizations of Lindley distribution abovementioned, and to add new model that could offer a better fit to lifetime data. The proposed distribution includes nine models as special cases plus three new models (all special cases are shown in section 2). The procedure used here is based on certain mixtures of two gamma distributions with various weights. The research examines various properties of the new distribution.

The rest of paper is organized as follows: Section 2 introduces the definition of the probability density function (pdf) of the SPL distribution including its cumulative distribution function (cdf) and the sub-models of the new suggested model. The reliability analysis including the survival function, the hazard (or failure) rate function, the reversed hazard rate function, the cumulative hazard rate function, and the mean residual lifetime is explored in Section 3. The statistical properties of the new distribution such as the moments, the moment generating function, and the distribution of order statistics are investigated in Section 4, with a proposed algorithm for generating random data from the new distribution in this section. Section 5 introduces Lorenz and Bonferroni curves and Renyi entropy as measures of inequality and uncertainty, respectively. Section 6 discusses the estimation of parameters by using maximum likelihood estimation. Finally, Section 7 provides an application for modeling real data sets to illustrate the performance of the new distribution.

Generalization and related sub-models

In this section, we introduce the pdf and the cdf of the five parameter Lindley distribution and then the special cases of the SPL distribution are mentioned.

Generalization

Let


f 1 ( x;α,θ )= θ α Γ( α ) x α1 e θx ;x>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaa peGaamiEaiaacUdacaqGXoGaaiilaiabeI7aXbGaayjkaiaawMcaai abg2da9maalaaapaqaa8qacqaH4oqCpaWaaWbaaSqabeaapeGaeqyS degaaaGcpaqaa8qacqqHtoWrdaqadaWdaeaapeGaaeySdaGaayjkai aawMcaaaaacaWG4bWdamaaCaaaleqabaWdbiaabg7acqGHsislcaaI XaaaaOGaamyza8aadaahaaWcbeqaa8qacqGHsislcqaH4oqCcaWG4b aaaOGaai4oaiaadIhacqGH+aGpcaaIWaaaaa@556C@ (2)

and

f 2 ( x;β,θ )= θ β Γ( β ) x β1 e θx ;x>0,θ,β>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaa peGaamiEaiaacUdacaqGYoGaaiilaiabeI7aXbGaayjkaiaawMcaai abg2da9maalaaapaqaa8qacqaH4oqCpaWaaWbaaSqabeaapeGaeqOS digaaaGcpaqaa8qacqqHtoWrdaqadaWdaeaapeGaaeOSdaGaayjkai aawMcaaaaacaWG4bWdamaaCaaaleqabaWdbiaabk7acqGHsislcaaI XaaaaOGaamyza8aadaahaaWcbeqaa8qacqGHsislcqaH4oqCcaWG4b aaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaaiilaiabeI7aXjaacYca caqGYoGaeyOpa4JaaGimaaaa@5B82@ (3)

be gamma ( α,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeg7aHjaacYcacqaH4oqCaiaawIcacaGLPaaa aaa@3C2A@ and gamma ( β,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabek7aIjaacYcacqaH4oqCaiaawIcacaGLPaaa aaa@3C2C@ densities, respectively.

We define a new seven parameter Lindley distribution as a mixture of (2) and (3) with Probabilities p= θ ϕ k η σ + θ ϕ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da9maalaaapaqaa8qacqaH4oqCpaWaaWbaaSqabeaa peGaeqy1dygaaOGaam4AaaWdaeaapeGaeq4TdG2damaaCaaaleqaba Wdbiabeo8aZbaakiabgUcaRiabeI7aX9aadaahaaWcbeqaa8qacqaH vpGzaaGccaWGRbaaaaaa@47A7@ and (1-p), respectively, as follows:

f( x;θ,α,β,k,η,ϕ,σ )= рf 1 ( x;α,θ )+(1р) f 2 ( x;β,θ );р( 0,1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOzamaabmaapaqaa8qacaWG4bGaai4oaiabeI7aXjaacYcacqaH XoqycaGGSaGaaeOSdiaacYcacaqGRbGaaiilaiaabE7acaGGSaGaeq y1dyMaaiilaiaabo8aaiaawIcacaGLPaaacqGH9aqpcaqGarGaaeOz a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaam iEaiaacUdacaqGXoGaaiilaiabeI7aXbGaayjkaiaawMcaaiabgUca RiaacIcacaaIXaGaeyOeI0IaaeiqeiaacMcacaqGMbWdamaaBaaale aapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaai4oaiaa bk7acaGGSaGaeqiUdehacaGLOaGaayzkaaGaai4oaiaadcebcqGHii IZdaqadaWdaeaapeGaaGimaiaacYcacaaIXaaacaGLOaGaayzkaaGa aiOlaaaa@699A@

Therefore, the pdf of the seven Parameter Lindley Distribution (SPL) distribution, is defined as

f( x;θ,α,β,k,η,ϕ,σ )= θ ϕ k η σ + θ ϕ k [ k θ ϕ1 (θx) α1 Γ( α ) + η σ (θx) β1 θΓ( β ) e θx ,x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOzamaabmaapaqaa8qacaWG4bGaai4oaiabeI7aXjaacYcacqaH XoqycaGGSaGaaeOSdiaacYcacaqGRbGaaiilaiaabE7acaGGSaGaeq y1dyMaaiilaiaabo8aaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaa peGaeqiUde3damaaCaaaleqabaWdbiabew9aMbaakiaadUgaa8aaba WdbiabeE7aO9aadaahaaWcbeqaa8qacqaHdpWCaaGccqGHRaWkcqaH 4oqCpaWaaWbaaSqabeaapeGaeqy1dygaaOGaam4AaaaadaWabaWdae aapeWaaSaaa8aabaWdbiaadUgacqaH4oqCpaWaaWbaaSqabeaapeGa eqy1dyMaeyOeI0IaaGymaaaakiaacIcacqaH4oqCcaWG4bGaaiyka8 aadaahaaWcbeqaa8qacqaHXoqycqGHsislcaaIXaaaaaGcpaqaa8qa cqqHtoWrdaqadaWdaeaapeGaeqySdegacaGLOaGaayzkaaaaaiabgU caRmaalaaapaqaa8qacqaH3oaApaWaaWbaaSqabeaapeGaeq4Wdmha aOGaaiikaiabeI7aXjaadIhacaGGPaWdamaaCaaaleqabaWdbiabek 7aIjabgkHiTiaaigdaaaaak8aabaWdbiabeI7aXjabfo5ahnaabmaa paqaa8qacqaHYoGyaiaawIcacaGLPaaaaaaacaGLBbaacaWGLbWdam aaCaaaleqabaWdbiabgkHiTiabeI7aXjaadIhaaaGccaGGSaGaamiE aiabg6da+iaaicdaaaa@8869@

We note that f( x;θ,α,β,k,η,ϕ,σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOzamaabmaapaqaa8qacaWG4bGaai4oaiabeI7aXjaacYcacqaH XoqycaGGSaGaaeOSdiaacYcacaqGRbGaaiilaiaabE7acaGGSaGaeq y1dyMaaiilaiaabo8aaiaawIcacaGLPaaaaaa@4964@ incorporates seven parameters namely θ>0,α>0,β>0,k0,ϕ>0,σ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdeNaeyOpa4JaaGimaiaacYcacaqGXoGaeyOpa4JaaGimaiaa cYcacaqGYoGaeyOpa4JaaGimaiaacYcacaqGRbGaeyyzImRaaGimai aacYcacqaHvpGzcqGH+aGpcaaIWaGaaiilaiaabo8acqGH+aGpcaaI Waaaaa@4E0D@ and subject to k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ and η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGgaaa@38DA@ are not allowed to be simultaneously zeros. The corresponding cumulative distribution function (cdf) of the SPLD is

Ϝ( x;θ,α,β,k,η,ϕ,σ )= [ θ ϕ k γ α ( θx )+ η σ γ β ( θx ) ] η σ + θ ϕ k ;x>0,θ,α,β>0,k,η0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFCpa9 daqadaWdaeaapeGaamiEaiaacUdacqaH4oqCcaGGSaGaeqySdeMaai ilaiaabk7acaGGSaGaae4AaiaacYcacaqG3oGaaiilaiabew9aMjaa cYcacaqGdpaacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbmaadm aapaqaa8qacqaH4oqCpaWaaWbaaSqabeaapeGaeqy1dygaaOGaam4A aiabeo7aN9aadaWgaaWcbaWdbiabeg7aHbWdaeqaaOWdbmaabmaapa qaa8qacqaH4oqCcaWG4baacaGLOaGaayzkaaGaey4kaSIaeq4TdG2d amaaCaaaleqabaWdbiabeo8aZbaakiabeo7aN9aadaWgaaWcbaWdbi aabk7aa8aabeaak8qadaqadaWdaeaapeGaeqiUdeNaamiEaaGaayjk aiaawMcaaaGaay5waiaaw2faaaWdaeaapeGaeq4TdG2damaaCaaale qabaWdbiabeo8aZbaakiabgUcaRiabeI7aX9aadaahaaWcbeqaa8qa cqaHvpGzaaGccaWGRbaaaiaacUdacaWG4bGaeyOpa4JaaGimaiaacY cacqaH4oqCcaGGSaGaeqySdeMaaiilaiaabk7acqGH+aGpcaaIWaGa aiilaiaabUgacaGGSaGaae4TdiabgwMiZkaaicdaaaa@8C43@

where

Y α ( b )= Y( a,b ) Γ( α ) 0 b t a1 e t dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywa8aadaWgaaWcbaWdbiabeg7aHbWdaeqaaOWdbmaabmaapaqa a8qacaWGIbaacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaadM fadaqadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLOaGaayzkaaaa paqaa8qacqqHtoWrdaqadaWdaeaapeGaeqySdegacaGLOaGaayzkaa aaamaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaWGIbaan8aabaWd biabgUIiYdaakiaadshapaWaaWbaaSqabeaapeGaamyyaiabgkHiTi aaigdaaaGccaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadshaaaGc caWGKbGaamiDaaaa@5512@

is known as the lower incomplete gamma function ratio. Also, the upper incomplete gamma function ratio is given by

Γ a ( b )= Γ( a,b ) Γ( a ) = 1 Γ( a ) b t a1 e t dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0damaaBaaaleaapeGaamyyaaWdaeqaaOWdbmaabmaapaqa a8qacaWGIbaacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiabfo 5ahnaabmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawIcacaGLPaaa a8aabaWdbiabfo5ahnaabmaapaqaa8qacaWGHbaacaGLOaGaayzkaa aaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqqHtoWrdaqa daWdaeaapeGaamyyaaGaayjkaiaawMcaaaaadaGfWbqabSWdaeaape GaamOyaaWdaeaapeGaeyOhIukan8aabaWdbiabgUIiYdaakiaadsha paWaaWbaaSqabeaapeGaamyyaiabgkHiTiaaigdaaaGccaWGLbWdam aaCaaaleqabaWdbiabgkHiTiaadshaaaGccaWGKbGaamiDaaaa@5B70@

Figures 1&2 illustrate some of the possible shapes of the pdf and the cdf, respectively, of the SPLD for different values of the parameters θ,α,β,k,ϕ,σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdeNaaiilaiabeg7aHjaacYcacaqGYoGaaiilaiaabUgacaGG SaGaeqy1dyMaaiilaiaabo8aaaa@432A@ and η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGgaaa@38DA@ chosen from the ranges specified in Equation (4).

Figure 1 Different shapes of the pdf for the SPLD.

Figure 2 The distribution function (cdf) of the SPLD.

Sub-models of the SPLD

It is clear that the seven parameter Lindley distribution is very flexible. Assigning particular numerical values of some subsets of the parameters yields several special generalizations of Lindley distribution. The special cases include nine distributions namely; the new generalized Lindley distribution (NGLD) introduced by Elbatal et al.,9 generalized Lindley distribution (GLD) introduced by Zakerzadeh and Dolati,6 quasi Lindley distribution (QLD) introduced by Rama and Mishra,7 Lindley distribution (LD) by Lindley,1 Erlang distribution, Janardan distribution introduced by Rama et al.,8 gamma distribution, the exponential distribution (ED), and Chi-square distribution. In addition to yield all the previous distributions, our generalization model allowed us to create new three distributions namely, the 4-parameter Lindley type I (4-p L type I) distribution, the 4-parameter Lindley type II (4-p L type II) distribution and the 2-parameter Lindley (2-p L) distribution.

Reliability analysis

 In this section, we present the survival function, the hazard rate function, the reversed hazard rate function, the cumulative hazard rate function and the mean residual lifetime for the seven parameter Lindley distribution.

The survival function

The survival function R( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3AAA@ which is the probability of an item not failing prior to some time is defined by R( x )=1F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja aGymaiabgkHiTiaadAeadaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaaaa@40C8@ . Therefore, the survival function of the SPL distribution is given

R( x )=1 1 η σ + θ ϕ k [ θ ϕ k γ α ( θx )+ η σ γ β ( θx ) ];x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja aGymaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacqaH3oaApa WaaWbaaSqabeaapeGaeq4WdmhaaOGaey4kaSIaeqiUde3damaaCaaa leqabaWdbiabew9aMbaakiaadUgaaaWaamWaa8aabaWdbiabeI7aX9 aadaahaaWcbeqaa8qacqaHvpGzaaGccaWGRbGaeq4SdC2damaaBaaa leaapeGaeqySdegapaqabaGcpeWaaeWaa8aabaWdbiabeI7aXjaadI haaiaawIcacaGLPaaacqGHRaWkcqaH3oaApaWaaWbaaSqabeaapeGa eq4WdmhaaOGaeq4SdC2damaaBaaaleaapeGaeqOSdigapaqabaGcpe WaaeWaa8aabaWdbiabeI7aXjaadIhaaiaawIcacaGLPaaaaiaawUfa caGLDbaacaGG7aGaamiEaiabg6da+iaaicdaaaa@66F2@ (6)

The hazard rate function

The other characteristic of interest of a random variable is the hazard rate function, h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGObWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@39A9@ the hazard rate function of the SPLD is given by

h( x )= θ 2 [ k θ ϕ1 (θx) α1 Γ( α ) + η σ (θx) β1 θΓ( β ) ] e θx η σ + θ ϕ k[ θ ϕ k γ α ( θx )+ η σ γ β ( θx ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiabeI7aX9aadaahaaWcbeqaa8qacaaIYaaaaOWaam Waa8aabaWdbmaalaaapaqaa8qacaWGRbGaeqiUde3damaaCaaaleqa baWdbiabew9aMjabgkHiTiaaigdaaaGccaGGOaGaeqiUdeNaamiEai aacMcapaWaaWbaaSqabeaapeGaeqySdeMaeyOeI0IaaGymaaaaaOWd aeaapeGaeu4KdC0aaeWaa8aabaWdbiabeg7aHbGaayjkaiaawMcaaa aacqGHRaWkdaWcaaWdaeaapeGaeq4TdG2damaaCaaaleqabaWdbiab eo8aZbaakiaacIcacqaH4oqCcaWG4bGaaiyka8aadaahaaWcbeqaa8 qacqaHYoGycqGHsislcaaIXaaaaaGcpaqaa8qacqaH4oqCcqqHtoWr daqadaWdaeaapeGaeqOSdigacaGLOaGaayzkaaaaaaGaay5waiaaw2 faaiaadwgapaWaaWbaaSqabeaapeGaeyOeI0IaeqiUdeNaamiEaaaa aOWdaeaapeGaeq4TdG2damaaCaaaleqabaWdbiabeo8aZbaakiabgU caRiabeI7aX9aadaahaaWcbeqaa8qacqaHvpGzaaGccaWGRbGaeyOe I0YaamWaa8aabaWdbiabeI7aX9aadaahaaWcbeqaa8qacqaHvpGzaa GccaWGRbGaeq4SdC2damaaBaaaleaapeGaeqySdegapaqabaGcpeWa aeWaa8aabaWdbiabeI7aXjaadIhaaiaawIcacaGLPaaacqGHRaWkcq aH3oaApaWaaWbaaSqabeaapeGaeq4WdmhaaOGaeq4SdC2damaaBaaa leaapeGaeqOSdigapaqabaGcpeWaaeWaa8aabaWdbiabeI7aXjaadI haaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaaaaa@91E6@ (7)

We note that h( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3AC0@ might be constant, increasing, decreasing, or bathtub shaped depending on the values of the parameters involved. For example, if η=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyypa0JaaGimaaaa@3A9A@ and α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaaaa@3A8E@ then h( x )=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja eqiUdehaaa@3D7C@ , a constant, while for α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyyzImRaaGymaaaa@3B4E@ and β2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyyzImRaaGOmaaaa@3B51@ it will be increasing, β2α1,β2,η=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyyzImRaaGOmaiabeg7aHjabgsMiJkaaigdacaGGSaGa eqOSdiMaeyizImQaaGOmaiaacYcacqaH3oaAcqGH9aqpcaaIWaaaaa@483E@ and it is going to be decreasing if , and the bathtub-type curve appears for α<1,β<2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyipaWJaaGymaiaacYcacqaHYoGycqGH8aapcaaIYaGa aiilaaaa@3F4D@ and η>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyOpa4JaaGimaaaa@3A9C@ .

The next result describes some particular cases for the hazard rate function arising from the five parameter Lindley distribution by assigning relevant values of the parameters.

Theorem 1:

The hazard rate function of the particular cases from the five parameter Lindley distribution are given by

  1. If α=k=η=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0Jaam4Aaiabg2da9iabeE7aOjabg2da9iaaigda aaa@3F36@ and β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGOmaaaa@3A91@ the failure rate is same as the LD(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitaiaadseapaGaaiikaiabeI7aXjaacMcaaaa@3BE6@ .
  2. If α=1,β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiaacYcacqaHYoGycqGH9aqpcaaIYaaa aa@3EA1@ , η=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyypa0JaeqiUdehaaa@3B96@ and the failure rate is same as the QLD(k,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiaadYeacaWGebWdaiaacIcapeGaam4AaiaacYcacqaH4oqC paGaaiykaaaa@3E7B@
  3. If α=1,β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiaacYcacqaHYoGycqGH9aqpcaaIYaaa aa@3EA1@ , and η=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyypa0JaeqiUdehaaa@3B96@ the failure rate is same as the ED(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaadseapaGaaiikaiabeI7aXjaacMcaaaa@3BDF@ .
  4. if α=k=1,θ=( θ/η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0Jaam4Aaiabg2da9iaaigdacaGGSaGaeqiUdeNa eyypa0ZaaeWaa8aabaWdbiabeI7aXjaac+cacqaH3oaAaiaawIcaca GLPaaaaaa@45AD@ , and β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGOmaaaa@3A91@ the failure rate is same as the JD( θ,η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsaiaadseadaqadaqaaiabeI7aXjaacYcacqaH3oaAaiaawIca caGLPaaaaaa@3E61@ .
  5. If k=η=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabeE7aOjabg2da9iaaigdaaaa@3C91@ the failure rate is same as the NGLD( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaadEeacaWGmbGaamiramaabmaabaGaeqiUdeNaaiilaiab eg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@4246@ .
  6. If η=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyypa0JaeqiUdehaaa@3B96@ the failure rate is same as the Gamma ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeI7aXjaacYcacqaHXoqyaiaawIcacaGLPaaa aaa@3CDB@ .

Proof:

(i)If α=1,β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiaacYcacqaHYoGycqGH9aqpcaaIYaaa aa@3EA1@ , and η=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyypa0JaeqiUdehaaa@3B96@ the failure rate is same as the QLD( k,θ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiaadYeacaWGebWaaeWaa8aabaWdbiaadUgacaGGSaGaeqiU dehacaGLOaGaayzkaaGaaiOlaaaa@3F4E@ h( x )= θ 2 ( 1+x ) θ+θx+1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiabeI7aX9aadaahaaWcbeqaa8qacaaIYaaaaOWaae Waa8aabaWdbiaaigdacqGHRaWkcaWG4baacaGLOaGaayzkaaaapaqa a8qacqaH4oqCcqGHRaWkcqaH4oqCcaWG4bGaey4kaSIaaGymaaaaca GGUaaaaa@4AB8@

(ii) If α=1,β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiaacYcacqaHYoGycqGH9aqpcaaIYaaa aa@3EA1@ , and η=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyypa0JaeqiUdehaaa@3B96@ the failure rate is same as the QLD( k,θ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiaadYeacaWGebWaaeWaa8aabaWdbiaadUgacaGGSaGaeqiU dehacaGLOaGaayzkaaGaaiOlaaaa@3F4E@ h( x )= θ( k+θx ) k+θx+1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiabeI7aXnaabmaapaqaa8qacaWGRbGaey4kaSIaeq iUdeNaamiEaaGaayjkaiaawMcaaaWdaeaapeGaam4AaiabgUcaRiab eI7aXjaadIhacqGHRaWkcaaIXaaaaiaac6caaaa@4ACB@

(iii) If α=1,β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiaacYcacqaHYoGycqGH9aqpcaaIYaaa aa@3EA1@ , and η=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyypa0JaeqiUdehaaa@3B96@ the failure rate is same as the ED(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaadseapaGaaiikaiabeI7aXjaacMcaaaa@3BDF@ / h( x )=θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja eqiUdehaaa@3D7C@ .

(iv) If α=k=1,θ=( θ/η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0Jaam4Aaiabg2da9iaaigdacaGGSaGaeqiUdeNa eyypa0ZaaeWaa8aabaWdbiabeI7aXjaac+cacqaH3oaAaiaawIcaca GLPaaaaaa@45AD@ , and β=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaaGOmaaaa@3A91@ the failure rate is same as the JD( θ,η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsaiaadseadaqadaqaaiabeI7aXjaacYcacqaH3oaAaiaawIca caGLPaaaaaa@3E61@ .

h( x )= θ 2 ( 1+ηx ) η( θ+ η 2 )+θ η 2 x . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiabeI7aX9aadaahaaWcbeqaa8qacaaIYaaaaOWaae Waa8aabaWdbiaaigdacqGHRaWkcqaH3oaAcaWG4baacaGLOaGaayzk aaaapaqaa8qacqaH3oaAdaqadaWdaeaapeGaeqiUdeNaey4kaSIaeq 4TdG2damaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGH RaWkcqaH4oqCcqaH3oaApaWaaWbaaSqabeaapeGaaGOmaaaakiaadI haaaGaaiOlaaaa@5479@

(v) if k=η=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabeE7aOjabg2da9iaaigdaaaa@3C91@ the failure rate is same as the NGLD( θ,α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaiaadEeacaWGmbGaamiramaabmaabaGaeqiUdeNaaiilaiab eg7aHjaacYcacqaHYoGyaiaawIcacaGLPaaaaaa@4246@ .

h( x )= θ 2 [ (θx) α1 Γ( α ) + (θx) β1 θΓ( β ) ] e θx 1+θ[ θ Y α ( θx )+ Y β ( θx ) ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiabeI7aX9aadaahaaWcbeqaa8qacaaIYaaaaOWaam Waa8aabaWdbmaalaaapaqaa8qacaGGOaGaeqiUdeNaamiEaiaacMca paWaaWbaaSqabeaapeGaeqySdeMaeyOeI0IaaGymaaaaaOWdaeaape Gaeu4KdC0aaeWaa8aabaWdbiabeg7aHbGaayjkaiaawMcaaaaacqGH RaWkdaWcaaWdaeaapeGaaiikaiabeI7aXjaadIhacaGGPaWdamaaCa aaleqabaWdbiabek7aIjabgkHiTiaaigdaaaaak8aabaWdbiabeI7a Xjabfo5ahnaabmaapaqaa8qacqaHYoGyaiaawIcacaGLPaaaaaaaca GLBbGaayzxaaGaamyza8aadaahaaWcbeqaa8qacqGHsislcqaH4oqC caWG4baaaaGcpaqaa8qacaaIXaGaey4kaSIaeqiUdeNaeyOeI0Yaam Waa8aabaWdbiabeI7aXjaadMfapaWaaSbaaSqaa8qacqaHXoqya8aa beaak8qadaqadaWdaeaapeGaeqiUdeNaamiEaaGaayjkaiaawMcaai abgUcaRiaadMfapaWaaSbaaSqaa8qacaqGYoaapaqabaGcpeWaaeWa a8aabaWdbiabeI7aXjaadIhaaiaawIcacaGLPaaaaiaawUfacaGLDb aaaaGaaiOlaaaa@7981@

 The reversed hazard rate function

The reversed hazard rate function r( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3ACA@ , of a random variable distributed according to the Spl  after some simplifications is given by

  (8)

The cumulative hazard rate function

Many generalized models have been proposed in reliability literature through the relationship between the reliability function and its cumulative hazard rate function given by .The cumulative hazard rate function of the SPL distribution is given by

  (9)

where is the total number of failure or deaths over an interval of time, and is a non-decreasing function of satisfying.

The mean residual lifetime

The additional lifetime given that the component has survived up to time  is called the residual life function of the component, the nth expectation of the random variable that represent the remaining lifetime is called the mean residual lifetime (MRL) and is given by

or equivalently

While the hazard rate function provides information about a small interval after time  (just after ), the MRL considers information about the whole interval after  (all after ). The MRL as well as the hazard rate function or the reliability function is very important as each of them can be used to characterize a unique corresponding lifetime distribution.

 The MRL function for SPL random variable is given by

  (10)

 

The MRL function given in Equation (4.10) satisfies the following properties.

  •  
  •  
  •  
  •  

where  is the first non-central moment of the SPL Distribution (the mean of the distribution).

Statistical Properties

This section investigates the statistical properties of the SPL Distribution as the moments (non- central and central), the moment generating function and an algorithm for random number generating.

 The moment generating function

The following theorem gives the moment generating function (mgf) of SPL Distribution

( ).

Theorem 2:

If  has the SPL Distribution ( ), then the mgf of say is given as follows

  (11)

Proof:

using the expansion , one has

This completes the proof.

 Depending on the previous theorem, we can conclude the basic statistical properties as follows:

(i) The  non-central moments  are the coefficients of . In Equation (11), for . Therefore, the mean and the variance of the SPL random variable  are, respectively, given by

         (12)

and

         (13)

Where is the second non-central moment which is given by

           (14)

The central moments  can be obtained easily from the moments through the relation

Where

Then the  central moments of the SPL distribution are given by

  (15)

(iii) Finally, the coefficient of variation , the coefficient of skewness , and the coefficient of kurtosis of SPLdistribution are, respectively, obtained according the following relations

Distribution of order statistics

  Let  denote  independent random variables from a distribution function  with pdf , and then the pdf of  (the  order sample arrangement) is given by

(19)

 

Using Equations (4) and (5) into Equation (19), then the pdf of according to the SPL distribution is given by

(20)

Hence, the pdf of the largest order statistic and the smallest order statistic are, respectively, given by

 (21)

and                                                                                   

   (22)

Random variates generation

The probability density function of the SPL distribution can be expressed in terms of the gamma density function as follows

To generate random variates , for  from SPL , we can use the following algorithm:

  1. Generate from Uniform distribution
  2. Generate from Gamma
  3. Generate from Gamma
  4. If then the set of random variates otherwise

Set

Measures of inequality and uncertainty

In this section Lorenz and Bonferroni curves are introduced as measures of inequality. Also, Renyi entropy will be mentioned as an important measure of uncertainty.

 Lorenz and bonferroni curves

Lorenz and Bonferroni curves are the most widely used inequality measures in income and wealth distribution.10

  In fact, Lorenz and Bonferroni curves are depending on the length-biased distribution with pdf  defined by

  (23)

Where is the pdf of the base distribution with mean

Accordingly, Lorenz and Bonferroni curves denoted by and respectively, defined by

(24)

where is the cdf of the length-biased distribution. Now, we shall derive the expressions of and  based on and for SPLD.

It is easily shown that the pdf of the length-biased distribution can be obtained as Follows

  (25)

With cdf defined by

  (26)

It follows from (12), (24), and (26) that and are

    (27)

and

       (28)

Renyi entropy

If  is a random variable having an absolutely continuous cdf and pdf , then the basic uncertainty measure for distribution  (called the entropy of ) is defined as . Statistical entropy is a probabilistic measure of uncertainty or ignorance about the outcome of a random experiment and is a measure of a reduction in that uncertainty. Abundant entropy and information indices, among them the Renyi entropy, have been developed and used in various disciplines and contexts. Information theoretic principles and methods have become integral parts of probability and statistics and have been applied in various branches of statistics and related fields.

Renyi entropy is an extension of Shannon entropy. Renyi entropy of the SPLD is defined to be

  (29)

Where and  Renyi entropy tends to Shannon entropy as . Now,

  (30)

Using then one has

  (31)

Using the expansion:  one can have

  (32)

 (33)

Using the gamma function to evaluate the integral in (33) and collecting the entire above evaluations then substitute into (29), the Renyi entropy of the SPLD can be written as

Where  is a constant as

Estimation of the parameters

In this section, we use the method of likelihood to estimate the parameters involved and use them to create confidence intervals for the unknown parameters.

   Let  be a sample size  from SPL distribution. Then the likelihood function is given by

Then,

(35)

Hence, the log-likelihood function becomes

 (36)

Therefore, the maximum likelihood estimators (MLEs) of  and  are derived from the derivatives of .

They should satisfy the following equations

(37)

(38)

(39)

 (40)

(41)

(42)

 (43)

Where is the diagamma function, and it is defined as

To solve the equations (37) through (43), it is usually more convenient to use nonlinear optimization algorithms such as quasi-Newton algorithm to numerically maximize the log-likelihood function. In order to compute the standard errors and asymptotic confidence intervals we use the usual large sample approximation, in which the MLEs can be treated as being approximately trivariate normal.

Hence as  , the asymptotic distribution of the MLE is given by, see Zaindin et al.6

Where ( ), and

is the approximate variance-covariance matrix with its elements obtained from

By solving this inverse dispersion matrix, these solutions will yield the asymptotic variances and co- variances of these MLEs for and .

Approximate  confidence intervals for and can be determinedas

,  ,  ,

Where is the upperpercentile of the standard normal distribution.

Application

In this section, we use a real data set to compare the fits of the SPL distribution with three sub-models. In each case, the parameters are estimated by maximum likelihood as described in Section 4.6, using the R software.

The data set consist of uncensored data set from Nichols and Padgett on the breaking stress of carbon fibers (in Gba). The data are given below:

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56,

4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57,

2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85,

1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03,

1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96,

2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53.

The summary of the above data is given by

Units  Minimum  Ist Qu. Median Mean  3rd Qu.  Maximum

 66   0,390  2,178  2,835  2,760  3.278   4.900

In order to compare the two distribution models, we consider criteria like KS (Kolmogorov Smirnov),  , AIC (Akaike information criterion), AICC (corrected Akaike information criterion), and BIC (Bayesian information criterion) for the data set. The better distribution corresponds to smaller KS,  , AIC and AICC values:

and

Where  denotes the log-likelihood function evaluated at the maximum likelihood estimates,  is the number of parameters, and is the sample size.

Also, for calculating the values of KS we use the sample estimates of and b. Table 1&2 shows the parameter estimation based on the maximum likelihood and least square estimation, and gives the values of the criteria AIC, AICC, BIC, and KS test.

Distribution

Parameters

Author

θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWF4oaaaa@375F@

α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFXoaaaa@3758@

β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFYoaaaa@3759@

k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFRbaaaa@370F@

η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWF3oaaaa@375E@

σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFdpaaaa@376A@

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHfiIXaaa@378E@

Gamma

 

 

1

1

0

1

1

Brown & Flood11

ED

 

1

1

1

0

1

1

Steffensen12

LD

 

1

2

1

1

1

1

Lindley1

Erlang

 

v, v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG2bGaaiilaiaacckacaWG2bGaeSy==72efv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWFveItaaa@4788@

1

1

0

1

1

A. K. Erlang13

QLD

 

1

2

 

θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWF4oaaaa@375F@

1

1

Rama & Mishra7

GLD

 

 

α+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHXoqycqGHRaWkcaaIXaaaaa@3953@

1

 

1

1

Zakerzadeh&Dolati6

Janardan

θ/η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH4oqCcaGGVaGaeq4TdGgaaa@3A2C@

1

2

1

 

1

1

Rama et al.8

NGLD

 

 

 

1

1

1

1

Elbatal et al.9

Chi-square

1/2

v/2,v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG2bGaai4laiaaikdacaGGSaGaamODaiabl2==Unrr1ngBPrwt HrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xfH4eaaa@47D3@

1

1

0

1

1

Fisher14

4-p L type I

 

 

 

1

 

1

1

New

4-p L type II

 

 

 

 

1

1

1

New

2-p L

 

1

2

 

1

1

1

New

5-p L

θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWF4oaaaa@375F@

α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFXoaaaa@3758@

β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFYoaaaa@3759@

k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmaeaaaaaa aaa8qacaWFRbaaaa@370F@

1

1

New

Table 1 The special cases of the SPL distribution

 

SPL

FPLD

Lindley

Gamma

exponential

 

coef                  

std.e                  

coef                  

std.e                  

coef                  

std.e                  

coef               

                  std.e                  

                  coef                  

std.e

alpha

4.918145682

3.1418

4.918019

2.273544

4.9181

2.2736

7.48803

1.27552

-

-

beta

13.32661771

2.273564

13.32648

3.141746

13.3266

3.1418

2.7135

0.47806

-

-

theta

4.608695814

1.033154

4.608644

1.033136

4.6087

1.0332

-

-

0.362379

0.044606

phai

0.033886236

0.452362

-

-

-

-

-

-

-

-

k

1.471738523

0.056224

0.103372

0.080925

-

-

-

-

-

-

eta

3.406750687

0.187052

6.104362

0.001398

59.0538

46.2436

-

-

-

-

sigma

2.438262765

0.236172

-

-

-

-

-

-

-

-

AIC

177.3931

181.3931

179.3931

186.3351

267.9887

BIC

182.0655

192.3413

188.1517

190.7144

270.1784

AICC

175.462

182.3931

180.0488

186.5256

268.0512

HQIC

171.3364

185.7192

182.854

188.0656

268.8539

K-S

0.07

0.070003

0.0713806

0.13285

0.35811

P-value

0.9031

0.9028

0.8569

0.1945

8.89E-08

The values in Table 2 indicate that the SPL distribution leads to a better fit over all the other models.

A density plot compares the fitted densities of the models with the empirical histogram of the observed data (Figures 3-5). The fitted density for the SPL model is closer to the empirical histogram than the fits of the other models.15-22

Figure 3 Increasing, decreasing, constant, bathtub and upside-down shapes for the hazad rate function of the SPLD.

Figure 4 (a) Estimated densities of the SPL distributions for the data.
(b) Estimated cdf function from the fitted the fitted the SPL distributions and the empirical cdf for the data. .

Figure 5 PP plots for the fitted SPLD distribution and for the data set.

Concluding remarks

There has been a great interest among statisticians and applied researchers in constructing flexible lifetime models to facilitate better modeling of survival data. Consequently, a significant progress has been made towards the generalization of some well-known lifetime models and their successful application to problems in several areas. In this paper, we introduce a new five-parameter distribution obtained using the idea of mixture of distributions. We refer to the new model as the Five Parameter Lindley Distribution (FPLD) and study some of its mathematical and statistical properties. We provide the pdf, the cdf and the hazard rate function of the new model and explicit expressions for the moments. The model parameters are estimated by the method of maximum likelihood. The new model is compared with three lifetime models and provides consistently better fit than them. We hope that the proposed distribution will serve as an alternative model to other models available in the literature for modeling positive real data in many areas such as engineering, survival analysis, hydrology and economics.

References

  1. Lindley, DV. Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society. Series B (Methodological). 1958;20(1):102‒107.
  2. Sankaran M. The Discrete Poisson-Lindley Distribution. Biometrics. 1970;26(1):145‒149.
  3. Ghitany M E, Al-Mutairi D K, Nadarajah S. Zero-truncated Poisson– Lindley distribution and its application. Mathematics and Computers in Simulation. 2008;79(3):279‒287.
  4. Gómez-Deniz E,Calderon-Ojeda E. The discrete Lindley distribution: properties and applications. Journal of Statistical Computation and Simulation. 2011;81(11):1405‒1416.
  5. Ghitany  M E, Atieh B, Nadarajah S. Lindley distribution and its application. Mathematics and computers in simulation. 2008;78(4):493‒506.
  6. Zakerzadeh H, Dolati A. Generalized Lindley Distribution. Journal of Mathematical Extension. 2009;3(2):13‒22.
  7. Shanker R, Mishra A. A quasi Lindley distribution. African Journal of Mathematics and Computer Science Research. 2013;6(4):64‒71.
  8. Shanker R, Sharma S, Shanker, et al. Janardan distribution and its application to waiting times data. Indian Journal of Applied Research. 2013;3(8):500‒502.
  9. Elbatal I, Merovci F, Elgarhy M. A new generalized Lindley distribution. Mathematical Theory and Modeling. 2013;3(13):30‒47.
  10. Dagum C. Specification and analysis of wealth distribution models with applications. American Statistical Association, Business and Economic Statistics Section, Toronto. 2014;1116‒1123.
  11. Brown G W, Flood M M. Tumbler mortality. Journal of the American Statistical Association. 1947;42(240):562‒574.
  12. https://www.cambridge.org/core/journals/transactions-of-the-faculty-of-actuaries/article/abs/some-recent-researches-in-the-theory-of-statistics-and-actuarial-science-by-j-f-steffensen-pp-48-cambridge-institute-of-actuaries-1930/ACD1158BE3A85F98F666E2B09B5589AD
  13. Erlang A K. Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. The Post Office Electrical Engineer’s Journal. 1997;10:189‒197.
  14. Fisher RA. On a distribution yielding the error functions of several well known statistics. Proceedings International Mathematical Congress, Toronto. 1924;2:805‒813.
  15. Balakrishnan K. Exponential distribution: theory, methods and applications. CRCpress. 1996.
  16. Bozdogan H. Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika. 1987;52(3):345‒370.
  17. Guess F, Proschan F. Mean residual life: theory and applications (No. FSU-STATISTICS-M702). Dept. of Statistics, Florida State UniversityTallahassee. 1985.
  18. Hogg RV, McKean J, Craig AT. Introduction to mathematical statistics. Pearson Education. 2005.
  19. Jeffrey A, Zwillinger D. Table of integrals, series and products. Academic Press. 2007.
  20. Klein JP, Zhang MJ. Survival analysis, software. John Wiley & Sons, Ltd. 2005.
  21. Nichols MD, Padgett WJ. A bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering International. 2006;22(2):141‒151.
  22. Renyi A. On measures of entropy and information. In Fourth Berkeley Symposium on Mathematical Statistics and Probability. 1961. p. 547‒561.
Creative Commons Attribution License

©2021 Ahmed, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.