Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 3

The Poisson-Adya distribution 

Rama Shanker,1 Kamlesh Kumar Shukla2

1Department of Statistics, Assam University, Silchar, Assam, India
2Department of Mathematics, Noida International University, Gautam Buddh Nagar, India

Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, Assam, India

Received: July 20, 2022 | Published: August 17, 2022

Citation: Shanker R, Shukla KK. The Poisson-Adya distribution. Biom Biostat Int J. 2022;11(3):100-103. DOI: 10.15406/bbij.2022.11.00361

Download PDF

Abstract

In this paper a Poisson mixture of Adya distribution called Poisson-Adya distribution has been suggested. The expressions of statistical constants including coefficients of variation, skewness, kurtosis and index of dispersion have been obtained and their behavior for varying values of parameter has been studied. It is observed that the obtained distribution is unimodal, has increasing hazard rate and over-dispersed. Maximum likelihood estimation and method of moment have been discussed for estimating parameter. Finally, the goodness of fit of the proposed distribution and its comparison with Poisson and Poisson-Lindley distributions has been given.

Keywords: Adya distribution, compounding, unimodality, over-dispersion, estimation, goodness of fit

Introduction

The Poisson distribution is a suitable distribution for data having equi-dispersion (mean equal to variance). But in real life situation, it has been observed that most of the datasets being stochastic in nature are either over-dispersed (variance greater than mean) or under-dispersed (variance less than mean). During recent decades an attempt has been made by different researchers to derive over-dispersed one parameter discrete distribution by compounding Poisson distribution with one parameter continuous lifetime distributions. A popular one parameter discrete distribution for over-dispersed (variance greater than the mean) is the Poisson-Lindley distribution (PLD) proposed by Sankaran1. PLD is a Poisson mixture of Lindley distribution introduced by Lindley2. Further, it has been observed that these one parameter discrete distributions are not suitable for some over-dispersed datasets from biological sciences due to their levels of over-dispersion. Shanker & Hagos3 have detailed discussion on applications of PLD for data arising from biological sciences, as the data from biological sciences are, in general, over-dispersed. It has been observed by Shanker & Hagos3 that in some biological science data PLD does not give better fit and hence there is a need for another over-dispersed discrete distribution is required.

Shanker, et al4 proposed a one parameter continuous lifetime distribution named Adya distribution, defined by its probability density function (pdf) and cumulative density function (cdf) given by

f( x;θ )= θ 3 θ 4 +2 θ 2 +2 ( θ+x ) 2 e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGOmaaaadaqadaqaaiabeI7aXjabgUcaRi aadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGLbWa aWbaaSqabeaacqGHsislcqaH4oqCcaaMc8UaamiEaaaakiaaykW7ca aMc8UaaGPaVlaaykW7caGG7aGaamiEaiabg6da+iaaicdacaGGSaGa aGPaVlaaykW7cqaH4oqCcqGH+aGpcaaIWaaaaa@6689@   (1.1)

F( x,θ )=1[ 1+ θx( θx+2 θ 2 +2 ) θ 4 +2 θ 2 +2 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEamaabmaabaGaeqiUdeNaamiEaiabgUcaRiaaikdacqaH4oqCdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaayzkaaaaba GaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7a XnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaaaacaGLBbGaay zxaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPaVlaadIha aaGccaaMc8UaaGPaVlaacUdacaWG4bGaeyOpa4JaaGimaiaacYcacq aH4oqCcqGH+aGpcaaIWaaaaa@697E@   (1.2)

Shanker, et al4 derived Adya distribution as a convex combination of exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@ , gamma ( 2,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG OmaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BB9@ and gamma ( 3,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG 4maiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BBA@ distributions with respective proportions θ 4 θ 4 +2 θ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iUde3aaWbaaSqabeaacaaI0aaaaaGcbaGaeqiUde3aaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdaaaaaaa@4259@ , 2 θ 4 θ 4 +2 θ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaiabeI7aXnaaCaaaleqabaGaaGinaaaaaOqaaiabeI7aXnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaaaaaaa@4315@ and 2 θ 4 θ 4 +2 θ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaiabeI7aXnaaCaaaleqabaGaaGinaaaaaOqaaiabeI7aXnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaaaaiaaykW7aaa@44A0@ respectively. Its various statistical properties including moments and moments-based measures, hazard rate function, mean residual life function, stochastic ordering, deviations from the mean and the median, Bonferroni and Lorenz curves, and stress-strength reliability, estimation of parameter and applications are available in Shanker et al4.

In the present paper a Poisson mixture of Adya distribution has been derived and its statistical constants including coefficients of variation, skewess, kurtosis and index of dispersion have been studied. The Unimodality, increasing hazard rate and over-dispersion of the distribution have been explained. Estimation of parameter using method of moment and maximum likelihood has been discussed. Applications, goodness of fit and its comparison with other one parameter discrete distributions are presented.

Poisson-Adya distribution

Let X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwaaaa@36D3@ follows Poisson distribution with parameter λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg6 da+iaaicdaaaa@3A84@ having pmf

P( X|λ )= e λ λ x x! ;x=0,1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacaGG8bGaeq4UdWgacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBaaGccqaH7oaBda ahaaWcbeqaaiaadIhaaaaakeaacaWG4bGaaiyiaaaacaGG7aGaamiE aiabg2da9iaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiaac6 cacaGGUaGaaiOlaaaa@4F78@

Now suppose the parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AA@ follows Adya distribution with parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ having pdf

f( λ|θ )= θ 3 θ 4 +2 θ 2 +2 ( θ+λ ) 2 e θλ ;λ>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiabeU7aSjaacYhacqaH4oqCaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabeI7aXnaaCa aaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaIYaaaamaabmaabaGaeqiUdeNaey4kaS Iaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamyz amaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPaVlabeU7aSbaakiaacU dacqaH7oaBcqGH+aGpcaaIWaGaaiilaiabeI7aXjabg6da+iaaicda aaa@6064@

Thus, the marginal pmf of X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ can be obtained as

  P( X=x )= 0 P( X|λ )f( λ|θ )dλ= 0 e λ λ x x! θ 3 θ 4 +2 θ 2 +2 ( θ+λ ) 2 e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIfacqGH9aqpcaWG4baacaGLOaGaayzkaaGaeyypa0Zaa8qC aeaacaWGqbWaaeWaaeaacaWGybGaaiiFaiabeU7aSbGaayjkaiaawM caaiaadAgadaqadaqaaiabeU7aSjaacYhacqaH4oqCaiaawIcacaGL PaaacaWGKbGaeq4UdWMaeyypa0daleaacaaIWaaabaGaeyOhIukani abgUIiYdGcdaWdXbqaamaalaaabaGaamyzamaaCaaaleqabaGaeyOe I0Iaeq4UdWgaaOGaeq4UdW2aaWbaaSqabeaacaWG4baaaaGcbaGaam iEaiaacgcaaaaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGcdaWc aaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabeI7aXnaaCa aaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaIYaaaamaabmaabaGaeqiUdeNaey4kaS Iaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamyz amaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPaVlabeU7aSbaakiaads gacqaH7oaBaaa@7B0C@ (2.1)

= θ 3 ( θ 4 +2 θ 2 +2 )x! 0 e ( θ+1 )λ λ x ( θ 2 +2θλ+ λ 2 ) dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaWaaeWaaeaacqaH 4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaaGaayjkaiaawMcaaiaa dIhacaGGHaaaamaapehabaGaamyzamaaCaaaleqabaGaeyOeI0Yaae WaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeq4UdWga aOGaeq4UdW2aaWbaaSqabeaacaWG4baaaOWaaeWaaeaacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNaaGPaVlab eU7aSjabgUcaRiabeU7aSnaaCaaaleqabaGaaGOmaaaaaOGaayjkai aawMcaaiaaykW7aSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaa dsgacqaH7oaBaaa@6923@

= θ 3 ( θ 4 +2 θ 2 +2 ) x 2 +( 2 θ 2 +2θ+3 )x+( θ 4 +2 θ 3 +3 θ 2 +2θ+2 ) ( θ+1 ) x+3 ;x=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaWaaeWaaeaacqaH 4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaaGaayjkaiaawMcaaaaa daWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqada qaaiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI YaGaeqiUdeNaey4kaSIaaG4maaGaayjkaiaawMcaaiaadIhacqGHRa WkdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa ikdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7aXjab gUcaRiaaikdaaiaawIcacaGLPaaaaeaadaqadaqaaiabeI7aXjabgU caRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaadIhacqGHRaWk caaIZaaaaaaakiaacUdacaWG4bGaeyypa0JaaGimaiaacYcacaaIXa GaaiilaiaaikdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiabeI7a Xjabg6da+iaaicdaaaa@7A2F@ (2.2)

We name this distribution as Poisson-Adya distribution. In the subsequent sections it has been shown that the pmf of Poisson-Adya distribution (PAD) is unimodal, has increasing hazard rate and over-dispersed. The nature of the pmf of PAD for varying values of parameter has been shown in the following figure1. As the value of parameter increases, the distribution becomes positively skewed and also it is becoming more over-dispersed (Figure 1).

Figure 1 pmf of PAD for varying values of parameter.

Statistical constants

Using (2.1), r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3805@ the th factorial moment about origin, μ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaaaaa@3E99@ , of PAD can be obtained as

μ ( r ) =E[ E( X ( r ) |λ ) ]= θ 3 θ 4 +2 θ 2 +2 0 [ x=0 x ( r ) e λ λ x x! ] ( θ+λ ) 2 e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0JaamyramaadmaabaGaamyramaabm aabaGaamiwamaaCaaaleqabaWaaeWaaeaacaWGYbaacaGLOaGaayzk aaaaaOGaaiiFaiabeU7aSbGaayjkaiaawMcaaaGaay5waiaaw2faai abg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaaWaa8qCaeaadaWa daqaamaaqahabaGaamiEamaaCaaaleqabaWaaeWaaeaacaWGYbaaca GLOaGaayzkaaaaaOWaaSaaaeaacaWGLbWaaWbaaSqabeaacqGHsisl cqaH7oaBaaGccqaH7oaBdaahaaWcbeqaaiaadIhaaaaakeaacaWG4b GaaiyiaaaaaSqaaiaadIhacqGH9aqpcaaIWaaabaGaeyOhIukaniab ggHiLdaakiaawUfacaGLDbaaaSqaaiaaicdaaeaacqGHEisPa0Gaey 4kIipakmaabmaabaGaeqiUdeNaey4kaSIaeq4UdWgacaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaOGaamyzamaaCaaaleqabaGaeyOeI0 IaeqiUdeNaaGPaVlabeU7aSbaakiaadsgacqaH7oaBaaa@80C8@ .

= θ 3 θ 4 +2 θ 2 +2 0 λ r [ x=r e λ λ xr ( xr )! ] ( θ 2 +2θλ+ λ 2 ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaikdaaaWaa8qCaeaacqaH7oaBdaahaaWc beqaaiaadkhaaaGcdaWadaqaamaaqahabaWaaSaaaeaacaWGLbWaaW baaSqabeaacqGHsislcqaH7oaBaaGccqaH7oaBdaahaaWcbeqaaiaa dIhacqGHsislcaWGYbaaaaGcbaWaaeWaaeaacaWG4bGaeyOeI0Iaam OCaaGaayjkaiaawMcaaiaacgcaaaaaleaacaWG4bGaeyypa0JaamOC aaqaaiabg6HiLcqdcqGHris5aaGccaGLBbGaayzxaaaaleaacaaIWa aabaGaeyOhIukaniabgUIiYdGcdaqadaqaaiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcaaMc8Uaeq4UdWMaey 4kaSIaeq4UdW2aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGa amyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPaVlabeU7aSbaaki aadsgacqaH7oaBaaa@7922@ = θ 3 θ 4 +2 θ 2 +2 0 λ r ( θ 2 +2θλ+ λ 2 ) e θλ dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiaaikdaaaWaa8qCaeaacqaH7oaBdaahaaWc beqaaiaadkhaaaaabaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOWaae WaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGa eqiUdeNaaGPaVlabeU7aSjabgUcaRiabeU7aSnaaCaaaleqabaGaaG OmaaaaaOGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTiab eI7aXjaaykW7cqaH7oaBaaGccaWGKbGaeq4UdWgaaa@62B7@ = r!{ θ 4 +2( r+1 )θ+( r+1 )( r+2 ) } θ r ( θ 4 +2 θ 2 +2 ) ;r=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaamOCaiaacgcadaGadaqaaiabeI7aXnaaCaaaleqabaGaaGin aaaakiabgUcaRiaaikdadaqadaqaaiaadkhacqGHRaWkcaaIXaaaca GLOaGaayzkaaGaeqiUdeNaey4kaSYaaeWaaeaacaWGYbGaey4kaSIa aGymaaGaayjkaiaawMcaamaabmaabaGaamOCaiabgUcaRiaaikdaai aawIcacaGLPaaaaiaawUhacaGL9baaaeaacqaH4oqCdaahaaWcbeqa aiaadkhaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaaki abgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWk caaIYaaacaGLOaGaayzkaaaaaiaacUdacaWGYbGaeyypa0JaaGymai aacYcacaaIYaGaaiilaiaaiodacaGGSaGaaiOlaiaac6cacaGGUaaa aa@653D@

Substituting r=1,2,3,&4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaGGMaGaaGin aaaa@3EB7@ the first four factorial moment about origin, of PAD can be obtained as

μ ( 1 ) = θ 4 +4 θ 2 +6 θ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbe qaaiaaisdaaaGccqGHRaWkcaaI0aGaeqiUde3aaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaGOnaaqaaiabeI7aXnaabmaabaGaeqiUde3aaW baaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaaaaaaaa@53D8@ , μ ( 2 ) = 2( θ 4 +6 θ 2 +12 ) θ 2 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaaikdaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0ZaaSaaaeaacaaIYaWaaeWaaeaacq aH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI2aGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdaaiaawIcaca GLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiab eI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaayzkaaaa aaaa@57CA@

μ ( 3 ) = 6( θ 4 +8 θ 2 +20 ) θ 3 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaaiodaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0ZaaSaaaeaacaaI2aWaaeWaaeaacq aH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI4aGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaicdaaiaawIcaca GLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGcdaqadaqaaiab eI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaacaGLOaGaayzkaaaa aaaa@57D1@ , μ ( 4 ) = 24( θ 4 +10 θ 2 +30 ) θ 4 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaadaqadaqaaiaaisdaaiaawIcacaGLPaaaaeqaaOWaaWbaaSqa beaakiadacUHYaIOaaGaeyypa0ZaaSaaaeaacaaIYaGaaGinamaabm aabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGymaiaa icdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGaaG imaaGaayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaa kmaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG OmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaa wIcacaGLPaaaaaaaaa@5941@ .

The relationship between moments about origin and factorial moments about origin gives the following four moments about origin μ 1 = θ 4 +4 θ 2 +6 θ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG inaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaeaa cqaH4oqCdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgU caRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI YaaacaGLOaGaayzkaaaaaaaa@524F@

μ 2 = θ 5 +2 θ 4 +4 θ 3 +12 θ 2 +6θ+24 θ 2 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaG OmaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaisdacqaH 4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGOmaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdacqaH4oqCcqGH RaWkcaaIYaGaaGinaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakm aabmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOm aiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawI cacaGLPaaaaaaaaa@60A2@ μ 3 = θ 6 +6 θ 5 +10 θ 4 +36 θ 3 +54 θ 2 +72θ+120 θ 3 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaG OnaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaigdacaaI WaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG4maiaaiA dacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI1aGaaGin aiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiEdacaaIYa GaeqiUdeNaey4kaSIaaGymaiaaikdacaaIWaaabaGaeqiUde3aaWba aSqabeaacaaIZaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaais daaaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGOmaaGaayjkaiaawMcaaaaaaaa@67E5@ μ 4 = θ 7 +14 θ 6 +40 θ 5 +108 θ 4 +294 θ 3 +408 θ 2 +720θ+720 θ 4 ( θ 4 +2 θ 2 +2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIaaG ymaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI 0aGaaGimaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaig dacaaIWaGaaGioaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUca RiaaikdacaaI5aGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaaki abgUcaRiaaisdacaaIWaGaaGioaiabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaiEdacaaIYaGaaGimaiabeI7aXjabgUcaRiaaiE dacaaIYaGaaGimaaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakmaa bmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmai abeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIca caGLPaaaaaaaaa@70A7@

Using the relationship between moments about mean and the moments about origin, moments about the mean are obtained as μ 2 = θ 9 + θ 8 +6 θ 7 +8 θ 6 +16 θ 5 +24 θ 4 +20 θ 3 +24 θ 2 +12θ+12 θ 2 ( θ 4 +2 θ 2 +2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa beaacaaI5aaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaI4aaaaO Gaey4kaSIaaGOnaiabeI7aXnaaCaaaleqabaGaaG4naaaakiabgUca RiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIXa GaaGOnaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaikda caaI0aGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmai aaicdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGa aGinaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaca aIYaGaeqiUdeNaey4kaSIaaGymaiaaikdaaeaacqaH4oqCdaahaaWc beqaaiaaikdaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaa aakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIYaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaa a@71D8@ .

μ 3 = ( θ 14 +3 θ 13 +10 θ 12 +30 θ 11 +54 θ 10 +126 θ 9 +172 θ 8 +264 θ 7 +284 θ 6 +324 θ 5 +280 θ 4 +216 θ 3 +168 θ 2 +72θ+48 ) θ 3 ( θ 4 +2 θ 2 +2 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaWaaeWaaqaabeqaaiab eI7aXnaaCaaaleqabaGaaGymaiaaisdaaaGccqGHRaWkcaaIZaGaeq iUde3aaWbaaSqabeaacaaIXaGaaG4maaaakiabgUcaRiaaigdacaaI WaGaeqiUde3aaWbaaSqabeaacaaIXaGaaGOmaaaakiabgUcaRiaaio dacaaIWaGaeqiUde3aaWbaaSqabeaacaaIXaGaaGymaaaakiabgUca RiaaiwdacaaI0aGaeqiUde3aaWbaaSqabeaacaaIXaGaaGimaaaaki abgUcaRiaaigdacaaIYaGaaGOnaiabeI7aXnaaCaaaleqabaGaaGyo aaaakiabgUcaRiaaigdacaaI3aGaaGOmaiabeI7aXnaaCaaaleqaba GaaGioaaaakiabgUcaRiaaikdacaaI2aGaaGinaiabeI7aXnaaCaaa leqabaGaaG4naaaakiabgUcaRiaaikdacaaI4aGaaGinaiabeI7aXn aaCaaaleqabaGaaGOnaaaaaOqaaiabgUcaRiaaiodacaaIYaGaaGin aiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaikdacaaI4a GaaGimaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikda caaIXaGaaGOnaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRi aaigdacaaI2aGaaGioaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaiEdacaaIYaGaeqiUdeNaey4kaSIaaGinaiaaiIdaaaGaay jkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakmaabmaa baGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGL PaaadaahaaWcbeqaaiaaiodaaaaaaaaa@985F@ μ 4 = ( θ 19 +10 θ 18 +28 θ 17 +129 θ 16 +300 θ 15 +796 θ 14 +1628 θ 13 +2952 θ 12 +4952 θ 11 +6968 θ 10 +9624 θ 9 +11048 θ 8 +12368 θ 7 +11952 θ 6 +10544 θ 5 +8544 θ 4 +5520 θ 3 +3648 θ 2 +1440θ+720 ) θ 4 ( θ 4 +2 θ 2 +2 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaWaaeWaaqaabeqaaiab eI7aXnaaCaaaleqabaGaaGymaiaaiMdaaaGccqGHRaWkcaaIXaGaaG imaiabeI7aXnaaCaaaleqabaGaaGymaiaaiIdaaaGccqGHRaWkcaaI YaGaaGioaiabeI7aXnaaCaaaleqabaGaaGymaiaaiEdaaaGccqGHRa WkcaaIXaGaaGOmaiaaiMdacqaH4oqCdaahaaWcbeqaaiaaigdacaaI 2aaaaOGaey4kaSIaaG4maiaaicdacaaIWaGaeqiUde3aaWbaaSqabe aacaaIXaGaaGynaaaakiabgUcaRiaaiEdacaaI5aGaaGOnaiabeI7a XnaaCaaaleqabaGaaGymaiaaisdaaaGccqGHRaWkcaaIXaGaaGOnai aaikdacaaI4aGaeqiUde3aaWbaaSqabeaacaaIXaGaaG4maaaakiab gUcaRiaaikdacaaI5aGaaGynaiaaikdacqaH4oqCdaahaaWcbeqaai aaigdacaaIYaaaaOGaey4kaSIaaGinaiaaiMdacaaI1aGaaGOmaiab eI7aXnaaCaaaleqabaGaaGymaiaaigdaaaaakeaacqGHRaWkcaaI2a GaaGyoaiaaiAdacaaI4aGaeqiUde3aaWbaaSqabeaacaaIXaGaaGim aaaakiabgUcaRiaaiMdacaaI2aGaaGOmaiaaisdacqaH4oqCdaahaa WcbeqaaiaaiMdaaaGccqGHRaWkcaaIXaGaaGymaiaaicdacaaI0aGa aGioaiabeI7aXnaaCaaaleqabaGaaGioaaaakiabgUcaRiaaigdaca aIYaGaaG4maiaaiAdacaaI4aGaeqiUde3aaWbaaSqabeaacaaI3aaa aOGaey4kaSIaaGymaiaaigdacaaI5aGaaGynaiaaikdacqaH4oqCda ahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIXaGaaGimaiaaiwdacaaI 0aGaaGinaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaiI dacaaI1aGaaGinaiaaisdacqaH4oqCdaahaaWcbeqaaiaaisdaaaaa keaacqGHRaWkcaaI1aGaaGynaiaaikdacaaIWaGaeqiUde3aaWbaaS qabeaacaaIZaaaaOGaey4kaSIaaG4maiaaiAdacaaI0aGaaGioaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaI0aGaaG inaiaaicdacqaH4oqCcqGHRaWkcaaI3aGaaGOmaiaaicdaaaGaayjk aiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakmaabmaaba GaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7a XnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPa aadaahaaWcbeqaaiaaisdaaaaaaaaa@C962@

Now, the descriptive measures of PAD including coefficient of variation (C.V), skewness, kurtosis and index of dispersion are obtained as C.V= σ μ 1 = θ 9 + θ 8 +6 θ 7 +8 θ 6 +16 θ 5 +24 θ 4 +20 θ 3 +24 θ 2 +12θ+12 θ 4 +4 θ 2 +6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGUa GaamOvaiabg2da9maalaaabaGaeq4WdmhabaGaeqiVd02aaSbaaSqa aiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaaaaaiabg2da9m aalaaabaWaaOaaaeaacqaH4oqCdaahaaWcbeqaaiaaiMdaaaGccqGH RaWkcqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaI2aGaeq iUde3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIaaGioaiabeI7aXnaa CaaaleqabaGaaGOnaaaakiabgUcaRiaaigdacaaI2aGaeqiUde3aaW baaSqabeaacaaI1aaaaOGaey4kaSIaaGOmaiaaisdacqaH4oqCdaah aaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaGimaiabeI7aXnaaCa aaleqabaGaaG4maaaakiabgUcaRiaaikdacaaI0aGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacqaH4oqCcqGHRa WkcaaIXaGaaGOmaaWcbeaaaOqaaiabeI7aXnaaCaaaleqabaGaaGin aaaakiabgUcaRiaaisdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaI2aaaaaaa@7534@

β 1 = μ 3 ( μ 2 ) 3/2 = ( θ 14 +3 θ 13 +10 θ 12 +30 θ 11 +54 θ 10 +126 θ 9 +172 θ 8 +264 θ 7 +284 θ 6 +324 θ 5 +280 θ 4 +216 θ 3 +168 θ 2 +72θ+48 ) ( θ 9 + θ 8 +6 θ 7 +8 θ 6 +16 θ 5 +24 θ 4 +20 θ 3 +24 θ 2 +12θ+12 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaamaabmaabaGaeqiVd02aaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWc gaqaaiaaiodaaeaacaaIYaaaaaaaaaGccqGH9aqpdaWcaaqaamaabm aaeaqabeaacqaH4oqCdaahaaWcbeqaaiaaigdacaaI0aaaaOGaey4k aSIaaG4maiabeI7aXnaaCaaaleqabaGaaGymaiaaiodaaaGccqGHRa WkcaaIXaGaaGimaiabeI7aXnaaCaaaleqabaGaaGymaiaaikdaaaGc cqGHRaWkcaaIZaGaaGimaiabeI7aXnaaCaaaleqabaGaaGymaiaaig daaaGccqGHRaWkcaaI1aGaaGinaiabeI7aXnaaCaaaleqabaGaaGym aiaaicdaaaGccqGHRaWkcaaIXaGaaGOmaiaaiAdacqaH4oqCdaahaa WcbeqaaiaaiMdaaaGccqGHRaWkcaaIXaGaaG4naiaaikdacqaH4oqC daahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaIYaGaaGOnaiaaisdacq aH4oqCdaahaaWcbeqaaiaaiEdaaaGccqGHRaWkcaaIYaGaaGioaiaa isdacqaH4oqCdaahaaWcbeqaaiaaiAdaaaaakeaacqGHRaWkcaaIZa GaaGOmaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWk caaIYaGaaGioaiaaicdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccq GHRaWkcaaIYaGaaGymaiaaiAdacqaH4oqCdaahaaWcbeqaaiaaioda aaGccqGHRaWkcaaIXaGaaGOnaiaaiIdacqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaI3aGaaGOmaiabeI7aXjabgUcaRiaaisda caaI4aaaaiaawIcacaGLPaaaaeaadaqadaqaaiabeI7aXnaaCaaale qabaGaaGyoaaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGioaaaa kiabgUcaRiaaiAdacqaH4oqCdaahaaWcbeqaaiaaiEdaaaGccqGHRa WkcaaI4aGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGym aiaaiAdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaIYa GaaGinaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikda caaIWaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOmai aaisdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGa aGOmaiabeI7aXjabgUcaRiaaigdacaaIYaaacaGLOaGaayzkaaWaaW baaSqabeaadaWcgaqaaiaaiodaaeaacaaIYaaaaaaaaaaaaa@C107@ β 2 = μ 4 μ 2 2 = ( θ 19 +10 θ 18 +28 θ 17 +129 θ 16 +300 θ 15 +796 θ 14 +1628 θ 13 +2952 θ 12 +4952 θ 11 +6968 θ 10 +9624 θ 9 +11048 θ 8 +12368 θ 7 +11952 θ 6 +10544 θ 5 +8544 θ 4 +5520 θ 3 +3648 θ 2 +1440θ+720 ) ( θ 9 + θ 8 +6 θ 7 +8 θ 6 +16 θ 5 +24 θ 4 +20 θ 3 +24 θ 2 +12θ+12 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiVd02aaSbaaSqa aiaaisdaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaWaaeWaaqaabeqa aiabeI7aXnaaCaaaleqabaGaaGymaiaaiMdaaaGccqGHRaWkcaaIXa GaaGimaiabeI7aXnaaCaaaleqabaGaaGymaiaaiIdaaaGccqGHRaWk caaIYaGaaGioaiabeI7aXnaaCaaaleqabaGaaGymaiaaiEdaaaGccq GHRaWkcaaIXaGaaGOmaiaaiMdacqaH4oqCdaahaaWcbeqaaiaaigda caaI2aaaaOGaey4kaSIaaG4maiaaicdacaaIWaGaeqiUde3aaWbaaS qabeaacaaIXaGaaGynaaaakiabgUcaRiaaiEdacaaI5aGaaGOnaiab eI7aXnaaCaaaleqabaGaaGymaiaaisdaaaGccqGHRaWkcaaIXaGaaG OnaiaaikdacaaI4aGaeqiUde3aaWbaaSqabeaacaaIXaGaaG4maaaa kiabgUcaRiaaikdacaaI5aGaaGynaiaaikdacqaH4oqCdaahaaWcbe qaaiaaigdacaaIYaaaaOGaey4kaSIaaGinaiaaiMdacaaI1aGaaGOm aiabeI7aXnaaCaaaleqabaGaaGymaiaaigdaaaaakeaacqGHRaWkca aI2aGaaGyoaiaaiAdacaaI4aGaeqiUde3aaWbaaSqabeaacaaIXaGa aGimaaaakiabgUcaRiaaiMdacaaI2aGaaGOmaiaaisdacqaH4oqCda ahaaWcbeqaaiaaiMdaaaGccqGHRaWkcaaIXaGaaGymaiaaicdacaaI 0aGaaGioaiabeI7aXnaaCaaaleqabaGaaGioaaaakiabgUcaRiaaig dacaaIYaGaaG4maiaaiAdacaaI4aGaeqiUde3aaWbaaSqabeaacaaI 3aaaaOGaey4kaSIaaGymaiaaigdacaaI5aGaaGynaiaaikdacqaH4o qCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIXaGaaGimaiaaiwda caaI0aGaaGinaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRi aaiIdacaaI1aGaaGinaiaaisdacqaH4oqCdaahaaWcbeqaaiaaisda aaaakeaacqGHRaWkcaaI1aGaaGynaiaaikdacaaIWaGaeqiUde3aaW baaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiaaiAdacaaI0aGaaGio aiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaI0a GaaGinaiaaicdacqaH4oqCcqGHRaWkcaaI3aGaaGOmaiaaicdaaaGa ayjkaiaawMcaaaqaamaabmaabaGaeqiUde3aaWbaaSqabeaacaaI5a aaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIa aGOnaiabeI7aXnaaCaaaleqabaGaaG4naaaakiabgUcaRiaaiIdacq aH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIXaGaaGOnaiab eI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaikdacaaI0aGaeq iUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiaaicdacqaH 4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaaGinaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaIYaGaeqiU deNaey4kaSIaaGymaiaaikdaaiaawIcacaGLPaaadaahaaWcbeqaai aaikdaaaaaaaaa@EECA@ γ= σ 2 μ 1 = θ 9 + θ 8 +6 θ 7 +8 θ 6 +16 θ 5 +24 θ 4 +20 θ 3 +24 θ 2 +12θ+12 θ( θ 4 +2 θ 2 +2 )( θ 4 +4 θ 2 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaW9Vaeq4SdC Maeyypa0ZaaSaaaeaacqaHdpWCdaahaaWcbeqaaiaaikdaaaaakeaa cqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaOGamai4gk diIcaaaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaiMda aaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkca aI2aGaeqiUde3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIaaGioaiab eI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaigdacaaI2aGaeq iUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaGOmaiaaisdacqaH 4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaGimaiabeI 7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdacaaI0aGaeqiU de3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacqaH4o qCcqGHRaWkcaaIXaGaaGOmaaqaaiabeI7aXnaabmaabaGaeqiUde3a aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaale qabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqa aiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaisdacqaH4o qCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzk aaaaaaaa@841E@

 The nature of coefficients of variation, skewness, kurtosis and index of dispersion of PAD for varying values of parameter are shown in the following Figure 2. It is obvious that the coefficient of variation, skewness, kurtosis and index of dispersion are all increasing for increasing values of parameter (Figure 2).

Figure 2 Coefficients of variation, skewness, kurtosis and index of dispersion for varying values of parameter.

Statistical properties

Over-dispersion

We have

μ 2 = θ 9 + θ 8 +6 θ 7 +8 θ 6 +16 θ 5 +24 θ 4 +20 θ 3 +24 θ 2 +12θ+12 θ 2 ( θ 4 +2 θ 2 +2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa beaacaaI5aaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaI4aaaaO Gaey4kaSIaaGOnaiabeI7aXnaaCaaaleqabaGaaG4naaaakiabgUca RiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIXa GaaGOnaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaikda caaI0aGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmai aaicdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGa aGinaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaca aIYaGaeqiUdeNaey4kaSIaaGymaiaaikdaaeaacqaH4oqCdaahaaWc beqaaiaaikdaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaa aakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIYaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaa a@71D8@ = θ 4 +4 θ 2 +6 θ( θ 4 +2 θ 2 +2 ) [ θ 9 + θ 8 +6 θ 7 +8 θ 6 +16 θ 5 +24 θ 4 +20 θ 3 +24 θ 2 +12θ+12 θ( θ 4 +2 θ 2 +2 )( θ 4 +4 θ 2 +6 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGinaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaeaacqaH4o qCdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa ikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaaca GLOaGaayzkaaaaamaadmaabaWaaSaaaeaacqaH4oqCdaahaaWcbeqa aiaaiMdaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccq GHRaWkcaaI2aGaeqiUde3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIa aGioaiabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaigdaca aI2aGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaGOmaiaa isdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaG imaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdacaaI 0aGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaik dacqaH4oqCcqGHRaWkcaaIXaGaaGOmaaqaaiabeI7aXnaabmaabaGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaa daqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaais dacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaacaGL OaGaayzkaaaaaaGaay5waiaaw2faaaaa@8DDA@ = θ 4 +4 θ 2 +6 θ( θ 4 +2 θ 2 +2 ) [ 1+ θ 8 +8 θ 6 +24 θ 4 +24 θ 2 +12 θ( θ 4 +2 θ 2 +2 )( θ 4 +4 θ 2 +6 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGinaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaeaacqaH4o qCdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa ikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaaca GLOaGaayzkaaaaamaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiU de3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIaaGioaiabeI7aXnaaCa aaleqabaGaaGOnaaaakiabgUcaRiaaikdacaaI0aGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiaaisdacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGOmaaqaaiabeI7aXnaa bmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmai abeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIca caGLPaaadaqadaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgU caRiaaisdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI 2aaacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaaa@797B@ = μ 1 [ 1+ θ 8 +8 θ 6 +24 θ 4 +24 θ 2 +12 θ( θ 4 +2 θ 2 +2 )( θ 4 +4 θ 2 +6 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iabeY 7aTnaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGika amaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUde3aaWbaaSqabe aacaaI4aaaaOGaey4kaSIaaGioaiabeI7aXnaaCaaaleqabaGaaGOn aaaakiabgUcaRiaaikdacaaI0aGaeqiUde3aaWbaaSqabeaacaaI0a aaaOGaey4kaSIaaGOmaiaaisdacqaH4oqCdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIXaGaaGOmaaqaaiabeI7aXnaabmaabaGaeqiUde 3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaa leqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaadaqada qaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaisdacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaay zkaaaaaaGaay5waiaaw2faaaaa@6ACC@

This shows that μ 2 > μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg6da+iabeY7aTnaaBaaaleaacaaIXaaa beaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@4084@ and thus PAD is always over-dispersed distribution. Therefore, PAD can be used for discrete data sets which are over-dispersed in nature.

Increasing Hazard Rate and Unimodality

It can be easily shown that PAD has increasing hazard rate (IHR) and is unimodal. Since

P( x+1,θ ) P( x,θ ) = 1 θ+1 [ 1+ 2{ x+( θ 2 +θ+2 ) } x 2 +( 2 θ 2 +2θ+3 )x+( θ 4 +2 θ 3 +3 θ 2 +2θ+2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iuamaabmaabaGaamiEaiabgUcaRiaaigdacaGGSaGaeqiUdehacaGL OaGaayzkaaaabaGaamiuamaabmaabaGaamiEaiaacYcacqaH4oqCai aawIcacaGLPaaaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaeqiUdeNa ey4kaSIaaGymaaaadaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaaik dadaGadaqaaiaadIhacqGHRaWkdaqadaqaaiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiabeI7aXjabgUcaRiaaikdaaiaawIcaca GLPaaaaiaawUhacaGL9baaaeaacaWG4bWaaWbaaSqabeaacaaIYaaa aOGaey4kaSYaaeWaaeaacaaIYaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOmaiabeI7aXjabgUcaRiaaiodaaiaawIcacaGL PaaacaWG4bGaey4kaSYaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaais daaaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGa ey4kaSIaaG4maiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaikdacqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaaaaGaay5w aiaaw2faaaaa@7A7C@

  is a decreasing function of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ for a given θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ , P( x,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaaaaa@3CCF@ is log-concave. This implies that PAD has an increasing hazard rate and is unimodal. Grandell5 has detailed discussion about relationship between log-concavity, IHR and Unimodality of discrete distributions.

Parameter estimation

Method of moment estimate

Let x 1 , x 2 ,..., x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaa kiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamiEamaaBaaaleaaca WGUbaabeaaaaa@412D@ be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@3801@ from PAD. Equating the first moment about origin to the corresponding sample moment, the MOME θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaia aaaa@38D3@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ is the solution of the following fifth degree polynomial equation

x ¯ θ 5 θ 4 +2 x ¯ θ 3 4 θ 2 +2 x ¯ θ6=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeai abeI7aXnaaCaaaleqabaGaaGynaaaakiabgkHiTiabeI7aXnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdaceWG4bGbaebacqaH4oqCda ahaaWcbeqaaiaaiodaaaGccqGHsislcaaI0aGaeqiUde3aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGOmaiqadIhagaqeaiabeI7aXjabgk HiTiaaiAdacqGH9aqpcaaIWaaaaa@4FEE@ , where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeaa aa@3823@ is the sample mean.

 This equation can be solved using Newton-Raphson method to get the estimate of the parameter.

Maximum Likelihood Estimate

Let be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@3801@ from PAD and let f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamiEaaqabaaaaa@3922@ be the observed frequency in the sample corresponding to X=x(x=1,2,3,...,k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpcaWG4bGaaGPaVlaaykW7caGGOaGaamiEaiabg2da9iaaigdacaGG SaGaaGOmaiaacYcacaaIZaGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaWGRbGaaiykaaaa@485A@ such that x=1 k f x =n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqahabaGaam OzamaaBaaaleaacaWG4baabeaaaeaacaWG4bGaeyypa0JaaGymaaqa aiaadUgaa0GaeyyeIuoakiabg2da9iaad6gaaaa@410A@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgaaaa@37FE@ is the largest observed value having non-zero frequency. The likelihood function L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@37DF@ of PAD is given by

L= ( θ 4 θ 4 +2 θ 2 +2 ) n 1 ( θ+1 ) x=1 k f x ( x+3 ) x=1 k [ x 2 +( 2 θ 2 +2θ+3 )x+( θ 4 +2 θ 3 +3 θ 2 +2θ+2 ) ] f x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGH9a qpdaqadaqaamaalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaaGc baGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaaaacaGLOaGa ayzkaaWaaWbaaSqabeaacaWGUbaaaOWaaSaaaeaacaaIXaaabaWaae WaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqa beaadaaeWbqaaiaadAgadaWgaaadbaGaamiEaaqabaWcdaqadaqaai aadIhacqGHRaWkcaaIZaaacaGLOaGaayzkaaaameaacaWG4bGaeyyp a0JaaGymaaqaaiaadUgaa4GaeyyeIuoaaaaaaOWaaebCaeaadaWada qaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiaa ikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeq iUdeNaey4kaSIaaG4maaGaayjkaiaawMcaaiaadIhacqGHRaWkdaqa daqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacq aH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeI7aXjabgUcaRi aaikdaaiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaa dAgadaWgaaadbaGaamiEaaqabaaaaaWcbaGaamiEaiabg2da9iaaig daaeaacaWGRbaaniabg+Givdaaaa@8353@

 The log likelihood function is obtained as

logL=nlog( θ 4 θ 4 +2 θ 2 +2 ) x=1 k f x ( x+3 ) log( θ+1 ) + x=1 k f x log[ x 2 +( 2 θ 2 +2θ+3 )x+( θ 4 +2 θ 3 +3 θ 2 +2θ+2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaciiBai aac+gacaGGNbGaamitaiabg2da9iaad6gaciGGSbGaai4BaiaacEga daqadaqaamaalaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaaGcba GaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7a XnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaaaacaGLOaGaay zkaaGaeyOeI0YaaabCaeaacaWGMbWaaSbaaSqaaiaadIhaaeqaaOWa aeWaaeaacaWG4bGaey4kaSIaaG4maaGaayjkaiaawMcaaaWcbaGaam iEaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdGcciGGSbGaai4B aiaacEgadaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPa aaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRm aaqahabaGaamOzamaaBaaaleaacaWG4baabeaakiGacYgacaGGVbGa ai4zamaadmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRm aabmaabaGaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUca RiaaikdacqaH4oqCcqGHRaWkcaaIZaaacaGLOaGaayzkaaGaamiEai abgUcaRmaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4k aSIaaGOmaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaio dacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiU deNaey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay5waiaaw2faaaWcba GaamiEaiabg2da9iaaigdaaeaacaWGRbaaniabggHiLdaaaaa@A4BD@

The first derivative of the log likelihood function is given by

dlogL dθ = 12n θ 4n( θ 3 +θ ) θ 4 +2 θ 2 +2 n( x ¯ +3 ) θ+1 + x=1 k [ ( 4θ+2 )x+( 4 θ 3 +6 θ 2 +6θ+2 ) ] f x x 2 +( 2 θ 2 +2θ+3 )x+( θ 4 +2 θ 3 +3 θ 2 +2θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGVbGaai4zaiaadYeaaeaacaWGKbGaeqiUdehaaiab g2da9maalaaabaGaaGymaiaaikdacaWGUbaabaGaeqiUdehaaiabgk HiTmaalaaabaGaaGinaiaad6gadaqadaqaaiabeI7aXnaaCaaaleqa baGaaG4maaaakiabgUcaRiabeI7aXbGaayjkaiaawMcaaaqaaiabeI 7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaaaiabgkHiTmaalaaaba GaamOBamaabmaabaGabmiEayaaraGaey4kaSIaaG4maaGaayjkaiaa wMcaaaqaaiabeI7aXjabgUcaRiaaigdaaaGaey4kaSYaaabCaeaada WcaaqaamaadmaabaWaaeWaaeaacaaI0aGaeqiUdeNaey4kaSIaaGOm aaGaayjkaiaawMcaaiaadIhacqGHRaWkdaqadaqaaiaaisdacqaH4o qCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI2aGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGOnaiabeI7aXjabgUcaRiaaik daaiaawIcacaGLPaaaaiaawUfacaGLDbaacaWGMbWaaSbaaSqaaiaa dIhaaeqaaaGcbaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRm aabmaabaGaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUca RiaaikdacqaH4oqCcqGHRaWkcaaIZaaacaGLOaGaayzkaaGaamiEai abgUcaRmaabmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4k aSIaaGOmaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaio dacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiU deNaey4kaSIaaGOmaaGaayjkaiaawMcaaaaaaSqaaiaadIhacqGH9a qpcaaIXaaabaGaam4AaaqdcqGHris5aaaa@9FEC@

,

where x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeaa aa@3823@ is the sample mean.

The maximum likelihood estimate (MLE), θ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaia aaaa@38D3@ of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ is the solution of the equation dlogL dθ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGVbGaai4zaiaadYeaaeaacaWGKbGaeqiUdehaaiab g2da9iaaicdaaaa@4007@ and is given by the solution of the non-linear equation

12n θ 4n( θ 3 +θ ) θ 4 +2 θ 2 +2 n( x ¯ +3 ) θ+1 + x=1 k [ ( 4θ+2 )x+( 4 θ 3 +6 θ 2 +6θ+2 ) ] f x x 2 +( 2 θ 2 +2θ+3 )x+( θ 4 +2 θ 3 +3 θ 2 +2θ+2 ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaikdacaWGUbaabaGaeqiUdehaaiabgkHiTmaalaaabaGaaGin aiaad6gadaqadaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgU caRiabeI7aXbGaayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGa aGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIYaaaaiabgkHiTmaalaaabaGaamOBamaabmaabaGa bmiEayaaraGaey4kaSIaaG4maaGaayjkaiaawMcaaaqaaiabeI7aXj abgUcaRiaaigdaaaGaey4kaSYaaabCaeaadaWcaaqaamaadmaabaWa aeWaaeaacaaI0aGaeqiUdeNaey4kaSIaaGOmaaGaayjkaiaawMcaai aadIhacqGHRaWkdaqadaqaaiaaisdacqaH4oqCdaahaaWcbeqaaiaa iodaaaGccqGHRaWkcaaI2aGaeqiUde3aaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGOnaiabeI7aXjabgUcaRiaaikdaaiaawIcacaGLPaaa aiaawUfacaGLDbaacaWGMbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaam iEamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaGaaGOmaiab eI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4oqCcq GHRaWkcaaIZaaacaGLOaGaayzkaaGaamiEaiabgUcaRmaabmaabaGa eqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXn aaCaaaleqabaGaaG4maaaakiabgUcaRiaaiodacqaH4oqCdaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqiUdeNaey4kaSIaaGOmaa GaayjkaiaawMcaaaaaaSqaaiaadIhacqGH9aqpcaaIXaaabaGaam4A aaqdcqGHris5aOGaeyypa0JaaGimaaaa@9977@ Since this log-likelihood equation cannot be expressed in closed form, it may be difficult to solve it by direct method. Therefore, the MLE of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ can be computed iteratively by solving log-likelihood equation using Newton-Raphson iteration available in R-software, until sufficiently close values of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ is obtained. The initial value of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ can be taken as the value given by method of moment estimate.

Applications

In this section, the applications of PAD have been discussed for three count datasets which are over-dispersed. The goodness of fit of PAD has been compared with Poisson and PLD. The pmf of PLD is given by P( x,θ )= θ 2 ( x+θ+2 ) ( θ+1 ) x+3 ;x=0,1,2,...,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadIhacq GHRaWkcqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaabaWaaeWa aeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabe aacaWG4bGaey4kaSIaaG4maaaaaaGccaaMc8UaaGPaVlaacUdacaWG 4bGaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaaikdacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiabeI7aXjabg6da+iaaicdaaaa@5F50@

The expected values given by Poisson, PLD and PAD are given in the table for ready comparison. It is very clear from the goodness of fit presented in tables 1, 2, and 3 that PAD provides a better fit over Poisson and PLD (Tables 1-3).

No. of errors per group

Observed frequency

         Expected frequency

      PD

     PLD

        PAD

0

35

27.4

33

33.1

1

11

21.5

15.3

15.2

2

8

      8.4

      6.8

6.7

3

4

      2.2

      2.9

            2.8

4

2

      0.5

      2.0

            2.9

Total

60

60

60

60

ML estimate

         

θ ^ =0.7833 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI3aGaaGioaiaaiodacaaIZaaaaa@3E43@

θ ^ =1.7434 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGymaiaac6cacaaI3aGaaGinaiaaiodacaaI0aaaaa@3E41@

θ ^ =1.9141 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGymaiaac6cacaaI5aGaaGymaiaaisdacaaIXaaaaa@3E3E@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@

7.98

2.20

1.72

d.f.

1

1

2

p-value

0.0047

0.1380

0.4232

Table 1 Distribution of mistakes in copying groups of random digits, available in Kemp and Kemp6

No. of chromatid aberrations

Observed frequency

          Expected frequency

 
PD

 

PLD

 

PAD        

0

268

231.3

257

258.1

1

87

126.7

93.4

92.5

2

26

34.7

32.8

32.4

3

9

6.3

11.2

11.2

4

4

0.8

3.8

3.8

5

2

0.1

1.2

1.3

6

1

0.1

0.4

0.4

7+

3

0.1

0.2

0.4

Total

400

400

400

400

ML estimate

θ ^ =0.5475 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI1aGaaGinaiaaiEdacaaI1aaaaa@3E43@

θ ^ =2.380442 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaIZaGaaGioaiaaicdacaaI0aGaaGin aiaaikdaaaa@3FB9@     

θ ^ =2.4406 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaI0aGaaGinaiaaicdacaaI2aaaaa@3E3E@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@

38.21

6.21

5.21

d.f.

2

3

3

p-value

0.0000

0.1018

0.1577

Table 2 Distribution of number of chromatid aberrations (0.2 g chinon 1, 24 hours), available in Loeschke & Kohler7 and Janardan & Schaeffer8

No. of accidents

Observed frequency

           Expected frequency

           PD

         PLD

         PAD

0

447

406

439.5

440.5

1

132

189

142.8

141.5

2

42

45

45

44.7

3

21

7

13.9

14

4

3

1

4.2

4.3

5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgwMiZkaaiw daaaa@3993@

2

0.1

1.2

2.0

Total

647

647

647

647

ML estimate

θ ^ =0.465 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGimaiaac6cacaaI0aGaaGOnaiaaiwdaaaa@3D83@

θ ^ =2.729 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaI3aGaaGOmaiaaiMdaaaa@3D88@

θ ^ =2.7182 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja Gaeyypa0JaaGOmaiaac6cacaaI3aGaaGymaiaaiIdacaaIYaaaaa@3E42@

χ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaCa aaleqabaGaaGOmaaaaaaa@39AE@

61.08

4.82

4.66

d.f.

1

3

2

p-value

0.0273

0.1855

0.1985

Table 3 Accidents to 647 women working on high explosive shells in 5 weeks, available in Sankaran1

Concluding remarks

In this paper a Poisson mixture of Adya distribution called Poisson-Adya distribution (PAD) has been suggested. The expressions of statistical constants including coefficients of variation, skewness, kurtosis and index of dispersion have been obtained and their behavior for varying values of parameter has been studied. It is observed that the obtained distribution is unimodal, has increasing hazard rate and over-dispersed. Maximum likelihood estimation and method of moment have been discussed for estimating parameter. Finally, the goodness of fit of the proposed distribution and its comparison with other one parameter discrete distributions including Poisson and PLD on three datasets from biological science has been presented.

Acknowledgments

None.

Conflicts of interest

The authors declare no conflicts of interest.

References

Creative Commons Attribution License

©2022 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.