Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 12 Issue 4

The Pezeta regression model: an alternative to unit Lindley regression model

Lucas D Ribeiro Reis

Department of Economics, Federal University of Alagoas, Brazil

Correspondence: Lucas D Ribeiro Reis, Department of Economics, Federal University of Alagoas, Brazil

Received: July 18, 2023 | Published: August 4, 2023

Citation: Reis LDR. The Pezeta regression model: an alternative to unit Lindley regression model. Biom Biostat Int J. 2023;12(4):107-112. DOI: 10.15406/bbij.2023.12.00393

Download PDF

Abstract

A new probability distribution is proposed in this paper. This new distribution has support on the interval ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaaGimaiaacYcacaaIXaaacaGLOaGaayzkaaaa aa@39E4@  and was obtained after transforming the random variable with exponential distribution. The mode, quantile function, median, ordinary moments and density function belongs to exponential family of distributions are demonstrated. The maximum likelihood method is used to obtain the parameter estimate. A regression model for the median of the distribution is also proposed. Closed-form expressions for the score vector and Fisher’s information matrix are demonstrated. A simulation study and an application to real data showed the good performance of the proposed regression model.

Keywords: unit interval, exponential family, exponential distribution, mode, ordinary moments, regression model

Introduction

The probability density function (pdf) of a random variable W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEfaaaa@38C4@ with exponential distribution is given by

r( w;λ )=λ e λw ,w>0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkhadaqadaWdaeaapeGaam4DaiaacUdacqaH7oaBaiaawIcacaGL PaaacqGH9aqpcqaH7oaBcaqGLbWdamaaCaaaleqabaWdbiabgkHiTi abeU7aSjaadEhaaaGccaGGSaGaam4Daiabg6da+iaaicdacaGGSaaa aa@49A9@

where λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSjabg6da+iaaicdaaaa@3B5E@  is scale parameter.

Taking Y=1/( 1+W ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfacqGH9aqpcaaIXaGaai4lamaabmaapaqaa8qacaaIXaGaey4k aSIaam4vaaGaayjkaiaawMcaaaaa@3F5B@ , the cdf and pdf of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfaaaa@38C6@ are

F( y;λ )=exp[ λ( 1 y 1 ) ],0<y<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeadaqadaWdaeaapeGaamyEaiaacUdacqaH7oaBaiaawIcacaGL PaaacqGH9aqpcaqGLbGaaeiEaiaabchadaWadaWdaeaapeGaeq4UdW 2aaeWaa8aabaWdbiaaigdacqGHsislcaWG5bWdamaaCaaaleqabaWd biabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaca GGSaGaaGimaiabgYda8iaadMhacqGH8aapcaaIXaaaaa@50E4@  and

f( y;λ )= λ y 2 exp[ λ( 1 y 1 ) ],0<y<1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgadaqadaWdaeaapeGaamyEaiaacUdacqaH7oaBaiaawIcacaGL PaaacqGH9aqpdaWcaaWdaeaapeGaeq4UdWgapaqaa8qacaWG5bWdam aaCaaaleqabaWdbiaaikdaaaaaaOGaaeyzaiaabIhacaqGWbWaamWa a8aabaWdbiabeU7aSnaabmaapaqaa8qacaaIXaGaeyOeI0IaamyEa8 aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaa caGLBbGaayzxaaGaaiilaiaaicdacqGH8aapcaWG5bGaeyipaWJaaG ymaiaacYcaaaa@55C6@   1

respectively.

Here, we will call the random variable with pdf (1) of Pezeta distribution, and denote this random variable as Ypezeta( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfacqGH8iIFcaqGWbGaaeyzaiaabQhacaqGLbGaaeiDaiaabgga daqadaWdaeaapeGaeq4UdWgacaGLOaGaayzkaaaaaa@4325@ . The Figure 1 shows some forms of the density function (1) for selected values of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@399C@ . This figure reveals that the peseta distribution is unimodal, and may also present positive (when λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@399C@ approaches 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaicdaaaa@38A2@ ) and negative (whenmoves away from ) asymmetry.

Figure 1 Some forms of the pdf (1), for special cases.

The first derivative of the log-pdf is

ζ( y )= d dy ln( f( y;λ ) )= 2 y + λ y 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeA7a6naabmaapaqaa8qacaWG5baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiaadsgaa8aabaWdbiaadsgacaWG5baaaiaabYgaca qGUbWaaeWaa8aabaWdbiaadAgadaqadaWdaeaapeGaamyEaiaacUda cqaH7oaBaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcqGHsi sldaWcaaWdaeaapeGaaGOmaaWdaeaapeGaamyEaaaacqGHRaWkdaWc aaWdaeaapeGaeq4UdWgapaqaa8qacaWG5bWdamaaCaaaleqabaWdbi aaikdaaaaaaOGaaiOlaaaa@539C@  

Solving ζ( y )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeA7a69aadaqadaqaa8qacaWG5baapaGaayjkaiaawMcaa8qacqGH 9aqpcaaIWaaaaa@3E29@ , the mode of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbaaaa@36F5@  is

mode( Y )={ λ 2 , λ<2, 1, λ2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aab2gacaqGVbGaaeizaiaabwgadaqadaWdaeaapeGaamywaaGaayjk aiaawMcaaiabg2da9maaceaapaqaauaabaqaciaaaeaapeWaaSaaa8 aabaWdbiabeU7aSbWdaeaapeGaaGOmaaaacaGGSaaapaqaa8qacqaH 7oaBcqGH8aapcaaIYaGaaiilaaWdaeaapeGaaGymaiaacYcaa8aaba WdbiabeU7aSjabgwMiZkaaikdacaGGUaaaaaGaay5Eaaaaaa@4EAF@

The r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkhaaaa@38DF@ th ordinary moment of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfaaaa@38C6@ is

E( Y r )= 0 1 λ y r2 exp[ λ( 1 y 1 ) ]dy =λ e λ E r ( λ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaamrr1ngBPr wtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWF ecFrdaqadaWdaeaapeGaamywa8aadaahaaWcbeqaa8qacaWGYbaaaa GccaGLOaGaayzkaaGaeyypa0ZaaybCaeqal8aabaWdbiaaicdaa8aa baWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaeq4UdWMaamyEa8aada ahaaWcbeqaa8qacaWGYbGaeyOeI0IaaGOmaaaakiaabwgacaqG4bGa aeiCamaadmaapaqaa8qacqaH7oaBdaqadaWdaeaapeGaaGymaiabgk HiTiaadMhapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaaOGaayjk aiaawMcaaaGaay5waiaaw2faaiaadsgacaWG5baabaGaeyypa0Jaeq 4UdWMaaeyza8aadaahaaWcbeqaa8qacqaH7oaBaaGccaWGfbWdamaa BaaaleaapeGaamOCaaWdaeqaaOWdbmaabmaapaqaa8qacqaH7oaBai aawIcacaGLPaaacaGGSaaaaaa@6D54@

where E n ( x )= 1 z n e xz dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeWaaeWaa8aabaWd biaadIhaaiaawIcacaGLPaaacqGH9aqpdaGfWbqabSWdaeaapeGaaG ymaaWdaeaapeGaeqOhIukan8aabaWdbiabgUIiYdaakiaadQhapaWa aWbaaSqabeaapeGaeyOeI0IaamOBaaaakiaabwgapaWaaWbaaSqabe aapeGaeyOeI0IaamiEaiaadQhaaaGccaWGKbGaamOEaaaa@4C05@ denotes the exponential integral function.1

By inverting F( y;λ )=p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeadaqadaWdaeaapeGaamyEaiaacUdacqaH7oaBaiaawIcacaGL PaaacqGH9aqpcaWGWbaaaa@3FC7@ , the quantile function is given by

Q( p;λ )= [ 1 λ 1 ln( p ) ] 1 ,0<p<1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfadaqadaWdaeaapeGaamiCaiaacUdacqaH7oaBaiaawIcacaGL PaaacqGH9aqpdaWadaWdaeaapeGaaGymaiabgkHiTiabeU7aS9aada ahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaaeiBaiaab6gadaqadaWd aeaapeGaamiCaaGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaa Wcbeqaa8qacqGHsislcaaIXaaaaOGaaiilaiaaicdacqGH8aapcaWG WbGaeyipaWJaaGymaiaac6caaaa@528E@

The median is obtained when p=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadchacqGH9aqpcaaIWaGaaiOlaiaaiwdaaaa@3C0E@ . So, the median of Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbaaaa@36F5@  is

median( Y )= [ 1 λ 1 ln( 0.5 ) ] 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gacaWGLbGaamizaiaadMgacaWGHbGaamOBamaabmaapaqaa8qa caWGzbaacaGLOaGaayzkaaGaeyypa0ZaamWaa8aabaWdbiaaigdacq GHsislcqaH7oaBpaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiaa bYgacaqGUbWaaeWaa8aabaWdbiaaicdacaGGUaGaaGynaaGaayjkai aawMcaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacqGHsislcaaI XaaaaOGaaiOlaaaa@50CE@

Using the quantile function, the random variable

Y= [ 1 λ 1 ln( V ) ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfacqGH9aqpdaWadaWdaeaapeGaaGymaiabgkHiTiabeU7aS9aa daahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaaeiBaiaab6gadaqada WdaeaapeGaamOvaaGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaah aaWcbeqaa8qacqGHsislcaaIXaaaaaaa@478E@ has density function (1), where V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbaaaa@36F2@  is a uniform random variable over the interval ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaaIWaGaaiilaiaaigdaaiaawIcacaGLPaaaaaa@3BB5@ .

The paper is structured as follows. In Section 4, it is shown that the distribution belongs to the exponential distribution family. The mean and variance of the sufficient statistic are also presented. In Section 5, the maximum likelihood method to obtain the parameter estimate is presented. Analytical expressions for the bias correction of the maximum likelihood estimator are also presented. In Section 6, a new regression model is introduced. In Sections 7 and 8, numerical and empirical results are presented, respectively. Finally, Section 9 concludes the paper.

Exponential family

Let the random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfaaaa@38C6@ with pdf f( y;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgadaqadaWdaeaapeGaamyEaiaacUdacqaH4oqCaiaawIcacaGL Paaaaaa@3DEE@ , in which θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeI7aXbaa@399E@ is the parameter that indexes the distribution. This random variable belongs to the exponential family if its pdf can be written as

f( y;θ )=h( y )exp[ η( θ )t( y )b( θ ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgadaqadaWdaeaapeGaamyEaiaacUdacqaH4oqCaiaawIcacaGL PaaacqGH9aqpcaWGObWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPa aacaqGLbGaaeiEaiaabchadaWadaWdaeaapeGaeq4TdG2aaeWaa8aa baWdbiabeI7aXbGaayjkaiaawMcaaiaadshadaqadaWdaeaapeGaam yEaaGaayjkaiaawMcaaiabgkHiTiaadkgadaqadaWdaeaapeGaeqiU dehacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiilaaaa@55F8@   2

where the functions η( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aOnaabmaapaqaa8qacqaH4oqCaiaawIcacaGLPaaaaaa@3CF1@ , b( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkgadaqadaWdaeaapeGaeqiUdehacaGLOaGaayzkaaaaaa@3C2C@ , t( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaaaa@3B86@ and h( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIgadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaaaa@3B7A@ assume values in subsets of the reals.

Note that, the pdf (1) can be written as

f( y;λ )= 1 y 2 exp[ λ( 1 y 1 )( ln( λ ) ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgadaqadaWdaeaapeGaamyEaiaacUdacqaH7oaBaiaawIcacaGL PaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyEa8aada ahaaWcbeqaa8qacaaIYaaaaaaakiaabwgacaqG4bGaaeiCamaadmaa paqaa8qacqaH7oaBdaqadaWdaeaapeGaaGymaiabgkHiTiaadMhapa WaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiab gkHiTmaabmaapaqaa8qacqGHsislcaqGSbGaaeOBamaabmaapaqaa8 qacqaH7oaBaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUfacaGL DbaacaGGUaaaaa@5861@  

that belongs to exponential family (2), where η( λ )=λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aOnaabmaapaqaa8qacqaH7oaBaiaawIcacaGLPaaacqGH9aqp cqaH7oaBaaa@3FA9@ , t( y )=1 y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaiabg2da9iaa igdacqGHsislcaWG5bWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaa aaaa@4126@ , b( λ )=ln( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkgadaqadaWdaeaapeGaeq4UdWgacaGLOaGaayzkaaGaeyypa0Ja eyOeI0IaaeiBaiaab6gadaqadaWdaeaapeGaeq4UdWgacaGLOaGaay zkaaaaaa@4359@ and h( y )=1/ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGObWaaeWaa8aabaWdbiaadMhaaiaawIcacaGLPaaacqGH9aqp caaIXaGaai4laiaadMhapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@3E24@ . Thus, by the factorization criterion t( y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaaaa@3B87@ is sufficient statistics for λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@399C@ . The fact that Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfaaaa@38C6@ belongs to exponential family, the mean and variance of t( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshadaqadaWdaeaacaWGzbaapeGaayjkaiaawMcaaaaa@3B67@ are given by

E[ t( Y ) ]= 1 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8hHWx0a amWaa8aabaWdbiaadshadaqadaWdaeaapeGaamywaaGaayjkaiaawM caaaGaay5waiaaw2faaiabg2da9iabgkHiTmaalaaapaqaa8qacaaI Xaaapaqaa8qacqaH7oaBaaaaaa@4E04@  and V[ t( Y ) ]= 1 λ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xLWB1a amWaa8aabaWdbiaadshadaqadaWdaeaapeGaamywaaGaayjkaiaawM caaaGaay5waiaaw2faaiabg2da9maalaaapaqaa8qacaaIXaaapaqa a8qacqaH7oaBpaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGGSaaaaa@4EFB@

respectively.

Maximum likelihood estimation

For a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gaaaa@38DB@ of the random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfaaaa@38C6@ with density function (1), the log-likelihood function for λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@399C@ is given by

0 ( λ )=nln( λ )+λ i=1 n ( 1 y i 1 )2 i=1 n ln( y i ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacqaH7o aBaiaawIcacaGLPaaacqGH9aqpcaWGUbGaaeiBaiaab6gadaqadaWd aeaapeGaeq4UdWgacaGLOaGaayzkaaGaey4kaSIaeq4UdW2aaybCae qal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aa baWdbiabggHiLdaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyEa8 aadaqhaaWcbaWdbiaadMgaa8aabaWdbiabgkHiTiaaigdaaaaakiaa wIcacaGLPaaacqGHsislcaaIYaWaaybCaeqal8aabaWdbiaadMgacq GH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakiaa bYgacaqGUbWaaeWaa8aabaWdbiaadMhapaWaaSbaaSqaa8qacaWGPb aapaqabaaak8qacaGLOaGaayzkaaGaaiOlaaaa@6D08@

The maximum likelihood estimator (MLE) of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@399C@ is the solution of

0 ( λ ) λ = n λ + i=1 n ( 1 y i 1 )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrim9aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qadaqadaWdaeaapeGaeq4UdWgacaGLOaGaayzkaaaapaqaa8qacqGH ciITcqaH7oaBaaGaeyypa0ZaaSaaa8aabaWdbiaad6gaa8aabaWdbi abeU7aSbaacqGHRaWkdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaa igdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOWaaeWaa8aaba WdbiaaigdacqGHsislcaWG5bWdamaaDaaaleaapeGaamyAaaWdaeaa peGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiabg2da9iaaicdaca GGUaaaaa@60C4@

So, the MLE of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@399C@ is

λ ^ = n i=1 n ( 1 y i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbeU7aS9aagaqca8qacqGH9aqpcqGHsisldaWcaaWdaeaapeGaamOB aaWdaeaapeWaaubmaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapa qaa8qacaWGUbaan8aabaWdbiabggHiLdaakmaabmaapaqaa8qacaaI XaGaeyOeI0IaamyEa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiabgk HiTiaaigdaaaaakiaawIcacaGLPaaaaaaaaa@4A66@ .

The second derivative of 0 ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacqaH7o aBaiaawIcacaGLPaaaaaa@4700@  is given as

2 0 ( λ ) λ 2 = n λ 2 <0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaatuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8NeHW0dam aaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacqaH7oaB aiaawIcacaGLPaaaa8aabaWdbiabgkGi2kabeU7aS9aadaahaaWcbe qaa8qacaaIYaaaaaaakiabg2da9iabgkHiTmaalaaapaqaa8qacaWG Ubaapaqaa8qacqaH7oaBpaWaaWbaaSqabeaapeGaaGOmaaaaaaGccq GH8aapcaaIWaGaaiilaaaa@565A@

showing that λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbeU7aS9aagaqcaaaa@39BB@  really is the point that a maximizes the function 0 ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacqaH7o aBaiaawIcacaGLPaaaaaa@4700@ . It can be further shown that the variance and standard error of λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbeU7aS9aagaqcaaaa@39BB@  are expressed as V( λ ^ )= λ ^ 2 /n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xLWB1a aeWaa8aabaWdbiqbeU7aS9aagaqcaaWdbiaawIcacaGLPaaacqGH9a qpcuaH7oaBpaGbaKaadaahaaWcbeqaa8qacaaIYaaaaOGaai4laiaa d6gaaaa@4CF8@ and se( λ ^ )= λ ^ / n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabohacaqGLbWaaeWaa8aabaWdbiqbeU7aS9aagaqcaaWdbiaawIca caGLPaaacqGH9aqpcuaH7oaBpaGbaKaapeGaai4lamaakaaapaqaa8 qacaWGUbaaleqaaaaa@421A@ , respectively.

MLE bias correction

Generally, when n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gaaaa@38DB@ is small, the MLEs tends to be biased. Here, a bias correction of the MLE of the parameter that indexes the Pezeta distribution will be presented. Here, the bias of λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbeU7aS9aagaqcaaaa@39BB@  can be expressed2 as

B( λ ^ )=V ( λ ) 2 ( 1 2 κ λλλ + κ λλ,λ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkeadaqadaWdaeaapeGafq4UdW2dayaajaaapeGaayjkaiaawMca aiabg2da9mrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfa Gae8xLWB1aaeWaa8aabaWdbiabeU7aSbGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbmaalaaapaqaa8qaca aIXaaapaqaa8qacaaIYaaaaiabeQ7aR9aadaWgaaWcbaWdbiabeU7a SjabeU7aSjabeU7aSbWdaeqaaOWdbiabgUcaRiabeQ7aR9aadaWgaa WcbaWdbiabeU7aSjabeU7aSjaacYcacqaH7oaBa8aabeaaaOWdbiaa wIcacaGLPaaacaGGSaaaaa@61E4@

where κ λλλ =E[ d 3 0 ( λ ) d λ 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeQ7aR9aadaWgaaWcbaWdbiabeU7aSjabeU7aSjabeU7aSbWdaeqa aOWdbiabg2da9mrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVb acfaGae8hHWx0aamWaa8aabaWdbmaalaaapaqaa8qacaWGKbWdamaa CaaaleqabaWdbiaaiodaaaWefv3ySLgznfgDOfdarCqr1ngBPrginf gDObYtUvgaiyaakiab+jrim9aadaWgaaWcbaWdbiaaicdaa8aabeaa k8qadaqadaWdaeaapeGaeq4UdWgacaGLOaGaayzkaaaapaqaa8qaca WGKbGaeq4UdW2damaaCaaaleqabaWdbiaaiodaaaaaaaGccaGLBbGa ayzxaaaaaa@6335@  and κ λλ,λ =E[ d 2 0 ( λ ) d λ 2 d 0 ( λ ) dλ ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeQ7aR9aadaWgaaWcbaWdbiabeU7aSjabeU7aSjaacYcacqaH7oaB a8aabeaak8qacqGH9aqptuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab=ri8fnaadmaapaqaa8qadaWcaaWdaeaapeGaamiz a8aadaahaaWcbeqaa8qacaaIYaaaamrr1ngBPrwtHrhAXaqehuuDJX wAKbstHrhAG8KBLbacgaGccqGFsectpaWaaSbaaSqaa8qacaaIWaaa paqabaGcpeWaaeWaa8aabaWdbiabeU7aSbGaayjkaiaawMcaaaWdae aapeGaamizaiabeU7aS9aadaahaaWcbeqaa8qacaaIYaaaaaaakmaa laaapaqaa8qacaWGKbGae4NeHW0damaaBaaaleaapeGaaGimaaWdae qaaOWdbmaabmaapaqaa8qacqaH7oaBaiaawIcacaGLPaaaa8aabaWd biaadsgacqaH7oaBaaaacaGLBbGaayzxaaaaaa@6D44@ .

Note that κ λλλ =2n/ λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeQ7aR9aadaWgaaWcbaWdbiabeU7aSjabeU7aSjabeU7aSbWdaeqa aOWdbiabg2da9iaaikdacaWGUbGaai4laiabeU7aS9aadaahaaWcbe qaa8qacaaIZaaaaaaa@454F@  and

2 0 ( λ ) λ 2 0 ( λ ) λ = n 2 λ 3 n λ 2 i=1 n ( 1 y i 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaatuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8NeHW0dam aaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapaqaa8qacqaH7oaB aiaawIcacaGLPaaaa8aabaWdbiabgkGi2kabeU7aS9aadaahaaWcbe qaa8qacaaIYaaaaaaakmaalaaapaqaa8qacqGHciITcqWFsectpaWa aSbaaSqaa8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiabeU7aSb GaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeq4UdWgaaiabg2da9iab gkHiTmaalaaapaqaa8qacaWGUbWdamaaCaaaleqabaWdbiaaikdaaa aak8aabaWdbiabeU7aS9aadaahaaWcbeqaa8qacaaIZaaaaaaakiab gkHiTmaalaaapaqaa8qacaWGUbaapaqaa8qacqaH7oaBpaWaaWbaaS qabeaapeGaaGOmaaaaaaGcdaGfWbqabSWdaeaapeGaamyAaiabg2da 9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOWaaeWaa8 aabaWdbiaaigdacqGHsislcaWG5bWdamaaDaaaleaapeGaamyAaaWd aeaapeGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaac6caaaa@72A9@

From Section 4, follows that

i=1 n E[ ( 1 y i 1 ) ]= i=1 n E[ t( y i ) ]= n λ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOB aaqdpaqaa8qacqGHris5aaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaakiab=ri8fnaadmaapaqaa8qadaqadaWdaeaapeGa aGymaiabgkHiTiaadMhapaWaa0baaSqaa8qacaWGPbaapaqaa8qacq GHsislcaaIXaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyyp a0ZaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qaca WGUbaan8aabaWdbiabggHiLdaakiab=ri8fnaadmaapaqaa8qacaWG 0bWaaeWaa8aabaWdbiaadMhapaWaaSbaaSqaa8qacaWGPbaapaqaba aak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0JaeyOeI0Ya aSaaa8aabaWdbiaad6gaa8aabaWdbiabeU7aSbaacaGGSaaaaa@69C3@

resulting in

κ λλ,λ = n 2 λ 3 n λ 2 E[ i=1 n ( 1 y i 1 ) ] = n 2 λ 3 n λ 2 i=1 n E[ ( 1 y i 1 ) ] = n 2 λ 3 + n 2 λ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaceabcaaaae aaqaaaaaaaaaWdbiabeQ7aR9aadaWgaaWcbaWdbiabeU7aSjabeU7a SjaacYcacqaH7oaBa8aabeaak8qacqGH9aqpa8aabaWdbiabgkHiTm aalaaapaqaa8qacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaaak8aa baWdbiabeU7aS9aadaahaaWcbeqaa8qacaaIZaaaaaaakiabgkHiTm aalaaapaqaa8qacaWGUbaapaqaa8qacqaH7oaBpaWaaWbaaSqabeaa peGaaGOmaaaaaaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39 gaiuaakiab=ri8fnaadmaapaqaa8qadaGfWbqabSWdaeaapeGaamyA aiabg2da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaO WaaeWaa8aabaWdbiaaigdacqGHsislcaWG5bWdamaaDaaaleaapeGa amyAaaWdaeaapeGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaaGaay 5waiaaw2faaaWdaeaapeGaeyypa0dapaqaa8qacqGHsisldaWcaaWd aeaapeGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacq aH7oaBpaWaaWbaaSqabeaapeGaaG4maaaaaaGccqGHsisldaWcaaWd aeaapeGaamOBaaWdaeaapeGaeq4UdW2damaaCaaaleqabaWdbiaaik daaaaaaOWaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqa a8qacaWGUbaan8aabaWdbiabggHiLdaakiab=ri8fnaadmaapaqaa8 qadaqadaWdaeaapeGaaGymaiabgkHiTiaadMhapaWaa0baaSqaa8qa caWGPbaapaqaa8qacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaaaca GLBbGaayzxaaaapaqaa8qacqGH9aqpa8aabaWdbiabgkHiTmaalaaa paqaa8qacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbi abeU7aS9aadaahaaWcbeqaa8qacaaIZaaaaaaakiabgUcaRmaalaaa paqaa8qacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbi abeU7aS9aadaahaaWcbeqaa8qacaaIZaaaaaaaaOWdaeaapeGaeyyp a0dapaqaa8qacaaIWaaaaaaa@952A@ .

Thus, the bias of λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbeU7aS9aagaqcaaaa@39BB@  is

B( λ ^ )= ( λ ^ 2 n ) 2 ( 2n 2 λ ^ 3 )= λ n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkeadaqadaWdaeaapeGafq4UdW2dayaajaaapeGaayjkaiaawMca aiabg2da9maabmaapaqaa8qadaWcaaWdaeaapeGafq4UdW2dayaaja WaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaamOBaaaaaiaawIca caGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qada WcaaWdaeaapeGaaGOmaiaad6gaa8aabaWdbiaaikdacuaH7oaBpaGb aKaadaahaaWcbeqaa8qacaaIZaaaaaaaaOGaayjkaiaawMcaaiabg2 da9maalaaapaqaa8qacqaH7oaBa8aabaWdbiaad6gaaaGaaiOlaaaa @4FF6@

Finally, it follows that the bias-corrected MLE λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbeU7aS9aagaqcaaaa@39BB@  is given by

λ ^ BC = λ ^ B( λ ^ )= λ ^ ( 1 1 n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbeU7aSzaajaWaaSbaaSqaaiaadkeacaWGdbaabeaakiabg2da9iqb eU7aSzaajaGaeyOeI0IaamOqaiaacIcacuaH7oaBgaqcaiaacMcacq GH9aqpcuaH7oaBgaqcamaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaa a8aabaWdbiaaigdaa8aabaWdbiaad6gaaaaacaGLOaGaayzkaaaaaa@4B21@  .

The Pezeta regression model

Starting from the Pezeta distribution, in this section a new regression model will be introduced for the dependent variable with support at (0,1). This model has a regression structure on the median of the distribution. Thus, in the presence of outliers in the data, this new regression model has an advantage over regression models with a mean structure.

By taking median( Y )=τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aab2gacaqGLbGaaeizaiaabMgacaqGHbGaaeOBamaabmaapaqaa8qa caWGzbaacaGLOaGaayzkaaGaeyypa0JaeqiXdqhaaa@42B9@ and isolating for λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@399C@ , results in

λ= ln( 0.5 ) 1 τ 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSjabg2da9maalaaapaqaa8qacaqGSbGaaeOBamaabmaapaqa a8qacaaIWaGaaiOlaiaaiwdaaiaawIcacaGLPaaaa8aabaWdbiaaig dacqGHsislcqaHepaDpaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaa aaGccaGGUaaaaa@46C0@

Under this parameterization, the density function (1) becomes

f( y;τ )= ln( 0.5 ) y 2 ( 1 τ 1 ) exp[ ln( 0.5 ) 1 τ 1 ( 1 y 1 ) ],0<y<1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgadaqadaWdaeaapeGaamyEaiaacUdacqaHepaDaiaawIcacaGL PaaacqGH9aqpdaWcaaWdaeaapeGaaeiBaiaab6gadaqadaWdaeaape GaaGimaiaac6cacaaI1aaacaGLOaGaayzkaaaapaqaa8qacaWG5bWd amaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgk HiTiabes8a09aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaGccaGL OaGaayzkaaaaaiaabwgacaqG4bGaaeiCamaadmaapaqaa8qadaWcaa WdaeaapeGaaeiBaiaab6gadaqadaWdaeaapeGaaGimaiaac6cacaaI 1aaacaGLOaGaayzkaaaapaqaa8qacaaIXaGaeyOeI0IaeqiXdq3dam aaCaaaleqabaWdbiabgkHiTiaaigdaaaaaaOWaaeWaa8aabaWdbiaa igdacqGHsislcaWG5bWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaa aakiaawIcacaGLPaaaaiaawUfacaGLDbaacaGGSaGaaGimaiabgYda 8iaadMhacqGH8aapcaaIXaGaaiilaaaa@6AA1@   3

and the corresponding cdf and quantile function are given by

F( y;τ )=exp[ ln( 0.5 ) 1 τ 1 ( 1 y 1 ) ],0<y<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeadaqadaWdaeaapeGaamyEaiaacUdacqaHepaDaiaawIcacaGL PaaacqGH9aqpcaqGLbGaaeiEaiaabchadaWadaWdaeaapeWaaSaaa8 aabaWdbiaabYgacaqGUbWaaeWaa8aabaWdbiaaicdacaGGUaGaaGyn aaGaayjkaiaawMcaaaWdaeaapeGaaGymaiabgkHiTiabes8a09aada ahaaWcbeqaa8qacqGHsislcaaIXaaaaaaakmaabmaapaqaa8qacaaI XaGaeyOeI0IaamyEa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiilaiaaicdacqGH8aap caWG5bGaeyipaWJaaGymaaaa@5AAD@   4

and

Q( p;τ )= [ 1 1 τ 1 ln( 0.5 ) ln( p ) ] 1 ,0<p<1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfadaqadaWdaeaapeGaamiCaiaacUdacqaHepaDaiaawIcacaGL PaaacqGH9aqpdaWadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8 qacaaIXaGaeyOeI0IaeqiXdq3damaaCaaaleqabaWdbiabgkHiTiaa igdaaaaak8aabaWdbiaabYgacaqGUbWaaeWaa8aabaWdbiaaicdaca GGUaGaaGynaaGaayjkaiaawMcaaaaacaqGSbGaaeOBamaabmaapaqa a8qacaWGWbaacaGLOaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaale qabaWdbiabgkHiTiaaigdaaaGccaGGSaGaaGimaiabgYda8iaadcha cqGH8aapcaaIXaGaaiilaaaa@5A57@

respectively, where 0<τ<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaicdacqGH8aapcqaHepaDcqGH8aapcaaIXaaaaa@3D2A@  denotes the median of Y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfacaGGUaaaaa@3978@

The random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfaaaa@38C6@ with pdf (3) is denoted as Ypezeta( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMfacqGH8iIFcaqGWbGaaeyzaiaabQhacaqGLbGaaeiDaiaabgga daqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaaaaa@4336@ . Some plots of the pdf (3) are shown in Figure 2. These plots reveal that the pdf can be asymmetric to the left and asymmetric to the right.

Figure 2 Some forms of the pdf (3), for special cases.

Here, the regression model for the median has the following regression structure

η i =g( τ i )= X i T β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aO9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG NbGaaiikaiabes8a09aadaWgaaWcbaWdbiaadMgaa8aabeaak8qaca GGPaGaeyypa0JaamiwamaaDaaaleaacaWGPbaabaGaamivaaaakiab ek7aIbaa@46E9@ .

where β= ( β 1 ,, β k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aIjabg2da9maabmaapaqaa8qacqaHYoGypaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaaiilaiabl+UimjaacYcacqaHYoGypaWaaS baaSqaa8qacaWGRbaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaa leqabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaape Gae8hPIujaaaaa@510C@ is k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbaaaa@3707@ -vector of unknown parameters, x i = ( x i1 ,, x ik ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyypa0Jaaiik aiaadIhapaWaaSbaaSqaa8qacaWGPbGaaGymaaWdaeqaaOWdbiaacY cacqWIVlctcaGGSaGaamiEa8aadaWgaaWcbaWdbiaadMgacaWGRbaa paqabaGcpeGaaiyka8aadaahaaWcbeqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbacfaWdbiab=rQivcaaaaa@5212@ is vector of k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadUgaaaa@38D8@ explanatory variables ( k<n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGRbGaeyipaWJaamOBaaGaayjkaiaawMcaaaaa @3C77@ , which are assumed fixed and known and η i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aO9aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3ADC@  is the linear predictor. For model with intercept, it is assumed that x i1 =1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhapaWaaSbaaSqaa8qacaWGPbGaaGymaaWdaeqaaOWdbiabg2da 9iaaigdacaGGSaaaaa@3D73@ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgcGiIiaadMgaaaa@39A6@ . The g( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEgadaqadaWdaeaapeGaeyyXICnacaGLOaGaayzkaaaaaa@3CC6@ is a link function strictly monotonic and twice differentiable, such that g:( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEgacaGG6aWaaeWaa8aabaWdbiaaicdacaGGSaGaaGymaaGaayjk aiaawMcaaiabgkziUorr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq 1DVbacfaGae8xhHifaaa@4A04@ . Examples of some link functions can be: (i) standard logistic quantile function g( τ )=ln[ τ/( 1τ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEgadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaGaeyypa0Ja aeiBaiaab6gadaWadaWdaeaapeGaeqiXdqNaai4lamaabmaapaqaa8 qacaaIXaGaeyOeI0IaeqiXdqhacaGLOaGaayzkaaaacaGLBbGaayzx aaaaaa@48C5@ ; and (ii) standard Cauchy quantile function g( τ )=tan( π( τ0.5 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEgadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzkaaGaeyypa0Ja aeiDaiaabggacaqGUbWaaeWaa8aabaWdbiabec8aWnaabmaapaqaa8 qacqaHepaDcqGHsislcaaIWaGaaiOlaiaaiwdaaiaawIcacaGLPaaa aiaawIcacaGLPaaaaaa@49FD@ .

From Equation (3) the log-likelihood function for a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbaaaa@370A@  is given by

  ( β )= i=1 n i ( τ i ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaGaeqOSdigapeGaayjkaiaawMcaaiabg2da9maawahabe Wcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqa a8qacqGHris5aaGccqWFsectl8aadaWgaaqaa8qacaWGPbaapaqaba GcpeWaaeWaa8aabaWdbiabes8a0TWdamaaBaaabaWdbiaadMgaa8aa beaaaOWdbiaawIcacaGLPaaacaGGSaaaaa@54F9@  

where

i ( τ i )= ln( ln( 0.5 ) 1 τ i 1 )+ ln( 0.5 ) 1 τ i 1 ( 1 y i 1 )2ln( y i ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaceqacaaaba Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaaqaaaaaaa aaWdbiab=jrim9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqada WdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGa ayjkaiaawMcaaiabg2da9aWdaeaapeGaaeiBaiaab6gadaqadaWdae aapeWaaSaaa8aabaWdbiaabYgacaqGUbWaaeWaa8aabaWdbiaaicda caGGUaGaaGynaaGaayjkaiaawMcaaaWdaeaapeGaaGymaiabgkHiTi abes8a09aadaqhaaWcbaWdbiaadMgaa8aabaWdbiabgkHiTiaaigda aaaaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiaabYgaca qGUbWaaeWaa8aabaWdbiaaicdacaGGUaGaaGynaaGaayjkaiaawMca aaWdaeaapeGaaGymaiabgkHiTiabes8a09aadaqhaaWcbaWdbiaadM gaa8aabaWdbiabgkHiTiaaigdaaaaaaOWaaeWaa8aabaWdbiaaigda cqGHsislcaWG5bWdamaaDaaaleaapeGaamyAaaWdaeaapeGaeyOeI0 IaaGymaaaaaOGaayjkaiaawMcaaiabgkHiTiaaikdacaqGSbGaaeOB amaabmaapaqaa8qacaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaa GcpeGaayjkaiaawMcaaiaac6caaaaaaa@76D1@

Differentiating i ( τ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qacqaHep aDpaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaaa aa@48A6@  with respect to τ i   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaqGGcaaaa@3C2E@

i ( τ i ) τ i = 1 τ i τ i 2 ln( 0.5 ) τ i 2 ( 1 τ i 1 ) 2 ( 1 y i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacqGHciITtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy 0Hgip5wzaGqbaiab=jrim9aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqa aaGcpeGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeqiXdq3damaaBa aaleaapeGaamyAaaWdaeqaaaaak8qacqGH9aqpdaWcaaWdaeaapeGa aGymaaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaO WdbiabgkHiTiabes8a09aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaa ikdaaaaaaOGaeyOeI0YaaSaaa8aabaWdbiaabYgacaqGUbWaaeWaa8 aabaWdbiaaicdacaGGUaGaaGynaaGaayjkaiaawMcaaaWdaeaapeGa eqiXdq3damaaDaaaleaapeGaamyAaaWdaeaapeGaaGOmaaaakmaabm aapaqaa8qacaaIXaGaeyOeI0IaeqiXdq3damaaDaaaleaapeGaamyA aaWdaeaapeGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaa8aadaahaa Wcbeqaa8qacaaIYaaaaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Ia amyEa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiabgkHiTiaaigdaaa aakiaawIcacaGLPaaaaaa@7448@
= a i ( 1+ y ˙ i ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abg2da9iaadggapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaaeWa a8aabaWdbiaaigdacqGHRaWkceWG5bWdayaacaWaaSbaaSqaa8qaca WGPbaapaqabaaak8qacaGLOaGaayzkaaGaaiilaaaa@4190@   5

 where a i =1/( τ i τ i 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadggapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyypa0JaaGym aiaac+cadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaa WdaeqaaOWdbiabgkHiTiabes8a09aadaqhaaWcbaWdbiaadMgaa8aa baWdbiaaikdaaaaakiaawIcacaGLPaaaaaa@4643@  and y ˙ i =ln( 0.5 )( 1 y i 1 )/( 1 τ i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadMhapaGbaiaadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqp caqGSbGaaeOBamaabmaapaqaa8qacaaIWaGaaiOlaiaaiwdaaiaawI cacaGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaadMhapaWaa0ba aSqaa8qacaWGPbaapaqaa8qacqGHsislcaaIXaaaaaGccaGLOaGaay zkaaGaai4lamaabmaapaqaa8qacaaIXaGaeyOeI0IaeqiXdq3damaa DaaaleaapeGaamyAaaWdaeaapeGaeyOeI0IaaGymaaaaaOGaayjkai aawMcaaaaa@5135@ .5 Since that E[ ( τ i )/ τ i ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8hHWx0a amWaa8aabaWdbiabgkGi2orr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbacgaGae4NeHW0aaeWaa8aabaWdbiabes8a09aadaWgaaWc baWdbiaadMgaa8aabeaaaOWdbiaawIcacaGLPaaacaGGVaGaeyOaIy RaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaay5waiaa w2faaiabg2da9iaaicdaaaa@5D9D@ , then E[ y ˙ i ]=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8hHWx0a amWaa8aabaWdbiqadMhapaGbaiaadaWgaaWcbaWdbiaadMgaa8aabe aaaOWdbiaawUfacaGLDbaacqGH9aqpcqGHsislcaaIXaaaaa@4AF0@ , i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgcGiIiaadMgaaaa@39A5@ .

The differential total of ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaGaeqOSdigapeGaayjkaiaawMcaaaaa@45BE@ is given by

( β ) β j = i=1 n i ( τ i ) τ i d τ i d η i η i β j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2orr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaGae8NeHW0aaeWaa8aabaGaeqOSdigapeGaayjkai aawMcaaaWdaeaapeGaeyOaIyRaeqOSdi2damaaBaaaleaapeGaamOA aaWdaeqaaaaak8qacqGH9aqpdaGfWbqabSWdaeaapeGaamyAaiabg2 da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOWaaSaa a8aabaWdbiabgkGi2kab=jrim9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWd aeqaaaGcpeGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeqiXdq3dam aaBaaaleaapeGaamyAaaWdaeqaaaaak8qadaWcaaWdaeaapeGaaeiz aiabes8a09aadaWgaaWcbaWdbiaadMgaa8aabeaaaOqaa8qacaqGKb Gaeq4TdG2damaaBaaaleaapeGaamyAaaWdaeqaaaaak8qadaWcaaWd aeaapeGaeyOaIyRaeq4TdG2damaaBaaaleaapeGaamyAaaWdaeqaaa GcbaWdbiabgkGi2kabek7aI9aadaWgaaWcbaWdbiaadQgaa8aabeaa aaaaaa@7117@   .6

Note that, d τ i /d η i =1/g'( τ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabsgacqaHepaDpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaai4l aiaabsgacqaH3oaApaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaey ypa0JaaGymaiaac+cacaWGNbGaae4jamaabmaapaqaa8qacqaHepaD paWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaaaaa@4976@ and η i / β j = x ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kabeE7aO9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGG VaGaeyOaIyRaeqOSdi2damaaBaaaleaapeGaamOAaaWdaeqaaOWdbi abg2da9iaadIhapaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaaaa @45B2@ , then the score vector of β j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaadQgaa8aabeaaaaa@3AD1@  is given by

( β ) β j = i=1 n a i ( 1+ y ˙ i ) g ( τ i ) x ij . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabiaaae aaqaaaaaaaaaWdbmaalaaapaqaa8qacqGHciITtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=jrimnaabmaapaqaaiabek 7aIbWdbiaawIcacaGLPaaaa8aabaWdbiabgkGi2kabek7aI9aadaWg aaWcbaWdbiaadQgaa8aabeaaaaGcpeGaeyypa0dapaqaa8qadaGfWb qabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0Wd aeaapeGaeyyeIuoaaOWaaSaaa8aabaWdbiaadggapaWaaSbaaSqaa8 qacaWGPbaapaqabaGcpeWaaeWaa8aabaWdbiaaigdacqGHRaWkceWG 5bWdayaacaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaay zkaaaapaqaa8qaceWGNbWdayaafaWdbmaabmaapaqaa8qacqaHepaD paWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaaaai aadIhapaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbiaac6ca aaaaaa@64D3@

The score vector in matrix form is U( β )= X Gv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadwfadaqadaWdaeaacqaHYoGya8qacaGLOaGaayzkaaGaeyypa0Ja amiwa8aadaahaaWcbeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaWdbiab=rQivcaakiaadEeacaWG2baaaa@4B75@ , where X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIfaaaa@38C5@ is a n×k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gacqGHxdaTcaWGRbaaaa@3BE2@ matrix whose i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbaaaa@3705@ th row is x i ,G=diag{1/ g ( τ 1 ),1/ g ( τ n )} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaqhaaWcbaWdbiaadMgaa8aabaWefv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuaapeGae8hPIujaaOGaaiilaiaadE eacqGH9aqpcaWGKbGaamyAaiaadggacaWGNbGaai4EaiaaigdacaGG VaGabm4zayaafaGaaiikaiabes8a09aadaWgaaWcbaWdbiaaigdaa8 aabeaak8qacaGGPaGaaiilaiabl+UimjaaigdacaGGVaGabm4zayaa faGaaiikaiabes8a09aadaWgaaWcbaWdbiaad6gaa8aabeaak8qaca GGPaGaaiyFaaaa@5D5F@   (diagonal matrix) and v= ( a 1 ( 1+ y ˙ 1 ),, a n ( 1+ y ˙ n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAhacqGH9aqpdaqadaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaa igdaa8aabeaak8qadaqadaWdaeaapeGaaGymaiabgUcaRiqadMhapa GbaiaadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaa caGGSaGaeS47IWKaaiilaiaadggapaWaaSbaaSqaa8qacaWGUbaapa qabaGcpeWaaeWaa8aabaWdbiaaigdacqGHRaWkceWG5bWdayaacaWa aSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaaacaGLOa GaayzkaaWdamaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8hPIujaaaaa@5A24@ .

The MLE of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyaaa@3968@ , say β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqOSdiMbaKaaaaa@38DF@ , is the solution of U( β )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadwfadaqadaWdaeaacqaHYoGya8qacaGLOaGaayzkaaGaeyypa0Ja aGimaaaa@3DCA@ . There is no analytical solution for this nonlinear system, and so the MLE of β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyaaa@3968@  must be obtained numerically, from iterative methods. However, these iterative methods require initial guesses for parameter values. As in Ribeiro-Reis,3 the initial guess for β ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqOSdiMbaKaaaaa@38DF@  will be the ordinary least squares estimator of the regression g( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEgadaqadaWdaeaapeGaamyEaaGaayjkaiaawMcaaaaa@3B79@ on X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIfaaaa@38C4@ , which is β ^ (0) = ( X X ) 1 X g( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbek7aIzaajaWdamaaCaaaleqabaWdbiaacIcacaaIWaGaaiykaaaa kiabg2da9maabmaapaqaa8qacaWGybWdamaaCaaaleqabaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaapeGae8hPIujaaOGa amiwaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqGHsislcaaIXa aaaOGaamiwa8aadaahaaWcbeqaa8qacqWFKksLaaGccaWGNbWaaeWa a8aabaWdbiaadMhaaiaawIcacaGLPaaaaaa@54CC@ .

From Equation (6), the second derivative of ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0a aeWaa8aabaGaeqOSdigapeGaayjkaiaawMcaaaaa@45BE@ with respect to β l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaadYgaa8aabeaaaaa@3AD3@  is

2 ( β ) β j β l = i=1 n τ i ( i ( τ i ) τ i 1 g ( τ i ) x ij ) d τ i d η i η i β l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaamrr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGccqWFsectda qadaWdaeaacqaHYoGya8qacaGLOaGaayzkaaaapaqaa8qacqGHciIT cqaHYoGypaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaeyOaIyRaeq OSdi2damaaBaaaleaapeGaamiBaaWdaeqaaaaak8qacqGH9aqpdaGf WbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0 WdaeaapeGaeyyeIuoaaOWaaSaaa8aabaWdbiabgkGi2cWdaeaapeGa eyOaIyRaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaaaak8qada qadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2kab=jrim9aadaWgaaWc baWdbiaadMgaa8aabeaak8qadaqadaWdaeaapeGaeqiXdq3damaaBa aaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaaWdaeaapeGa eyOaIyRaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaaaak8qada WcaaWdaeaapeGaaGymaaWdaeaapeGabm4za8aagaqba8qadaqadaWd aeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaay jkaiaawMcaaaaacaWG4bWdamaaBaaaleaapeGaamyAaiaadQgaa8aa beaaaOWdbiaawIcacaGLPaaadaWcaaWdaeaapeGaaeizaiabes8a09 aadaWgaaWcbaWdbiaadMgaa8aabeaaaOqaa8qacaqGKbGaeq4TdG2d amaaBaaaleaapeGaamyAaaWdaeqaaaaak8qadaWcaaWdaeaapeGaey OaIyRaeq4TdG2damaaBaaaleaapeGaamyAaaWdaeqaaaGcbaWdbiab gkGi2kabek7aI9aadaWgaaWcbaWdbiaadYgaa8aabeaaaaaaaa@88BD@
= i=1 n [ 2 i ( τ i ) τ i 2 1 g ( τ i ) x ij + i ( τ i ) τ i τ i ( 1 g ( τ i ) ) x ij ] 1 g ( τ i ) x il . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabg2da9maawahabeWcpaqaa8qacaWGPbGa eyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGcda WadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qa caaIYaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacga GccqWFsectpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaaeWaa8aa baWdbiabes8a09aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaawI cacaGLPaaaa8aabaWdbiabgkGi2kabes8a09aadaqhaaWcbaWdbiaa dMgaa8aabaWdbiaaikdaaaaaaOWaaSaaa8aabaWdbiaaigdaa8aaba WdbiqadEgapaGbauaapeWaaeWaa8aabaWdbiabes8a09aadaWgaaWc baWdbiaadMgaa8aabeaaaOWdbiaawIcacaGLPaaaaaGaamiEa8aada WgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaey4kaSYaaSaaa8aa baWdbiabgkGi2kab=jrim9aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqa aaGcpeGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeqiXdq3damaaBa aaleaapeGaamyAaaWdaeqaaaaak8qadaWcaaWdaeaapeGaeyOaIyla paqaa8qacqGHciITcqaHepaDpaWaaSbaaSqaa8qacaWGPbaapaqaba aaaOWdbmaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGa bm4za8aagaqba8qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaape GaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaiaawIcacaGLPaaa caWG4bWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaOWdbiaawU facaGLDbaadaWcaaWdaeaapeGaaGymaaWdaeaapeGabm4za8aagaqb a8qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdae qaaaGcpeGaayjkaiaawMcaaaaacaWG4bWdamaaBaaaleaapeGaamyA aiaadYgaa8aabeaakiaac6caaaa@9439@  

Once that E[ i ( τ i )/ τ i ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8hHWx0a amWaa8aabaWdbiabgkGi2orr1ngBPrwtHrhAXaqehuuDJXwAKbstHr hAG8KBLbacgaGae4NeHW0damaaBaaaleaapeGaamyAaaWdaeqaaOWd bmaabmaapaqaa8qacqaHepaDpaWaaSbaaSqaa8qacaWGPbaapaqaba aak8qacaGLOaGaayzkaaGaai4laiabgkGi2kabes8a09aadaWgaaWc baWdbiaadMgaa8aabeaaaOWdbiaawUfacaGLDbaacqGH9aqpcaaIWa aaaa@5F00@ , then

E[ 2 ( β ) β j β l ]= i=1 n E[ 2 i ( τ i ) τ i 2 ] 1 g' ( τ i ) 2 x ij x il . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFecFr daWadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8 qacaaIYaaaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbac gaGccqGFsectdaqadaWdaeaacqaHYoGya8qacaGLOaGaayzkaaaapa qaa8qacqGHciITcqaHYoGypaWaaSbaaSqaa8qacaWGQbaapaqabaGc peGaeyOaIyRaeqOSdi2damaaBaaaleaapeGaamiBaaWdaeqaaaaaaO WdbiaawUfacaGLDbaacqGH9aqpdaGfWbqabSWdaeaapeGaamyAaiab g2da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGae8 hHWx0aamWaa8aabaWdbmaalaaapaqaa8qacqGHciITpaWaaWbaaSqa beaapeGaaGOmaaaakiab+jrim9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWd aeqaaaGcpeGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeqiXdq3dam aaDaaaleaapeGaamyAaaWdaeaapeGaaGOmaaaaaaaakiaawUfacaGL DbaadaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4zaiaabEcadaqada WdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaadIhapa WaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbiaadIhapaWaaSba aSqaa8qacaWGPbGaamiBaaWdaeqaaOWdbiaac6caaaa@8950@  

From Equation (5), follows that

2 i ( τ i ) τ i 2 = a i ' ( 1+ y ˙ i )+ a i y ˙ i ' , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaceqacaaaba aeaaaaaaaaa8qadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWd biaaikdaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aakiab=jrim9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqadaWd aeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaay jkaiaawMcaaaWdaeaapeGaeyOaIyRaeqiXdq3damaaDaaaleaapeGa amyAaaWdaeaapeGaaGOmaaaaaaGccqGH9aqpa8aabaWdbiaadggapa Waa0baaSqaa8qacaWGPbaapaqaa8qacaqGNaaaaOWaaeWaa8aabaWd biaaigdacqGHRaWkceWG5bWdayaacaWaaSbaaSqaa8qacaWGPbaapa qabaaak8qacaGLOaGaayzkaaGaey4kaSIaamyya8aadaWgaaWcbaWd biaadMgaa8aabeaak8qaceWG5bWdayaacaWaa0baaSqaa8qacaWGPb aapaqaa8qacaqGNaaaaOGaaiilaaaaaaa@6179@

where a i ' = a i / τ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadggapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaqGNaaaaOGaeyyp a0JaeyOaIyRaamyya8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qaca GGVaGaeyOaIyRaeqiXdq3damaaBaaaleaapeGaamyAaaWdaeqaaaaa @44B5@  and y ˙ i ' = y ˙ i / τ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadMhapaGbaiaadaqhaaWcbaWdbiaadMgaa8aabaWdbiaabEcaaaGc cqGH9aqpcqGHciITceWG5bWdayaacaWaaSbaaSqaa8qacaWGPbaapa qabaGcpeGaai4laiabgkGi2kabes8a09aadaWgaaWcbaWdbiaadMga a8aabeaaaaa@44F7@ .

Since that E[ y ˙ i ]=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8hHWx0a amWaa8aabaWdbiqadMhapaGbaiaadaWgaaWcbaWdbiaadMgaa8aabe aaaOWdbiaawUfacaGLDbaacqGH9aqpcqGHsislcaaIXaaaaa@4AF1@ , then the expected value is

E[ 2 i ( τ i ) τ i 2 ]= a i ' ( 1+E[ y ˙ i ] )+ a i E[ y ˙ i ' ]= a i E[ y ˙ i ' ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaceqacaaaba Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaaqaaaaaaa aaWdbiab=ri8fnaadmaapaqaa8qadaWcaaWdaeaapeGaeyOaIy7dam aaCaaaleqabaWdbiaaikdaaaWefv3ySLgznfgDOfdarCqr1ngBPrgi nfgDObYtUvgaiyaakiab+jrim9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qadaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeGaamyAaaWd aeqaaaGcpeGaayjkaiaawMcaaaWdaeaapeGaeyOaIyRaeqiXdq3dam aaDaaaleaapeGaamyAaaWdaeaapeGaaGOmaaaaaaaakiaawUfacaGL DbaacqGH9aqpa8aabaWdbiaadggapaWaa0baaSqaa8qacaWGPbaapa qaa8qacaqGNaaaaOWaaeWaa8aabaWdbiaaigdacqGHRaWkcqWFecFr daWadaWdaeaapeGabmyEa8aagaGaamaaBaaaleaapeGaamyAaaWdae qaaaGcpeGaay5waiaaw2faaaGaayjkaiaawMcaaiabgUcaRiaadgga paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGae8hHWx0aamWaa8aaba WdbiqadMhapaGbaiaadaqhaaWcbaWdbiaadMgaa8aabaWdbiaabEca aaaakiaawUfacaGLDbaacqGH9aqpcaWGHbWdamaaBaaaleaapeGaam yAaaWdaeqaaOWdbiab=ri8fnaadmaapaqaa8qaceWG5bWdayaacaWa a0baaSqaa8qacaWGPbaapaqaa8qacaqGNaaaaaGccaGLBbGaayzxaa GaaiOlaaaaaaa@82BD@

We still have to
y ˙ i ' = ln( 0.5 ) τ i 2 ( 1 τ i 1 ) 2 ( 1 y i 1 )= a i y ˙ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaafaqaceqacaaaba aeaaaaaaaaa8qaceWG5bWdayaacaWaa0baaSqaa8qacaWGPbaapaqa a8qacaqGNaaaaOGaeyypa0dapaqaa8qacqGHsisldaWcaaWdaeaape GaaeiBaiaab6gadaqadaWdaeaapeGaaGimaiaac6cacaaI1aaacaGL OaGaayzkaaaapaqaa8qacqaHepaDpaWaa0baaSqaa8qacaWGPbaapa qaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaHepaD paWaa0baaSqaa8qacaWGPbaapaqaa8qacqGHsislcaaIXaaaaaGcca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaeWaa8aa baWdbiaaigdacqGHsislcaWG5bWdamaaDaaaleaapeGaamyAaaWdae aapeGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiabg2da9iaadgga paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaGPaVlqadMhapaGbai aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGSaaaaaaa@5F7E@

resulting in E[ y ˙ i ' ]= a i E[ y ˙ i ]= a i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8hHWx0a amWaa8aabaWdbiqadMhapaGbaiaadaqhaaWcbaWdbiaadMgaa8aaba WdbiaabEcaaaaakiaawUfacaGLDbaacqGH9aqpcaWGHbWdamaaBaaa leaapeGaamyAaaWdaeqaaOWdbiaaykW7cqWFecFrdaWadaWdaeaape GabmyEa8aagaGaamaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaay5w aiaaw2faaiabg2da9iabgkHiTiaadggapaWaaSbaaSqaa8qacaWGPb aapaqabaaaaa@58A0@ and hence E[ 2 i ( τ i ) τ i 2 ]= a i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8hHWx0a amWaa8aabaWdbmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaape GaaGOmaaaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGb aOGae4NeHW0damaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapa qaa8qacqaHepaDpaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGL OaGaayzkaaaapaqaa8qacqGHciITcqaHepaDpaWaa0baaSqaa8qaca WGPbaapaqaa8qacaaIYaaaaaaaaOGaay5waiaaw2faaiabg2da9iab gkHiTiaadggapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaaIYaaaaa aa@6398@ .

Finally,

E[ 2 ( β ) β j β l ]= i=1 n a i 2 g' ( τ i ) 2 x ij x il . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFecFr daWadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8 qacaaIYaaaamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8KBLbac gaGccqGFsectdaqadaWdaeaacqaHYoGya8qacaGLOaGaayzkaaaapa qaa8qacqGHciITcqaHYoGypaWaaSbaaSqaa8qacaWGQbaapaqabaGc peGaeyOaIyRaeqOSdi2damaaBaaaleaapeGaamiBaaWdaeqaaaaaaO WdbiaawUfacaGLDbaacqGH9aqpcqGHsisldaGfWbqabSWdaeaapeGa amyAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIu oaaOWaaSaaa8aabaWdbiaadggapaWaa0baaSqaa8qacaWGPbaapaqa a8qacaaIYaaaaaGcpaqaa8qacaWGNbGaae4jamaabmaapaqaa8qacq aHepaDpaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzk aaWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaamiEa8aadaWgaaWcba WdbiaadMgacaWGQbaapaqabaGcpeGaamiEa8aadaWgaaWcbaWdbiaa dMgacaWGSbaapaqabaGcpeGaaiOlaaaa@78F4@

Let P=diag{ a 1 2 ,, a n 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadcfacqGH9aqpcaqGKbGaaeyAaiaabggacaqGNbWaaiWaa8aabaWd biaadggapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaai ilaiabl+UimjaacYcacaWGHbWdamaaDaaaleaapeGaamOBaaWdaeaa peGaaGOmaaaaaOGaay5Eaiaaw2haaaaa@48DE@ , the expression in matrix form is

E[ 2 ( β ) β j β l ]= X P G 2 X. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8hHWx0a amWaa8aabaWdbmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaape GaaGOmaaaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGb aOGae4NeHW0aaeWaa8aabaGaeqOSdigapeGaayjkaiaawMcaaaWdae aapeGaeyOaIyRaeqOSdi2damaaBaaaleaapeGaamOAaaWdaeqaaOWd biabgkGi2kabek7aI9aadaWgaaWcbaWdbiaadYgaa8aabeaaaaaak8 qacaGLBbGaayzxaaGaeyypa0JaeyOeI0Iaamiwa8aadaahaaWcbeqa a8qacqGFKksLaaGccaWGqbGaam4ra8aadaahaaWcbeqaa8qacaaIYa aaaOGaamiwaiaac6caaaa@6894@

So, the Fisher expected information matrix is

K( β )= X P G 2 X. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NcXV0a aeWaa8aabaGaeqOSdigapeGaayjkaiaawMcaaiabg2da9iaadIfapa WaaWbaaSqabeaapeGae8hPIujaaOGaamiuaiaadEeapaWaaWbaaSqa beaapeGaaGOmaaaakiaadIfacaGGUaaaaa@4EE0@

Under the usual regularity conditions for MLEs, when the sample size is large,

β a N k ( β,K ( β ) 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaHYoGygaWeam aaxacabaaeaaaaaaaaa8qacqGH8iIFaSWdaeqabaWdbiaadggaaaWe fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaakiab=1q8o9 aadaWgaaWcbaWdbiaadUgaa8aabeaak8qadaqadaWdaeaapeGaeqOS diMaaiilaiab=Pq8lnaabmaapaqaaiabek7aIbWdbiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaaOGaayjkaiaawMca aiaacYcaaaa@54DC@

where a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWfGaqaaabaaa aaaaaapeGaeyipI4hal8aabeqaa8qacaWGHbaaaaaa@3A9E@  denotes asymptotic distribution. So, confidence intervals and hypothesis testing can be performed using the normal distribution. Based on asymptotic distribution, the 100( 1α )% MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaigdacaaIWaGaaGimamaabmaapaqaa8qacaaIXaGaeyOeI0IaeqyS degacaGLOaGaayzkaaGaaeyjaaaa@3FAE@  confidence intervals for β j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaadQgaa8aabeaaaaa@3AD2@  is given by β ^ j ± z ( 1α/2 ) θ jj ,j=1,k, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbek7aI9aagaqcamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabggla XkaadQhapaWaaSbaaSqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTi abeg7aHjaac+cacaaIYaaacaGLOaGaayzkaaaapaqabaGcpeWaaOaa a8aabaWdbiabeI7aX9aadaWgaaWcbaWdbiaadQgacaWGQbaapaqaba aapeqabaGccaGGSaGaamOAaiabg2da9iaaigdacaGGSaGaeS47IWKa am4AaiaacYcaaaa@5090@

where z ( 1α/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadQhapaWaaSbaaSqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiab eg7aHjaac+cacaaIYaaacaGLOaGaayzkaaaapaqabaaaaa@3F9F@  is the ( 1α/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaaIXaGaeyOeI0IaeqySdeMaai4laiaaikdaaiaa wIcacaGLPaaaaaa@3E46@  quantile of the standard normal distribution and θ jj MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeI7aX9aadaWgaaWcbaWdbiaadQgacaWGQbaapaqabaaaaa@3BD6@  denotes the j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGQbaaaa@3706@ th diagonal element of the matrix K ( β ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NcXV0a aeWaa8aabaGaeqOSdigapeGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacqGHsislcaaIXaaaaaaa@4879@ .

Residuals

Residual analysis is a good indicator to tell if an estimated model is well-adjusted.3 If the residuals do not show an adequate behavior, then the estimated model is poor. Here, the Dunn-Smyth4 residuals will be addressed. The Dunn-Smyth residuals are defined as

r ^ i = Q N ( F( y i ; τ ^ i ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaKaadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqp caWGrbWdamaaBaaaleaapeGaamOtaaWdaeqaaOWdbmaabmaapaqaa8 qacaWGgbWaaeWaa8aabaWdbiaadMhapaWaaSbaaSqaa8qacaWGPbaa paqabaGcpeGaai4oaiqbes8a09aagaqcamaaBaaaleaapeGaamyAaa WdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaiaacYcaaaa@4895@

in which Q N ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaWGobaapaqabaGcpeWaaeWaa8aabaWd biabgwSixdGaayjkaiaawMcaaaaa@3DF7@  denotes the quantile function of the standard normal distribution and F( y i ; τ ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeadaqadaWdaeaapeGaamyEa8aadaWgaaWcbaWdbiaadMgaa8aa beaak8qacaGG7aGafqiXdq3dayaajaWaaSbaaSqaa8qacaWGPbaapa qabaaak8qacaGLOaGaayzkaaaaaa@40B1@ is the cdf (4) evaluated in τ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qbes8a09aagaqcaaaa@39CC@ . If the model is well estimated, then the Dunn-Smyth residuals are expected to have a random behavior around zero, with approximately 95% of the values falling within the range ( 2,2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacqGHsislcaaIYaGaaiilaiaaikdaaiaawIcacaGL Paaaaaa@3CA5@  .5,6

Simulation

To show the performance of the MLEs for the proposed regression model, a numerical study using Monte Carlo simulations, with 10000 repetitions, is performed. The simulated regression model is given by

ln( τ i 1 τ i )= β 1 + β 2 x i2 + β 3 x i3 + β 4 x i3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabYgacaqGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacqaHepaDpaWa aSbaaSqaa8qacaWGPbaapaqabaaakeaapeGaaGymaiabgkHiTiabes 8a09aadaWgaaWcbaWdbiaadMgaa8aabeaaaaaak8qacaGLOaGaayzk aaGaeyypa0JaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbi abgUcaRiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG 4bWdamaaBaaaleaapeGaamyAaiaaikdaa8aabeaak8qacqGHRaWkcq aHYoGypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaamiEa8aadaWg aaWcbaWdbiaadMgacaaIZaaapaqabaGcpeGaey4kaSIaeqOSdi2dam aaBaaaleaapeGaaGinaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qa caWGPbGaaG4maaWdaeqaaOWdbiaacYcaaaa@5C8A@

in which all explanatory variables x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4baaaa@3714@ ’s are generated from the standard normal distribution. Three sample sizes n={ 50,100,300 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gacqGH9aqpdaGadaWdaeaapeGaaGynaiaaicdacaGGSaGaaGym aiaaicdacaaIWaGaaiilaiaaiodacaaIWaGaaGimaaGaay5Eaiaaw2 haaaaa@436A@ are considered, with the true values of the parameters being: β 1 =1.7, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaaI XaGaaiOlaiaaiEdacaGGSaaaaa@3E9B@ β 2 =2.4, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcqGH sislcaaIYaGaaiOlaiaaisdacaGGSaaaaa@3F87@ β 3 =0.9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaaI WaGaaiOlaiaaiMdaaaa@3DEF@  and β 4 =4.2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacqGH9aqpcaaI 0aGaaiOlaiaaikdaaaa@3DED@

The performance measures analyzed in the simulations will be based on the average estimates (AEs), mean squared errors (MSEs) and the 95% coverage rates (CRs) for the parameters. The simulations were done in the matrix programming language Ox Console.7

The simulation results are shown in Table 1. As can be seen, as the sample size increases, the MLEs and CRs converge to their true values, and the MSEs decrease. Thus, we can see the good performance of the estimates for the regression model introduced here.

n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gaaaa@38DB@  

Parameter

AE

MSE

CR (95%)

50

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIXaaabeaaaaa@3A70@  

1.740808

0.022806

93.79

  β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIYaaabeaaaaa@3A70@  

2.401397

0.039183

93.51

  β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIZaaabeaaaaa@3A71@  

0.900474

0.018413

93.35

  β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaI0aaabeaaaaa@3A72@  

4.19932

0.041534

94.14

150

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIXaaabeaaaaa@3A70@  

1.713127

0.006826

94.91

  β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIYaaabeaaaaa@3A70@  

2.402275

0.008375

94.59

  β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIZaaabeaaaaa@3A71@  

0.900578

0.005515

94.65

  β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaI0aaabeaaaaa@3A72@  

4.20142

0.007643

94.55

300

β 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIXaaabeaaaaa@3A70@  

1.707051

0.003405

94.97

  β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIYaaabeaaaaa@3A70@  

2.400968

0.003944

94.90

  β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIZaaabeaaaaa@3A71@  

0.90126

0.003165

94.93

  β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaI0aaabeaaaaa@3A72@  

4.200144

0.00353

94.64

Table 1 Simulations results

Application

The Pezeta regression model is compared with the unit-Lindley (UL) regression model, which was introduced by Mazucheli et al.8 The density function of the UL model is given by

f UL (y;τ)= (1τ) 2 τ (1y) 3 exp{ y(1τ) τ(1y) },0<y<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAgadaWgaaWcbaGaamyvaiaadYeaaeqaaOGaaiikaiaadMhacaGG 7aGaeqiXdqNaaiykaiabg2da9maalaaapaqaa8qacaGGOaGaaGymai abgkHiTiabes8a0jaacMcapaWaaWbaaSqabeaapeGaaGOmaaaaaOWd aeaapeGaeqiXdqNaaiikaiaaigdacqGHsislcaWG5bGaaiyka8aada ahaaWcbeqaa8qacaaIZaaaaaaakiGacwgacaGG4bGaaiiCamaacmaa paqaa8qacqGHsisldaWcaaWdaeaapeGaamyEaiaacIcacaaIXaGaey OeI0IaeqiXdqNaaiykaaWdaeaapeGaeqiXdqNaaiikaiaaigdacqGH sislcaWG5bGaaiykaaaaaiaawUhacaGL9baacaGGSaWdaiaaywW7pe GaaGimaiabgYda8iaadMhacqGH8aapcaaIXaaaaa@6657@ , where 0<τ<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaicdacqGH8aapcqaHepaDcqGH8aapcaaIXaaaaa@3D2A@  denotes the mean of the distribution.

The data used here were analyzed by Smithson & Verkuilen.9 The response variable (y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcacaWG5bGaaiykaaaa@3A3E@  is the accuracy that presents scores on a test of reading accuracy taken by 44 children in Australian. The explanatory variables are dyslexia ( x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaaeaaaaaa aaa8qacaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOGaaiykaaaa @3B5D@  and nonverbal intelligence quotient x 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhapaWaaSbaaSqaaiaaiodaaeqaaOGaaiOlaaaa@3A98@ The variable x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@39FA@  is a categorical variable that takes value 1  if the child has dyslexia and value 0  if the child does not have dyslexia. The variable x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhapaWaaSbaaSqaaiaaiodaaeqaaaaa@39DD@  is converted into z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadQhaaaa@38E7@  scores. These data are available in the betareg package.10

The fitted model is given by

ln( τ i 1 τ i )= β 1 + β 2 x i2 + β 3 x i3 + β 4 ( x i2 × x i3 ),i=1,2,,44, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aabYgacaqGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacqaHepaDpaWa aSbaaSqaa8qacaWGPbaapaqabaaakeaapeGaaGymaiabgkHiTiabes 8a09aadaWgaaWcbaWdbiaadMgaa8aabeaaaaaak8qacaGLOaGaayzk aaGaeyypa0JaeqOSdi2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbi abgUcaRiabek7aI9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG 4bWdamaaBaaaleaapeGaamyAaiaaikdaa8aabeaak8qacqGHRaWkcq aHYoGypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaamiEa8aadaWg aaWcbaWdbiaadMgacaaIZaaapaqabaGcpeGaey4kaSIaeqOSdi2dam aaBaaaleaapeGaaGinaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bWd amaaBaaaleaapeGaamyAaiaaikdaa8aabeaak8qacqGHxdaTcaWG4b WdamaaBaaaleaapeGaamyAaiaaiodaa8aabeaaaOWdbiaawIcacaGL PaaacaGGSaGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacq GHMacVcaGGSaGaaGinaiaaisdacaGGSaaaaa@6C99@

where τ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a09aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3AF5@  refers to the median for the Pezeta regression model and to the mean for the UL regression model.

To discriminate between the two regression models, the usual statistics were used: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Hannan–Quinn Information Criterion (HQIC). The model that presents the smallest values of these statistics is chosen as a superior model for the data in question. The formulas for the AIC, BIC and HQIC statistics can be consulted at Ribeiro-Reis.6

All calculations in this application were made using the language Ox Console.7 The results of the estimates for the Pezeta and UL regression models are shown in Table 2. Note that the two models share the same sign for the parameter estimates. It is also noticed that all estimates of the coefficients for the Pezeta regression model are highly significant. In turn, in the UL regression model the β 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aI9aadaWgaaWcbaWdbiaaisdaa8aabeaaaaa@3AA1@  estimate was not statistically significant.

Parameter

Estimate

Std error

z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadQhaaaa@38E6@  -value

p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabchaaaa@3801@  -value

   

Pezeta

   
β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIXaaabeaaaaa@3A6F@  

1.98376

0.235234

8.433134

0.000000

β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIYaaabeaaaaa@3A70@  

1.248062

0.376479

3.315087

0.000916

β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIZaaabeaaaaa@3A71@  

1.204827

0.249365

4.831581

0.000001

  β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaI0aaabeaaaaa@3A72@  

1.256459

0.375852

3.34296

0.000829

   

 UL

   
β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIXaaabeaaaaa@3A6F@  

3.18122

0.166414

19.11631

0.000000

β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIYaaabeaaaaa@3A70@  

3.169079

0.27772

11.41107

0.000000

β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaIZaaabeaaaaa@3A71@  

0.293898

0.176392

1.666164

0.095681

β 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0Jb9sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abek7aInaaBaaaleaacaaI0aaabeaaaaa@3A72@  

0.358143

0.275959

1.297811

0.194352

Table 2 Summary estimates for Pezeta and UL regression models

The statistics for the choices of the two models are in Table 3. It is noted that all three statistics have their lowest values for the Pezeta regression model, indicating that this model is more appropriate for the data in question.

Model

      AIC

     BIC

    HQIC

Pezeta

80.1893

73.0526

77.5427

UL

76.5169

69.3802

  73.8703

Table 3 Information criteria

The Dunn-Smyth residuals, with their respective simulated envelopes, for the Pezeta and UL regression models are shown in Figures 3 & 4, respectively. It is verified that the residuals for the Pezeta model presents a more random behavior around zero, than the UL model. The simulated envelope corroborates this, since in the Pezeta model there are only  of the observations outside the simulated envelope. In contrast, in the UL model, the number of observations outside the simulated envelope is 72.73%, indicating the poor fit of the UL model.

Figure 3 Dunn-Smyth residuals for Pezeta regression model.
(a) residuals versus index
(b) simulated envelope

Figure 4 Dunn-Smyth residuals for unit Lindley regression model.
(a) residuals versus index
(b) simulated envelope

Conclusions

In this paper, a new probability distribution with support on the interval ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaaGimaiaacYcacaaIXaaacaGLOaGaayzkaaaa aa@39E4@  was proposed. This new distribution is obtained through a transformation of the random variable with exponential distribution. Several properties were discussed, such as mode, ordinary moments, quantile function, random number generation, exponential family and maximum likelihood estimation (with and without bias correction).

Subsequently, a regression model for the dependent variable in the unit interval was introduced. The regression is structured on the median of the distribution, which means that, in the presence of outliers in the data, the proposed regression model is more robust than the regression models with structure on the mean. The maximum likelihood method is considered for parameter estimation. Analytical expressions are obtained for the score vector and for the Fisher information matrix. Fisher’s information matrix is very important to obtain the standard errors of the estimated coefficients.

A simulation study on finite samples showed that the maximum likelihood estimators are consistent, indicating that as the sample size increases, the estimators converge to their true parameters. An application to real data is also made, to show the usefulness of the model in practice. The proposed regression model is compared with the unit Lindley regression model. The results showed that the regression model proposed in this paper is superior to the unit Lindley regression model.

Suggestions for future research can be: (i) bias correction for the estimated coefficients of the regression model; (ii) introduce the version of the regression model for time series.

Acknowledgments

None.

Conflicts of interest

The author declare that there is no conflicts of interest.

Funding

None.

References

Creative Commons Attribution License

©2023 Reis. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.