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Introduction
The probability density function (pdf) of a random variable W

with exponential distribution is given by

( ); e , 0,wr w wλλ λ −= >

where 0λ >  is scale parameter.

Taking ( )1 / 1Y W= + , the cdf and pdf of Y are

( ) ( )1; exp 1 ,0 1F y y yλ λ − = − < <   and

( ) ( )1
2; exp 1 ,0 1,f y y y

y
λλ λ − = − < <                                        (1)        

respectively.

Here, we will call the random variable with pdf (1) of Pezeta 
distribution, and denote this random variable as ( )pezetaY λ∼ . The 
Figure 1 shows some forms of the density function (1) for selected 
values of λ . This figure reveals that the peseta distribution is 
unimodal, and may also present positive (when λ approaches 0 ) and 
negative (when λ moves away from 0 ) asymmetry.

Figure 1 Some forms of the pdf (1), for special cases.

The first derivative of the log-pdf is

( ) ( )( ) 2
2ln ; .dy f y
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λζ λ= = − +

Solving ( ) 0yζ = , the mode of  is
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mode 2
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The r th ordinary moment of Y is

( ) ( )
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1

en xz
nE x z dz

∞
− −= ∫  

denotes the exponential integral 

function.1 

By inverting ( );F y pλ = , the quantile function is given by

( ) ( )
11; 1 ln ,0 1.Q p p pλ λ
−− = − < < 

The median is obtained when 0.5p = . So, the median of  is

( ) ( )
111 ln 0.5 .median Y λ
−− = − 

Using the quantile function, the random variable

( )
111 lnY Vλ
−− = −   

has density function (1), where  is a uniform 
random variable over the interval (0,1).

The paper is structured as follows. In Section 4, it is shown that 
the distribution belongs to the exponential distribution family. The 
mean and variance of the sufficient statistic are also presented. In 
Section 5, the maximum likelihood method to obtain the parameter 
estimate is presented. Analytical expressions for the bias correction 
of the maximum likelihood estimator are also presented. In Section 6, 
a new regression model is introduced. In Sections 7 and 8, numerical 
and empirical results are presented, respectively. Finally, Section 9 
concludes the paper.

Exponential family
Let the random variable Y with pdf ( );f y θ , in which θ is the 

parameter that indexes the distribution. This random variable belongs 
to the exponential family if its pdf can be written as

( ) ( ) ( ) ( ) ( ); exp ,f y h y t y bθ η θ θ=  −                                            (2)
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where the functions ( )η θ , ( )b θ , ( )t y and ( )h y assume values 
in subsets of the reals.

Note that, the pdf (1) can be written as

( ) ( ) ( )( )1
2

1; exp 1 ln .f y y
y

λ λ λ− = − − −   

that belongs to exponential family (2), where ( )η λ λ= ,  ( ) 1,1t y y−= −  
( ) ( )lnb λ λ= −

 
and  ( ) 21/h y y= .  Thus, by the factorization criterion 

( )t y is sufficient statistics for λ . The fact that Y  belongs to 
exponential family, the mean and variance of ( )t Y are given by 

( ) 1t Y
λ

  = − 
 
and ( ) 2

1 ,t Y
λ

  =   respectively.

Maximum likelihood estimation
For a random sample of size n of the random variable Y with 

density function (1), the log-likelihood function for λ is given by

( ) ( ) ( ) ( )1
0

1 1

ln 1 2 ln .
n n

i i
i i

n y yλ λ λ −

= =

= + − −∑ ∑

The maximum likelihood estimator (MLE) of λ is the solution of

( ) ( )0 1

1

1 0.
n

i
i

n y
λ

λ λ
−

=

∂
= + − =

∂ ∑

So, the MLE of λ is

( )1

1
1

ˆ
n

ii

n

y
λ

−

=

= −
−∑

.

The second derivative of ( )0 λ  is given as
( )2

0
2 2 0,nλ

λ λ
∂

= − <
∂



showing that λ̂  really is the point that a maximizes the function
( )0 λ . It can be further shown that the variance and standard error of 

λ̂  are expressed as ( ) 2ˆ ˆ / nλ λ= and ( ) ˆe ˆs / nλ λ= , respectively.

MLE bias correction
Generally, when n is small, the MLEs tends to be biased. Here, a 

bias correction of the MLE of the parameter that indexes the Pezeta 
distribution will be presented. Here, the bias of λ̂  can be expressed2 
as

( ) ( )2
,

1ˆ ,
2

B λλλ λλ λλ λ κ κ = + 
 



where ( )3
0

3

d
dλλλ

λ
κ

λ

 
=  
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d d
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Note that 32 /nλλλκ λ=  and
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From Section 4, follows that
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Thus, the bias of λ̂  is

( )
22

3
2ˆ .ˆ2

ˆ nB
n n
λ λλ

λ

   = =       
Finally, it follows that the bias-corrected MLE λ̂  is given by

1ˆ ˆ ˆ ˆ( ) 1BC B
n

λ λ λ λ  = − = − 
 

 .

The Pezeta regression model
Starting from the Pezeta distribution, in this section a new 

regression model will be introduced for the dependent variable with 
support at (0,1). This model has a regression structure on the median 
of the distribution. Thus, in the presence of outliers in the data, this 
new regression model has an advantage over regression models with 
a mean structure.

By taking ( )median Y τ= and isolating for λ , results in

( )
1

ln 0.5
.

1
λ

τ −=
−

Under this parameterization, the density function (1) becomes

( ) ( )
( )

( ) ( )1
12 1

ln 0.5 ln 0.5
; exp 1 ,0 1,

11
f y y y

y
τ

ττ
−

−−

 
= − < < −−  

                (3)

and the corresponding cdf and quantile function are given by

( ) ( ) ( )1
1

ln 0.5
; exp 1 ,0 1

1
F y y yτ

τ
−

−

 
= − < < − 

                                  (4)

and

( ) ( ) ( )
111; 1 ln ,0 1,

ln 0.5
Q p p pττ

−− −
= − < < 
  

respectively, where 0 1τ< <  denotes the median of .Y

The random variable Y with pdf (3) is denoted as ( )pezetaY τ∼ . 
Some plots of the pdf (3) are shown in Figure 2. These plots reveal 
that the pdf can be asymmetric to the left and asymmetric to the right.

Figure 2 Some forms of the pdf (3), for special cases.

Here, the regression model for the median has the following 
regression structure

( ) T
i i ig Xη τ β= = .
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where ( )1, , kβ β β= 
   is k -vector of unknown parameters, 

1( , , )i i ikx x x=   is vector of k explanatory variables ( )k n< , 
which are assumed fixed and known and iη  is the linear predictor. 
For model with intercept, it is assumed that 1 1,ix = i∀ . The ( )g ⋅ is 
a link function strictly monotonic and twice differentiable, such that

( ): 0,1g →  . Examples of some link functions can be: (i) standard 
logistic quantile function ( ) ( )ln / 1g τ τ τ=  −   ; and (ii) standard 

Cauchy quantile function ( ) ( )( )tan 0.5g τ π τ= − .

From Equation (3) the log-likelihood function for a random sample 
of size  is given by

( ) ( )
1

,
n

i i
i

τβ
=

=∑ 

where

( ) ( ) ( ) ( ) ( )1
1 1

ln 0.5 ln 0.5
ln 1 2ln .

1 1i i i i
i i

y yτ
τ τ

−
− −

 
= + − −  − − 



Differentiating ( )i iτ  with respect to  iτ

( )1 ,i ia y= +                                                                                  (5)

where ( )21 /i i ia τ τ= −  and ( )( ) ( )1 1ln 0.5 1 / 1i i iy y τ− −= − − . Since 

that ( ) / 0i iτ τ ∂ ∂ =   , then [ ] 1iy = − , i∀ .

The differential total of ( )β  is given by

( ) ( )
1

d
d

n
i i i i

j i i ji

τ τβ η
β τ η β=

∂∂ ∂
=

∂ ∂ ∂∑


.                                                           (6)

Note that, ( )d / d 1 / 'i i igτ η τ= and /i j ijxη β∂ ∂ = , then the score 
vector of jβ  is given by

 ( ) ( )
( )1

1
.

n
i i

ij
j ii

a y
x

g τ
β

β =

+
′

∂
=

∂ ∑


The score vector in matrix form is
 ( )U X Gvβ =  , where X is a 

n k× matrix whose th row is 1, {1 / ( ), 1 / ( )}i nx G diag g gτ τ′ ′=    

(diagonal matrix) and ( ) ( )( )1 11 , , 1n nv a y a y= + + 


.

The MLE of β , say β̂ , is the solution of ( ) 0U β = . There is 
no analytical solution for this nonlinear system, and so the MLE of 
β  must be obtained numerically, from iterative methods. However, 
these iterative methods require initial guesses for parameter values. 
As in Ribeiro-Reis,3 the initial guess for β̂  will be the ordinary 
least squares estimator of the regression ( )g y on X , which is 

( ) ( )
1(0)ˆ X X X g yβ
−

=   .

From Equation (6), the second derivative of ( )β  with respect 
to lβ  is 

( ) ( )
( )

2

1

d1
d

n
i i i i

ij
j l i i i i li

x
g

τ τ η
β β τ τ τ

β
η β=

 ∂∂ ∂∂
=   ∂ ∂ ∂ ∂ ∂ ′ 
∑
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τ τ
τ τ τ τ ττ
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1

1 1 1 

Once that ( ) / 0i i iτ τ ∂ ∂ =   , then

From Equation (5), follows that
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τ

τ
∂
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where ' /i i ia a τ= ∂ ∂  and ' /i i iy y τ= ∂ ∂  .

Since that [ ] 1iy = − , then the expected value is

( ) [ ]( )
2

' ' '
2 1 .i i

i i i i i i
i

a y a y a y
τ

τ

 ∂    = + + =     ∂  
     



We still have to
( )

( )
( )' 1

22 1
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1 ,

1
i i i i
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τ τ

−

−
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resulting in [ ]'
i i i iy a y a  = = −    and hence ( )2

2
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i i
i

i
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τ
τ

 ∂
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Finally,
( )
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2 2

2
1

.
'

n
i

ij il
j l i i

a x x
gβ

β
β τ=

 ∂
= − 
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Let { }2 2
1diag , , nP a a=  , the expression in matrix form is

( )2
2 .

j l
X PG X

β
β
β

 ∂
= − 

∂ ∂  




So, the Fisher expected information matrix is

( ) 2 .X PG Xβ = 

Under the usual regularity conditions for MLEs, when the sample 
size is large,

( )( )1, ,
a

k ββ β −∼

 

where a
∼  denotes asymptotic distribution. So, confidence intervals 

and hypothesis testing can be performed using the normal distribution. 
Based on asymptotic distribution, the ( )100 1 %α−  confidence 
intervals for jβ  is given by

( )1 /2 , 1,ˆ ,j jjz j kαβ θ−± = 

where ( )1 /2z α−  is the ( )1 / 2α−  quantile of the standard normal 

distribution and jjθ  denotes the th diagonal element of the matrix 
( ) 1β − .

Residuals

Residual analysis is a good indicator to tell if an estimated model is 
well-adjusted.3 If the residuals do not show an adequate behavior, then 
the estimated model is poor. Here, the Dunn-Smyth4 residuals will be 
addressed. The Dunn-Smyth residuals are defined as

( )( )ˆ ˆ; ,i N i ir Q F y τ=

in which ( )NQ ⋅  denotes the quantile function of the standard 
normal distribution and ( )ˆ;i iF y τ is the cdf (4) evaluated in τ̂ . If the 
model is well estimated, then the Dunn-Smyth residuals are expected 
to have a random behavior around zero, with approximately 95% of 
the values falling within the range ( )2,2−  .5,6 

Simulation
To show the performance of the MLEs for the proposed regression 

model, a numerical study using Monte Carlo simulations, with 10000 
repetitions, is performed. The simulated regression model is given by

1 2 2 3 3 4 3ln ,
1

i
i i i

i
x x xτ β β β β

τ
 

= + + + 
− 

in which all explanatory variables ’s are generated from the 
( ) ( )

( )

22

2 2
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1 .
'

n
i i

ij il
j l i i i

x x
g

τ
τ

β
β β τ=

   ∂∂
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∂ ∂ ∂     
∑


 

( ) ( )
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2 22 1

ln 0.51 1
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i i
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y
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τ τ τ τ τ
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∂
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standard normal distribution. Three sample sizes { }50,100,300n =
are considered, with the true values of the parameters being: 1 1.7,β =

2 2.4,β = − 3 0.9β =  and 4 4.2β = .

The performance measures analyzed in the simulations will be 
based on the average estimates (AEs), mean squared errors (MSEs) 
and the 95% coverage rates (CRs) for the parameters. The simulations 
were done in the matrix programming language Ox Console.7

The simulation results are shown in Table 1. As can be seen, as the 
sample size increases, the MLEs and CRs converge to their true values, 
and the MSEs decrease. Thus, we can see the good performance of the 
estimates for the regression model introduced here.

Table 1 Simulations results

n Parameter AE MSE CR (95%)

50 1β 1.740808 0.022806 93.79

2β − 2.401397 0.039183 93.51

3β 0.900474 0.018413 93.35

4β 4.19932 0.041534 94.14

150 1β 1.713127 0.006826 94.91

2β − 2.402275 0.008375 94.59

3β 0.900578 0.005515 94.65

4β 4.20142 0.007643 94.55

300 1β 1.707051 0.003405 94.97

2β − 2.400968 0.003944 94.90

3β 0.90126 0.003165 94.93

4β 4.200144 0.00353 94.64

Application
The Pezeta regression model is compared with the unit-

Lindley (UL) regression model, which was introduced by 
Mazucheli et al.8 The density function of the UL model is given by

2

3
(1 ) (1 )( ; ) exp , 0 1

(1 )(1 )UL
yf y y

yy
τ ττ

ττ
 − −

= − < < 
−−  

, where 0 1τ< <   

denotes the mean of the distribution.

The data used here were analyzed by Smithson & Verkuilen.9 The 
response variable ( )y  is the accuracy that presents scores on a test of 
reading accuracy taken by 44 children in Australian. The explanatory 
variables are dyslexia 2( )x  and nonverbal intelligence quotient 3.x
The variable 2x  is a categorical variable that takes value 1  if the 
child has dyslexia and value 0  if the child does not have dyslexia. 
The variable 3x  is converted into z  scores. These data are available 
in the betareg package.10

The fitted model is given by

( )1 2 2 3 3 4 2 3ln , 1,2, ,44,
1

i
i i i i

i
x x x x iτ β β β β

τ
 

= + + + × = … 
− 

where iτ  refers to the median for the Pezeta regression model and 
to the mean for the UL regression model.

To discriminate between the two regression models, the usual 
statistics were used: Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and Hannan–Quinn Information Criterion 
(HQIC). The model that presents the smallest values of these statistics 
is chosen as a superior model for the data in question. The formulas 
for the AIC, BIC and HQIC statistics can be consulted at Ribeiro-
Reis.6

All calculations in this application were made using the language 
Ox Console.7 The results of the estimates for the Pezeta and UL 
regression models are shown in Table 2. Note that the two models 
share the same sign for the parameter estimates. It is also noticed 
that all estimates of the coefficients for the Pezeta regression model 
are highly significant. In turn, in the UL regression model the 4β  
estimate was not statistically significant.

Table 2 Summary estimates for Pezeta and UL regression models

Parameter Estimate Std error    z -value   p -value

Pezeta

1β 1.98376 0.235234 8.433134 0.000000

2β − 1.248062 0.376479 − 3.315087 0.000916

3β 1.204827 0.249365 4.831581 0.000001

4β
                                                      

− 1.256459 0.375852 − 3.34296 0.000829

 UL

1β 3.18122 0.166414 19.11631 0.000000

2β − 3.169079 0.27772 − 11.41107 0.000000

3β 0.293898 0.176392 1.666164 0.095681

4β − 0.358143 0.275959 − 1.297811 0.194352

The statistics for the choices of the two models are in Table 3. It 
is noted that all three statistics have their lowest values for the Pezeta 
regression model, indicating that this model is more appropriate for 
the data in question.

Table 3 Information criteria

Model       AIC      BIC     HQIC

Pezeta − 80.1893 − 73.0526 − 77.5427

UL − 76.5169 − 69.3802   − 73.8703

The Dunn-Smyth residuals, with their respective simulated 
envelopes, for the Pezeta and UL regression models are shown in 
Figures 3 & 4, respectively. It is verified that the residuals for the 
Pezeta model presents a more random behavior around zero, than 
the UL model. The simulated envelope corroborates this, since in 
the Pezeta model there are only 4.55% of the observations outside 
the simulated envelope. In contrast, in the UL model, the number of 
observations outside the simulated envelope is 72.73%, indicating the 
poor fit of the UL model.

https://doi.org/10.15406/bbij.2023.12.00393


The Pezeta regression model: an alternative to unit Lindley regression model 111
Copyright:

©2023 Reis

Citation: Reis LDR. The Pezeta regression model: an alternative to unit Lindley regression model. Biom Biostat Int J. 2023;12(4):107‒112. 
DOI: 10.15406/bbij.2023.12.00393

(a) residuals versus index

(b) simulated envelope

Figure 3 Dunn-Smyth residuals for Pezeta regression model.

(a) residuals versus index

(b) simulated envelope

Figure 4 Dunn-Smyth residuals for unit Lindley regression model.

Conclusion
In this paper, a new probability distribution with support on the 

interval (0,1) was proposed. This new distribution is obtained through 
a transformation of the random variable with exponential distribution. 
Several properties were discussed, such as mode, ordinary moments, 
quantile function, random number generation, exponential family and 
maximum likelihood estimation (with and without bias correction).

Subsequently, a regression model for the dependent variable 
in the unit interval was introduced. The regression is structured on 
the median of the distribution, which means that, in the presence of 
outliers in the data, the proposed regression model is more robust 
than the regression models with structure on the mean. The maximum 
likelihood method is considered for parameter estimation. Analytical 
expressions are obtained for the score vector and for the Fisher 
information matrix. Fisher’s information matrix is very important to 
obtain the standard errors of the estimated coefficients.

A simulation study on finite samples showed that the maximum 
likelihood estimators are consistent, indicating that as the sample 

size increases, the estimators converge to their true parameters. 
An application to real data is also made, to show the usefulness of 
the model in practice. The proposed regression model is compared 
with the unit Lindley regression model. The results showed that the 
regression model proposed in this paper is superior to the unit Lindley 
regression model.

Suggestions for future research can be: (i) bias correction for 
the estimated coefficients of the regression model; (ii) introduce the 
version of the regression model for time series.
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