Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 9 Issue 2

Shock models leading to G* class of lifetime distributions

K.V. Jayamol,1 K. K. Jose2

1Department of Statistics, Maharaja’s College, India
2Department of Biostatistics, St. Thomas College, India

Correspondence: K.V. Jayamol, Department of Statistics, Maharaja’s College, Ernakulam, India, Tel 9447036746

Received: April 10, 2020 | Published: April 29, 2020

Citation: Jayamol KV, Jose KK. Shock models leading to G* class of lifetime distributions. Biom Biostat Int J. 2020;9(2):61-66. DOI: 10.15406/bbij.2020.09.00301

Download PDF

Abstract

In this paper we study a stochastic ordering namely alternate probability generating function ( a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF7@ ) ordering and its properties. The life distribution H( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@39EB@ of a device subject to shocks governed by a Poisson process is considered as a function of the probabilities P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388E@ of surviving the first k shocks. Various properties of the discrete failure distribution P k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@389B@ are shown to be reflected in corresponding properties of the continuous life distribution H( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@39EB@ . A certain cumulative damage model and various applications of these models in reliability modeling are also considered.

Keywords: lifetime distributions, probability and statistics

Introduction

Stochastic orders and inequalities are being used at an accelerated rate in many diverse areas of probability and Statistics. For example, in statistical reliability theory, several concepts of partial orderings have been successfully used to develop various notions of ageing of non negative random variables. Ageing concept for discrete distributions were studied by various authors. See for example, Barlow and Proschan,1 Cai and Kalashnikov,2 Cai and Willmot,3 Lai and Xie,4 Shaked and Shanthikumar,5 Shaked et al.,6 Willmot and Cai,7 Willmot and Lin,8 Willmot et al.,9 and references therein. Using Laplace transform, various reliability classes have been characterized by different researches. For details, see Bryson and Siddiqui,10 Klefsjö,11,12 Shaked and Wong13 and the references there in. As a discrete analogue of Laplace transform ordering, Jayamol and Jose14 introduced ordering and class of lifetime distributions based on this ordering as follows.

Definition 1.1 Let  denotes the probability mass function ( p.m.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaac6cacaWGTbGaaiOlaiaadAgacaGGUaaaaa@3B65@ ) of a non-negative integer-valued random variable , then the a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF7@ , G( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaabmaapaqaa8qacqGHflY1aiaawIcacaGLPaaaaaa@3B3B@ of f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaaaa@3768@ is defined as G( s )=E (1s) X , 0<s1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaGaeyypa0Ja amyraiaacIcacaaIXaGaeyOeI0Iaam4CaiaacMcapaWaaWbaaSqabe aapeGaamiwaaaakiaacYcacaqGGcGaaGimaiabgYda8iaadohacqGH KjYOcaaIXaGaaiOlaaaa@4890@ (1.1)

Definition 1.2 A non-negative integer-valued life distribution with mean μ belongs to the G * ( G ¯ * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaamaanaaabaWdbi ab=zq8hbaapaWaaWbaaSqabeaapeGaaiOkaaaaaOGaayjkaiaawMca aaaa@474E@ class of lifetime distributions if and only if G( s )( ) 1 1+sμ , μ0,0<s1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaGaeyizIm6a aeWaa8aabaWdbiabgwMiZcGaayjkaiaawMcaamaalaaapaqaa8qaca aIXaaapaqaa8qacaaIXaGaey4kaSIaam4CaiabeY7aTbaacaGGSaGa aeiOaiabeY7aTjabgwMiZkaaicdacaGGSaGaaGimaiabgYda8iaado hacqGHKjYOcaaIXaGaaiOlaaaa@50F1@           (1.2)

It may be noted that the R.H.S. of the inequality (1.2) is the a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF7@ of a geometric distribution with p.m.f. f( x )=p q x ,x=0,1,2, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Ja amiCaiaadghapaWaaWbaaSqabeaapeGaamiEaaaakiaacYcacaWG4b Gaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaaikdacaGGSaGaeS47 IWeaaa@4733@ and with mean µ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyTaaaa@37B7@ as that of f. For properties of G * ( G ¯ * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaakmaabmaapaqaamaanaaabaWdbi ab=zq8hbaapaWaaWbaaSqabeaapeGaaiOkaaaaaOGaayjkaiaawMca aaaa@474E@ classes one may refer to Jayamol and Jose,15 Jayamol and Jose.14

For many equipments, useful life is often measured in discrete integer units, for example the number of copies a plain paper copier makes before a breakdown, the number of completed production runs in an automated assembly line before a malfunction occurs, etc. Even in situations where the time to failure is conceptually a continuous variable, one is often interested in measuring the life in suitably discretized work units successfully completed. For example, the number of days one needs to replace the batteries in an appliance under specified normal pattern of use is discrete. So as a discrete analogue of Laplace transform ordering, Jayamol and Jose14 introduced a new stochastic ordering namely alternate probability generating function ( a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF7@ ) ordering. Some properties of this ordering are considered here.

a.p.g.f ordering and its properties

As a discrete analogue of Laplace transform ordering introduced by Klefsjö,12 Jayamol and Jose14 defined a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF7@ ordering as follows.

Definition 2.1 Suppose X that Y and are two non-negative integer-valued random variables with p.m.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaac6cacaWGTbGaaiOlaiaadAgacaGGUaaaaa@3B65@ s f 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@387D@ and f 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@387E@ and a.p.g.f.s  G 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca caWGZbGaaiiOaiaadEeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpe WaaeWaa8aabaWdbiaadohaaiaawIcacaGLPaaaaaa@43AE@ and G 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaa peGaam4CaaGaayjkaiaawMcaaaaa@3B19@ respectively. Then X is said to be smaller than Y (or equivalently, f 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@387C@ is smaller than f 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@387E@ ) in a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF7@ ordering if G 1 ( s ) G 2 ( s ),  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaa peGaam4CaaGaayjkaiaawMcaaiabgsMiJkaadEeapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaadohaaiaawIcacaGL PaaacaGGSaGaaiiOaaaa@433D@ for 0s1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadohacqGHKjYOcaaIXaaaaa@3C54@ . It is denoted by X G Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwaiabgsMiJ+aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacaWG zbaaaa@3B2D@ (or equivalently, we write f 1 G f 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOpaWa aSbaaSqaa8qacaWGhbaapaqabaGcpeGaamOza8aadaWgaaWcbaWdbi aaikdaa8aabeaaaaa@3D8D@ ).

 In this context, we have the following theorems. 

Theorem 2.1 Suppose that X and Y be two non-negative integer-valued random variables with respective p.m.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiaac6cacaWGTbGaaiOlaiaadAgacaGGUaaaaa@3B65@ s f 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaaBaaaleaacaaIXaaabeaaaaa@384F@ and f 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaaBaaaleaacaaIYaaabeaaaaa@3850@ . Then X G Y  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwaiabgsMiJ+aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacaWG zbGaaiiOaaaa@3C51@ implies E( X )E( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaeyyzImRa amyramaabmaapaqaa8qacaWGzbaacaGLOaGaayzkaaaaaa@3EE2@ , provided the expectations exist.

Proof

If X G Y  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwaiabgsMiJ+aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacaWG zbGaaiiOaaaa@3C51@ then x=0 ( 1s ) x f 1 ( x )  y=0 ( 1s ) y   f 2 ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaabmaeaadaqadaqaaiaaigdacqGHsislcaWGZbaacaGLOaGaayzk aaGaaeydG8aadaahaaWcbeqaa8qacaWG4baaaOGaamOza8aadaWgaa WcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjk aiaawMcaaiaacckaaSqaaiaadIhacqGH9aqpcaaIWaaabaGaeyOhIu kaniabggHiLdGccqGHKjYOdaaeWaqaamaabmaabaGaaGymaiabgkHi TiaadohaaiaawIcacaGLPaaadaahaaWcbeqaaiaadMhaaaGccaqGGa GaamOza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaa peGaamyEaaGaayjkaiaawMcaaaWcbaGaamyEaiabg2da9iaaicdaae aacqGHEisPa0GaeyyeIuoaaaa@5B6D@

Differentiating once with respect to s and letting s0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiabgkziUkaaicdaaaa@3A1C@ , we get E( X )E( Y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaeyyzImRa amyramaabmaapaqaa8qacaWGzbaacaGLOaGaayzkaaaaaa@3EE2@ .

Theorem 2.2 Let X and Y be two non-negative integer-valued random variables. If X G Y  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwaiabgsMiJ+aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacaWG zbGaaiiOaaaa@3C51@ then X+K G Y+K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwaiabgUcaRiaadUeacqGHKjYOpaWaaSbaaSqaa8qacaWGhbaa paqabaGcpeGaamywaiabgUcaRiaadUeaaaa@3E91@ for every K N + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabgIGiolaad6eapaWaaSbaaSqaa8qacqGHRaWka8aabeaa aaa@3AE0@ .

Proof

If X G Y,E ( 1s ) X E ( 1s ) y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGHKj YOdaWgaaWcbaGaam4raaqabaGccaWGzbGaaiilaiaadweadaqadaqa aiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaWbaaSqabeaaca WGybaaaOGaeyizImQaamyramaabmaabaGaaGymaiabgkHiTiaadoha aiaawIcacaGLPaaadaahaaWcbeqaaiaadMhaaaaaaa@4958@ Then we have,
E ( 1s ) X+K =E ( 1s ) k ( 1s ) X = ( 1s ) k E ( 1s ) X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaWbaaSqabeaa caWGybGaey4kaSIaam4saaaakiabg2da9iaadweadaqadaqaaiaaig dacqGHsislcaWGZbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGRbaa aOWaaeWaaeaacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaamaaCa aaleqabaGaamiwaaaakiabg2da9maabmaabaGaaGymaiabgkHiTiaa dohaaiaawIcacaGLPaaadaahaaWcbeqaaiaadUgaaaGccaWGfbWaae WaaeaacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaamaaCaaaleqa baGaamiwaaaaaaa@56C5@
( 1s ) k E ( 1s ) Y  =E ( 1s ) Y+K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyizIm6damaabmaabaGaaGymaiabgkHiTiaadohaaiaawIcacaGL PaaadaahaaWcbeqaaiaadUgaaaGccaWGfbWaaeWaaeaacaaIXaGaey OeI0Iaam4CaaGaayjkaiaawMcaamaaCaaaleqabaGaamywaaaak8qa caGGGcGaeyypa0ZdaiaadweadaqadaqaaiaaigdacqGHsislcaWGZb aacaGLOaGaayzkaaWaaWbaaSqabeaacaWGzbGaey4kaSIaam4saaaa aaa@4D91@

Theorem 2.3 Let X 1 , X 2 ,, X m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWRaai ilaiaadIfapaWaaSbaaSqaa8qacaWGTbaapaqabaaaaa@405D@ be a set of independently distributed non-negative integer-valued random variables. Let Y 1 , Y 2 ,, Y m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamyw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWRaai ilaiaadMfapaWaaSbaaSqaa8qacaWGTbaapaqabaaaaa@4060@ be another set of independently distributed non-negative integer-valued random variables. If X i G Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHKjYOpaWa aSbaaSqaa8qacaWGhbaapaqabaGcpeGaamywa8aadaWgaaWcbaWdbi aadMgaa8aabeaaaaa@3DD7@ for i=1,2...., m. Then i=1 m X i G i=1 m Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqadabaGaam iwamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaaqa aiaad2gaa0GaeyyeIuoakiabgsMiJoaaBaaaleaacaWGhbaabeaakm aaqadabaGaamywamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyyp a0JaaGymaaqaaiaad2gaa0GaeyyeIuoaaaa@483C@

Proof

If X i G Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHKjYOpaWa aSbaaSqaa8qacaWGhbaapaqabaGcpeGaamywa8aadaWgaaWcbaWdbi aadMgaa8aabeaaaaa@3DD7@ then E ( 1s ) X i E ( 1s ) Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaWbaaSqabeaa caWGybWaaSbaaWqaaiaadMgaaeqaaaaakabaaaaaaaaapeGaeyizIm 6daiaadweadaqadaqaaiaaigdacqGHsislcaWGZbaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGzbWaaSbaaWqaaiaadMgaaeqaaaaaaaa@467B@ for i=1,2... , m.

Let X= i=1 m X i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaiabg2da98aadaaeWaqaaiaadIfadaWgaaWcbaGaamyAaaqa baaabaGaamyAaiabg2da9iaaigdaaeaacaWGTbaaniabggHiLdaaaa@3FFD@ and Y= i=1 m Y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaiabg2da98aadaaeWaqaaiaadMfadaWgaaWcbaGaamyAaaqa baaabaGaamyAaiabg2da9iaaigdaaeaacaWGTbaaniabggHiLdaaaa@3FFF@
E ( 1s ) X =E (1s) X 1 ( 1s ) X m  =E ( 1s ) X 1 E ( 1s ) X m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaabaaaaaaaaapeGaaGymaiabgkHiTiaadohaa8aacaGLOaGaayzk aaWdbmaaCaaaleqabaGaamiwaaaakiabg2da9iaadweacaGGOaGaaG ymaiabgkHiTiaadohacaGGPaWdamaaCaaaleqabaWdbiaadIfapaWa aSbaaWqaa8qacaaIXaaapaqabaaaaOWdbiabgAci8+aadaqadaqaa8 qacaaIXaGaeyOeI0Iaam4CaaWdaiaawIcacaGLPaaadaahaaWcbeqa a8qacaWGybWdamaaBaaameaapeGaamyBaaWdaeqaaaaak8qacaGGGc Gaeyypa0Jaamyra8aadaqadaqaa8qacaaIXaGaeyOeI0Iaam4CaaWd aiaawIcacaGLPaaadaahaaWcbeqaa8qacaWGybWdamaaBaaameaape GaaGymaaWdaeqaaaaak8qacqGHMacVcaWGfbWdamaabmaabaWdbiaa igdacqGHsislcaWGZbaapaGaayjkaiaawMcaamaaCaaaleqabaWdbi aadIfapaWaaSbaaWqaa8qacaWGTbaapaqabaaaaaaa@5FD5@
E ( 1s ) Y i ...E ( 1s ) Y m =E ( 1s ) Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsMiJkaadw eadaqadaqaaiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaWba aSqabeaacaWGzbWaaSbaaWqaaiaadMgaaeqaaaaakiaac6cacaGGUa GaaiOlaiaadweadaqadaqaaiaaigdacqGHsislcaWGZbaacaGLOaGa ayzkaaWaaWbaaSqabeaacaWGzbWaaSbaaWqaaiaad2gaaeqaaaaaki abg2da9iaadweadaqadaqaaiaaigdacqGHsislcaWGZbaacaGLOaGa ayzkaaWaaWbaaSqabeaacaWGzbaaaaaa@4F75@

Theorem 2.4 Let X 1 , X 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWlaaa@3D84@ be independently and identically distributed non-negative integer-valued random variables and let N 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3865@ and N 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3866@ be positive integer-valued random variables which are independent of X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@38A2@ . Then N 1 G N 2 i=1 N 1 X i G i=1 N 2 X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaaGymaaqabaGccqGHKjYOdaWgaaWcbaGaam4raaqabaGccaWG obWaaSbaaSqaaiaaikdaaeqaaOaeaaaaaaaaa8qacqGHuhY2daaeWa qaaiaadIfadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaa igdaaeaacaWGobWaaSbaaWqaaiaaigdaaeqaaaqdcqGHris5aOGaey izIm6aaSbaaSqaaiaadEeaaeqaaOWaaabmaeaacaWGybWaaSbaaSqa aiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtamaaBa aameaacaaIYaaabeaaa0GaeyyeIuoaaaa@528B@

Proof

We have the a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF7@
G X 1 + X 2 +...+ X N 1 ( S )= i=1 P[ N 1 =i ]   G X 1 + X 2 +...+ X i ( S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaaBaaaleaacaWGybWaaSbaaWqaaiaaigdaaeqaaSGaey4k aSIaamiwamaaBaaameaacaaIYaaabeaaliabgUcaRiaac6cacaGGUa GaaiOlaiabgUcaRiaadIfadaWgaaadbaGaamOtamaaBaaabaGaaGym aaqabaaabeaaaSqabaGcdaqadaqaaiaadofaaiaawIcacaGLPaaacq GH9aqpdaaeWaqaaiaadcfadaWadaqaaiaad6eadaWgaaWcbaGaaGym aaqabaGccqGH9aqpcaWGPbaacaGLBbGaayzxaaaaleaacaWGPbGaey ypa0JaaGymaaqaaiabg6HiLcqdcqGHris5aOGaaiiOaiaadEeadaWg aaWcbaGaamiwamaaBaaameaacaaIXaaabeaaliabgUcaRiaadIfada WgaaadbaGaaGOmaaqabaWccqGHRaWkcaGGUaGaaiOlaiaac6cacqGH RaWkcaWGybWaaSbaaWqaaiaadMgaaeqaaaWcbeaakmaabmaabaGaam 4uaaGaayjkaiaawMcaaaaa@6198@
i=1 P[ N 1 =i ]( G X 1 ( S ) ) i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqadabaGaam iuamaadmaabaGaamOtamaaBaaaleaacaaIXaaabeaakiabg2da9iaa dMgaaiaawUfacaGLDbaadaqadaqaaiaadEeadaWgaaWcbaGaamiwam aaBaaameaacaaIXaaabeaaaSqabaGcdaqadaqaaiaadofaaiaawIca caGLPaaaaiaawIcacaGLPaaaaSqaaabaaaaaaaaapeGaamyAaiabg2 da9iaaigdaa8aabaWdbiabg6HiLcqdpaGaeyyeIuoakmaaCaaaleqa baGaamyAaaaaaaa@4B2C@
i=1 P[ N 1 =i ]( 1( 1 G X 1 ( S ) ) ) i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaabmaeaacaWGqbWaamWaaeaacaWGobWaaSbaaSqaaiaaigdaaeqa aOGaeyypa0JaamyAaaGaay5waiaaw2faamaabmaabaGaaGymaiabgk HiTmaabmaabaGaaGymaiabgkHiTiaadEeadaWgaaWcbaGaamiwamaa BaaameaacaaIXaaabeaaaSqabaGcdaqadaqaaiaadofaaiaawIcaca GLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaSqaaiaadMgacqGH 9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGcdaahaaWcbeqaaiaadM gaaaaaaa@4FD7@
= G N 1 ( s ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Jaam4ra8aadaWgaaWcbaWdbiaad6eapaWaaSbaaWqaa8qa caaIXaaapaqabaaaleqaaOWdbmaabmaapaqaa8qacaWGZbaacaGLOa GaayzkaaGaaiilaaaa@3DF7@ where 0<s=( 1 G X 1 ( s ) )1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4DaiaadIgacaWGLbGaamOCaiaadwgacaGGGcGaaGimaiabgYda 8iaadohacqGH9aqpdaqadaWdaeaapeGaaGymaiabgkHiTiaadEeapa WaaSbaaSqaa8qacaWGybWdamaaBaaameaapeGaaGymaaWdaeqaaaWc beaak8qadaqadaWdaeaapeGaam4CaaGaayjkaiaawMcaaaGaayjkai aawMcaaiabgsMiJkaaigdacaGGUaaaaa@4C51@
N 1 G N 2 G N 1 ( s ) G N 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOpaWa aSbaaSqaa8qacaWGhbaapaqabaGcpeGaamOta8aadaWgaaWcbaWdbi aaikdaa8aabeaak8qacqGHuhY2caWGhbWdamaaBaaaleaapeGaamOt a8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaaeWaa8aaba WdbiaadohaaiaawIcacaGLPaaacqGHKjYOcaWGhbWdamaaBaaaleaa peGaamOta8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeWaae Waa8aabaWdbiaadohaaiaawIcacaGLPaaaaaa@4D12@
  G X 1 + X 2 ++ X N 1 ( s ) G X 1 + X 2 ++ X N 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiabgsDiBlaadEeapaWaaSbaaSqaa8qacaWGybWdamaaBaaa meaapeGaaGymaaWdaeqaaSWdbiabgUcaRiaadIfapaWaaSbaaWqaa8 qacaaIYaaapaqabaWcpeGaey4kaSIaeS47IWKaey4kaSIaamiwa8aa daWgaaadbaWdbiaad6eapaWaaSbaaeaapeGaaGymaaWdaeqaaaqaba aaleqaaOWdbmaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaGaeyiz ImQaam4ra8aadaWgaaWcbaWdbiaadIfapaWaaSbaaWqaa8qacaaIXa aapaqabaWcpeGaey4kaSIaamiwa8aadaWgaaadbaWdbiaaikdaa8aa beaal8qacqGHRaWkcqWIVlctcqGHRaWkcaWGybWdamaaBaaameaape GaamOta8aadaWgaaqaa8qacaaIYaaapaqabaaabeaaaSqabaGcpeWa aeWaa8aabaWdbiaadohaaiaawIcacaGLPaaaaaa@5AD8@
i=1 N 1 X i G i=1 N 2 X i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyi1HS9aaabmaeaacaWGybWaaSbaaSqaaiaadMgaaeqaaaqaaiaa dMgacqGH9aqpcaaIXaaabaGaamOta8aadaWgaaadbaWdbiaaigdaa8 aabeaaa0WdbiabggHiLdGccqGHKjYOdaWgaaWcbaGaam4raaqabaGc daaeWaqaaiaadIfadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2 da9iaaigdaaeaacaWGobWdamaaBaaameaapeGaaGOmaaWdaeqaaaqd peGaeyyeIuoaaaa@4CC6@

Theorem 2.5 Let X and Y be two non-negative integer-valued random variables such that X G Y. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwaiabgsMiJ+aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacaWG zbGaaiOlaaaa@3BDE@ Let P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388D@ and Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam yuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388E@ be the survival functions of X and Y respectively. Then k=0 P k ¯ ( 1s ) k k=0 Q k ¯ ( 1s ) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqadabaWaa0 aaaeaacaWGqbWaaSbaaSqaaiaadUgaaeqaaaaaaeaaqaaaaaaaaaWd biaadUgacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaiabggHiLd GcdaqadaqaaiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaWba aSqabeaacaWGRbaaaOWdbiabgwMiZoaaqadabaWaa0aaaeaacaWGrb WaaSbaaSqaaiaadUgaaeqaaaaaaeaacaWGRbGaeyypa0JaaGimaaqa aiabg6HiLcqdcqGHris5aOWaaeWaaeaacaaIXaGaeyOeI0Iaam4Caa GaayjkaiaawMcaamaaCaaaleqabaGaam4Aaaaaaaa@535F@

Proof

The stated result follows from the definition of a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF6@ ordering and from the equation

E ( 1s ) X =1s k=0 P k ¯ ( 1s ) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyramaabmaabaGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaa daahaaWcbeqaaiaadIfaaaGccqGH9aqpcaaIXaGaeyOeI0Iaam4Cam aaqadabaWaa0aaaeaacaWGqbWaaSbaaSqaaiaadUgaaeqaaaaakmaa bmaabaGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaadaahaaWcbe qaaiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacqGHEisPa0Ga eyyeIuoaaaa@4D93@ (2.1)

Shock models leading to G* Class

In reliability analysis one may calculate the reliability of a complex system starting with the reliability of the components. If all components have life distributions belonging to a certain class, then one would like to conclude that the life distribution of the entire system belongs to the same, or a similar class. Shock models of this kind have been considered by a number of authors under all kinds of assumptions. The results center around proving that, subject to suitable assumptions on the point process { N( t ) }  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiaad6eadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaGaay5Eaiaaw2haaiaacckaaaa@3D64@ of shocks, various discrete reliability characteristics of the { P ¯  k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbmaanaaabaGaamiuaaaapaWaaSbaaSqaa8qacaGG GcGaam4AaaWdaeqaaaGcpeGaay5Eaiaaw2haaaaa@3C3A@ sequence, which arise naturally out of physical considerations are inherited by the continuous survival probability F ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGgbaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaa@39F9@ . That is if the shock survival probabilities { P ¯  k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbmaanaaabaGaamiuaaaapaWaaSbaaSqaa8qacaGG GcGaam4AaaWdaeqaaaGcpeGaay5Eaiaaw2haaaaa@3C3A@ belong to a discrete version of one of the life distribution classes, then under appropriate assumptions the continuous time survival probability  belongs to the continuous version of that class. That is the life distribution H( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@39EA@ of a device subject to shocks governed by a Poisson process is considered as a function of the probabilities P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGqbaaa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@38AC@ of surviving the first k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@376C@ shocks. Various properties of the discrete failure distribution P k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@389B@ are shown to be reflected in the corresponding properties of the continuous life distribution H( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@39EA@ . In the present paper we study some shock models leading to   G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class. A certain cumulative damage model is also investigated. For that we consider the following definitions and Theorem.

Klefsjö12 introduced a class denoted by L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect aaa@410A@ , which consists of all distribution functions F, for which L F ( s ) 1 1+s μ 1 ( F ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadAeaa8aabeaak8qadaqadaWdaeaa peGaam4CaaGaayjkaiaawMcaaiabgsMiJoaalaaapaqaa8qacaaIXa aapaqaa8qacaaIXaGaey4kaSIaam4CaiabeY7aT9aadaWgaaWcbaWd biaaigdaa8aabeaak8qadaqadaWdaeaapeGaamOraaGaayjkaiaawM caaaaacaGGSaaaaa@4687@ where L F ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadAeaa8aabeaak8qadaqadaWdaeaa peGaam4CaaGaayjkaiaawMcaaaaa@3B2C@ is the Laplace transform of F defined by L F ( s )= 0   e sx dF( x ), s0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadAeaa8aabeaak8qadaqadaWdaeaa peGaam4CaaGaayjkaiaawMcaaiabg2da9maavadabeWcpaqaa8qaca aIWaaapaqaa8qacqGHEisPa0WdaeaapeGaey4kIipaaOGaaeiiaiaa dwgapaWaaWbaaSqabeaapeGaeyOeI0Iaam4CaiaadIhaaaGccaWGKb GaamOramaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaaiilaiaa cckacaWGZbGaeyyzImRaaGimaaaa@4F5E@ and μ k ( F )= 0 x k dF( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacaWGgbaacaGL OaGaayzkaaGaeyypa0Zaa8qmaeaacaWG4bWaaWbaaSqabeaacaWGRb aaaaqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaadsgacaWGgbWa aeWaaeaacaWG4baacaGLOaGaayzkaaaaaa@4759@ k=1,2....., Its dual class L ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=jrimbaaaaa@411B@ is obtained by reversing the inequality.

Definition 3.1 Suppose that X and Y are two non-negative integer-valued random variables with survival functions P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGqbaaa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@38AC@ and Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGrbaaa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@38AD@ respectively. Then X is said to be smaller than Y in a.p.g.f. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca aaa@3CF6@ ordering if k=0 P k ¯ ( 1s ) k k=0 Q k ¯ ( 1s ) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqadabaWaa0 aaaeaacaWGqbWaaSbaaSqaaiaadUgaaeqaaaaaaeaaqaaaaaaaaaWd biaadUgacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaiabggHiLd GcdaqadaqaaiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaWba aSqabeaacaWGRbaaaOWdbiabgwMiZ+aadaaeWaqaamaanaaabaGaam yuamaaBaaaleaacaWGRbaabeaaaaaabaWdbiaadUgacqGH9aqpcaaI Waaapaqaa8qacqGHEisPa0WdaiabggHiLdGcdaqadaqaaiaaigdacq GHsislcaWGZbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGRbaaaaaa @53AC@ for 0<s1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadohacqGHKjYOcaaIXaaaaa@3BA2@ .

Theorem 3.1 Let X be a non-negative integer-valued random variable with a.p.g.f. G( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaiaac6ca caGGGcGaam4ramaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaaaaa@4186@ and survival function P[X>k]= P ¯ k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuaiaacUfacaWGybGaeyOpa4Jaam4Aaiaac2facqGH9aqpdaqd aaqaaiaadcfaaaWdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbiaac6 caaaa@3FE8@ Then for s( 0, 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiabgIGiopaabmaapaqaa8qacaaIWaGaaiilaiaacckacaaI XaaacaGLOaGaayzkaaGaaiilaaaa@3E99@ X G * k=0 ( 1s ) k P ¯ k μ ( 1+sμ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiwaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8NbXF0damaaCaaaleqabaWdbiaacQcaaaGccqGHuhY2da aeWaqaamaabmaabaGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaa daahaaWcbeqaaiaadUgaaaGcdaqdaaqaaiaadcfaaaWaaSbaaSqaai aadUgaaeqaaaqaaiaadUgacqGH9aqpcaaIWaaabaGaeyOhIukaniab ggHiLdGccqGHLjYSdaWcaaWdaeaapeGaeqiVd0gapaqaa8qadaqada WdaeaapeGaaGymaiabgUcaRiaadohacqaH8oqBaiaawIcacaGLPaaa aaaaaa@5EBB@

3.1 A Poisson shock model

 Assume a device is subject to shocks occurring randomly in time according to a Poisson process with intensity λ Suppose if the device has the probability P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388D@ of surviving k shocks, where 1= P ¯ 0 P ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGqbaaa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qa cqGHLjYSdaqdaaqaaiaadcfaaaWdamaaBaaaleaapeGaaGOmaaWdae qaaOWdbiabgwMiZkabgAci8caa@3FC0@ , then the survival function of the device is given by,

H ¯ ( t )= k=0 e λt ( λt ) k k! P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaabaGaamiDaaGaayjkaiaawMcaaiab g2da9maaqadabaWaaSaaaeaacaWGLbWdamaaCaaaleqabaWdbiabgk HiTiabeU7aSjaadshaaaGcdaqadaqaaiabeU7aSjaadshaaiaawIca caGLPaaadaahaaWcbeqaaiaadUgaaaaakeaacaWGRbGaaiyiaaaaaS qaaiaadUgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGcdaqd aaqaaiaadcfaaaWaaSbaaSqaaiaadUgaaeqaaaaa@4EED@ (3.1)

Esary et al.16 have shown that if { P ¯ k } k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EamaanaaabaGaamiuaaaapaWaaSbaaSqaa8qacaWGRbaapaqa baGcpeGaaiyFa8aadaqhaaWcbaWdbiaadUgacqGH9aqpcaaIWaaapa qaa8qacqGHEisPaaaaaa@3F52@ has the discrete Increasing Failure Rate (IFR), Increasing Failure Rate in Average (IFRA), New Better than Used in Expectation (NBUE) or Decreasing Mean Residual Life (DMRL) property, then this property will be reflected to H ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaa@39FB@ given by (3.1). Klefsjö11 has shown that a similar result holds for the Harmonically New Better than Used in Expectation (HNBUE) class. Shock models leading to GHNBUE (GHNWUE) classes are studied by A H N Ahmed.17 We now show that the same is true for G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class also.

Theorem 3.2 The survival function H ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaa@39FB@ in (3.1) is in L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect aaa@410A@ class if and only if { P ¯ k } k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EamaanaaabaGaamiuaaaapaWaaSbaaSqaa8qacaWGRbaapaqa baGcpeGaaiyFa8aadaqhaaWcbaWdbiaadUgacqGH9aqpcaaIWaaapa qaa8qacqGHEisPaaaaaa@3F52@ is in G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class.

Proof

Let μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@3833@ be the mean of and H( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@39EA@ be the mean of { P ¯ k } k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4EamaanaaabaGaamiuaaaapaWaaSbaaSqaa8qacaWGRbaapaqa baGcpeGaaiyFa8aadaqhaaWcbaWdbiaadUgacqGH9aqpcaaIWaaapa qaa8qacqGHEisPaaaaaa@3F52@ . We have, μ= 0 H ¯ ( t )dt= k=0 { 0 e λt ( λt ) k k! dt } P ¯ k = k=0 1 λ P ¯ k = m λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maeyypa0Zaa8qmaeaadaqdaaqaaiaadIeaaaaaleaacaaI WaaabaGaeyOhIukaniabgUIiYdGcdaqadaqaaiaadshaaiaawIcaca GLPaaacaWGKbGaamiDaiabg2da9maaqadabaWaaiWaaeaadaWdXaqa amaalaaabaGaamyza8aadaahaaWcbeqaa8qacqGHsislcqaH7oaBca WG0baaaOWaaeWaaeaacqaH7oaBcaWG0baacaGLOaGaayzkaaWaaWba aSqabeaacaWGRbaaaaGcbaGaam4AaiaacgcaaaGaamizaiaadshaaS qaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaOGaay5Eaiaaw2haaaWc baGaam4Aaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakmaana aabaGaamiuaaaadaWgaaWcbaGaam4AaaqabaGccqGH9aqpdaaeWaqa amaalaaabaGaaGymaaqaaiabeU7aSbaaaSqaaiaadUgacqGH9aqpca aIWaaabaGaeyOhIukaniabggHiLdGcdaqdaaqaaiaadcfaaaWaaSba aSqaaiaadUgaaeqaaOGaeyypa0ZaaSaaaeaacaWGTbaabaGaeq4UdW gaaaaa@6FDE@                  

 Laplace transform of H ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaa@39FB@

L H ¯ ( S )= 0 e st H ¯ ( t )dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitamaaBaaaleaadaqdaaqaaiaadIeaaaaabeaakmaabmaabaGa am4uaaGaayjkaiaawMcaaiabg2da9maapedabaGaamyzamaaCaaale qabaGaeyOeI0Iaam4CaiaadshaaaaabaGaaGimaaqaaiabg6HiLcqd cqGHRiI8aOWaa0aaaeaacaWGibaaamaabmaabaGaamiDaaGaayjkai aawMcaaiaadsgacaWG0baaaa@4952@ (3.2) k=0 P k ¯ λ k k! 0 e ( s+λ )t t k dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaabmaeaadaqdaaqaaiaadcfadaWgaaWcbaGaam4Aaaqabaaaaaqa aiaadUgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGcdaWcaa qaaiabeU7aS9aadaahaaWcbeqaa8qacaWGRbaaaaGcbaGaam4Aaiaa cgcaaaWaa8qmaeaacaWGLbWaaWbaaSqabeaacqGHsisldaqadaqaai aadohacqGHRaWkcqaH7oaBaiaawIcacaGLPaaacaWG0baaaaqaaiaa icdaaeaacqGHEisPa0Gaey4kIipakiaadshadaahaaWcbeqaaiaadU gaaaGccaWGKbGaamiDaaaa@53A8@                

= 1 s+λ k=0 ( λ s+λ ) k P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaaiaadohacqGHRaWkqaaaaaaaaaWdbiabeU7aSbaa paWaaabmaeaadaqadaqaamaalaaabaWdbiabeU7aSbWdaeaapeGaam 4CaiabgUcaRiabeU7aSbaaa8aacaGLOaGaayzkaaaaleaacaWGRbGa eyypa0JaaGimaaqaa8qacqGHEisPa0WdaiabggHiLdGcdaahaaWcbe qaaiaadUgaaaGcdaqdaaqaaiaadcfaaaWaaSbaaSqaaiaadUgaaeqa aaaa@4C78@ (3.3)

H  L class if and only if  L H ¯ ( s ) μ 1+sμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisaiaacckacqGHiiIZcaGGGcGaamitaiaacckacaWGJbGaamiB aiaadggacaWGZbGaam4CaiaacckacaWGPbGaamOzaiaacckacaWGHb GaamOBaiaadsgacaGGGcGaam4Baiaad6gacaWGSbGaamyEaiaaccka caWGPbGaamOzaiaacckacaWGmbWdamaaBaaaleaapeWaa0aaaeaaca WGibaaaaWdaeqaaOWdbmaabmaapaqaa8qacaWGZbaacaGLOaGaayzk aaGaeyyzIm7aaSaaa8aabaWdbiabeY7aTbWdaeaapeGaaGymaiabgU caRiaadohacqaH8oqBaaaaaa@5E8F@ (3.4) that is if and only if,= 1 s+λ k=0 ( λ s+λ ) k P ¯ k μ 1+sμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGPaVlaadshacaWGObGaamyyaiaadshacaGGGcGaamyAaiaadoha caaMc8UaaiiOaiaadMgacaWGMbGaaiiOaiaadggacaWGUbGaamizai aaykW7caGGGcGaam4Baiaad6gacaWGSbGaamyEaiaacckacaWGPbGa amOzaiaacYcapaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CaiabgU caR8qacqaH7oaBaaWdamaaqadabaWaaeWaaeaadaWcaaqaa8qacqaH 7oaBa8aabaWdbiaadohacqGHRaWkcqaH7oaBaaaapaGaayjkaiaawM caaaWcbaGaam4Aaiabg2da9iaaicdaaeaapeGaeyOhIukan8aacqGH ris5aOWaaWbaaSqabeaacaWGRbaaaOWaa0aaaeaacaWGqbaaamaaBa aaleaacaWGRbaabeaak8qacqGHLjYSdaWcaaWdaeaapeGaeqiVd0ga paqaa8qacaaIXaGaey4kaSIaam4CaiabeY7aTbaaaaa@6FC0@                 

k=0 ( λ s+λ ) k P ¯ k ( s+λ )μ 1+sμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqadabaWaae WaaeaadaWcaaqaaabaaaaaaaaapeGaeq4UdWgapaqaa8qacaWGZbGa ey4kaSIaeq4UdWgaaaWdaiaawIcacaGLPaaaaSqaaiaadUgacqGH9a qpcaaIWaaabaWdbiabg6HiLcqdpaGaeyyeIuoakmaaCaaaleqabaGa am4AaaaakmaanaaabaGaamiuaaaadaWgaaWcbaGaam4AaaqabaGcpe GaeyyzIm7aaSaaa8aabaWdbmaabmaabaGaam4CaiabgUcaRiabeU7a SbGaayjkaiaawMcaaiabeY7aTbWdaeaapeGaaGymaiabgUcaRiaado hacqaH8oqBaaaaaa@5440@ k=0 ( 1 s s+λ ) k P ¯ k m( s+λ λ ) 1+s m λ = m λ s+λ + s s+λ m m 1+ s s+λ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaabmaeaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaadohaaeaa caWGZbGaey4kaSIaeq4UdWgaaaGaayjkaiaawMcaaaWcbaGaam4Aai abg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakmaaCaaaleqabaGa am4AaaaakmaanaaabaGaamiuaaaadaWgaaWcbaGaam4AaaqabaGccq GHLjYSdaWcaaWdaeaapeGaamyBamaabmaapaqaa8qadaWcaaWdaeaa peGaam4CaiabgUcaRiabeU7aSbWdaeaapeGaeq4UdWgaaaGaayjkai aawMcaaaWdaeaapeGaaGymaiabgUcaRiaadohadaWcaaWdaeaapeGa amyBaaWdaeaapeGaeq4UdWgaaaaacqGH9aqpdaWcaaWdaeaapeGaam yBaaWdaeaapeWaaSaaa8aabaWdbiabeU7aSbWdaeaapeGaam4Caiab gUcaRiabeU7aSbaacqGHRaWkdaWcaaWdaeaapeGaam4CaaWdaeaape Gaam4CaiabgUcaRiabeU7aSbaacaWGTbaaaiabgwMiZoaalaaapaqa a8qacaWGTbaapaqaa8qacaaIXaGaey4kaSYaaSaaa8aabaWdbiaado haa8aabaWdbiaadohacqGHRaWkcqaH7oaBaaGaamyBaaaaaaa@7051@ (3.5)

 (3.4) holds if and only if (3.5) holds. Hence from Theorem 3.1, we have the result.

Consider another device which is also subjected to shocks occurring randomly as events in a Poisson process with same constant intensity λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@3831@ , and the device has probability Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam yuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388E@ of surviving the first k shocks, where 1= Q ¯ 0 Q ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabg2da9maanaaabaGaamyuaaaapaWaaSbaaSqaa8qacaaI WaaapaqabaGcpeGaeyyzIm7aa0aaaeaacaWGrbaaa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacqGHLjYScqGHMacVaaa@4182@ . The survival function of this device is given by

F ¯ ( t )= k=0 e λt ( λt ) k k! Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam OraaaadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaaeWaqa amaalaaabaaeaaaaaaaaa8qacaWGLbWdamaaCaaaleqabaWdbiabgk HiTiabeU7aSjaadshaaaGcpaWaaeWaaeaapeGaeq4UdWMaamiDaaWd aiaawIcacaGLPaaadaahaaWcbeqaaiaadUgaaaaakeaapeGaam4Aai aacgcaaaaal8aabaGaam4Aaiabg2da9iaaicdaaeaapeGaeyOhIuka n8aacqGHris5aOWaa0aaaeaacaWGrbaaamaaBaaaleaacaWGRbaabe aaaaa@4F58@ (3.6)

Singh and Jain18 have shown that some partial orderings, namely likelihood ratio (LR) ordering, failure rate (FR) ordering, stochastic (ST) ordering, variable (V) ordering and mean residual life (MRL) ordering between the two shock survival probabilities P ¯ k  and  Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaGcpeGaaiiO aiaadggacaWGUbGaamizaiaacckadaqdaaqaaiaadgfaaaWdamaaBa aaleaapeGaam4AaaWdaeqaaaaa@3FE2@ are preserved by the corresponding survival functions H ¯ ( t ) and  F ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaGaaiiOaiaadggacaWGUbGaamizaiaacckadaqdaaqaaiaadAeaaa WaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@4282@ of the devices. Here we extent this preservation property to a.p.g.f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiaac6cacaWGWbGaaiOlaiaadEgacaGGUaGaamOzaaaa@3C45@ ordering.

Theorem 3.3 If P ¯ k   G   Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaGcpeGaaiiO aiabgsMiJ+aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacaGGGcWaa0 aaaeaacaWGrbaaa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@4015@ then H ¯ ( t ) L F ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaGaeyizIm6damaaBaaaleaapeGaamitaaWdaeqaaOWdbmaanaaaba GaamOraaaadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@4072@ .

Proof

Let P ¯ k   G   Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaGcpeGaaiiO aiabgsMiJ+aadaWgaaWcbaWdbiaadEeaa8aabeaak8qacaGGGcWaa0 aaaeaacaWGrbaaa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@4015@ . From (3.6), we have
0 e st F ¯ ( t )dt= 0 e st k=0 e λt ( λt ) k k! Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa8qmaeaacaWGLbWaaWbaaSqabeaacqGHsislcaWGZbGaamiDaaaa aeaacaaIWaaabaGaeyOhIukaniabgUIiYdGcdaqdaaqaaiaadAeaaa WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaamizaiaadshacqGH9aqp daWdXaqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadohacaWG0baaaa qaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaaqadabaWaaSaaaeaa caWGLbWdamaaCaaaleqabaWdbiabgkHiTiabeU7aSjaadshaaaGcda qadaqaaiabeU7aSjaadshaaiaawIcacaGLPaaadaahaaWcbeqaaiaa dUgaaaaakeaacaWGRbGaaiyiaaaaaSqaaiaadUgacqGH9aqpcaaIWa aabaGaeyOhIukaniabggHiLdGcpaWaa0aaaeaacaWGrbaaamaaBaaa leaapeGaam4AaaWdaeqaaaaa@618C@
k=0 λ k k! Q ¯ k 0 e ( s+λ )t t k dt= 1 ( s+λ ) k=0 ( λ s+λ ) k Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqadabaWaaS aaaeaaqaaaaaaaaaWdbiabeU7aS9aadaahaaWcbeqaa8qacaWGRbaa aaGcpaqaa8qacaWGRbGaaiyiaaaaaSWdaeaacaWGRbGaeyypa0JaaG imaaqaa8qacqGHEisPa0WdaiabggHiLdGcdaqdaaqaaiaadgfaaaWa aSbaaSqaaiaadUgaaeqaaOWaa8qmaeaacaWGLbWaaWbaaSqabeaacq GHsisldaqadaqaaiaadohacqGHRaWkpeGaeq4UdWgapaGaayjkaiaa wMcaaiaadshaaaaabaGaaGimaaqaa8qacqGHEisPa0WdaiabgUIiYd GccaWG0bWaaWbaaSqabeaacaWGRbaaaOGaamizaiaadshacqGH9aqp daWcaaqaaiaaigdaaeaadaqadaqaaiaadohacqGHRaWkpeGaeq4UdW gapaGaayjkaiaawMcaaaaadaaeWaqaamaabmaabaWaaSaaaeaapeGa eq4UdWgapaqaaiaadohacqGHRaWkpeGaeq4UdWgaaaWdaiaawIcaca GLPaaaaSqaaiaadUgacqGH9aqpcaaIWaaabaWdbiabg6HiLcqdpaGa eyyeIuoakmaaCaaaleqabaGaam4AaaaakmaanaaabaGaamyuaaaada WgaaWcbaGaam4Aaaqabaaaaa@6BDF@
= 1 ( s+λ ) k=0 ( 1 λ s+λ ) k Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaamaabmaabaGaam4CaiabgUcaRabaaaaaaaaapeGa eq4UdWgapaGaayjkaiaawMcaaaaadaaeWaqaamaabmaabaGaaGymai abgkHiTmaalaaabaWdbiabeU7aSbWdaeaacaWGZbGaey4kaSYdbiab eU7aSbaaa8aacaGLOaGaayzkaaaaleaacaWGRbGaeyypa0JaaGimaa qaa8qacqGHEisPa0WdaiabggHiLdGcdaahaaWcbeqaaiaadUgaaaGc daqdaaqaaiaadgfaaaWaaSbaaSqaaiaadUgaaeqaaaaa@4FAA@
From Definition 3.1 1 s+λ k=0 ( 1 s s+λ ) k P ¯ k = 0 e st H ¯ ( t )dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiaadkhacaWGVbGaamyBaiaacckacaWGebGaamyzaiaadAga caWGPbGaamOBaiaadMgacaWG0bGaamyAaiaad+gacaWGUbGaaiiOai aaiodacaGGUaGaaGymaiabgsMiJoaalaaapaqaa8qacaaIXaaapaqa a8qacaWGZbGaey4kaSIaeq4UdWgaa8aadaaeWaqaamaabmaabaGaaG ymaiabgkHiTmaalaaabaWdbiaadohaa8aabaGaam4CaiabgUcaR8qa cqaH7oaBaaaapaGaayjkaiaawMcaaaWcbaGaam4Aaiabg2da9iaaic daaeaapeGaeyOhIukan8aacqGHris5aOWaaWbaaSqabeaacaWGRbaa aOWaa0aaaeaacaWGqbaaamaaBaaaleaacaWGRbaabeaakiabg2da9m aapedabaGaamyzamaaCaaaleqabaGaeyOeI0Iaam4Caiaadshaaaaa baGaaGimaaqaa8qacqGHEisPa0WdaiabgUIiYdGcdaqdaaqaaiaadI eaaaWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaamizaiaadshaaaa@6E5F@
H ¯ ( t ) L F ¯ ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyi1HS9aa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGL OaGaayzkaaGaeyizIm6damaaBaaaleaapeGaamitaaWdaeqaaOWdbm aanaaabaGaamOraaaadaqadaWdaeaapeGaamiDaaGaayjkaiaawMca aiaac6caaaa@4380@

Remark 1 When λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@3830@ is a random variable, denoted by Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWeaaa@37F1@ , whose distribution is Y, in this case H ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaa@39FB@ can be written as

H ¯ ( t )= k=0 E ( e Λt ( Λt ) k ) ) k! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaabaGaamiDaaGaayjkaiaawMcaaiab g2da9maaqadabaGaamyramaalaaapaqaa8qadaqadaqaaiaadwgapa WaaWbaaSqabeaapeGaeyOeI0Iaeu4MdWKaamiDaaaakmaabmaapaqa a8qacqqHBoatcaWG0bGaaiyka8aadaahaaWcbeqaa8qacaWGRbaaaa GccaGLOaGaayzkaaaacaGLOaGaayzkaaaapaqaa8qacaWGRbGaaiyi aaaaaSqaaiaadUgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLd aaaa@4FDF@ (3.7)

3.2 A Nonhomogeneous poisson shock model

Suppose that shocks occur according to a nonhomogeneous Poisson process with mean value function Ω( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3AAB@ . If a device has the probability P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388D@ of surviving the first k shocks, its survival function H ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaa@39FB@ is given by

H ¯ ( t )= k=0 e Ω( t ) [ Ω( t ) ] k k! P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam isaaaadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaaeWaqa amaalaaabaGaamyzamaaCaaaleqabaaeaaaaaaaaa8qacqGHsislcq qHPoWvdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaak8aadaWa daqaa8qacqqHPoWvdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaa WdaiaawUfacaGLDbaadaahaaWcbeqaaiaadUgaaaaakeaapeGaam4A aiaacgcaaaaal8aabaGaam4Aaiabg2da9iaaicdaaeaapeGaeyOhIu kan8aacqGHris5aOWaa0aaaeaacaWGqbaaamaaBaaaleaacaWGRbaa beaaaaa@52A7@ (3.8)

This shock model was studied by Hameed and Proschan.19 They proved that under suitable conditions on Ω( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3AAB@ , the survival function H ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaa@39FB@ is IFR, IFRA, New Better than Used (NBU) NBUE or DMRL if { P ¯ k } k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWaa0aaaeaacaWGqbaaamaaBaaaleaapeGaam4AaaWd aeqaaaGcpeGaay5Eaiaaw2haa8aadaqhaaWcbaWdbiaadUgacqGH9a qpcaaIWaaapaqaa8qacqGHEisPaaaaaa@3F83@ has the corresponding discrete property. We will now give a theorem for G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class.

Lemma 3.1 (Klefsjö)12: H ¯ ( t )= H ¯ 1 [ Ω( t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaGaeyypa0Zaa0aaaeaacaWGibaaa8aadaWgaaWcbaWdbiaaigdaa8 aabeaak8qadaWadaWdaeaapeGaeuyQdC1aaeWaa8aabaWdbiaadsha aiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@434E@ belongs to L( L ¯ ) if  H ¯ 1 L( L ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect daqadaWdaeaapeWaa0aaaeaacqWFsectaaaacaGLOaGaayzkaaGaai iOaiaadMgacaWGMbGaaiiOamaanaaabaGaamisaaaapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyicI4Sae8NeHW0aaeWaa8aabaWdbm aanaaabaGae8NeHWeaaaGaayjkaiaawMcaaaaa@4F3A@ class and Ω( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3AAB@ is starshaped (antistarshaped).

Theorem 3.4 If { P ¯ k } k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWaa0aaaeaacaWGqbaaamaaBaaaleaapeGaam4AaaWd aeqaaaGcpeGaay5Eaiaaw2haa8aadaqhaaWcbaWdbiaadUgacqGH9a qpcaaIWaaapaqaa8qacqGHEisPaaaaaa@3F83@ is in G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class and Ω( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3AAB@ is starshaped then H ¯ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaaaa@39FB@ in (3.8) belongs to L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect aaa@410A@ class.

Proof Let H ¯ ( t )= k=0 e t t k k! P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam isaaaadaqadaqaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaaeWaqa amaalaaabaaeaaaaaaaaa8qacaWGLbWdamaaCaaaleqabaWdbiabgk HiTiaadshaaaGccaWG0bWdamaaCaaaleqabaWdbiaadUgaaaaak8aa baWdbiaadUgacaGGHaaaaaWcpaqaaiaadUgacqGH9aqpcaaIWaaaba Wdbiabg6HiLcqdpaGaeyyeIuoak8qadaqdaaqaaiaadcfaaaWdamaa BaaaleaapeGaam4AaaWdaeqaaaaa@4AA6@ Since { P ¯ k } k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWaa0aaaeaacaWGqbaaamaaBaaaleaapeGaam4AaaWd aeqaaaGcpeGaay5Eaiaaw2haa8aadaqhaaWcbaWdbiaadUgacqGH9a qpcaaIWaaapaqaa8qacqGHEisPaaaaaa@3F83@ is in G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class, by Theorem 3.2 H ¯ 1 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGibaaa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3B2B@ belongs to L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect aaa@410A@ class. Hence the result follows from Lemma 3.1.

3.3 A cumulative damage model

In this section we study special model for the survival probability P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGqbaaa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@38AC@ . Suppose that a device is subjected to shocks. Every shock causes a random amount of damage. Suppose damage accumulates additively. The device fails when the accumulated damage exceeds a critical threshold Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaaaa@375A@ which has the distribution F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@3747@ , where F( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaaIWaGaeyOeI0cacaGLOaGaayzkaaGa eyypa0JaaGimaaaa@3C56@ . If the damages X 1 , X 2 ,, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWRaai ilaaaa@3E33@ , from successive shocks are independent and exponentially distributed with mean 1 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeU7aSbaaaaa@3939@ , and are independent of the threshold. Let be the number of shocks survived by the device. Then the survival probabilities are given by P ¯ k ( λ )= λ k 0 x k1 ( k1 )!   e λx F ¯ ( x )dx for k=1,2,..., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGqbaaamaaBaaaleaacaWGRbaabeaakmaabmaabaGa eq4UdWgacaGLOaGaayzkaaGaeyypa0Jaeq4UdW2aaWbaaSqabeaaca WGRbaaaOWaa8qmaeaadaWcaaqaaiaadIhapaWaaWbaaSqabeaapeGa am4AaiabgkHiTiaaigdaaaaakeaadaqadaqaaiaadUgacqGHsislca aIXaaacaGLOaGaayzkaaGaaiyiaaaaaSqaaiaaicdaaeaacqGHEisP a0Gaey4kIipakiaacckacaWGLbWaaWbaaSqabeaacqGHsislcqaH7o aBcaWG4baaaOWaa0aaaeaacaWGgbaaamaabmaabaGaamiEaaGaayjk aiaawMcaaiaadsgacaWG4bGaaiiOaiaadAgacaWGVbGaamOCaiaacc kacaWGRbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaac6cacaGG UaGaaiOlaiaacYcaaaa@64A1@

P ¯ 0 ( λ )=1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGqbaaa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qa daqadaWdaeaapeGaeq4UdWgacaGLOaGaayzkaaGaeyypa0JaaGymai aac6caaaa@3E5F@ (3.9)

Thus the probability function of N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtaaaa@374F@ , P[ N=k ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaadmaapaqaa8qacaWGobGaeyypa0Jaam4AaaGaay5waiaa w2faaaaa@3C2B@ is p k = 0 e λx ( λx ) k1 ( k1 )! dF( x ),k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGRbaabeaakiabg2da9maapedabaWaaSaa aeaacaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBcaWG4baaaOWaae WaaeaacqaH7oaBcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaWG RbGaeyOeI0IaaGymaaaaaOqaamaabmaabaGaam4AaiabgkHiTiaaig daaiaawIcacaGLPaaacaGGHaaaaaWcbaGaaGimaaqaaiabg6HiLcqd cqGHRiI8aOGaamizaiaadAeadaqadaqaaiaadIhaaiaawIcacaGLPa aacaGGSaGaam4AaiabgwMiZkaaigdaaaa@56F4@              

The above cumulative damage model has been studied by Esary et al.16 for the NBU, IFR and IFRA cases. They proved that if F is NBUE, then { P ¯ k } k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWaa0aaaeaacaWGqbaaamaaBaaaleaapeGaam4AaaWd aeqaaaGcpeGaay5Eaiaaw2haa8aadaqhaaWcbaWdbiaadUgacqGH9a qpcaaIWaaapaqaa8qacqGHEisPaaaaaa@3F83@ has the discrete NBUE property. Klefsjö11 proved that the same is true in the case of discrete HNBUE. We now claim that the result is true when { P ¯ k } k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWaa0aaaeaacaWGqbaaamaaBaaaleaapeGaam4AaaWd aeqaaaGcpeGaay5Eaiaaw2haa8aadaqhaaWcbaWdbiaadUgacqGH9a qpcaaIWaaapaqaa8qacqGHEisPaaaaaa@3F83@ belongs to G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class.

Theorem 3.5 The survival probabilities P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388D@ in (3.9) belongs to G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class for every λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyOpa4JaaGimaaaa@39F3@ if F belongs to L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect aaa@410A@ class.

Proof

First observe that m be mean of P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388D@ is m= k=0 P ¯ k =1+ k=1 λ k 0 x k1 ( k1 )! e λx F ¯ ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiabg2da9maaqadabaWaa0aaaeaacaWGqbaaamaaBaaaleaa caWGRbaabeaaaeaacaWGRbGaeyypa0JaaGimaaqaaiabg6HiLcqdcq GHris5aOGaeyypa0JaaGymaiabgUcaRmaaqadabaGaeq4UdW2aaWba aSqabeaacaWGRbaaaaqaaiaadUgacqGH9aqpcaaIXaaabaGaeyOhIu kaniabggHiLdGcdaWdXaqaamaalaaabaGaamiEa8aadaahaaWcbeqa a8qacaWGRbGaeyOeI0IaaGymaaaaaOqaamaabmaabaGaam4Aaiabgk HiTiaaigdaaiaawIcacaGLPaaacaGGHaaaaaWcbaGaaGimaaqaaiab g6HiLcqdcqGHRiI8aOGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4UdW MaamiEaaaakmaanaaabaGaamOraaaadaqadaqaaiaadIhaaiaawIca caGLPaaacaWGKbGaamiEaaaa@6355@
=1+ 0 λ k=0 ( λx ) k k! e λx F ¯ ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaGymaiabgUcaRmaapedabaGaeq4UdWgaleaacaaIWaaa baGaeyOhIukaniabgUIiYdGcdaaeWaqaamaalaaabaWaaeWaaeaacq aH7oaBcaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaWGRbaaaaGc baGaam4AaiaacgcaaaaaleaacaWGRbGaeyypa0JaaGimaaqaaiabg6 HiLcqdcqGHris5aOGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4UdWMa amiEaaaakmaanaaabaGaamOraaaadaqadaqaaiaadIhaaiaawIcaca GLPaaacaWGKbGaamiEaaaa@566B@                  

=1+ 0 λ e λx+λx F ¯ ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaGymaiabgUcaRmaapedabaGaeq4UdWMaamyzamaaCaaa leqabaGaeyOeI0Iaeq4UdWMaamiEaiabgUcaRiabeU7aSjaadIhaaa aabaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOWaa0aaaeaacaWGgbaa amaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaaa@4CB6@ (3.10)                               

=1+λ 0 F ¯ dx==1+λμ, where μ is the mean of F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaGymaiabgUcaRiabeU7aSnaapedabaWaa0aaaeaacaWG gbaaaaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamizaiaadI hacqGH9aqpcqGH9aqpcaaIXaGaey4kaSIaeq4UdWMaeqiVd0Maaiil aiaacckacaWG3bGaamiAaiaadwgacaWGYbGaamyzaiaacckacqaH8o qBcaGGGcGaamyAaiaadohacaGGGcGaamiDaiaadIgacaWGLbGaaiiO aiaad2gacaWGLbGaamyyaiaad6gacaGGGcGaam4BaiaadAgacaGGGc GaamOraaaa@6331@

So μ= m1 λ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaad+gacaGGGcGaeqiVd0Maeyypa0ZaaSaaa8aabaWdbiaa d2gacqGHsislcaaIXaaapaqaa8qacqaH7oaBaaGaaiOlaaaa@4176@ (3.11)

Consider

k=0 P ¯ k ( λ ) ( 1s ) k =1+ k=0 ( 1s ) k λ k 0 x k1 ( k1 )! e λx F ¯ ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaabmaeaadaqdaaqaaiaadcfaaaWaaSbaaSqaaiaadUgaaeqaaOWa aeWaaeaacqaH7oaBaiaawIcacaGLPaaaaSqaaiaadUgacqGH9aqpca aIWaaabaGaeyOhIukaniabggHiLdGcdaqadaqaaiaaigdacqGHsisl caWGZbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGRbaaaOGaeyypa0 JaaGymaiabgUcaRmaaqadabaWaaeWaaeaacaaIXaGaeyOeI0Iaam4C aaGaayjkaiaawMcaamaaCaaaleqabaGaam4AaaaaaeaacaWGRbGaey ypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeq4UdW2aaWbaaSqa beaacaWGRbaaaOWaa8qmaeaadaWcaaqaaiaadIhapaWaaWbaaSqabe aapeGaam4AaiabgkHiTiaaigdaaaaakeaadaqadaqaaiaadUgacqGH sislcaaIXaaacaGLOaGaayzkaaGaaiyiaaaaaSqaaiaaicdaaeaacq GHEisPa0Gaey4kIipakiaadwgadaahaaWcbeqaaiabgkHiTiabeU7a SjaadIhaaaGcdaqdaaqaaiaadAeaaaWaaeWaaeaacaWG4baacaGLOa GaayzkaaGaamizaiaadIhaaaa@6F4E@
=1+ 0 e λx F ¯ ( x )( 1s ) λ k=0 ( ( 1s )λx ) k k! dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaaig dacqGHRaWkqaaaaaaaaaWdbmaapedabaGaamyzamaaCaaaleqabaGa eyOeI0Iaeq4UdWMaamiEaaaakmaanaaabaGaamOraaaadaqadaqaai aadIhaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaWGZbaa caGLOaGaayzkaaaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccq aH7oaBdaaeWaqaamaalaaabaWaaeWaaeaadaqadaqaaiaaigdacqGH sislcaWGZbaacaGLOaGaayzkaaGaeq4UdWMaamiEaaGaayjkaiaawM caamaaCaaaleqabaGaam4AaaaaaOqaaiaadUgacaGGHaaaaaWcbaGa am4Aaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiaadsgaca WG4baaaa@5EBD@
=1+ 0 e λx F ¯ ( x )( 1s ) λ e λ( 1s )x dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaaig dacqGHRaWkqaaaaaaaaaWdbmaapedabaGaamyzamaaCaaaleqabaGa eyOeI0Iaeq4UdWMaamiEaaaakmaanaaabaGaamOraaaadaqadaqaai aadIhaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaWGZbaa caGLOaGaayzkaaaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccq aH7oaBcaWGLbWaaWbaaSqabeaacqaH7oaBdaqadaqaaiaaigdacqGH sislcaWGZbaacaGLOaGaayzkaaGaamiEaaaakiaadsgacaWG4baaaa@555C@
=1+λ( 1s ) 0 e λsx F ¯ ( x )dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaGymaiabgUcaRiabeU7aSnaabmaabaGaaGymaiabgkHi TiaadohaaiaawIcacaGLPaaadaWdXaqaaiaadwgadaahaaWcbeqaai abgkHiTiabeU7aSjaadohacaWG4baaaaqaaiaaicdaaeaacqGHEisP a0Gaey4kIipakmaanaaabaGaamOraaaadaqadaqaaiaadIhaaiaawI cacaGLPaaacaWGKbGaamiEaaaa@4E44@ (3.12)

Let FL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8NeHWeaaa@4359@ class, hence from (3.12) k=0 P ¯ k ( λ ) ( 1s ) k 1+ λ( 1s ) μ 1+sλμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaabmaeaadaqdaaqaaiaadcfaaaWaaSbaaSqaaiaadUgaaeqaaOWa aeWaaeaacqaH7oaBaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsi slcaWGZbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGRbaaaOGaeyyz ImRaaGymaiabgUcaRaWcbaGaam4Aaiabg2da9iaaicdaaeaacqGHEi sPa0GaeyyeIuoakiabeU7aSnaabmaabaGaaGymaiabgkHiTiaadoha aiaawIcacaGLPaaadaWcaaqaaiabeY7aTbqaaiaaigdacqGHRaWkca WGZbGaeq4UdWMaeqiVd0gaaaaa@5847@                         

=1+λ( 1s ) m1 λ 1+sλ m1 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaGymaiabgUcaRiabeU7aSnaabmaabaGaaGymaiabgkHi TiaadohaaiaawIcacaGLPaaadaWcaaqaamaalaaapaqaa8qacaWGTb GaeyOeI0IaaGymaaWdaeaapeGaeq4UdWgaaaqaaiaaigdacqGHRaWk caWGZbGaeq4UdW2aaSaaa8aabaWdbiaad2gacqGHsislcaaIXaaapa qaa8qacqaH7oaBaaaaaaaa@4C8D@ (3.13)

=1+ ( 1s )( m1 ) 1+s( m1 ) = m ( 1s )+sm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaGymaiabgUcaRmaalaaapaqaa8qadaqadaWdaeaapeGa aGymaiabgkHiTiaadohaaiaawIcacaGLPaaadaqadaWdaeaapeGaam yBaiabgkHiTiaaigdaaiaawIcacaGLPaaaa8aabaWdbiaaigdacqGH RaWkcaWGZbWaaeWaa8aabaWdbiaad2gacqGHsislcaaIXaaacaGLOa Gaayzkaaaaaiabg2da9maalaaapaqaa8qacaWGTbaapaqaa8qadaqa daWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaacqGHRa WkcaWGZbGaamyBaaaaaaa@5228@ (3.14) m 1+sm . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyyzIm7aaSaaa8aabaWdbiaad2gaa8aabaWdbiaaigdacqGHRaWk caWGZbGaamyBaaaacaGGUaaaaa@3DBB@

Thus from the definition of G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaiOkaaaaaaa@42C3@ class, we have the theorem. 

Theorem 3.6 The survival probability P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaaaaa@388D@ in (3.9) belongs to G ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaaqaaaaaaaaaWd biab=zq8hbaapaWaaWbaaSqabeaapeGaaiOkaaaaaaa@42D4@ class for every λ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyOpa4JaaGimaaaa@39F2@ if F belongs to L ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=jrimbaaaaa@411B@ class.

Proof

We have, from (3.1) and (3.12), for P ¯ k G ¯ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam iuaaaadaWgaaWcbaaeaaaaaaaaa8qacaWGRbaapaqabaGcpeGaeyic I48damaanaaabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiuaapeGae8NbXFeaa8aadaahaaWcbeqaa8qacaGGQaaaaaaa@46A2@

1+λ( 1s ) 0 e λsx F ¯ ( x )dx m 1+sm m 1s+sm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgUcaRiabeU7aSnaabmaabaGaaGymaiabgkHiTiaadoha aiaawIcacaGLPaaadaWdXaqaaiaadwgadaahaaWcbeqaaiabgkHiTi abeU7aSjaadohacaWG4baaaaqaaiaaicdaaeaacqGHEisPa0Gaey4k IipakmaanaaabaGaamOraaaadaqadaqaaiaadIhaaiaawIcacaGLPa aacaWGKbGaamiEaiabgsMiJoaalaaabaGaamyBaaqaaiaaigdacqGH RaWkcaWGZbGaamyBaaaacqGHKjYOdaWcaaqaaiaad2gaaeaacaaIXa GaeyOeI0Iaam4CaiabgUcaRiaadohacaWGTbaaaaaa@5B9F@
λ( 1s ) 0 e λsx F ¯ ( x )dx ( 1s )( m1 ) 1+s( m1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2aaeWaaeaacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMca amaapedabaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4UdWMaam4Cai aadIhaaaaabaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOWaa0aaaeaa caWGgbaaamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4b GaeyizIm6aaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Ia am4CaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGTbGaeyOeI0IaaG ymaaGaayjkaiaawMcaaaWdaeaapeGaaGymaiabgUcaRiaadohadaqa daWdaeaapeGaamyBaiabgkHiTiaaigdaaiaawIcacaGLPaaaaaaaaa@5D05@
0 e λsx F ¯ ( x )dx ( 1s )( m1 ) λ( 1s )[ 1+s( m1 ) ] = μ 1+sμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa8qmaeaacaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBcaWGZbGa amiEaaaaaeaacaaIWaaabaGaeyOhIukaniabgUIiYdGcdaqdaaqaai aadAeaaaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIha cqGHKjYOdaWcaaqaamaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4Caa GaayjkaiaawMcaamaabmaapaqaa8qacaWGTbGaeyOeI0IaaGymaaGa ayjkaiaawMcaaaqaaiabeU7aSnaabmaapaqaa8qacaaIXaGaeyOeI0 Iaam4CaaGaayjkaiaawMcaamaadmaapaqaa8qacaaIXaGaey4kaSIa am4Camaabmaapaqaa8qacaWGTbGaeyOeI0IaaGymaaGaayjkaiaawM caaaGaay5waiaaw2faaaaacqGH9aqpdaWcaaqaaiabeY7aTbqaaiaa igdacqGHRaWkcaWGZbGaeqiVd0gaaaaa@660E@

Hence from the definition of L ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqb aiab=jrimbaaaaa@411B@ class the result follows.

Applications

Random minima and maxima

Let X 1 , X 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWlaaa@3D83@ be a sequence of non-negative integer-valued random variables which are independent and identically distributed. Let N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3864@ be a positive integer-valued random variable which is independent of X i ' s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGNaGaaiiO aiaadohaaaa@3B82@ . Denote X ( 1: N 1 ) =min( X 1 , X 2 ,, X N 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaaIXaGaaiOoaiaa d6eapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaa aapaqabaGcpeGaeyypa0JaamyBaiaadMgacaWGUbWaaeWaa8aabaWd biaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadI fapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiilaiabgAci8kaa cYcacaWGybWdamaaBaaaleaapeGaamOta8aadaWgaaadbaWdbiaaig daa8aabeaaaSqabaaak8qacaGLOaGaayzkaaaaaa@4D60@ and X ( N 1 : N 1 ) =max( X 1 , X 2 ,, X N 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaWGobWdamaaBaaa meaapeGaaGymaaWdaeqaaSWdbiaacQdacaWGobWdamaaBaaameaape GaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaaWdaeqaaOWdbiabg2da 9iaad2gacaWGHbGaamiEamaabmaapaqaa8qacaWGybWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybWdamaaBaaaleaapeGa aGOmaaWdaeqaaOWdbiaacYcacqGHMacVcaGGSaGaamiwa8aadaWgaa WcbaWdbiaad6eapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaaGc peGaayjkaiaawMcaaaaa@4EAB@ (for details refer Gupta and Gupta,20 Rohatgi,21 Shaked and Wong13 and references there in). Since the Xi s are non-negative, the random variable X ( N 1 : N 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaWGobWdamaaBaaa meaapeGaaGymaaWdaeqaaSWdbiaacQdacaWGobWdamaaBaaameaape GaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaaWdaeqaaaaa@3E22@ arises naturally in reliability theory as the lifetime of a parallel system with a random number N 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3865@ of identical components with lifetimes X 1 , X 2 ,, X N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWRaai ilaiaadIfapaWaaSbaaSqaa8qacaWGobWdamaaBaaameaapeGaaGym aaWdaeqaaaWcbeaaaaa@414F@ . The random variable X ( 1: N 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaaIXaGaaiOoaiaa d6eapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaa aapaqabaaaaa@3CD8@ arises naturally in transportation theory as the accident free distance of a shipment of explosives, where N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3864@ of them are defectives which may explode and cause an accident after X 1 , X 2 ,, X N 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWRaai ilaiaadIfapaWaaSbaaSqaa8qacaWGobWdamaaBaaameaapeGaaGym aaWdaeqaaaWcbeaaaaa@414F@ miles respectively. Let N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3865@ be another positive integer-valued random variable which is also independent of the X i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@38A1@ and let X ( 1: N 2 ) =min( X 1 , X 2 X N 2 ) and  X ( N 2 : N 2 ) =max( X 1 , X 2 , X N 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaaIXaGaaiOoaiaa d6eapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaa aapaqabaGcpeGaeyypa0JaamyBaiaadMgacaWGUbWaaeWaa8aabaWd biaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadI fapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOjGWRaamiwa8aa daWgaaWcbaWdbiaad6eapaWaaSbaaWqaa8qacaaIYaaapaqabaaale qaaaGcpeGaayjkaiaawMcaaiaacckacaWGHbGaamOBaiaadsgacaGG GcGaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaWGobWdamaaBa aameaapeGaaGOmaaWdaeqaaSWdbiaacQdacaWGobWdamaaBaaameaa peGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaaWdaeqaaOWdbiabg2 da9iaad2gacaWGHbGaamiEamaabmaapaqaa8qacaWGybWdamaaBaaa leaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGybWdamaaBaaaleaape GaaGOmaaWdaeqaaOWdbiaacYcacqGHMacVcaWGybWdamaaBaaaleaa peGaamOta8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaak8qaca GLOaGaayzkaaGaaiOlaaaa@6940@

Theorem 4.1 Let X 1 , X 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamiw a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaeyOjGWlaaa@3D83@ be a sequence of non-negative integer-valued random variable which are independent and identically distributed. Let N 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3865@ and N 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtamaaBaaaleaacaaIYaaabeaaaaa@3838@ be two positive integer-valued random variables which are independent of the X i ' s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaacEcaaaGccaWG Zbaaaa@3A60@ . Then the following results are true.

  1. If N 1 G N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOpaWa aSbaaSqaa8qacaWGhbaapaqabaGcpeGaamOta8aadaWgaaWcbaWdbi aaikdaa8aabeaaaaa@3D5C@ , then X ( 1: N 1 ) st X ( 1: N 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaaIXaGaaiOoaiaa d6eapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaa aapaqabaGcpeGaeyizIm6damaaBaaaleaapeGaam4Caiaadshaa8aa beaak8qacaWGybWdamaaBaaaleaapeWaaeWaa8aabaWdbiaaigdaca GG6aGaamOta8aadaWgaaadbaWdbiaaikdaa8aabeaaaSWdbiaawIca caGLPaaaa8aabeaak8qacaGGUaaaaa@4835@
  2. If N 1 G N 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOpaWa aSbaaSqaa8qacaWGhbaapaqabaGcpeGaamOta8aadaWgaaWcbaWdbi aaikdaa8aabeaaaaa@3D5C@ , then X ( N 1 : N 1 ) st X ( N 2 : N 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaWGobWdamaaBaaa meaapeGaaGymaaWdaeqaaSWdbiaacQdacaWGobWdamaaBaaameaape GaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaaWdaeqaaOWdbiabgwMi Z+aadaWgaaWcbaWdbiaadohacaWG0baapaqabaGcpeGaamiwa8aada WgaaWcbaWdbmaabmaapaqaa8qacaWGobWdamaaBaaameaapeGaaGOm aaWdaeqaaSWdbiaacQdacaWGobWdamaaBaaameaapeGaaGOmaaWdae qaaaWcpeGaayjkaiaawMcaaaWdaeqaaOWdbiaac6caaaa@4AD9@

Proof

Let P k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@389B@ be the common distribution function of X i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@38A1@ s, that is, P k =P[ X i k ] for i=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGH9aqpcaWG qbWaamWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaWGPbaapaqaba GcpeGaeyizImQaam4AaaGaay5waiaaw2faaiaacckacaWGMbGaam4B aiaadkhacaGGGcGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacY cacqGHMacVaaa@4CFC@ and P k( N 1 : N 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadUgadaqadaWdaeaapeGaamOta8aa daWgaaadbaWdbiaaigdaa8aabeaal8qacaGG6aGaamOta8aadaWgaa adbaWdbiaaigdaa8aabeaaaSWdbiaawIcacaGLPaaaa8aabeaaaaa@3F09@ denotes the distribution function of X ( N 1 : N 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaWGobWdamaaBaaa meaapeGaaGymaaWdaeqaaSWdbiaacQdacaWGobWdamaaBaaameaape GaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaaWdaeqaaaaa@3E21@ . Then we have
P k( N 1 : N 1 ) = n=1 ( P k ) n P[ N 1 =n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuamaaBaaaleaacaWGRbWaaeWaaeaacaWGobWdamaaBaaameaa peGaaGymaaWdaeqaaSWdbiaacQdacaWGobWdamaaBaaameaapeGaaG ymaaWdaeqaaaWcpeGaayjkaiaawMcaaaqabaGccqGH9aqpdaaeWaqa amaabmaabaGaamiuamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawM caaaWcbaGaamOBaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoa kmaaCaaaleqabaGaamOBaaaakiaadcfadaWadaqaaiaad6eapaWaaS baaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaamOBaaGaay5waiaa w2faaaaa@516D@
n=1 ( 1 P ¯ k ) n P[ N 1 =n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaabmaeaadaqadaqaaiaaigdacqGHsisldaqdaaqaaiaadcfaaaWd amaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaayjkaiaawMcaaaWcba GaamOBaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakmaaCaaa leqabaGaamOBaaaakiaadcfadaWadaqaaiaad6eapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaamOBaaGaay5waiaaw2faaaaa @4A14@
= G N 1 ( P ¯ k ),0< P ¯ k 1,  P ¯ k =1 P k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Jaam4ra8aadaWgaaWcbaWdbiaad6eapaWaaSbaaWqaa8qa caaIXaaapaqabaaaleqaaOWaaeWaaeaapeWaa0aaaeaacaWGqbaaa8 aadaWgaaWcbaWdbiaadUgaa8aabeaaaOGaayjkaiaawMcaaiaacYca peGaaGimaiabgYda8maanaaabaGaamiuaaaapaWaaSbaaSqaa8qaca WGRbaapaqabaGcpeGaeyizImQaaGymaiaacYcacaGGGcWaa0aaaeaa caWGqbaaa8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGH9aqpca aIXaGaeyOeI0Iaamiua8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@4E8D@

Similarly   P k( N 2 : N 2 ) = G N 2 ( P ¯ k ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadcfapaWaaSbaaSqaa8qacaWGRbWaaeWaa8aabaWdbiaa d6eapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiOoaiaad6eapa WaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaaapaqa baGcpeGaeyypa0Jaam4ra8aadaWgaaWcbaWdbiaad6eapaWaaSbaaW qaa8qacaaIYaaapaqabaaaleqaaOWdbmaabmaapaqaa8qadaqdaaqa aiaadcfaaaWdamaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaayjkai aawMcaaiaac6caaaa@4919@

Also the survival function of X ( 1: N 1 ) ,  P ¯ k( 1: N 1 )  is  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbmaabmaapaqaa8qacaaIXaGaaiOoaiaa d6eapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaa aapaqabaGcpeGaaiilaiaacckadaqdaaqaaiaadcfaaaWdamaaBaaa leaapeGaam4Aamaabmaapaqaa8qacaaIXaGaaiOoaiaad6eapaWaaS baaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaaapaqabaGc peGaaiiOaiaadMgacaWGZbGaaiiOaaaa@4A63@
P ¯ k( 1: N 1 ) = n=1 ( P ¯ k ) n P[ N 1 =n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGqbaaamaaBaaaleaacaWGRbWaaeWaaeaacaaIXaGa aiOoaiaad6eadaWgaaadbaGaaGymaaqabaaaliaawIcacaGLPaaaae qaaOGaeyypa0ZaaabmaeaadaqadaqaamaanaaabaGaamiuaaaadaWg aaWcbaGaam4AaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaad6 gaaaGccaWGqbWaamWaaeaacaWGobWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabg2da9iaad6gaaiaawUfacaGLDbaaaSqaaiaad6gacq GH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdaaaa@4FFE@
n=1 ( 1 P K ) n P[ N 1 =n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaabmaeaadaqadaqaaiaaigdacqGHsislcaWGqbWaaSbaaSqaaiaa dUeaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGUbaaaaqaai aad6gacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGccaWGqbWa amWaaeaacaWGobWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2 da9iaad6gaaiaawUfacaGLDbaaaaa@4990@
= G N 1 ( P ),0< P k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0Jaam4ra8aadaWgaaWcbaWdbiaad6eapaWaaSbaaWqaa8qa caaIXaaapaqabaaaleqaaOWaaeWaaeaapeGaamiuaaWdaiaawIcaca GLPaaacaGGSaGaaGimaiabgYda8iaadcfadaWgaaWcbaGaam4Aaaqa baGccqGHKjYOcaaIXaaaaa@43ED@

Similarly, P ¯ k( 1: N 2 ) = G N 2 ( P k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGqbaaamaaBaaaleaacaWGRbWaaeWaaeaacaaIXaGa aiOoaiaad6eadaWgaaadbaGaaGOmaaqabaaaliaawIcacaGLPaaaae qaaOGaeyypa0Jaam4ramaaBaaaleaacaWGobWaaSbaaWqaaiaaikda aeqaaaWcbeaakmaabmaabaGaamiuamaaBaaaleaacaWGRbaabeaaaO GaayjkaiaawMcaaaaa@44A4@
N 1 G N 2 P ¯ k( 1: N 1 ) P ¯ k( 1: N 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaakiabgsMiJoaaBaaa leaacaWGhbaabeaak8qacaWGobWaaSbaaSqaaiaaikdaaeqaaOGaey i1HS9aa0aaaeaacaWGqbaaamaaBaaaleaacaWGRbWaaeWaaeaacaaI XaGaaiOoaiaad6eadaWgaaadbaGaaGymaaqabaaaliaawIcacaGLPa aaaeqaaOGaeyizIm6aa0aaaeaacaWGqbaaamaaBaaaleaacaWGRbWa aeWaaeaacaaIXaGaaiOoaiaad6eadaWgaaadbaGaaGOmaaqabaaali aawIcacaGLPaaaaeqaaaaa@4EAA@
X ( 1: N 1 ) st X ( 1: N 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyi1HSTaamiwamaaBaaaleaadaqadaWdaeaapeGaaGymaiaacQda caWGobWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawM caaaqabaGccqGHKjYOdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamiw amaaBaaaleaadaqadaqaaiaaigdacaGG6aGaamOtamaaBaaameaaca aIYaaabeaaaSGaayjkaiaawMcaaaqabaaaaa@48BE@
N 1 G N 2 P ¯ k( N 1 : N 1 ) P ¯ k( N 2 : N 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaaigdaa8aabeaakiabgsMiJoaaBaaa leaacaWGhbaabeaak8qacaWGobWaaSbaaSqaaiaaikdaaeqaaOGaey i1HS9aa0aaaeaacaWGqbaaamaaBaaaleaacaWGRbWaaeWaaeaacaWG obWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacQdacaWGobWaaS baaWqaaiaaigdaaeqaaaWccaGLOaGaayzkaaaabeaakiabgsMiJoaa naaabaGaamiuaaaadaWgaaWcbaGaam4AamaabmaabaGaamOta8aada WgaaadbaWdbiaaikdaa8aabeaal8qacaGG6aGaamOtamaaBaaameaa caaIYaaabeaaaSGaayjkaiaawMcaaaqabaaaaa@513D@
X ( N 1 : N 1 ) st X ( N 2 : N 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyi1HSTaamiwamaaBaaaleaadaqadaqaaiaad6eapaWaaSbaaWqa a8qacaaIXaaapaqabaWcpeGaaiOoaiaad6eapaWaaSbaaWqaa8qaca aIXaaapaqabaaal8qacaGLOaGaayzkaaaabeaakiabgwMiZ+aadaWg aaWcbaWdbiaadohacaWG0baapaqabaGccaWGybWaaSbaaSqaamaabm aabaWdbiaad6eapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiOo aiaad6eadaWgaaadbaGaaGOmaaqabaaal8aacaGLOaGaayzkaaaabe aaaaa@4B90@

Conclusion

Similar to continuous ageing classes, discrete classes can be classified according to various stochastic oderings. These discrete classes have been extensively used in different fields such as insurance, finance, reliability, survival analysis and others. In this paper, a. p. g. f. ordering, a discrete analogue of Laplace transform ordering and its properties and certain shock models leading to G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaeOkaaaaaaa@42C2@ class are studied. It has been shown that a.p.g.f ordering between two shock survival functions P ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaayBaeaaaaaa aaa8qadaqdaaqaaiaadcfaaaWdamaaBaaaleaapeGaam4AaaWdaeqa aaaa@398D@ and Q ¯ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0aaaeaacaWGrbaaa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@38AD@ are preserved by survival function of the system. It has also been shown that it is necessary and sufficient for the survival function of the system to belong to L class is that the survival probability of surviving k shocks belongs to G * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaeOkaaaaaaa@42C2@ class, under the assumption that the shock occuring randomly in time according to a Poisson process. If the failure of the system is triggered by a sufficient number of shocks, we proved that the survival probability function is in G * ( G ¯ * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFge=r paWaaWbaaSqabeaapeGaaeOkaaaakmaabmaapaqaa8qadaqdaaqaai ab=zq8hbaapaWaaWbaaSqabeaapeGaaeOkaaaaaOGaayjkaiaawMca aaaa@474B@ class only if the critical threshold is in L( L ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFsect caGGOaWaa0aaaeaacqWFsectaaGaaiykaaaa@4378@ under the assumption that the damage is accumulated additively and the shocks do not damage the system unless the accumulated shocks exceeds a critical thershold. Finally stochastic ordering of random maxima and minima has studied in relation to a. p. g. f. ordering.

Acknowledgments

The authors thank the referee for pointing out some inadequacies that the earlier version of the manuscript had, and for valuable comments.

Conflicts of interest

There is no conflicts of interest.

Funding

None.

References

  1. Barlow RE, Proschan F. Statistical theory of reliability and life testing:  probability models. Florida State Univ Tallahassee.1975.
  2. Cai J, Kalashnikov V. NWU property of a class of random sums. Journal of applied probability. 2000;37(1):283–289.
  3. Cai J, Willmot GE. Monotonicity and aging properties of random sums. Statistics & probability letters, 2005;73(4):381–392.
  4. Lai CD, Xie M. Stochastic ageing and dependence for reliability. Springer Science & Business Media. 2006.
  5. Shaked M, Santhikumar JG. Stochastic Orders and their Applications. Academic Press, New York. 1994.
  6. Shaked M, Santhikumar JG, Valdez–Torres JB. Discrete hazard rate functions. Computers and Operation Research. 1995;22:391–402.
  7. Willmot GE, Cai J. Aging and other distributional properties of discrete compound eometric distributions. Insurance: Mathematics and Economics. 2001;28(3),361–379.
  8. Willmot GE, Lin XS. Lundberg approximations for compound distributions with insurance applications. Springer, New York. 2000.
  9. Willmot GE, Drekic S, Cai J. Equilibrium compound distributions and stop–loss moments. Scandinavian Actuarial Journal. 2005; 2005(1):6–24.
  10. Bryson MC, Siddiqui MM. Some criteria for ageing. J Amer Statist Assoc. 1969;64(328):1472–1483.
  11. Klefsjö B. The HNBUE and HNWUE classes of life distributions. Naval Res Logist. Quart. 1982;29(2):331–344.
  12. Klefsjö B. A useful ageing property based on the Laplace transforms. J Appl Prob. 1983;20(3):685–616.
  13. Shaked M, Wong T. Stochastic orders based on ratios of Laplace transforms. J Appl Prob. 1997;34(2):404–419.
  14. Jayamol KV, Jose KK. Stochastic ordering with respect to alternating probability generating function. STARS, Int Journal (Sciences). 2008;2(1):20–28.
  15. Jayamol KV, Jose KK. On G and G(α) –classes of life distributions. Statistical Methods, special issue, 2006;105–120.
  16. Esary JD, Marshall AW, Proschan F. Shock Models and wear processes. Ann Prob. 1973;1(4):627–650.
  17. Ahmed AH. The generalized HNBUE (HNWUE) class of life distributions. Zeitschrift für Operations Research. 1990; 34(3):183–194.
  18. Singh H, Jain, K. Preservation of some partial orderings under Poisson models. Adv Appl Prob. 1989;21(3):713–716.
  19. A–Hameed M, Proschan F. Non–stationary shock models. Stoc Proc Appl. 1973;1:383–404.
  20. Gupta D, Gupta RC. On the distribution of order statistics for a random sample size. Statistica neerlandica, 1984;38(1):13–19.
  21. Rohatgi VK. Distribution of order statistics with random sample size. Communications in Statistics–Theory and Methods, 1987;16(12):3739–3743.
Creative Commons Attribution License

©2020 Jayamol, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.