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Introduction
Stochastic orders and inequalities are being used at an accelerated 

rate in many diverse areas of probability and Statistics. For example, 
in statistical reliability theory, several concepts of partial orderings 
have been successfully used to develop various notions of ageing 
of non negative random variables. Ageing concept for discrete 
distributions were studied by various authors. See for example, 
Barlow and Proschan,1 Cai and Kalashnikov,2 Cai and Willmot,3 Lai 
and Xie,4 Shaked and Shanthikumar,5 Shaked et al.,6 Willmot and 
Cai,7 Willmot and Lin,8 Willmot et al.,9 and references therein. Using 
Laplace transform, various reliability classes have been characterized 
by different researches. For details, see Bryson and Siddiqui,10 
Klefsjö,11,12 Shaked and Wong13 and the references there in. As a 
discrete analogue of Laplace transform ordering, Jayamol and Jose14 

introduced . . . .a p g f ordering and *G class of lifetime distributions 
based on this ordering as follows. 

Definition 1.1 Let  denotes the probability mass function ( . . .p m f ) of 
a non-negative integer-valued random variable , then the . . . .a p g f , 
( )G ⋅ of f  is defined as 

                      ( ) (1 ) ,  0 1.XG s E s s= − < ≤              (1.1)

Definition 1.2 A non-negative integer-valued life distribution with 

mean  belongs to the ( )**G G class of lifetime distributions if and 
only if 

             ( ) ( ) 1 ,  0,0 1.
1

G s s
s

µ
µ

≤ ≥ ≥ < ≤
+

              (1.2)

It may be noted that the R.H.S. of the inequality (1.2) is the . . . .a p g f
of a geometric distribution with p.m.f. ( ) , 0,1,2,xf x pq x= =  and 

with mean µ  as that of f. For properties of ( )**G G  classes one may 
refer to Jayamol and Jose,15 Jayamol and Jose.14

For many equipments, useful life is often measured in discrete 
integer units, for example the number of copies a plain paper copier 
makes before a breakdown, the number of completed production runs 

in an automated assembly line before a malfunction occurs, etc. Even 
in situations where the time to failure is conceptually a continuous 
variable, one is often interested in measuring the life in suitably 
discretized work units successfully completed. For example, the 
number of days one needs to replace the batteries in an appliance under 
specified normal pattern of use is discrete. So as a discrete analogue 
of Laplace transform ordering, Jayamol and Jose14 introduced a new 
stochastic ordering namely alternate probability generating function (

. . . .a p g f ) ordering. Some properties of this ordering are considered 
here.

a.p.g.f. ordering and its properties
As a discrete analogue of Laplace transform ordering introduced 

by Klefsjö,12 Jayamol and Jose14 defined . . . .a p g f ordering as follows. 

Definition 2.1 Suppose that X a and Y   are two non-negative 
integer-valued random variables with . . .p m f s 1f  and 2f  and 

( )1. . . .  a p g f sG s and ( )2G s respectively. Then X is said to be smaller 
than Y (or equivalently, 1f is smaller than 2f ) in . . . .a p g f ordering 
if ( ) ( )1 2 , G s G s≤ for 0 1s≤ ≤ . It is denoted by GX Y≤  (or 
equivalently, we write 1 2Gf f≤ ). 

 In this context, we have the following theorems. 

Theorem 2.1 Suppose that X and Y  be two non-negative integer-
valued random variables with respective . . .p m f s 1f  and 2f . Then 

 GX Y≤  implies ( ) ( )E X E Y≥ , provided the expectations exist. 

Proof

If  GX Y≤ then ( ) ( ) ( ) ( )1 20 01 1
x y

x ys f x s f y∞ ∞

= =
− ≤ −∑ ∑

Differentiating once with respect to s  and letting 0s → , we get
( ) ( )E X E Y≥ .

Theorem 2.2 Let X and Y  be two non-negative integer-valued 
random variables. If  GX Y≤ then GX K Y K+ ≤ +  for every 
K N+∈ . 
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Proof

If , (1 ) (1 ) .X Y
GX Y E s E s≤ − ≤ − Then we have,

   (1 ) (1 ) (1 )  (1 ) (1 )X K K X K XE s E s s s E s+− = − − = − −

                   (1 ) (1 )  (1 ) .K Y Y Ks E s E s +≤ − − = −  

Theorem 2.3 Let 1 2, , , mX X X…  be a set of independently distributed 
non-negative integer-valued random variables. Let 1 2, , , mY Y Y…  be 
another set of independently distributed non-negative integer-valued 
random variables. If i G iX Y≤  for i=1,2… , m. Then 

                                
1 1

m m
i G ii iX Y

= =
≤∑ ∑

Proof

If i G iX Y≤  then (1 ) (1 )i iX YE s E s− ≤ − for i=1,2... , m.

Let 
1

m
iiX X

=
= ∑  and 

1
m

iiY Y
=

= ∑
 1 1(1 ) (1 ) (1 )  (1 ) (1 )m mX XX XXE s E s s E s E s− = − … − = − … −

  1(1 ) (1 )  (1 ) .mYY YE s E s E s≤ − … − = −

Theorem 2.4 Let 1 2, ,X X …  be independently and identically 
distributed non-negative integer-valued random variables and let 

1N  and 2N  be positive integer-valued random variables which are 

independent of iX . Then 1 2

11 2 1
N N

i G ii iGN XN X
= =

⇔ ≤≤ ∑ ∑
Proof

We have the . . . .a p g f

 ( ) [ ] ( )
1 2 1 21

... 1 ...1  
N iX X X X X XiG S P N i G S∞

+ + + + + +=
= =∑

              [ ] ( )
111

( )i
Xi

P N i G s∞

=
= =∑

       [ ] ( )( )( )111 1 1
i

Xi P N i G S∞

=
= − −∑

    ( )
1

,NG s=  ( )( )
1

 0 1 1.Xwhere s G s< = − ≤

       ( ) ( )
1 21 2G N NN N G s G s≤ ⇔ ≤

 ( ) ( )
1 2 1 21 2

 
N NX X X X X XG s G s+ + + + + +⇔ ≤

 

            1 2

1 1
N N

i G ii iX X
= =

⇔ ≤∑ ∑
Theorem 2.5 Let X  and Y  be two non-negative integer-valued 
random variables such that .GX Y≤  Let kP  and kQ  be the survival 
functions of X  and Y  respectively. Then 

                 
( ) ( )0 01 1k

k kk
k

kP s Q s∞ ∞

= =
− ≥ −∑ ∑

Proof

The stated result follows from the definition of . . . .a p g f  ordering 
and from the equation 

             
0

(1 ) 1 (1 ) .X k
kk

E s s P s∞

=
− = − −∑               

 (2.1)

Shock models leading to G* class
In reliability analysis one may calculate the reliability of a 

complex system starting with the reliability of the components. If 

all components have life distributions belonging to a certain class, 
then one would like to conclude that the life distribution of the entire 
system belongs to the same, or a similar class. Shock models of this 
kind have been considered by a number of authors under all kinds of 
assumptions. The results center around proving that, subject to suitable 
assumptions on the point process ( ){ } N t  of shocks, various discrete 

reliability characteristics of the { } kP  sequence, which arise naturally 
out of physical considerations are inherited by the continuous survival 
probability ( )F t . That is if the shock survival probabilities { } kP  
belong to a discrete version of one of the life distribution classes, 
then under appropriate assumptions the continuous time survival 

probability ( )F t  belongs to the continuous version of that class. That 
is the life distribution ( )H t of a device subject to shocks governed 
by a Poisson process is considered as a function of the probabilities 

kP  of surviving the first k  shocks. Various properties of the discrete 
failure distribution kP  are shown to be reflected in the corresponding 
properties of the continuous life distribution ( )H t . In the present 
paper we study some shock models leading to *G  class. A certain 
cumulative damage model is also investigated. For that we consider 
the following definitions and Theorem.

Klefsjö12 introduced a class denoted by , which consists of all 

distribution functions F, for which ( ) ( )1

1 ,
1FL s

s Fµ
≤

+
 where ( )FL s  

is the Laplace transform of F defined by ( ) ( )
0

 , 0sx
FL s e dF x s

∞ −= ≥∫    

and ( ) ( )
0

k
k F x dF xµ

∞
= ∫    k=1,2,…, Its dual class   is obtained by 

reversing the inequality.

Definition 3.1 Suppose that X  and Y  are two non-negative 
integer-valued random variables with survival functions kP  and 

kQ  respectively. Then X  is said to be smaller than Y  in . . . .a p g f

ordering if ( ) ( )0 01 1k
k k

k
k kP s Q s∞ ∞

= =
− ≥ −∑ ∑ for 0 1s< ≤ . 

Theorem 3.1 Let X be a non-negative integer-valued random 
variable with ( ). . . . a p g f G s and survival function [ ] .kP X k P> =

Then for ( )0,1 ,s∈  ( ) ( )
*

0 1
1

k
kkX s P

s
µ
µ

∞

=
∈ ⇔ − ≥

+∑G

A Poisson shock model

 Assume a device is subject to shocks occurring randomly in time 
according to a Poisson process with intensity  Suppose if the device 
has the probability kP  of surviving k shocks, where 1= 0 2P P≥ ≥…
, then the survival function of the device is given by, 

                        ( ) ( )
0 !

kt

kk

e t
H t P

k

λ λ−
∞

=
= ∑                              (3.1)

Esary et al.16 have shown that if 0{ }k kP ∞
=  has the discrete Increasing 

Failure Rate (IFR), Increasing Failure Rate in Average (IFRA), 
New Better than Used in Expectation (NBUE) or Decreasing Mean 
Residual Life (DMRL) property, then this property will be reflected to 

( )H t  given by (3.1). Klefsjö11 has shown that a similar result holds 
for the Harmonically New Better than Used in Expectation (HNBUE) 
class. Shock models leading to GHNBUE (GHNWUE) classes are 
studied by A H N Ahmed.17 We now show that the same is true for 

*G  class also.
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Theorem 3.2 The survival function ( )H t  in (3.1) is in  class if and 
only if 0{ }k kP ∞

=  is in *G  class. 

Proof

Let µ  be the mean of ( )H t and  be the mean of 0{ }k kP ∞
= . We 

have, 

( ) ( )
0 00 0

1
!

kt

k kk k

e t mH t dt dt P P
k

λ λ
µ

λ λ

−
∞ ∞∞ ∞

= =

  = = = = 
  

∑ ∑∫ ∫

 Laplace transform of ( )H t

              ( ) ( )
0

st
HL S e H t dt

∞ −= ∫                          (3.2) 

              ( )
0 0!

k
s t k

kk P e t dt
k

λλ ∞∞ − +
=∑ ∫

       0
1 k

kk P
ss
λ

λ λ
∞

=
 =  
 ++ ∑                                        (3.3)

( )        
1HH Lclass if and only if L s

s
µ
µ

∈ ≥
+

                        (3.4)

0 1    ,
1

k

kkt P
s

hat is if and only if
s s
λ µ

λ λ µ
∞

=
 =  +

≥
 + +

∑

         ( )
0 1

k

kk s
P

s
s

λ µλ
λ µ

∞

=

+ 
 
 

≥
+ +∑

0 1
1 1

k

kk

sm
s m mP m s ss s m m

s s s

λ
λ

λλ
λ λ λ λ

∞

=

+ 
    − ≥ = ≥ +  + + +

+ + +

∑  
 

                                                                                                   (3.5)

 (3.4) holds if and only if (3.5) holds. Hence from Theorem 3.1, 
we have the result.

Consider another device which is also subjected to shocks 
occurring randomly as events in a Poisson process with same constant 
intensity λ , and the device has probability kQ  of surviving the first  
shocks, where 0 11 Q Q= ≥ ≥… . The survival function of this device 
is given by 

         ( ) ( )
0 !

k

k

t

kt
e t

Q
k

F
λ λ−

∞

=
= ∑                                    (3.6)

Singh and Jain18 have shown that some partial orderings, namely 
likelihood ratio (LR) ordering, failure rate (FR) ordering, stochastic 
(ST) ordering, variable (V) ordering and mean residual life (MRL) 
ordering between the two shock survival probabilities   k kand QP  are 
preserved by the corresponding survival functions ( ) ( )  H t and F t  of 
the devices. Here we extent this preservation property to . . .a p g f   
ordering. 

Theorem 3.3 If   k G kP Q≤  then ( ) ( )LH t F t≤ . 

Proof

Let   k G kP Q≤ . From (3.6), we have 

 ( ) ( )
00 0 !

kt
st st

kk

e t
e F t dt e

k
Q

λ λ−
∞ ∞ ∞− −

=
= ∑∫ ∫

 ( )
( )0 00

1
!

k
s t k

k kk k

k
Q e t dt Q

s sk
λλ λ

λ λ
∞∞ − +

=

∞

=
 =  + + 

∑ ∑∫
 

            
( ) 0

1 1
k

kk Q
s s

λ
λ λ=

∞  = − + + 
∑

 

( )0 0

1  3. 11
k

st
kk

sF trom Definition P e H t d
s sλ λ=

∞ −∞ − = +
≤

+ 
∑ ∫

                     ( ) ( ).LH t F t⇔ ≤

Remark 1 When λ  is a random variable, denoted by Λ ,, whose 
distribution is Y, in this case ( )H t  can be written as 

              ( )
( )( )

0

)

!

t k

k

e t
H t E

k

−Λ
∞

=

Λ
=∑  

                             
(3.7)

A Nonhomogeneous poisson shock model

Suppose that shocks occur according to a nonhomogeneous 
Poisson process with mean value function ( )tΩ . If a device has the 
probability kP  of surviving the first  shocks, its survival function 

( )H t  is given by 

                   ( )
( ) ( )

0 !
kk

t ke
H

t
t P

k

−Ω

=

∞  
=

Ω ∑             (3.8)

 This shock model was studied by Hameed and Proschan.19 They 
proved that under suitable conditions on ( )tΩ , the survival function 

( )H t  is IFR, IFRA, New Better than Used (NBU) NBUE or DMRL 

if { }
0

k
k

P
∞

=
 has the corresponding discrete property. We will now give 

a theorem for *G class. 

Lemma 3.1 (Klefsjö)12: ( ) ( )1H t H t= Ω     
belongs to 

( ) ( )1  if H ∈   
 
class and ( )tΩ  is starshaped (antistarshaped). 

Theorem 3.4 If { }
0

k
k

P
∞

=
 is in *G  class and ( )tΩ is starshaped then 

( )H t  in (3.8) belongs to   class.

Proof 

Let ( ) 0 !

t k

k k
e t P

k
H t

−

=

∞= ∑   Since { }
0

k
k

P
∞

=
is in *G class, by 

Theorem 3.2 ( )1H t  belongs to   class. Hence the result follows 
from Lemma 3.1. 
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A cumulative damage model 

In this section we study special model for the survival probability 
kP . Suppose that a device is subjected to shocks. Every shock 

causes a random amount of damage. Suppose damage accumulates 
additively. The device fails when the accumulated damage exceeds a 
critical threshold Y  which has the distribution F , where ( )0 0F − =
. If the damages 1 2, , ,X X … , from successive shocks are independent 

and exponentially distributed with mean 1
λ

, and are independent of 

the threshold. Let N be the number of shocks survived by the device. 
Then the survival probabilities are given by

 ( ) ( ) ( )
1

0
   1,2,...,

1 !

k
k x

k
xP e F x dx for k
k

λλ λ
−∞ −= =
−∫

                                ( )0 1.P λ =                                            (3.9)

 Thus the probability function of N , [ ]P N k= is 

                ( )
( ) ( )

1

0
, 1

1 !

kx

k
e x

p dF x k
k

λ λ −−
∞

= ≥
−∫

The above cumulative damage model has been studied by Esary et 
al.16 for the NBU, IFR and IFRA cases. They proved that if F is NBUE, 
then { }

0
k

k
P

∞

=
 has the discrete NBUE property. Klefsjö11 proved that 

the same is true in the case of discrete HNBUE. We now claim that the 
result is true when { }

0
k

k
P

∞

=
 belongs to *G  class. 

Theorem 3.5 The survival probabilities kP  in (3.9) belongs to *G  
class for every 0λ > if F belongs to   class. 

Proof

First observe that  be mean of kP  is 

 
( ) ( )

1

0 1 0
1

1 !

k
k x

kk k
xm P e F x dx
k

λλ
−∞∞ ∞ −

= =
= = +

−∑ ∑ ∫

           ( ) ( )00
1

!

k
x

k

x
e F x dx

k
λλ

λ
∞ ∞ −

=
= + ∑∫

              ( )
0

1 x xe F x dxλ λλ
∞ − += + ∫                            (3.10)

 
0

1 1 ,       Fdx where is themeanof Fλ λµ µ
∞

= + == +∫

 1 .mSoµ
λ
−

=                                                                 (3.11)

Consider

( )( ) ( ) ( ) ( )
1

0 0 0
1 1 1

1 !

k
k k k x

kk k
xP s s e F x dx
k

λλ λ
−∞∞ ∞ −

= =
− = + −

−∑ ∑ ∫

( )( ) ( )( )
00

1
1

!
1

k
x

k

s x
e F x s dx

k
λ λ

λ
∞ ∞−

=
=

−
−+ ∑∫

 ( )( ) ( )1
0

11 s xxe F x s e dxλλ λ
∞ −−= −+ ∫

 ( ) ( )
0

1 1 sxs e F x dxλλ
∞ −= + − ∫  

                                           
(3.12)

 Let F ∈  class, hence from (3.12) 

 ( )( ) ( )0 1 1 1
1

k
kk P s s

s
µλ λ
λµ

∞

=
− ≥ + −

+∑

                ( )
1

1 1 11

m

s ms
λλ
λ

λ

−

= + −
−

+
                          (3.13)

                    ( )( )
( ) ( )

1 1
1

1 1 1
s m m
s m s sm

− −
= + =

+ − − +
          (3.14)

                                 .
1

m
sm

≥
+

 Thus from the definition of *G  class, we have the theorem. 

Theorem 3.6 The survival probability kP  in (3.9) belongs to 
*
G class 

for every 0λ > if F belongs to   class. 

Proof

We have, from (3.1) and (3.12), for 
*

kP ∈G

 ( ) ( )
0

1 1
1 1

sx m ms e F x dx
sm s sm

λλ
∞ −+ − ≤ ≤

+ − +∫

 ( ) ( ) ( )( )
( )0

1 1
1

1 1
sx s m

s e F x dx
s m

λλ
∞ − − −

− ≤
+ −∫

 ( ) ( )( )
( ) ( )0

1 1
11 1 1

sx s m
e F x dx

ss s m
λ µ

µλ
∞ − − −

≤ =
+−  + −  

∫

 Hence from the definition of   class the result follows.

Applications 

Random minima and maxima

Let 1 2, ,X X …  be a sequence of non-negative integer-valued 
random variables which are independent and identically distributed. 
Let 1N  be a positive integer-valued random variable which is 
independent of ' iX s . Denote ( ) ( )

11 1 21: , , , NNX min X X X= … and 

( ) ( )
11 1 1 2: , , , NN NX max X X X= …  (for details refer Gupta and Gupta,20 

Rohatgi,21 Shaked and Wong13 and references there in). Since the  
s are non-negative, the random variable ( )1 1:N NX  arises naturally in 
reliability theory as the lifetime of a parallel system with a random 
number 1N  of identical components with lifetimes

11 2, , , NX X X… . 
The random variable ( )11:NX  arises naturally in transportation theory 
as the accident free distance of a shipment of explosives, where 1N  
of them are defectives which may explode and cause an accident after 

11 2, , , NX X X…  miles respectively. Let 2N  be another positive integer-
valued random variable which is also independent of the iX  and let 

( ) ( ) ( ) ( )
2 22 2 21 2 1 21: :,   , , .N NN N NX min X X X and X max X X X= … = …

Theorem 4.1 Let 1 2, ,X X …  be a sequence of non-negative integer-
valued random variable which are independent and identically 
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distributed. Let 1N   and 2N   be two positive integer-valued random 

variables which are independent of the '
iX s .. Then the following 

results are true. 

 1. If 1 2GN N≤ , then ( ) ( )1 21: 1: .stN NX X≤

 2. If 1 2GN N≤ , then ( ) ( )1 1 2 2: : .stN N N NX X≥

Proof

Let kP  be the common distribution function of iX ’s, that is, 
[ ]  1,2,k iP P X k for i= ≤ = …and ( )1 1:k N NP denotes the distribution 

function of ( )1 1:N NX . Then we have 

              ( ) ( ) [ ]
1 1 1: 1

n

kk N N nP P P N n∞

=
= =∑

                        ( ) [ ]11 1
n

kn P P N n∞

=
− =∑

             ( )1
1,0 , 1k k kN kG P P P P= < ≤ = −

Similarly 

                             ( ) ( )22 2: .kNk N NP G P=

Also the survival function of ( ) ( )11
1:1: ,   k NNX P is

                    ( ) ( ) [ ]11: 11

n
k N knP P P N n∞

=
= =∑

                     ( ) [ ]11 1 n
Kn P P N n∞

=
− =∑

                         ( )
1

,0 1kNG P P< ≤=

Similarly, ( ) ( )2 2
1:k N N kP G P=

               ( ) ( )1 21: 1:1 2 k N k NGN N P P≤≤ ⇔

                        ( ) ( )1 21: 1:stN NX X⇔ ≤

            ( ) ( )1 1 2 2: :1 2 k N NG N k NN N P P⇔ ≤≤

                        ( ) ( )1 1 2 2: :k N N k N NP P≥

                ( ) ( )1 1 2 2: :stN N N NXX⇔ ≥

Conclusion
Similar to continuous ageing classes, discrete classes can be 

classified according to various stochastic oderings. These discrete 
classes have been extensively used in different fields such as insurance, 
finance, reliability, survival analysis and others. In this paper, a. p. 
g. f. ordering, a discrete analogue of Laplace transform ordering 
and its properties and certain shock models leading to *G  class are 
studied. It has been shown that a.p.g.f ordering between two shock 
survival functions kP  and kQ  are preserved by survival function of 
the system. It has also been shown that it is necessary and sufficient 
for the survival function of the system to belong to L  class is that the 
survival probability of surviving k shocks belongs to *G  class, under 
the assumption that the shock occuring randomly in time according 
to a Poisson process. If the failure of the system is triggered by a 

sufficient number of shocks, we proved that the survival probability 
function is in ( )**G G  class only if the critical threshold is in ( ) 
under the assumption that the damage is accumulated additively and 
the shocks do not damage the system unless the accumulated shocks 
exceeds a critical thershold. Finally stochastic ordering of random 
maxima and minima has studied in relation to a. p. g. f. ordering.
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