Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 1

Reliability estimation of type-II generalized loglogistic distribution

SVSVSV Prasad,1 Gadde Srinivasa Rao,2 K. Rosaiah1

1Department of Statistics, Acharya Nagarjuna University, India
2Department of Mathematics and Statistics, The University of Dodoma, Tanzania

Correspondence: Gadde Srinivasa Rao, Department of Mathematics and Statistics, The University of Dodoma, Dodoma, P.O. Box: 259, Tanzania

Received: December 20, 2021 | Published: February 28, 2022

Citation: Prasad SVSVSV, Rao GS, Rosaiah K. Reliability estimation of type-II generalized log-logistic distribution. Biom Biostat Int J. 2022;11(1):36-46. DOI: 10.15406/bbij.2022.11.00352

Download PDF

Abstract

In this article, a lifetime distribution named as Type-II generalized log-logistic distribution (TGLLD) is considered and its failure rate of products with different shape parameters used to find out ageing criteria. An attempt has been made to derive the statistical and reliability properties of TGLLD. Parameters are evaluated using maximum likelihood estimation and obtained the reliability of the distribution. A simulation study also conducted to know the performance of the estimators. The estimates obtained are validated with the use of live data.

Keywords: type-ii generalized log-logistic distribution, reliability function, hazard rate, reverse hazard rate, moments, maximum likelihood estimation

MATHEMATICS SUBJECT CLASSIFICATION: 62F10; 62F15; 62N05

Introduction

Over a period of time, statistical literature witnessed the origin of many continuous univariate distributions. However, in the present era, these distributions are extended by introducing the additional parameters in order to cater the requirements from different areas such as lifetime analysis, finance, engineering industries, insurance etc. The present distribution dealt in this article is one such distribution introduced by Rosaiah et al.1 When a distribution is introduced, one may keen to know the behavior for its characterization. The same can be achieved by finding its statistical properties viz., mean, median, mode, variance, quantiles, moments, cumulants, order statistics, ML estimates, confidence intervals etc. Distinguished authors have made their efforts in estimating such properties for different distributions viz. Balakrishnan2,3 for half logistic and generalized logistic, Mudholkar and Srivastava4 Mudholkar5 for exponentiated Weibull, Gupta et al.6 for log-logistic, Nadarajah7 for exponentiated Gumbel, Nadarajah and Gupta8 for exponentiated gamma, Abouammoh and Alshingiti9 for inverted exponential distribution, Rosaiah et. al.10 for odds exponential log logistic Distribution and many more.

Log-logistic distribution (LLD) has proven its importance in quality control, mainly in analyzing the lifetime data. Many authors have made their contribution in developing the various features of this distribution by creating some extensions to the original distribution, Type-II generalized log-logistic distribution (TGLLD) is one such distribution. In this article an effort to derive mathematical properties of TGLLD. The rest of the article is organized as follows. In Section 2, the cumulative distribution function, probability density function, reliability function and hazard function of TGLLD are given. Also, the key properties, moments of TGLLD and ith order statistic are obtained. In Section 3, ML estimators, asymptotic confidence intervals are derived. Fitting reliability data, computation of ML estimates, statistics such as -2logL, AIC and BIC are presented in section 4. Lastly in Section 5, the concluding remarks are given.

Type-II generalized log logistic distribution

Log-logistic distribution (LLD) has proven its importance in quality control. Different authors developed properties and types of acceptance sampling plans for LLD viz., Ashkar and Mahdi.11 The cumulative distribution function (CDF) of the log-logistic distribution (LLD) is

F( t;σ,θ )= ( t/σ ) λ [ 1+ ( t/σ ) λ ] ;t>0,σ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadshacaGG7aGaeq4WdmNaaiilaiabeI7aXbGaayjkaiaawMca aiabg2da9maalaaabaWaaubiaeqabeqaaiabeU7aSbqaamaabmaaba GaamiDaiaac+cacqaHdpWCaiaawIcacaGLPaaaaaaabaWaamWaaeaa caaIXaGaey4kaSYaaubiaeqabeqaaiabeU7aSbqaamaabmaabaGaam iDaiaac+cacqaHdpWCaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaa aiaacUdacaWG0bGaeyOpa4JaaGimaiaacYcacqaHdpWCcqGH+aGpca aIWaGaaiilaiabeU7aSjabg6da+iaaigdaaaa@5EAE@                                                  (1)

Since the practical pertinence of generalized log-logistic distribution (GLLD) in diverse sectors, various authors have paid their attention in developing some extensions for effective and wide use of log-logistic distribution. One such extension to this distribution named as Type-II generalized log-logistic distribution (TGLLD) introduced by Rosaiah et al.,1 its cumulative distribution function (cdf) is

F(t;σ,θ,λ)=1 [ 1+ ( t/σ ) λ ] θ ;t>0,σ>0,θ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamiDaiaacUdacqaHdpWCcaGGSaGaeqiUdeNaaiilaiabeU7aSjaa cMcacqGH9aqpcaaIXaGaeyOeI0YaamWaaeaacaaIXaGaey4kaSYaae WaaeaacaWG0bGaai4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqa baGaeq4UdWgaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcq aH4oqCaaGccaGG7aGaamiDaiabg6da+iaaicdacaGGSaGaeq4WdmNa eyOpa4JaaGimaiaacYcacqaH4oqCcqGH+aGpcaaIWaGaaiilaiabeU 7aSjabg6da+iaaigdaaaa@628B@  (2)

It may be noted that the distribution given in (2) is defined through the reliability oriented generalization of log-logistic distribution. In short, we call this as the Type-II generalized log-logistic distribution [Type-I generalized (exponentiated) log-logistic distribution is dealt by Rosaiah et al.12 The corresponding probability density function (PDF) is given by

f(t;σ,θ,λ)= λθ σ ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] θ+1 ;t>0,σ>0,θ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiaacUdacqaHdpWCcaGGSaGaeqiUdeNaaiilaiabeU7aSjaa cMcacqGH9aqpdaWcaaqaaiabeU7aSjabeI7aXbqaaiabeo8aZbaada WcaaqaamaabmaabaGaamiDaiaac+cacqaHdpWCaiaawIcacaGLPaaa daahaaWcbeqaaiabeU7aSjabgkHiTiaaigdaaaaakeaadaWadaqaai aaigdacqGHRaWkdaqadaqaaiaadshacaGGVaGaeq4WdmhacaGLOaGa ayzkaaWaaWbaaSqabeaacqaH7oaBaaaakiaawUfacaGLDbaadaahaa WcbeqaaiabeI7aXjabgUcaRiaaigdaaaaaaOGaai4oaiaadshacqGH +aGpcaaIWaGaaiilaiabeo8aZjabg6da+iaaicdacaGGSaGaeqiUde NaeyOpa4JaaGimaiaacYcacqaH7oaBcqGH+aGpcaaIXaaaaa@6F8B@                                                                      (3)           

where σ is the scale parameter, λ and θ are shape parameters.

Rao et al.13,14 developed the reliability test plans for this distribution. The reliability function and hazard (failure rate) function of type-II generalized log-logistic distribution are respectively given by

R( t )= [ 1+ ( t/σ ) λ ] θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaqada qaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWadaqaaiaaigdacqGH RaWkdaqadaqaaiaadshacaGGVaGaeq4WdmhacaGLOaGaayzkaaWaaW baaSqabeaacqaH7oaBaaaakiaawUfacaGLDbaadaahaaWcbeqaaiab gkHiTiabeI7aXbaaaaa@49CB@                                                                                                                                               (4)

h( t )= λθ ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] ;t>0,σ>0,θ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeU7aSjab eI7aXnaabmaabaGaamiDaiaac+cacqaHdpWCaiaawIcacaGLPaaada ahaaWcbeqaaiabeU7aSjabgkHiTiaaigdaaaaakeaadaWadaqaaiaa igdacqGHRaWkdaqadaqaaiaadshacaGGVaGaeq4WdmhacaGLOaGaay zkaaWaaWbaaSqabeaacqaH7oaBaaaakiaawUfacaGLDbaaaaGaai4o aiaadshacqGH+aGpcaaIWaGaaiilaiabeo8aZjabg6da+iaaicdaca GGSaGaeqiUdeNaeyOpa4JaaGimaiaacYcacqaH7oaBcqGH+aGpcaaI Xaaaaa@6314@                                                                                            (5)      

The three-parameter TGLLD will be denoted by TGLLD ( σ,θ,λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4WdmNaaiilaiabeI7aXjaacYcacqaH7oaBaiaawIcacaGLPaaaaaa@4040@ . If θ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdaaaa@3BA1@ , then Eq. (3) becomes log-logistic distribution and if λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DE@ =1 then TGLLD becomes reduced to Pareto type-II distribution. Figures 1-4 depicted that the PDF, CDF, reliability function and hazard function curves of TGLLD for various parametric combinations.

Figure 1 The probability density function of TGLLD for different λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DE@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E0@  at σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ .

Figure 2 The cumulative density function of TGLLD for different λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DE@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E0@  at σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ .

Figure 3 The reliability function of TGLLD for different λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DE@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E0@  at σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ .

Figure 4 The hazard function of TGLLD for different λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DE@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E0@  at σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ . (a) Upside-down bathtub (b) Increasing (c) Decreasing.

Properties of the TGLLD

Limits of the distribution function

F(t;σ,θ,λ)=1 [ 1+ ( t/σ ) λ ] θ ;t>0,σ,θ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamiDaiaacUdacqaHdpWCcaGGSaGaeqiUdeNaaiilaiabeU7aSjaa cMcacqGH9aqpcaaIXaGaeyOeI0YaamWaaeaacaaIXaGaey4kaSYaae WaaeaacaWG0bGaai4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqa baGaeq4UdWgaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcq aH4oqCaaGccaGG7aGaamiDaiabg6da+iaaicdacaGGSaGaeq4WdmNa aiilaiabeI7aXjabg6da+iaaicdacaGGSaGaeq4UdWMaeyOpa4JaaG ymaaaa@60C9@

lim t0 F(t;σ,θ,λ)= lim t0 { 1 [ 1+ ( t/σ ) λ ] θ }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci iBaiaacMgacaGGTbaaleaacaWG0bGaeyOKH4QaaGimaaqabaGccaWG gbGaaiikaiaadshacaGG7aGaeq4WdmNaaiilaiabeI7aXjaacYcacq aH7oaBcaGGPaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqa aiaadshacqGHsgIRcaaIWaaabeaakmaacmaabaGaaGymaiabgkHiTm aadmaabaGaaGymaiabgUcaRmaabmaabaGaamiDaiaac+cacqaHdpWC aiaawIcacaGLPaaadaahaaWcbeqaaiabeU7aSbaaaOGaay5waiaaw2 faamaaCaaaleqabaGaeyOeI0IaeqiUdehaaaGccaGL7bGaayzFaaGa eyypa0JaaGimaaaa@63E4@

lim t F(t;σ,θ,λ)= lim t { 1 [ 1+ ( t/σ ) λ ] θ }=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci iBaiaacMgacaGGTbaaleaacaWG0bGaeyOKH4QaeyOhIukabeaakiaa dAeacaGGOaGaamiDaiaacUdacqaHdpWCcaGGSaGaeqiUdeNaaiilai abeU7aSjaacMcacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWc baGaamiDaiabgkziUkabg6HiLcqabaGcdaGadaqaaiaaigdacqGHsi sldaWadaqaaiaaigdacqGHRaWkdaqadaqaaiaadshacaGGVaGaeq4W dmhacaGLOaGaayzkaaWaaWbaaSqabeaacqaH7oaBaaaakiaawUfaca GLDbaadaahaaWcbeqaaiabgkHiTiabeI7aXbaaaOGaay5Eaiaaw2ha aiabg2da9iaaigdaaaa@6553@

Reverse hazard function of a non-negative random variable is r(t)= f( t ) F( t ) = λθ σ ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] θ [ [ 1+ ( t/σ ) λ ] θ 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaGGOa GaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadAgadaqadaqaaiaadsha aiaawIcacaGLPaaaaeaacaWGgbWaaeWaaeaacaWG0baacaGLOaGaay zkaaaaaiabg2da9maalaaabaGaeq4UdWMaeqiUdehabaGaeq4Wdmha amaalaaabaWaaubiaeqabeqaaiabeU7aSjabgkHiTiaaigdaaeaada qadaqaaiaadshacaGGVaGaeq4WdmhacaGLOaGaayzkaaaaaaqaamaa vacabeqabeaacqaH4oqCaeaadaWadaqaaiaaigdacqGHRaWkdaqfGa qabeqabaGaeq4UdWgabaWaaeWaaeaacaWG0bGaai4laiabeo8aZbGa ayjkaiaawMcaaaaaaiaawUfacaGLDbaaaaWaamWaaeaadaqfGaqabe qabaGaeqiUdehabaWaamWaaeaacaaIXaGaey4kaSYaaubiaeqabeqa aiabeU7aSbqaamaabmaabaGaamiDaiaac+cacqaHdpWCaiaawIcaca GLPaaaaaaacaGLBbGaayzxaaaaaiabgkHiTiaaigdaaiaawUfacaGL Dbaaaaaaaa@6E9C@ (6)

The odd function of a random variable can be derived from

O(t)= F(t) h(t) = λθ ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] θ1 [ 1+ ( t/σ ) λ ] θ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eacaGGOa GaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadAeacaGGOaGaamiDaiaa cMcaaeaacaWGObGaaiikaiaadshacaGGPaaaaiabg2da9maalaaaba Gaeq4UdWMaeqiUde3aaeWaaeaacaWG0bGaai4laiabeo8aZbGaayjk aiaawMcaamaaCaaaleqabaGaeq4UdWMaeyOeI0IaaGymaaaakmaadm aabaGaaGymaiabgUcaRmaabmaabaGaamiDaiaac+cacqaHdpWCaiaa wIcacaGLPaaadaahaaWcbeqaaiabeU7aSbaaaOGaay5waiaaw2faam aaCaaaleqabaGaeqiUdeNaeyOeI0IaaGymaaaaaOqaamaadmaabaGa aGymaiabgUcaRmaabmaabaGaamiDaiaac+cacqaHdpWCaiaawIcaca GLPaaadaahaaWcbeqaaiabeU7aSbaaaOGaay5waiaaw2faamaaCaaa leqabaGaeqiUdehaaOGaeyOeI0IaaGymaaaaaaa@6BDB@                                                                                        (7)

Mean of TGLLD is derived as

μ= 0 t λθ σ ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] θ+1 dt= σ λ Γ( 1 λ )Γ( θ 1 λ ) Γ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9maapedabaGaamiDamaalaaabaGaeq4UdWMaeqiUdehabaGaeq4W dmhaamaalaaabaWaaubiaeqabeWcbaGaeq4UdWMaeyOeI0IaaGymaa GcbaWaaeWaaeaacaWG0bGaai4laiabeo8aZbGaayjkaiaawMcaaaaa aeaadaqfGaqabeqaleaacqaH4oqCcqGHRaWkcaaIXaaakeaadaWada qaaiaaigdacqGHRaWkdaqfGaqabeqabaGaeq4UdWgabaWaaeWaaeaa caWG0bGaai4laiabeo8aZbGaayjkaiaawMcaaaaaaiaawUfacaGLDb aaaaaaaaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaamizaiaa dshacqGH9aqpdaWcaaqaaiabeo8aZbqaaiabeU7aSbaadaWcaaqaai abfo5ahnaabmaabaWaaSaaaeaacaaIXaaabaGaeq4UdWgaaaGaayjk aiaawMcaaiabfo5ahnaabmaabaGaeqiUdeNaeyOeI0YaaSaaaeaaca aIXaaabaGaeq4UdWgaaaGaayjkaiaawMcaaaqaaiabfo5ahnaabmaa baGaeqiUdehacaGLOaGaayzkaaaaaaaa@74F9@            (8)

Percentile and median

The 100 p th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa GaaGimaiaadchadaahaaWcbeqaaiaadshacaWGObaaaaaa@3D61@ percentile of a random variable T is denoted by t p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamiCaaqabaaaaa@3A44@ and is defined as

t p =inf{ t:F( t )p }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamiCaaqabaGccqGH9aqpciGGPbGaaiOBaiaacAgadaGadaqa aiaadshacqGHiiIZcqGHCeIWcaGG6aGaamOramaabmaabaGaamiDaa GaayjkaiaawMcaaiabgwMiZkaadchaaiaawUhacaGL9baacaGGSaaa aa@4BCE@ where F(t;σ,θ,λ)=1 [ 1+ ( t/σ ) λ ] θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamiDaiaacUdacqaHdpWCcaGGSaGaeqiUdeNaaiilaiabeU7aSjaa cMcacqGH9aqpcaaIXaGaeyOeI0YaamWaaeaacaaIXaGaey4kaSYaae WaaeaacaWG0bGaai4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqa baGaeq4UdWgaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcq aH4oqCaaaaaa@5283@

If t; t p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGHii IZcqGHCeIWcaGG7aGaamiDamaaBaaaleaacaWGWbaabeaaaaa@3F0B@  is unique for each p( 0,1 ), F 1 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGHii IZdaqadaqaaiaaicdacaGGSaGaaGymaaGaayjkaiaawMcaaiaacYca caWGgbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWGWb aacaGLOaGaayzkaaaaaa@4429@  is an inverse function, then t p = F 1 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamiCaaqabaGccqGH9aqpcaWGgbWaaWbaaSqabeaacqGHsisl caaIXaaaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaaaa@407C@

100 p th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa GaaGimaiaadchadaahaaWcbeqaaiaadshacaWGObaaaaaa@3D61@ Percentile, p=F( t )=1 [ 1+ ( t/σ ) λ ] θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGH9a qpcaWGgbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaabmaabaGaamiDaiaac+ cacqaHdpWCaiaawIcacaGLPaaadaahaaWcbeqaaiabeU7aSbaaaOGa ay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaeqiUdehaaaaa@4D62@

t p =σ [ (1p) 1/θ 1 ] 1/λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkDiElaads hadaWgaaWcbaGaamiCaaqabaGccqGH9aqpcqaHdpWCdaWadaqaaiaa cIcacaaIXaGaeyOeI0IaamiCaiaacMcadaahaaWcbeqaaiabgkHiTi aaigdacaGGVaGaeqiUdehaaOGaeyOeI0IaaGymaaGaay5waiaaw2fa amaaCaaaleqabaGaaGymaiaac+cacqaH7oaBaaaaaa@4E9B@                                                                                                  (9)

Quantile function  Q( p )=σ [ ( 1p ) 1/θ 1 ] 1/λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpcqaHdpWCdaWadaqaamaa bmaabaGaaGymaiabgkHiTiaadchaaiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaaigdacaGGVaGaeqiUdehaaOGaeyOeI0IaaGymaaGa ay5waiaaw2faamaaCaaaleqabaGaaGymaiaac+cacqaH7oaBaaaaaa@4D9E@

Median (M) (50th percentiles) is

M=σ [ 2 1/θ 1 ] 1/λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpcqaHdpWCdaWadaqaaiaaikdadaahaaWcbeqaaiaaigdacaGGVaGa eqiUdehaaOGaeyOeI0IaaGymaaGaay5waiaaw2faamaaCaaaleqaba GaaGymaiaac+cacqaH7oaBaaaaaa@46C5@                                                                                        (10)

Mode of TGLLD is obtained as the value of x for which logf(t) t =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamOzaiaacIcacaWG0bGaaiykaaqa aiabgkGi2kaadshaaaGaeyypa0JaaGimaaaa@43CC@ and 2 logf(t) t 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamOz aiaacIcacaWG0bGaaiykaaqaaiabgkGi2kaadshadaahaaWcbeqaai aaikdaaaaaaOGaeyizImQaaGimaaaa@4661@ .

logf(t)==logλ+logθlogσ+(λ1)log( t/σ )(θ+1)log[ 1+ ( t/σ ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGkGacYgaca GGVbGaai4zaiaadAgacaGGOaGaamiDaiaacMcacqGH9aqpcqGH9aqp ciGGSbGaai4BaiaacEgacqaH7oaBcqGHRaWkciGGSbGaai4BaiaacE gacqaH4oqCcqGHsislciGGSbGaai4BaiaacEgacqaHdpWCcqGHRaWk caGGOaGaeq4UdWMaeyOeI0IaaGymaiaacMcaciGGSbGaai4BaiaacE gakmaabmaabaGaamiDaiaac+cacqaHdpWCaiaawIcacaGLPaaajaaO cqGHsislcaGGOaGaeqiUdeNaey4kaSIaaGymaiaacMcaciGGSbGaai 4BaiaacEgakmaadmaajaaObaGaaGymaiabgUcaROWaaubiaKaaGgqa beqcbaAaaiabeU7aSbqcaaAaaOWaaeWaaKaaGgaacaWG0bGaai4lai abeo8aZbGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaaa@74B8@

logf( t ) t =( λ1 )( 1/t )( θ+1 ) 1 [ 1+ ( t/σ ) λ ] λ ( t/σ ) λ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamOzamaabmaabaGaamiDaaGaayjk aiaawMcaaaqaaiabgkGi2kaadshaaaGaeyypa0ZaaeWaaeaacqaH7o aBcqGHsislcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaai4l aiaadshaaiaawIcacaGLPaaacqGHsisldaqadaqaaiabeI7aXjabgU caRiaaigdaaiaawIcacaGLPaaadaWcaaqaaiaaigdaaeaadaWadaqa aiaaigdacqGHRaWkdaqadaqaaiaadshacaGGVaGaeq4WdmhacaGLOa GaayzkaaWaaWbaaSqabeaacqaH7oaBaaaakiaawUfacaGLDbaaaaGa eq4UdW2aaeWaaeaacaWG0bGaai4laiabeo8aZbGaayjkaiaawMcaam aaCaaaleqabaGaeq4UdWMaeyOeI0IaaGymaaaaaaa@6752@

2 logf( t ) t 2 ={ ( λ1 ) t 2 +( θ+1 )[ λ 2 σ ( t σ ) λ1 λ ( t/σ ) λ ( 1+ ( t/σ ) λ ) 2 ] }0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamOz amaabmaabaGaamiDaaGaayjkaiaawMcaaaqaaiabgkGi2kaadshada ahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaeyOeI0YaaiWaaeaadaWc aaqaamaabmaabaGaeq4UdWMaeyOeI0IaaGymaaGaayjkaiaawMcaaa qaaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaeWaaeaa cqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaWaamWaaeaadaWcaa qaaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaOqaaiabeo8aZbaadaqa daqaamaalaaabaGaamiDaaqaaiabeo8aZbaaaiaawIcacaGLPaaada ahaaWcbeqaaiabeU7aSjabgkHiTiaaigdaaaGcdaWcaaqaaiabgkHi TiabeU7aSnaabmaabaGaamiDaiaac+cacqaHdpWCaiaawIcacaGLPa aadaahaaWcbeqaaiabeU7aSbaaaOqaamaabmaabaGaaGymaiabgUca RmaabmaabaGaamiDaiaac+cacqaHdpWCaiaawIcacaGLPaaadaahaa WcbeqaaiabeU7aSbaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaaaakiaawUfacaGLDbaaaiaawUhacaGL9baacqGHKjYOcaaIWa aaaa@7A38@

Hence mode is the solution of the non-linear equation

( λ1 ) t λ( θ+1 ) ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaae WaaeaacqaH7oaBcqGHsislcaaIXaaacaGLOaGaayzkaaaabaGaamiD aaaacqGHsislcqaH7oaBdaqadaqaaiabeI7aXjabgUcaRiaaigdaai aawIcacaGLPaaadaWcaaqaamaabmaabaGaamiDaiaac+cacqaHdpWC aiaawIcacaGLPaaadaahaaWcbeqaaiabeU7aSjabgkHiTiaaigdaaa aakeaadaWadaqaaiaaigdacqGHRaWkdaqadaqaaiaadshacaGGVaGa eq4WdmhacaGLOaGaayzkaaWaaWbaaSqabeaacqaH7oaBaaaakiaawU facaGLDbaaaaGaeyypa0JaaGimaaaa@5A62@

Moments of TGLLD

Moments are the useful tools which can be used to derive the key features of the distribution. Here we tried to derive r th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaahaa WcbeqaaiaadshacaWGObaaaaaa@3B34@ moment of the random variable T, where TTGLLD( θ,λ,σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqWI8i IocaWGubGaam4raiaadYeacaWGmbGaamiramaabmaabaGaeqiUdeNa aiilaiabeU7aSjaacYcacqaHdpWCaiaawIcacaGLPaaaaaa@4652@ .

The r th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaahaa WcbeqaaiaadshacaWGObaaaaaa@3B34@ moment of T is denoted by μ r ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaDa aaleaacaWGYbaabaGaai4jaaaaaaa@3BAF@  and is defined as

μ r ' =E( t r )= 0 t r λθ σ ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] θ+1 dt= r λ σ r Γ( r λ )Γ( θ r λ ) Γ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaDa aaleaacaWGYbaabaGaai4jaaaakiabg2da9iaadweadaqadaqaaiaa dshadaahaaWcbeqaaiaadkhaaaaakiaawIcacaGLPaaacqGH9aqpda WdXbqaaiaadshadaahaaWcbeqaaiaadkhaaaGcdaWcaaqaaiabeU7a SjabeI7aXbqaaiabeo8aZbaaaSqaaiaaicdaaeaacqGHEisPa0Gaey 4kIipakmaalaaabaWaaeWaaeaacaWG0bGaai4laiabeo8aZbGaayjk aiaawMcaamaaCaaaleqabaGaeq4UdWMaeyOeI0IaaGymaaaaaOqaam aadmaabaGaaGymaiabgUcaRmaabmaabaGaamiDaiaac+cacqaHdpWC aiaawIcacaGLPaaadaahaaWcbeqaaiabeU7aSbaaaOGaay5waiaaw2 faamaaCaaaleqabaGaeqiUdeNaey4kaSIaaGymaaaaaaGccaWGKbGa amiDaiabg2da9maalaaabaGaamOCaaqaaiabeU7aSbaacqaHdpWCda ahaaWcbeqaaiaadkhaaaGcdaWcaaqaaiabfo5ahnaabmaabaWaaSaa aeaacaWGYbaabaGaeq4UdWgaaaGaayjkaiaawMcaaiabfo5ahnaabm aabaGaeqiUdeNaeyOeI0YaaSaaaeaacaWGYbaabaGaeq4UdWgaaaGa ayjkaiaawMcaaaqaaiabfo5ahnaabmaabaGaeqiUdehacaGLOaGaay zkaaaaaaaa@801E@                                                                         (11)

Variance =  μ 2 = σ 2 λΓ( θ ) ( 2Γ( 2 λ )Γ( θ 2 λ )Γ( θ ) 1 λ ( Γ( 1 λ )Γ( θ 1 λ ) ) 2 Γ( θ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaajaaObaGaeq4WdmNcdaah aaqcbaAabeaacaaIYaaaaaqcaaAaaiabeU7aSjabfo5ahPWaaeWaaK aaGgaacqaH4oqCaiaawIcacaGLPaaaaaGcdaqadaqaamaalaaabaGa aGOmaiabfo5ahnaabmaabaWaaSaaaeaacaaIYaaabaGaeq4UdWgaaa GaayjkaiaawMcaaiabfo5ahnaabmaabaGaeqiUdeNaeyOeI0YaaSaa aeaacaaIYaaabaGaeq4UdWgaaaGaayjkaiaawMcaaiabfo5ahnaabm aabaGaeqiUdehacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaacaaIXaaa baGaeq4UdWgaamaabmaabaGaeu4KdC0aaeWaaeaadaWcaaqaaiaaig daaeaacqaH7oaBaaaacaGLOaGaayzkaaGaeu4KdC0aaeWaaeaacqaH 4oqCcqGHsisldaWcaaqaaiaaigdaaeaacqaH7oaBaaaacaGLOaGaay zkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGcbaGaeu4K dC0aaeWaaeaacqaH4oqCaiaawIcacaGLPaaaaaaacaGLOaGaayzkaa aaaa@743A@

μ 3 = σ 3 λΓ( θ ) ( 3Γ( 3 λ )Γ( θ 3 λ ) 6 λ Γ( 1 λ )Γ( 2 λ )Γ( θ 1 λ )Γ( θ 2 λ ) Γ( θ ) + 2 λ 2 ( Γ( 1 λ )Γ( θ 1 λ ) ) 3 ( Γ( θ ) ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaajaaycqGH9aqpkmaalaaajaaybaGaeq4WdmNc daahaaqcbawabeaacaaIZaaaaaqcaawaaiabeU7aSjabfo5ahPWaae WaaKaaGfaacqaH4oqCaiaawIcacaGLPaaaaaGcdaqadaqaaiaaioda cqqHtoWrdaqadaqaamaalaaabaGaaG4maaqaaiabeU7aSbaaaiaawI cacaGLPaaacqqHtoWrdaqadaqaaiabeI7aXjabgkHiTmaalaaabaGa aG4maaqaaiabeU7aSbaaaiaawIcacaGLPaaacqGHsisldaWcaaqaam aalaaabaGaaGOnaaqaaiabeU7aSbaacqqHtoWrdaqadaqaamaalaaa baGaaGymaaqaaiabeU7aSbaaaiaawIcacaGLPaaacqqHtoWrdaqada qaamaalaaabaGaaGOmaaqaaiabeU7aSbaaaiaawIcacaGLPaaacqqH toWrdaqadaqaaiabeI7aXjabgkHiTmaalaaabaGaaGymaaqaaiabeU 7aSbaaaiaawIcacaGLPaaacqqHtoWrdaqadaqaaiabeI7aXjabgkHi TmaalaaabaGaaGOmaaqaaiabeU7aSbaaaiaawIcacaGLPaaaaeaacq qHtoWrdaqadaqaaiabeI7aXbGaayjkaiaawMcaaaaacqGHRaWkdaWc aaqaamaalaaabaGaaGOmaaqaaiabeU7aSnaaCaaaleqabaGaaGOmaa aaaaGcdaqadaqaaiabfo5ahnaabmaabaWaaSaaaeaacaaIXaaabaGa eq4UdWgaaaGaayjkaiaawMcaaiabfo5ahnaabmaabaGaeqiUdeNaey OeI0YaaSaaaeaacaaIXaaabaGaeq4UdWgaaaGaayjkaiaawMcaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaOqaamaabmaabaGaeu 4KdC0aaeWaaeaacqaH4oqCaiaawIcacaGLPaaaaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@9597@

μ 4 = σ 4 λΓ( θ ) [ 4Γ( 4 λ )Γ( θ 4 λ ) 12 λ Γ( 1 λ )Γ( 3 λ )Γ( θ 1 λ )Γ( θ 3 λ ) Γ( θ ) + 12 λ 2 Γ( 2 λ )Γ( θ 2 λ ) [ Γ( 1 λ )Γ( θ 1 λ ) ] 2 ( Γ( θ ) ) 2 3 λ 3 [ Γ( 1 λ )Γ( θ 1 λ ) ] 4 ( Γ( θ ) ) 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaeq4Wdm3aaWbaaSqa beaacaaI0aaaaaGcbaGaeq4UdWMaeu4KdC0aaeWaaeaacqaH4oqCai aawIcacaGLPaaaaaWaamWaaqaabeqaaiaaisdacqqHtoWrdaqadaqa amaalaaabaGaaGinaaqaaiabeU7aSbaaaiaawIcacaGLPaaacqqHto WrdaqadaqaaiabeI7aXjabgkHiTmaalaaabaGaaGinaaqaaiabeU7a SbaaaiaawIcacaGLPaaacqGHsisldaWcaaqaamaalaaabaGaaGymai aaikdaaeaacqaH7oaBaaGaeu4KdC0aaeWaaeaadaWcaaqaaiaaigda aeaacqaH7oaBaaaacaGLOaGaayzkaaGaeu4KdC0aaeWaaeaadaWcaa qaaiaaiodaaeaacqaH7oaBaaaacaGLOaGaayzkaaGaeu4KdC0aaeWa aeaacqaH4oqCcqGHsisldaWcaaqaaiaaigdaaeaacqaH7oaBaaaaca GLOaGaayzkaaGaeu4KdC0aaeWaaeaacqaH4oqCcqGHsisldaWcaaqa aiaaiodaaeaacqaH7oaBaaaacaGLOaGaayzkaaaabaGaeu4KdC0aae WaaeaacqaH4oqCaiaawIcacaGLPaaaaaaabaGaey4kaSYaaSaaaeaa daWcaaqaaiaaigdacaaIYaaabaGaeq4UdW2aaWbaaSqabeaacaaIYa aaaaaakiabfo5ahnaabmaabaWaaSaaaeaacaaIYaaabaGaeq4UdWga aaGaayjkaiaawMcaaiabfo5ahnaabmaabaGaeqiUdeNaeyOeI0YaaS aaaeaacaaIYaaabaGaeq4UdWgaaaGaayjkaiaawMcaamaadmaabaGa eu4KdC0aaeWaaeaadaWcaaqaaiaaigdaaeaacqaH7oaBaaaacaGLOa GaayzkaaGaeu4KdC0aaeWaaeaacqaH4oqCcqGHsisldaWcaaqaaiaa igdaaeaacqaH7oaBaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaW baaSqabeaacaaIYaaaaaGcbaWaaeWaaeaacqqHtoWrdaqadaqaaiab eI7aXbGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaaaaGccqGHsisldaWcaaqaamaalaaabaGaaG4maaqaaiabeU7a SnaaCaaaleqabaGaaG4maaaaaaGcdaWadaqaaiabfo5ahnaabmaaba WaaSaaaeaacaaIXaaabaGaeq4UdWgaaaGaayjkaiaawMcaaiabfo5a hnaabmaabaGaeqiUdeNaeyOeI0YaaSaaaeaacaaIXaaabaGaeq4UdW gaaaGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaaGin aaaaaOqaamaabmaabaGaeu4KdC0aaeWaaeaacqaH4oqCaiaawIcaca GLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaaakiaa wUfacaGLDbaaaaa@BF56@

Mean, median, skewness and kurtosis of TGLLD for various combinations of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DE@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E0@  and σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@  are given in Table 1.

λ

θ

σ

Mean

Median

Skewness

Kurtosis

1.5

1.5

1

1.1498

0.7014

4.0543

3.0912

2.5

2.5

1

0.6985

0.6336

2.5365

9.9632

3

3

1

0.6718

0.6382

0.8453

5.1318

3.5

3.5

1

0.6657

0.648

0.3195

3.8556

4

4

1

0.6682

0.6595

0.112

3.3635

4.5

4.5

1

0.6744

0.6714

0.0283

3.1535

5

5

1

0.6824

0.6831

0.0016

3.07

5.5

5.5

1

0.6911

0.6942

0.0039

3.0504

6

6

1

0.6999

0.7047

0.0215

3.0653

2

3

2

1.1781

1.0196

3.6429

12.4635

3

2

3

2.4184

2.2363

2.5253

10.8095

2

6

2

0.7731

0.6999

1.1978

5.1176

6

2

3

2.618

2.5902

0.1888

4.1057

Table 1 Mean, Median, Skewness and Kurtosis of TGLLD for various combinations of λ, θ andσ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbbaaa aaaaaapeGaaiilaiaacckapaGaeqiUde3dbiaacckacaWGHbGaamOB aiaadsgapaGaeq4Wdmhaaa@435F@

Moment Generating function (MGF) is given by

M t ( z )=E( e tz )= r=0 z r r! σ r1 ( r λ )!( θ r λ 1 )! ( θ1 )! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamiDaaqabaGcdaqadaqaaiaadQhaaiaawIcacaGLPaaacqGH 9aqpcaWGfbWaaeWaaeaacaWGLbWaaWbaaSqabeaacaWG0bGaamOEaa aaaOGaayjkaiaawMcaaiabg2da9maaqahabaWaaSaaaeaacaWG6bWa aWbaaSqabeaacaWGYbaaaaGcbaGaamOCaiaacgcaaaaaleaacaWGYb Gaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeq4Wdm3aaWba aSqabeaacaWGYbGaeyOeI0IaaGymaaaakmaalaaabaWaaeWaaeaada WcaaqaaiaadkhaaeaacqaH7oaBaaaacaGLOaGaayzkaaGaaiyiamaa bmaabaGaeqiUdeNaeyOeI0YaaSaaaeaacaWGYbaabaGaeq4UdWgaai abgkHiTiaaigdaaiaawIcacaGLPaaacaGGHaaabaWaaeWaaeaacqaH 4oqCcqGHsislcaaIXaaacaGLOaGaayzkaaGaaiyiaaaaaaa@66CA@                                                      (12)

Characteristic Function is given by                         

ϕ t ( z )=E( e izt )= r=0 ( iz ) r r! σ r1 ( r λ )!( θ r λ 1 )! ( θ1 )! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWG0baabeaakmaabmaabaGaamOEaaGaayjkaiaawMcaaiab g2da9iaadweadaqadaqaaiaadwgadaahaaWcbeqaaiaadMgacaWG6b GaamiDaaaaaOGaayjkaiaawMcaaiabg2da9maaqahabaWaaSaaaeaa daqadaqaaiaadMgacaWG6baacaGLOaGaayzkaaWaaWbaaSqabeaaca WGYbaaaaGcbaGaamOCaiaacgcaaaaaleaacaWGYbGaeyypa0JaaGim aaqaaiabg6HiLcqdcqGHris5aOGaeq4Wdm3aaWbaaSqabeaacaWGYb GaeyOeI0IaaGymaaaakmaalaaabaWaaeWaaeaadaWcaaqaaiaadkha aeaacqaH7oaBaaaacaGLOaGaayzkaaGaaiyiamaabmaabaGaeqiUde NaeyOeI0YaaSaaaeaacaWGYbaabaGaeq4UdWgaaiabgkHiTiaaigda aiaawIcacaGLPaaacaGGHaaabaWaaeWaaeaacqaH4oqCcqGHsislca aIXaaacaGLOaGaayzkaaGaaiyiaaaaaaa@6B25@                                         (13)

Cumulative Generating function is defined by        

K t ( z )=ln( M t ( z ) )= K t ( z )=ln( r=0 z r r! σ r1 ( r λ )!( θ r λ 1 )! ( θ1 )! ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamiDaaqabaGcdaqadaqaaiaadQhaaiaawIcacaGLPaaacqGH 9aqpciGGSbGaaiOBamaabmaabaGaamytamaaBaaaleaacaWG0baabe aakmaabmaabaGaamOEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab g2da9iaadUeadaWgaaWcbaGaamiDaaqabaGcdaqadaqaaiaadQhaai aawIcacaGLPaaacqGH9aqpciGGSbGaaiOBamaabmaabaWaaabCaeaa daWcaaqaaiaadQhadaahaaWcbeqaaiaadkhaaaaakeaacaWGYbGaai yiaaaaaSqaaiaadkhacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHi LdGccqaHdpWCdaahaaWcbeqaaiaadkhacqGHsislcaaIXaaaaOWaaS aaaeaadaqadaqaamaalaaabaGaamOCaaqaaiabeU7aSbaaaiaawIca caGLPaaacaGGHaWaaeWaaeaacqaH4oqCcqGHsisldaWcaaqaaiaadk haaeaacqaH7oaBaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaacgca aeaadaqadaqaaiabeI7aXjabgkHiTiaaigdaaiaawIcacaGLPaaaca GGHaaaaaGaayjkaiaawMcaaaaa@724C@      (14)

Order statistics of TGLLD

Let T 1:n T 2:n .......... T n:n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGymaiaacQdacaWGUbaabeaakiabgsMiJkaadsfadaWgaaWc baGaaGOmaiaacQdacaWGUbaabeaakiabgsMiJkaac6cacaGGUaGaai Olaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacqGH KjYOcaWGubWaaSbaaSqaaiaad6gacaGG6aGaamOBaaqabaaaaa@4EDD@ denotes the order statistics obtained from a random sample of size n drawn from TGLLD ( θ,λ,σ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeU7aSjaacYcacqaHdpWCaiaawIcacaGLPaaacaGG Uaaaaa@40F2@ The probability density function of ith order statistic is given by                                 

f i:n ( t;θ,λ,σ )= 1 β( i,ni+1 ) ( F(t) ) i1 ( 1F(t) ) ni f(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamyAaiaacQdacaWGUbaabeaakmaabmaabaGaamiDaiaacUda cqaH4oqCcaGGSaGaeq4UdWMaaiilaiabeo8aZbGaayjkaiaawMcaai abg2da9maalaaabaGaaGymaaqaaiabek7aInaabmaabaGaamyAaiaa cYcacaWGUbGaeyOeI0IaamyAaiabgUcaRiaaigdaaiaawIcacaGLPa aaaaWaaeWaaeaacaWGgbGaaiikaiaadshacaGGPaaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGymaaaakmaabmaabaGaaG ymaiabgkHiTiaadAeacaGGOaGaamiDaiaacMcaaiaawIcacaGLPaaa daahaaWcbeqaaiaad6gacqGHsislcaWGPbaaaOGaamOzaiaacIcaca WG0bGaaiykaaaa@64BF@             (15)

Since 0<F( t;θ,λ,σ )<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH8a apcaWGgbWaaeWaaeaacaWG0bGaai4oaiabeI7aXjaacYcacqaH7oaB caGGSaGaeq4WdmhacaGLOaGaayzkaaGaeyipaWJaaGymaaaa@4640@ for t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH+a GpcaaIWaaaaa@3AE5@ , then using binomial expansion

( F(t) ) i1 = j=0 i1 ( i1 j ) ( 1 ) j ( 1F( t ) ) j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam OraiaacIcacaWG0bGaaiykaaGaayjkaiaawMcaamaaCaaaleqabaGa amyAaiabgkHiTiaaigdaaaGccqGH9aqpdaaeWbqaamaabmaabaqbae qabiqaaaqaaiaadMgacqGHsislcaaIXaaabaGaamOAaaaaaiaawIca caGLPaaaaSqaaiaadQgacqGH9aqpcaaIWaaabaGaamyAaiabgkHiTi aaigdaa0GaeyyeIuoakmaabmaabaGaeyOeI0IaaGymaaGaayjkaiaa wMcaamaaCaaaleqabaGaamOAaaaakmaabmaabaGaaGymaiabgkHiTi aadAeadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaa daahaaWcbeqaaiaadQgaaaaaaa@5940@          (16)

Then  f i:n ( t;θ,λ,σ )= 1 β( i,ni+1 ) f( t ) j=0 i1 ( i1 j ) (1) j ( 1F( t ) ) n+ji MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamyAaiaacQdacaWGUbaabeaakmaabmaabaGaamiDaiaacUda cqaH4oqCcaGGSaGaeq4UdWMaaiilaiabeo8aZbGaayjkaiaawMcaai abg2da9maalaaabaGaaGymaaqaaiabek7aInaabmaabaGaamyAaiaa cYcacaWGUbGaeyOeI0IaamyAaiabgUcaRiaaigdaaiaawIcacaGLPa aaaaGaamOzamaabmaabaGaamiDaaGaayjkaiaawMcaamaaqahabaWa aeWaaeaafaqabeGabaaabaGaamyAaiabgkHiTiaaigdaaeaacaWGQb aaaaGaayjkaiaawMcaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaa leqabaGaamOAaaaaaeaacaWGQbGaeyypa0JaaGimaaqaaiaadMgacq GHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaaigdacqGHsislcaWG gbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaW baaSqabeaacaWGUbGaey4kaSIaamOAaiabgkHiTiaadMgaaaaaaa@7031@                     (17)

( 1F( t ) ) n+ji = [ 1+( t/σ ) λ ] θ( n+ji ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG ymaiabgkHiTiaadAeadaqadaqaaiaadshaaiaawIcacaGLPaaaaiaa wIcacaGLPaaadaahaaWcbeqaaiaad6gacqGHRaWkcaWGQbGaeyOeI0 IaamyAaaaakiabg2da9maadmaabaWaaubiaeqabeWcbaGaeq4UdWga keaacaaIXaGaey4kaSYaaeWaaeaacaWG0bGaai4laiabeo8aZbGaay jkaiaawMcaaaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiab eI7aXnaabmaabaGaamOBaiabgUcaRiaadQgacqGHsislcaWGPbaaca GLOaGaayzkaaaaaaaa@580A@

Now take  f( t ) [ 1f( t ) ] n+ji = λθ ( t/σ ) λ1 σ [ 1+ ( t/σ ) λ ] θ+1 [ 1+ ( t/σ ) λ ] θ( n+ji ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadshaaiaawIcacaGLPaaadaWadaqaaiaaigdacqGHsislcaWG MbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaW baaSqabeaacaWGUbGaey4kaSIaamOAaiabgkHiTiaadMgaaaGccqGH 9aqpdaWcaaqaaiabeU7aSjabeI7aXnaabmaabaGaamiDaiaac+cacq aHdpWCaiaawIcacaGLPaaadaahaaWcbeqaaiabeU7aSjabgkHiTiaa igdaaaaakeaacqaHdpWCdaWadaqaaiaaigdacqGHRaWkdaqadaqaai aadshacaGGVaGaeq4WdmhacaGLOaGaayzkaaWaaWbaaSqabeaacqaH 7oaBaaaakiaawUfacaGLDbaadaahaaWcbeqaaiabeI7aXjabgUcaRi aaigdaaaaaaOWaamWaaeaacaaIXaGaey4kaSYaaeWaaeaacaWG0bGa ai4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqabaGaeq4UdWgaaa GccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcqaH4oqCdaqadaqa aiaad6gacqGHRaWkcaWGQbGaeyOeI0IaamyAaaGaayjkaiaawMcaaa aaaaa@77A8@                                                

= λθ σ ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] θ( n+ji+1 )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeq4UdWMaeqiUdehabaGaeq4WdmhaamaabmaabaGaamiDaiaa c+cacqaHdpWCaiaawIcacaGLPaaadaahaaWcbeqaaiabeU7aSjabgk HiTiaaigdaaaGcdaWadaqaaiaaigdacqGHRaWkdaqadaqaaiaadsha caGGVaGaeq4WdmhacaGLOaGaayzkaaWaaWbaaSqabeaacqaH7oaBaa aakiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiabeI7aXnaabmaa baGaamOBaiabgUcaRiaadQgacqGHsislcaWGPbGaey4kaSIaaGymaa GaayjkaiaawMcaaiabgkHiTiaaigdaaaaaaa@5DA7@

Hence  f i:n ( t;λ,θ,σ )= j=0 i1 ( 1 ) j n! j!( ni )!( ij1 )! f( t;λ,θ,σ,( n+ji+1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamyAaiaacQdacaWGUbaabeaakmaabmaabaGaamiDaiaacUda cqaH7oaBcaGGSaGaeqiUdeNaaiilaiabeo8aZbGaayjkaiaawMcaai abg2da9maaqahabaWaaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGQbaaaaqaaiaadQgacqGH9aqpcaaIWaaaba GaamyAaiabgkHiTiaaigdaa0GaeyyeIuoakmaalaaabaGaamOBaiaa cgcaaeaacaWGQbGaaiyiamaabmaabaGaamOBaiabgkHiTiaadMgaai aawIcacaGLPaaacaGGHaWaaeWaaeaacaWGPbGaeyOeI0IaamOAaiab gkHiTiaaigdaaiaawIcacaGLPaaacaGGHaaaaiaadAgadaqadaqaai aadshacaGG7aGaeq4UdWMaaiilaiabeI7aXjaacYcacqaHdpWCcaGG SaWaaeWaaeaacaWGUbGaey4kaSIaamOAaiabgkHiTiaadMgacqGHRa WkcaaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@7497@       (18)

The distribution function of ith order statistic T(i) is

F i:n ( t;σ,θ,λ )= j=i n ( n i ) F j ( t ) [ 1F( t ) ] nj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyAaiaacQdacaWGUbaabeaakmaabmaabaGaamiDaiaacUda cqaHdpWCcaGGSaGaeqiUdeNaaiilaiabeU7aSbGaayjkaiaawMcaai abg2da9maaqahabaWaaeWaaeaafaqabeGabaaabaGaamOBaaqaaiaa dMgaaaaacaGLOaGaayzkaaaaleaacaWGQbGaeyypa0JaamyAaaqaai aad6gaa0GaeyyeIuoakiaadAeadaahaaWcbeqaaiaadQgaaaGcdaqa daqaaiaadshaaiaawIcacaGLPaaadaWadaqaaiaaigdacqGHsislca WGgbWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLBbGaayzxaaWa aWbaaSqabeaacaWGUbGaeyOeI0IaamOAaaaaaaa@5E8D@ , using (16), it can be expressed as

F i:n ( t;λ,θ,σ )= j=i n k=0 j ( n i ) ( j k ) (1) k ( 1+ ( t/σ ) λ ) θ(n+kj) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAealmaaBa aabaGaamyAaiaacQdacaWGUbaabeaakmaabmaabaGaamiDaiaacUda cqaH7oaBcaGGSaGaeqiUdeNaaiilaiabeo8aZbGaayjkaiaawMcaai abg2da9maaqahabaWaaabCaeaadaqadaqaauaabeqaceaaaeaacaWG UbaabaGaamyAaaaaaiaawIcacaGLPaaaaSqaaiaadUgacqGH9aqpca aIWaaabaGaamOAaaGccqGHris5amaabmaabaqbaeqabiqaaaqaaiaa dQgaaeaacaWGRbaaaaGaayjkaiaawMcaaiaacIcacqGHsislcaaIXa GaaiykamaaCaaabeWcbaGaam4AaaaaaeaacaWGQbGaeyypa0JaamyA aaqaaiaad6gaaOGaeyyeIuoadaqadaqaaiaaigdacqGHRaWkdaqada qaaiaadshacaGGVaGaeq4WdmhacaGLOaGaayzkaaWaaWbaaSqabeaa cqaH7oaBaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiabeI 7aXjaacIcacaWGUbGaey4kaSIaam4AaiabgkHiTiaadQgacaGGPaaa aaaa@7063@      (19)

Distribution function of first order statistic T(1) is

F 1 ( t )=1 ( 1F( t ) ) n =1 ( 1+ ( t/σ ) λ ) nθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGH 9aqpcaaIXaGaeyOeI0YaaeWaaeaacaaIXaGaeyOeI0IaamOramaabm aabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqa baGaamOBaaaakiabg2da9iaaigdacqGHsisldaqadaqaaiaaigdacq GHRaWkdaqadaqaamaalyaabaGaamiDaaqaaiabeo8aZbaaaiaawIca caGLPaaadaahaaWcbeqaaiabeU7aSbaaaOGaayjkaiaawMcaamaaCa aaleqabaGaeyOeI0IaamOBaiabeI7aXbaaaaa@569B@  (20)

Distribution function of nth order statistic T(n) is                              

F n ( t )= ( F( t ) ) n = ( 1 ( 1+ ( t/σ ) λ ) θ ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamOBaaqabaGcdaqadaqaaiaadshaaiaawIcacaGLPaaacqGH 9aqpdaqadaqaaiaadAeadaqadaqaaiaadshaaiaawIcacaGLPaaaai aawIcacaGLPaaadaahaaWcbeqaaiaad6gaaaGccqGH9aqpdaqadaqa aiaaigdacqGHsisldaqadaqaaiaaigdacqGHRaWkdaqadaqaamaaly aabaGaamiDaaqaaiabeo8aZbaaaiaawIcacaGLPaaadaahaaWcbeqa aiabeU7aSbaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0Iaeq iUdehaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGUbaaaaaa@5543@                                                                                                   (21)

Parameter estimation and inference

For estimating the parameters of TGLLD(σ,θ,λ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaWGhb GaamitaiaadYeacaWGebGaaiikaiabeo8aZjaacYcacqaH4oqCcaGG SaGaeq4UdWMaaiykaaaa@4420@ , we considered two known methods viz., maximum likelihood method of estimation and least square method. It is observed that the estimates obtained from both methods for the unknown parameters cannot be expressed in closed form and hence the estimates are obtained using simulation study.

Maximum likelihood estimators (MLEs)

Let t 1 , t 2 ..... t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaaGymaaqabaGccaGGSaGaamiDamaaBaaaleaacaaIYaaabeaa kiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaamiDamaaBaaaleaaca WGUbaabeaaaaa@4241@ be a random sample of size n drawn from TGLLD ( T;θ,λ,σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam ivaiaacUdacqaH4oqCcaGGSaGaeq4UdWMaaiilaiabeo8aZbGaayjk aiaawMcaaaaa@41D8@ , then likelihood function L of the sample is

L= i=1 n f( t i ;θ,λ,σ ) = i=1 n λθ σ ( t i /σ ) λ1 [ 1+ ( t i /σ ) λ ] θ+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGH9a qpdaqeWbqaaiaadAgadaqadaqaaiaadshadaWgaaWcbaGaamyAaaqa baGccaGG7aGaeqiUdeNaaiilaiabeU7aSjaacYcacqaHdpWCaiaawI cacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGH pis1aOGaeyypa0ZaaebCaeaadaWcaaqaaiabeU7aSjabeI7aXbqaai abeo8aZbaadaWcaaqaamaavacabeqabSqaaiabeU7aSjabgkHiTiaa igdaaOqaamaabmaabaGaamiDamaaBaaaleaacaWGPbaabeaakiaac+ cacqaHdpWCaiaawIcacaGLPaaaaaaabaWaaubiaeqabeWcbaGaeqiU deNaey4kaSIaaGymaaGcbaWaamWaaeaacaaIXaGaey4kaSYaaubiae qabeWcbaGaeq4UdWgakeaadaqadaqaaiaadshadaWgaaWcbaGaamyA aaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaaaaaaGaay5waiaaw2 faaaaaaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Gaey4d Iunaaaa@7104@

The log-likelihood function is

logL=nlogλ+nlogθnlogσ+( λ1 ) i=1 n log( t i /σ )( θ+1 ) i=1 n log[ 1+ ( t i /σ ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacqGH9aqpcaWGUbGaciiBaiaac+gacaGGNbGaeq4U dWMaey4kaSIaamOBaiGacYgacaGGVbGaai4zaiabeI7aXjabgkHiTi aad6gaciGGSbGaai4BaiaacEgacqaHdpWCcqGHRaWkdaqadaqaaiab eU7aSjabgkHiTiaaigdaaiaawIcacaGLPaaadaaeWbqaaiGacYgaca GGVbGaai4zamaabmaabaGaamiDamaaBaaaleaacaWGPbaabeaakiaa c+cacqaHdpWCaiaawIcacaGLPaaacqGHsisldaqadaqaaiabeI7aXj abgUcaRiaaigdaaiaawIcacaGLPaaaaSqaaiaadMgacqGH9aqpcaaI XaaabaGaamOBaaqdcqGHris5aOWaaabCaeaaciGGSbGaai4BaiaacE gadaWadaqaaiaaigdacqGHRaWkdaqadaqaaiaadshadaWgaaWcbaGa amyAaaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaaWaaWbaaSqabe aacqaH7oaBaaaakiaawUfacaGLDbaaaSqaaiaadMgacqGH9aqpcaaI XaaabaGaamOBaaqdcqGHris5aaaa@7DCA@    (22)

The MLE’s of θ,λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaacY cacqaH7oaBaaa@3C44@  and σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ are obtained as

logL σ =0 nλ σ + λ( θ+1 ) σ i=1 n ( t i /σ ) λ [ 1+ ( t i /σ ) λ ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeo8aZbaa cqGH9aqpcaaIWaGaeyO0H49aaSaaaeaacqGHsislcaWGUbGaeq4UdW gabaGaeq4WdmhaaiabgUcaRmaalaaabaGaeq4UdW2aaeWaaeaacqaH 4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaaabaGaeq4Wdmhaamaaqa habaWaaSaaaeaadaqadaqaaiaadshadaWgaaWcbaGaamyAaaqabaGc caGGVaGaeq4WdmhacaGLOaGaayzkaaWaaWbaaSqabeaacqaH7oaBaa aakeaadaWadaqaaiaaigdacqGHRaWkdaqadaqaaiaadshadaWgaaWc baGaamyAaaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaaWaaWbaaS qabeaacqaH7oaBaaaakiaawUfacaGLDbaaaaaaleaacaWGPbGaeyyp a0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabg2da9iaaicdaaaa@6E8D@                           (23)       

logL λ =0 n λ + i=1 n log( t i /σ )( θ+1 ) i=1 n ( t i /σ ) λ log( t i /σ ) [ 1+ ( t i /σ ) λ ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeU7aSbaa cqGH9aqpcaaIWaGaeyO0H49aaSaaaeaacaWGUbaabaGaeq4UdWgaai abgUcaRmaaqahabaGaciiBaiaac+gacaGGNbWaaeWaaeaacaWG0bWa aSbaaSqaaiaadMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaawMcaai abgkHiTmaabmaabaGaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMca aaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGcda aeWbqaamaalaaabaWaaeWaaeaacaWG0bWaaSbaaSqaaiaadMgaaeqa aOGaai4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqabaGaeq4UdW gaaOGaciiBaiaac+gacaGGNbWaaeWaaeaacaWG0bWaaSbaaSqaaiaa dMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaawMcaaaqaamaadmaaba GaaGymaiabgUcaRmaabmaabaGaamiDamaaBaaaleaacaWGPbaabeaa kiaac+cacqaHdpWCaiaawIcacaGLPaaadaahaaWcbeqaaiabeU7aSb aaaOGaay5waiaaw2faaaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGa amOBaaqdcqGHris5aOGaeyypa0JaaGimaaaa@80FB@                         (24)

logL θ = n θ i=1 n log[ 1+ ( t i /σ ) λ ] =0 θ ^ = n i=1 n log[ 1+ ( t i /σ ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeI7aXbaa cqGH9aqpdaWcaaqaaiaad6gaaeaacqaH4oqCaaGaeyOeI0YaaabCae aaciGGSbGaai4BaiaacEgadaWadaqaaiaaigdacqGHRaWkdaqfGaqa beqaleaacqaH7oaBaOqaamaabmaabaGaamiDamaaBaaaleaacaWGPb aabeaakiaac+cacqaHdpWCaiaawIcacaGLPaaaaaaacaGLBbGaayzx aaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaki abg2da9iaaicdacqGHshI3cuaH4oqCgaqcaiabg2da9maalaaabaGa amOBaaqaamaaqahabaGaciiBaiaac+gacaGGNbWaamWaaeaacaaIXa Gaey4kaSYaaubiaeqabeWcbaGaeq4UdWgakeaadaqadaqaaiaadsha daWgaaWcbaGaamyAaaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaa aaaaGaay5waiaaw2faaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWG UbaaniabggHiLdaaaaaa@75CB@                     (25)

Using Eq. (25) in Eqs. (23) and (24) we get two equations in terms of σandλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjaayk W7caaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlabeU7aSbaa@42FE@ , these equations cannot be solved analytically, so they need to be solved numerically. Iterative techniques can be applied for obtaining the estimators of the parameters. Let σ ^ , λ ^ and θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaja GaaiilaiqbeU7aSzaajaGaaGPaVlaabggacaqGUbGaaeizaiaaykW7 cuaH4oqCgaqcaaaa@4409@  are ML estimates of the parameters σ,λandθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjaacY cacqaH7oaBcaaMc8Uaaeyyaiaab6gacaqGKbGaaGPaVlabeI7aXbaa @43D9@ respectively. Using invariance property of the MLE, the MLE of reliability function can be obtained by

R ^ (t)= [ 1+ ( t/ σ ^ ) λ ^ ] θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaqcai aacIcacaWG0bGaaiykaiabg2da9maavacabeqabeaacqGHsislcuaH 4oqCgaqcaaqaamaadmaabaGaaGymaiabgUcaRmaavacabeqabeaacu aH7oaBgaqcaaqaamaabmaabaGaamiDaiaac+cacuaHdpWCgaqcaaGa ayjkaiaawMcaaaaaaiaawUfacaGLDbaaaaaaaa@49F3@       (26)

Asymptotic confidence interval

Here, an attempt has been made to derive the asymptotic confidence intervals of the unknown parameters θ,λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaacY cacqaH7oaBaaa@3C44@ and σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39ED@ . Using large sample approach and assume that the MLE’s of ( θ ^ , λ ^ and σ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacuaH4o qCgaqcaiaacYcacuaH7oaBgaqcaiaaykW7caqGHbGaaeOBaiaabsga caaMc8Uafq4WdmNbaKaacaGGPaaaaa@4562@  are approximately multivariate normal with mean ( θ,λ,σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeU7aSjaacYcacqaHdpWCaiaawIcacaGLPaaaaaa@4040@ and Variance-covariance matrix I 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaahaa WcbeqaaiabgkHiTiaaigdaaaaaaa@3ACD@ , where I 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaahaa WcbeqaaiabgkHiTiaaigdaaaaaaa@3ACD@ is observed information matrix which is defined as

I 1 =[ 2 logL θ 2 2 logL λθ 2 logL σθ 2 logL θλ 2 logL λ 2 2 logL σλ 2 logL θσ 2 logL λσ 2 logL σ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaahaa WcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpdaWadaqaauaabeqadmaa aeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiGacYgaca GGVbGaai4zaiaadYeaaeaacqGHciITcqaH4oqCdaahaaWcbeqaaiaa ikdaaaaaaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa GcciGGSbGaai4BaiaacEgacaWGmbaabaGaeyOaIyRaeq4UdWMaeyOa IyRaeqiUdehaaaqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYa aaaOGaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeo8aZjab gkGi2kabeI7aXbaaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG OmaaaakiGacYgacaGGVbGaai4zaiaadYeaaeaacqGHciITcqaH4oqC cqGHciITcqaH7oaBaaaabaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGcciGGSbGaai4BaiaacEgacaWGmbaabaGaeyOaIyRaeq4U dW2aaWbaaSqabeaacaaIYaaaaaaaaOqaamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamitaaqaaiab gkGi2kabeo8aZjabgkGi2kabeU7aSbaaaeaadaWcaaqaaiabgkGi2o aaCaaaleqabaGaaGOmaaaakiGacYgacaGGVbGaai4zaiaadYeaaeaa cqGHciITcqaH4oqCcqGHciITcqaHdpWCaaaabaWaaSaaaeaacqGHci ITdaahaaWcbeqaaiaaikdaaaGcciGGSbGaai4BaiaacEgacaWGmbaa baGaeyOaIyRaeq4UdWMaeyOaIyRaeq4WdmhaaaqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeo8aZnaaCaaaleqabaGaaGOmaaaaaaaaaaGcca GLBbGaayzxaaaaaa@A5F4@ = [ var( θ ^ ) cov( λ ^ , θ ^ ) cov( σ ^ , θ ^ ) cov( θ ^ , λ ^ ) var( λ ^ ) cov( σ ^ , λ ^ ) cov( θ ^ , σ ^ ) cov( λ ^ , σ ^ ) var( σ ^ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabmWaaaqaaiaadAhacaWGHbGaamOCamaabmaabaGafqiUdeNbaKaa aiaawIcacaGLPaaaaeaacaWGJbGaam4BaiaadAhadaqadaqaaiqbeU 7aSzaajaGaaiilaiqbeI7aXzaajaaacaGLOaGaayzkaaaabaGaam4y aiaad+gacaWG2bWaaeWaaeaacuaHdpWCgaqcaiaacYcacuaH4oqCga qcaaGaayjkaiaawMcaaaqaaiaadogacaWGVbGaamODamaabmaabaGa fqiUdeNbaKaacaGGSaGafq4UdWMbaKaaaiaawIcacaGLPaaaaeaaca WG2bGaamyyaiaadkhadaqadaqaaiqbeU7aSzaajaaacaGLOaGaayzk aaaabaGaam4yaiaad+gacaWG2bWaaeWaaeaacuaHdpWCgaqcaiaacY cacuaH7oaBgaqcaaGaayjkaiaawMcaaaqaaiaadogacaWGVbGaamOD amaabmaabaGafqiUdeNbaKaacaGGSaGafq4WdmNbaKaaaiaawIcaca GLPaaaaeaacaWGJbGaam4BaiaadAhadaqadaqaaiqbeU7aSzaajaGa aiilaiqbeo8aZzaajaaacaGLOaGaayzkaaaabaGaamODaiaadggaca WGYbWaaeWaaeaacuaHdpWCgaqcaaGaayjkaiaawMcaaaaaaiaawUfa caGLDbaaaaa@8087@    (27)

Now, the second order partial derivatives of the parameters given in I 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaahaa WcbeqaaiabgkHiTiaaigdaaaaaaa@3ACD@ are

2 logL θ 2 = θ [ logL θ ]= n θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeI7aXnaaCaaaleqabaGaaGOmaaaaaaGccqGH9a qpdaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaadaWadaqaamaa laaabaGaeyOaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2k abeI7aXbaaaiaawUfacaGLDbaacqGH9aqpcqGHsisldaWcaaqaaiaa d6gaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaaaaaa@5795@ (28)

2 logL λθ = λ [ logL θ ]= i=1 n ( t i /σ ) λ log( t i /σ ) [ 1+ ( t i /σ ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeU7aSjabgkGi2kabeI7aXbaacqGH9aqpdaWcaa qaaiabgkGi2cqaaiabgkGi2kabeU7aSbaadaWadaqaamaalaaabaGa eyOaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeI7aXb aaaiaawUfacaGLDbaacqGH9aqpcqGHsisldaaeWbqaamaalaaabaWa aubiaeqabeWcbaGaeq4UdWgakeaadaqadaqaaiaadshadaWgaaWcba GaamyAaaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaaaaaiGacYga caGGVbGaai4zamaabmaabaGaamiDamaaBaaaleaacaWGPbaabeaaki aac+cacqaHdpWCaiaawIcacaGLPaaaaeaadaWadaqaaiaaigdacqGH RaWkdaqfGaqabeqaleaacqaH7oaBaOqaamaabmaabaGaamiDamaaBa aaleaacaWGPbaabeaakiaac+cacqaHdpWCaiaawIcacaGLPaaaaaaa caGLBbGaayzxaaaaaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUb aaniabggHiLdaaaa@78CD@ (29)

2 logL σθ = σ [ logL θ ]= i=1 n λ σ ( t i /σ ) λ [ 1+ ( t i /σ ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeo8aZjabgkGi2kabeI7aXbaacqGH9aqpdaWcaa qaaiabgkGi2cqaaiabgkGi2kabeo8aZbaadaWadaqaamaalaaabaGa eyOaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeI7aXb aaaiaawUfacaGLDbaacqGH9aqpcqGHsisldaaeWbqaamaalaaabaWa aSaaaeaacqaH7oaBaeaacqaHdpWCaaWaaubiaeqabeWcbaGaeq4UdW gakeaadaqadaqaaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGVaGa eq4WdmhacaGLOaGaayzkaaaaaaqaamaadmaabaGaaGymaiabgUcaRm aavacabeqabSqaaiabeU7aSbGcbaWaaeWaaeaacaWG0bWaaSbaaSqa aiaadMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaawMcaaaaaaiaawU facaGLDbaaaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Ga eyyeIuoaaaa@7386@ (30)

2 logL θλ = θ [ logL λ ]= i=1 n ( t i /σ ) λ log( t i /σ ) [ 1+ ( t i /σ ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeI7aXjabgkGi2kabeU7aSbaacqGH9aqpdaWcaa qaaiabgkGi2cqaaiabgkGi2kabeI7aXbaadaWadaqaamaalaaabaGa eyOaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeU7aSb aaaiaawUfacaGLDbaacqGH9aqpcqGHsisldaaeWbqaamaalaaabaWa aeWaaeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaai4laiabeo8aZb GaayjkaiaawMcaamaaCaaaleqabaGaeq4UdWgaaOGaciiBaiaac+ga caGGNbWaaeWaaeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaai4lai abeo8aZbGaayjkaiaawMcaaaqaamaadmaabaGaaGymaiabgUcaRmaa vacabeqabSqaaiabeU7aSbGcbaWaaeWaaeaacaWG0bWaaSbaaSqaai aadMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaawMcaaaaaaiaawUfa caGLDbaaaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Gaey yeIuoaaaa@78B1@ (31)

2 logL λ 2 = λ [ logL λ ]=[ n λ 2 ( θ+1 ) i=1 n { ( t i /σ ) λ [ 1 ( t i /σ ) λ ] [ log( t i /σ ) ] 2 [ 1+ ( t i /σ ) λ ] 2 } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeU7aSnaaCaaaleqabaGaaGOmaaaaaaGccqGH9a qpdaWcaaqaaiabgkGi2cqaaiabgkGi2kabeU7aSbaadaWadaqaamaa laaabaGaeyOaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2k abeU7aSbaaaiaawUfacaGLDbaacqGH9aqpdaWadaqaaiabgkHiTmaa laaabaGaamOBaaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaaGccq GHsisldaqadaqaaiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaa daaeWbqaamaacmaabaWaaSaaaeaadaqadaqaaiaadshadaWgaaWcba GaamyAaaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaaWaaWbaaSqa beaacqaH7oaBaaGcdaWadaqaaiaaigdacqGHsisldaqadaqaaiaads hadaWgaaWcbaGaamyAaaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzk aaWaaWbaaSqabeaacqaH7oaBaaaakiaawUfacaGLDbaadaWadaqaai GacYgacaGGVbGaai4zamaabmaabaGaamiDamaaBaaaleaacaWGPbaa beaakiaac+cacqaHdpWCaiaawIcacaGLPaaaaiaawUfacaGLDbaada ahaaWcbeqaaiaaikdaaaaakeaadaWadaqaaiaaigdacqGHRaWkdaqf GaqabeqaleaacqaH7oaBaOqaamaabmaabaGaamiDamaaBaaaleaaca WGPbaabeaakiaac+cacqaHdpWCaiaawIcacaGLPaaaaaaacaGLBbGa ayzxaaWaaWbaaSqabeaacaaIYaaaaaaaaOGaay5Eaiaaw2haaaWcba GaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakiaawUfa caGLDbaaaaa@939F@ (32)

2 logL σλ = σ [ logL λ ] n σ ( θ+1 ) i=1 n { t i λ σ ( λ+1 ) [ λlog( t i /σ ) 1 t i 1 t i ( t i /σ ) λ ] [ 1+ ( t i /σ ) λ ] 2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeo8aZjabgkGi2kabeU7aSbaacqGH9aqpdaWcaa qaaiabgkGi2cqaaiabgkGi2kabeo8aZbaadaWadaqaamaalaaabaGa eyOaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeU7aSb aaaiaawUfacaGLDbaacqGHsisldaWcaaqaaiaad6gaaeaacqaHdpWC aaGaeyOeI0YaaeWaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaay zkaaWaaabCaeaadaGadaqaamaalaaabaWaaSaaaeaacaWG0bWaaSba aSqaaiaadMgaaeqaaOWaaWbaaSqabeaacqaH7oaBaaaakeaacqaHdp WCdaahaaWcbeqaamaabmaabaGaeq4UdWMaey4kaSIaaGymaaGaayjk aiaawMcaaaaaaaGcdaWadaqaaiabeU7aSjGacYgacaGGVbGaai4zam aabmaabaGaamiDamaaBaaaleaacaWGPbaabeaakiaac+cacqaHdpWC aiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacaWG0bWaaS baaSqaaiaadMgaaeqaaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaa dshadaWgaaWcbaGaamyAaaqabaaaaOWaaeWaaeaacaWG0bWaaSbaaS qaaiaadMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaawMcaamaaCaaa leqabaGaeq4UdWgaaaGccaGLBbGaayzxaaaabaWaamWaaeaacaaIXa Gaey4kaSYaaubiaeqabeWcbaGaeq4UdWgakeaadaqadaqaaiaadsha daWgaaWcbaGaamyAaaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaa aaaaGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaaakiaawUha caGL9baaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHri s5aaaa@99B4@ (33)

2 logL θσ = θ [ logL σ ]= λ σ ( λ+1 ) i=1 n t i λ [ 1+ ( t i /σ ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaajaayba GaeyOaIyRcdaahaaqcbawabeaacaaIYaaaaKaaGjGacYgacaGGVbGa ai4zaiaadYeaaeaacqGHciITcqaH4oqCcqGHciITcqaHdpWCaaGaey ypa0JcdaWcaaqcaawaaiabgkGi2cqaaiabgkGi2kabeI7aXbaakmaa dmaajaaybaGcdaWcaaqcaawaaiabgkGi2kGacYgacaGGVbGaai4zai aadYeaaeaacqGHciITcqaHdpWCaaaacaGLBbGaayzxaaGaeyypa0Jc daWcaaqcaawaaiabeU7aSbqaaiabeo8aZPWaaWbaaKqaGfqabaWcda qadaqcbawaaiabeU7aSjabgUcaRiaaigdaaiaawIcacaGLPaaaaaaa aOWaaabCaKaaGfaakmaalaaajaaybaGaamiDaOWaaSbaaKqaGfaaca WGPbaabeaakmaaCaaajeaybeqaaiabeU7aSbaaaKaaGfaakmaadmaa jaaybaGaaGymaiabgUcaROWaaubiaKaaGfqabeqcbawaaiabeU7aSb qcaawaaOWaaeWaaKaaGfaacaWG0bGcdaWgaaqcbawaaiaadMgaaeqa aKaaGjaac+cacqaHdpWCaiaawIcacaGLPaaaaaaacaGLBbGaayzxaa aaaaqcbawaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqcdaMaeyye Iuoaaaa@7D0A@ (33)

2 logL λσ = λ [ logL σ ]= n σ + 1 σ ( λ+1 ) i=1 n t i λ [ 1+ ( t i /σ ) λ ] [ ( 1λlogσ )+λlog t i [ 1 ( t i /σ ) λ ] [ 1+ ( t i /σ ) λ ] ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeU7aSjabgkGi2kabeo8aZbaacqGH9aqpdaWcaa qaaiabgkGi2cqaaiabgkGi2kabeU7aSbaadaWadaqaamaalaaabaGa eyOaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2kabeo8aZb aaaiaawUfacaGLDbaacqGH9aqpcqGHsisldaWcaaqaaiaad6gaaeaa cqaHdpWCaaGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4Wdm3aaWbaaS qabeaadaqadaqaaiabeU7aSjabgUcaRiaaigdaaiaawIcacaGLPaaa aaaaaOWaaabCaeaadaWcaaqaaiaadshadaWgaaWcbaGaamyAaaqaba GcdaahaaWcbeqaaiabeU7aSbaaaOqaamaadmaabaGaaGymaiabgUca RmaavacabeqabSqaaiabeU7aSbGcbaWaaeWaaeaacaWG0bWaaSbaaS qaaiaadMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaawMcaaaaaaiaa wUfacaGLDbaaaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0 GaeyyeIuoakmaadmaabaWaaSaaaeaadaqadaqaaiaaigdacqGHsisl cqaH7oaBciGGSbGaai4BaiaacEgacqaHdpWCaiaawIcacaGLPaaacq GHRaWkcqaH7oaBciGGSbGaai4BaiaacEgacaWG0bWaaSbaaSqaaiaa dMgaaeqaaOWaamWaaeaacaaIXaGaeyOeI0YaaubiaeqabeWcbaGaeq 4UdWgakeaadaqadaqaaiaadshadaWgaaWcbaGaamyAaaqabaGccaGG VaGaeq4WdmhacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaamaadm aabaGaaGymaiabgUcaRmaavacabeqabSqaaiabeU7aSbGcbaWaaeWa aeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaai4laiabeo8aZbGaay jkaiaawMcaaaaaaiaawUfacaGLDbaaaaaacaGLBbGaayzxaaaaaa@A19D@ (34)

2 logL σ 2 = σ [ logL σ ]= nλ σ 2 + t i λ σ ( λ+1 ) [ 1+ ( t i /σ ) λ ] { ( λ+1 ) σ + λ( t i λ ) σ ( λ+1 ) [ 1+ ( t i /σ ) λ ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaciiBaiaac+gacaGGNbGaamit aaqaaiabgkGi2kabeo8aZnaaCaaaleqabaGaaGOmaaaaaaGccqGH9a qpdaWcaaqaaiabgkGi2cqaaiabgkGi2kabeo8aZbaadaWadaqaamaa laaabaGaeyOaIyRaciiBaiaac+gacaGGNbGaamitaaqaaiabgkGi2k abeo8aZbaaaiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaad6gacqaH 7oaBaeaacqaHdpWCdaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaS aaaeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacqaH 7oaBaaaakeaacqaHdpWCdaahaaWcbeqaamaabmaabaGaeq4UdWMaey 4kaSIaaGymaaGaayjkaiaawMcaaaaakmaadmaabaGaaGymaiabgUca RmaavacabeqabSqaaiabeU7aSbGcbaWaaeWaaeaacaWG0bWaaSbaaS qaaiaadMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaawMcaaaaaaiaa wUfacaGLDbaaaaWaaiWaaeaadaWcaaqaaiabgkHiTmaabmaabaGaeq 4UdWMaey4kaSIaaGymaaGaayjkaiaawMcaaaqaaiabeo8aZbaacqGH RaWkdaWcaaqaaiabeU7aSnaabmaabaGaamiDamaaBaaaleaacaWGPb aabeaakmaaCaaaleqabaGaeq4UdWgaaaGccaGLOaGaayzkaaaabaGa eq4Wdm3aaWbaaSqabeaadaqadaqaaiabeU7aSjabgUcaRiaaigdaai aawIcacaGLPaaaaaGcdaWadaqaaiaaigdacqGHRaWkdaqfGaqabeqa leaacqaH7oaBaOqaamaabmaabaGaamiDamaaBaaaleaacaWGPbaabe aakiaac+cacqaHdpWCaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaa aaGaay5Eaiaaw2haaaaa@94A2@ (35)

The Asymptotic ( 1α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG ymaiabgkHiTiabeg7aHbGaayjkaiaawMcaaaaa@3CFA@ 100% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa GaaGimaiaacwcaaaa@3B02@  confidence interval of ( θ ^ , λ ^ and σ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacuaH4o qCgaqcaiaacYcacuaH7oaBgaqcaiaaykW7caqGHbGaaeOBaiaabsga caaMc8Uafq4WdmNbaKaacaGGPaaaaa@4562@ are θ ^ ± Z α 2 Var( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja GaeyySaeRaamOwamaaBaaaleaadaWcaaqaaiabeg7aHbqaaiaaikda aaaabeaakmaakaaabaGaamOvaiaadggacaWGYbWaaeWaaeaacuaH4o qCgaqcaaGaayjkaiaawMcaaaWcbeaaaaa@4580@ , λ ^ ± Z α 2 Var( λ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaaja GaeyySaeRaamOwamaaBaaaleaadaWcaaqaaiabeg7aHbqaaiaaikda aaaabeaakmaakaaabaGaamOvaiaadggacaWGYbWaaeWaaeaacuaH7o aBgaqcaaGaayjkaiaawMcaaaWcbeaaaaa@457C@ and σ ^ ± Z α 2 Var( σ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaja GaeyySaeRaamOwamaaBaaaleaadaWcaaqaaiabeg7aHbqaaiaaikda aaaabeaakmaakaaabaGaamOvaiaadggacaWGYbWaaeWaaeaacuaHdp WCgaqcaaGaayjkaiaawMcaaaWcbeaaaaa@459A@ respectively, where Z α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaWaaSaaaeaacqaHXoqyaeaacaaIYaaaaaqabaaaaa@3BA0@  is the upper ( α 2 ) th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS aaaeaacqaHXoqyaeaacaaIYaaaaaGaayjkaiaawMcaamaaCaaaleqa baGaamiDaiaadIgaaaaaaa@3E31@ percentile of the standard normal distribution.

To obtain the asymptotic confidence interval for R ^ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaqcai aacIcacaWG0bGaaiykaaaa@3B63@ , we proceed as follows.

The asymptotic variance of the MLEs are given by

V( λ ^ )= [ E( 2 L λ 2 ) ] 1 =E [ n λ 2 +( θ+1 ) i=1 n { ( t i /σ ) λ [ 1 ( t i /σ ) λ ] [ log( t i /σ ) ] 2 [ 1+ ( t i /σ ) λ ] 2 } ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqada qaaiqbeU7aSzaajaaacaGLOaGaayzkaaGaeyypa0ZaaubiaeqabeWc baGaeyOeI0IaaGymaaGcbaWaamWaaeaacaWGfbWaaeWaaeaacqGHsi sldaWcaaqaamaavacabeqabSqaaiaaikdaaOqaaiabgkGi2caacaWG mbaabaGaeyOaIyRaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaaaOGaay jkaiaawMcaaaGaay5waiaaw2faaaaacqGH9aqpcaWGfbWaamWaaeaa daWcaaqaaiaad6gaaeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaaaaO Gaey4kaSYaaeWaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzk aaWaaabCaeaadaGadaqaamaalaaabaWaaeWaaeaacaWG0bWaaSbaaS qaaiaadMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaawMcaamaaCaaa leqabaGaeq4UdWgaaOWaamWaaeaacaaIXaGaeyOeI0YaaeWaaeaaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaai4laiabeo8aZbGaayjkaiaa wMcaamaaCaaaleqabaGaeq4UdWgaaaGccaGLBbGaayzxaaWaamWaae aaciGGSbGaai4BaiaacEgadaqadaqaaiaadshadaWgaaWcbaGaamyA aaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaaaacaGLBbGaayzxaa WaaWbaaSqabeaacaaIYaaaaaGcbaWaamWaaeaacaaIXaGaey4kaSYa aubiaeqabeWcbaGaeq4UdWgakeaadaqadaqaaiaadshadaWgaaWcba GaamyAaaqabaGccaGGVaGaeq4WdmhacaGLOaGaayzkaaaaaaGaay5w aiaaw2faamaaCaaaleqabaGaaGOmaaaaaaaakiaawUhacaGL9baaaS qaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGccaGL BbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaaa@8F34@            (36)

V( θ ^ )= [ E( 2 L θ 2 ) ] 1 =E [ n θ 2 ] 1 = θ 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqada qaaiqbeI7aXzaajaaacaGLOaGaayzkaaGaeyypa0ZaaubiaeqabeWc baGaeyOeI0IaaGymaaGcbaWaamWaaeaacaWGfbWaaeWaaeaacqGHsi sldaWcaaqaamaavacabeqabSqaaiaaikdaaOqaaiabgkGi2caacaWG mbaabaGaeyOaIyRaeqiUde3aaWbaaSqabeaacaaIYaaaaaaaaOGaay jkaiaawMcaaaGaay5waiaaw2faaaaacqGH9aqpcaWGfbWaamWaaeaa daWcaaqaaiaad6gaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaaaa GccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyyp a0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacaWGUb aaaaaa@59EB@                                           (37)

V( σ ^ )= [ E( 2 L σ 2 ) ] 1 =E [ nλ σ 2 t i λ σ ( λ+1 ) [ 1+ ( t i /σ ) λ ] { ( λ+1 ) σ + λ( t i λ ) σ ( λ+1 ) [ 1+ ( t i /σ ) λ ] } ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaqada qaaiqbeo8aZzaajaaacaGLOaGaayzkaaGaeyypa0ZaaubiaeqabeWc baGaeyOeI0IaaGymaaGcbaWaamWaaeaacaWGfbWaaeWaaeaacqGHsi sldaWcaaqaamaavacabeqabSqaaiaaikdaaOqaaiabgkGi2caacaWG mbaabaGaeyOaIyRaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaaaaOGaay jkaiaawMcaaaGaay5waiaaw2faaaaacqGH9aqpcaWGfbWaamWaaeaa cqGHsisldaWcaaqaaiaad6gacqaH7oaBaeaacqaHdpWCdaahaaWcbe qaaiaaikdaaaaaaOGaeyOeI0YaaSaaaeaacaWG0bWaaSbaaSqaaiaa dMgaaeqaaOWaaWbaaSqabeaacqaH7oaBaaaakeaacqaHdpWCdaahaa WcbeqaamaabmaabaGaeq4UdWMaey4kaSIaaGymaaGaayjkaiaawMca aaaakmaadmaabaGaaGymaiabgUcaRmaavacabeqabSqaaiabeU7aSb GcbaWaaeWaaeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaai4laiab eo8aZbGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaaWaaiWaaeaada WcaaqaaiabgkHiTmaabmaabaGaeq4UdWMaey4kaSIaaGymaaGaayjk aiaawMcaaaqaaiabeo8aZbaacqGHRaWkdaWcaaqaaiabeU7aSnaabm aabaGaamiDamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaeq4U dWgaaaGccaGLOaGaayzkaaaabaGaeq4Wdm3aaWbaaSqabeaadaqada qaaiabeU7aSjabgUcaRiaaigdaaiaawIcacaGLPaaaaaGcdaWadaqa aiaaigdacqGHRaWkdaqfGaqabeqaleaacqaH7oaBaOqaamaabmaaba GaamiDamaaBaaaleaacaWGPbaabeaakiaac+cacqaHdpWCaiaawIca caGLPaaaaaaacaGLBbGaayzxaaaaaaGaay5Eaiaaw2haaaGaay5wai aaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@940A@     (38)

Now  R(t) λ =θ ( 1+ ( t/σ ) λ ) 1θ ( t/σ ) λ log[ t/σ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamOuaiaacIcacaWG0bGaaiykaaqaaiabgkGi2kabeU7aSbaa cqGH9aqpqaaaaaaaaaWdbiabgkHiTiabeI7aXnaabmaapaqaa8qaca aIXaGaey4kaSYaaeWaa8aabaGaamiDaiaac+cacqaHdpWCa8qacaGL OaGaayzkaaWdamaaCaaaleqabaWdbiabeU7aSbaaaOGaayjkaiaawM caa8aadaahaaWcbeqaa8qacqGHsislcaaIXaGaeyOeI0IaeqiUdeha aOWaaeWaa8aabaGaamiDaiaac+cacqaHdpWCa8qacaGLOaGaayzkaa WdamaaCaaaleqabaWdbiabeU7aSbaak8aacaqGSbWdbiaab+gacaqG NbWaamWaa8aabaGaamiDaiaac+cacqaHdpWCa8qacaGLBbGaayzxaa aaaa@623E@                                         (39)

R(t) θ = ( 1+ ( t/σ ) λ ) θ log[ 1+ ( t/σ ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamOuaiaacIcacaWG0bGaaiykaaqaaiabgkGi2kabeI7aXbaa cqGH9aqpqaaaaaaaaaWdbiabgkHiTmaabmaapaqaa8qacaaIXaGaey 4kaSYaaeWaa8aabaGaamiDaiaac+cacqaHdpWCa8qacaGLOaGaayzk aaWdamaaCaaaleqabaWdbiabeU7aSbaaaOGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacqGHsislcqaH4oqCaaGcpaGaaeiBa8qacaqGVbGa ae4zamaadmaapaqaa8qacaaIXaGaey4kaSYaaeWaa8aabaGaamiDai aac+cacqaHdpWCa8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiab eU7aSbaaaOGaay5waiaaw2faaaaa@5D10@                                          (40)

R(t) σ = tλθ ( 1+ ( t/σ ) λ ) 1θ ( t/σ ) 1+λ σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamOuaiaacIcacaWG0bGaaiykaaqaaiabgkGi2kabeo8aZbaa cqGH9aqpqaaaaaaaaaWdbmaalaaapaqaa8qacaWG0bGaeq4UdWMaeq iUde3aaeWaa8aabaWdbiaaigdacqGHRaWkdaqadaWdaeaacaWG0bGa ai4laiabeo8aZbWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeq 4UdWgaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiabgkHiTiaa igdacqGHsislcqaH4oqCaaGcdaqadaWdaeaacaWG0bGaai4laiabeo 8aZbWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeyOeI0IaaGym aiabgUcaRiabeU7aSbaaaOWdaeaapeGaeq4Wdm3damaaCaaaleqaba Wdbiaaikdaaaaaaaaa@6146@                                           (41)

The asymptotic variance (A V) of an estimate of R ^ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaqcai aacIcacaWG0bGaaiykaaaa@3B63@ which is a function of parameter estimates (say) λ ^ , θ ^ and σ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaaja GaaiilaiqbeI7aXzaajaGaamyyaiaad6gacaWGKbGafq4WdmNbaKaa aaa@40F9@  is given by Rao15

AV=V( λ ^ ) ( R(t) λ ) 2 +V( θ ^ ) ( R(t) θ ) 2 +V( σ ^ ) ( R(t) σ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGwb Gaeyypa0JaamOvaiaacIcacuaH7oaBgaqcaiaacMcadaqfGaqabeqa leaacaaIYaaakeaadaqadaqaamaalaaabaGaeyOaIyRaamOuaiaacI cacaWG0bGaaiykaaqaaiabgkGi2kabeU7aSbaaaiaawIcacaGLPaaa aaGaey4kaSIaamOvamaabmaabaGafqiUdeNbaKaaaiaawIcacaGLPa aadaqfGaqabeqaleaacaaIYaaakeaadaqadaqaamaalaaabaGaeyOa IyRaamOuaiaacIcacaWG0bGaaiykaaqaaiabgkGi2kabeI7aXbaaai aawIcacaGLPaaaaaGaey4kaSIaamOvamaabmaabaGafq4WdmNbaKaa aiaawIcacaGLPaaadaqfGaqabeqaleaacaaIYaaakeaadaqadaqaam aalaaabaGaeyOaIyRaamOuaiaacIcacaWG0bGaaiykaaqaaiabgkGi 2kabeo8aZbaaaiaawIcacaGLPaaaaaaaaa@67F2@                               (42)

Thus the asymptotic variance of R ^ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaqcai aacIcacaWG0bGaaiykaaaa@3B63@ can be obtained after substituting equations (36) to (41) in equation (42), which will be analytically solved thereafter.

Samples are generated at varying sizes n = 20, 30, 40, 50 and 100 for different assumed values of shape parameters λ and θ when σ=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabg2 da9iaaiodacaaIWaaaaa@3C6A@ . MLEs, mean square error (MSE) and bias of λ when θ is assumed as 1.5, 2 and 2.5 are presented in Table 2. Similarly MLEs, MSE and bias of θ when λ is assumed as 1.5, 2 and 2.5 are presented in Table 3. Table 4 represents the values of MLEs, mean square error (MSE) and bias of reliability function (R) for the parametric combinations of (λ, θ) = (1.5, 1.5), (1.5, 2), (2, 1.5), (2, 2), (2, 2.5), (2.5, 2) and (2.5, 2.5).

 

n = 20

n = 30

n = 40

n = 50

n = 100

(θ = 2)

         

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@3739@

1.5000

1.5000

1.5000

1.5000

1.5000

λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaKaaaa a@3749@

1.5968

1.5625

1.5471

1.5372

1.5182

Bias

0.0968

0.0625

0.0471

0.0372

0.0182

MSE

0.0991

0.0576

0.0410

0.0319

0.0148

(θ =1.5)

         

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@3739@

2.0000

2.0000

2.0000

2.0000

2.0000

λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaKaaaa a@3749@

2.1374

2.0885

2.0668

2.0527

2.0257

Bias

0.1374

0.0885

0.0668

0.0527

0.0257

MSE

0.2027

0.1166

0.0828

0.0641

0.0297

(θ = 2)

         

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@3739@

2.0000

2.0000

2.0000

2.0000

2.0000

λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaKaaaa a@3749@

2.1290

2.0833

2.0628

2.0496

2.0242

Bias

0.1290

0.0833

0.0628

0.0496

0.0242

MSE

0.1761

0.1025

0.0730

0.0566

0.0263

(θ =2.5)

         

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@3739@

2.0000

2.0000

2.0000

2.0000

2.0000

λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaKaaaa a@3749@

2.1264

2.0816

2.0614

2.0485

2.0237

Bias

0.1264

0.0816

0.0614

0.0485

0.0237

MSE

0.1648

0.0959

0.0682

0.0530

0.0246

(θ =2.5)

         

λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@3739@

2.5000

2.5000

2.5000

2.5000

2.5000

λ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaKaaaa a@3749@

2.6580

2.6019

2.5768

2.5606

2.5296

Bias

0.1580

0.1019

0.0768

0.0606

0.0296

MSE

0.2574

0.1499

0.1066

0.0828

0.0385

Table 2 MLE of λ when σ = 30 for TGLLD

 

n = 20

n = 30

n = 40

n = 50

n =100

(λ = 1.5)

         
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@373B@

1.5000

1.5000

1.5000

1.5000

1.5000

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaKaaaa a@374B@

1.5771

1.5487

1.5347

1.5279

1.5133

Bias

0.0771

0.0487

0.0347

0.0279

0.0133

MSE

0.1664

0.0962

0.0679

0.0524

0.0246

(λ = 1.5)

         
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@373B@

2.0000

2.0000

2.0000

2.0000

2.0000

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaKaaaa a@374B@

2.1380

2.0863

2.0619

2.0494

2.0235

Bias

0.1380

0.0863

0.0619

0.0494

0.0235

MSE

0.3282

0.1794

0.1236

0.0940

0.0433

(λ = 2)

         
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@373B@

2.0000

2.0000

2.0000

2.0000

2.0000

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaKaaaa a@374B@

2.1380

2.0863

2.0619

2.0494

2.0235

Bias

0.1380

0.0863

0.0619

0.0494

0.0235

MSE

0.3282

0.1794

0.1236

0.0940

0.0433

(λ = 2.5)

         
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@373B@

2.0000

2.0000

2.0000

2.0000

2.0000

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaKaaaa a@374B@

2.1380

2.0863

2.0619

2.0494

2.0235

Bias

0.1380

0.0863

0.0619

0.0494

0.0235

MSE

0.3282

0.1794

0.1236

0.0940

0.0433

(λ = 2)

         
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@373B@

2.5000

2.5000

2.5000

2.5000

2.5000

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaKaaaa a@374B@

2.7155

2.6334

2.5959

2.5761

2.5361

Bias

0.2155

0.1334

0.0959

0.0761

0.0361

MSE

0.6020

0.3118

0.2096

0.1575

0.0708

(λ = 2.5)

         
θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@373B@

2.5000

2.5000

2.5000

2.5000

2.5000

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbaKaaaa a@374B@

2.7155

2.6334

2.5959

2.5761

2.5361

Bias

0.2155

0.1334

0.0959

0.0761

0.0361

MSE

0.6020

0.3118

0.2096

0.1575

0.0708

Table 3 MLE of θ when σ = 30 for TGLLD

 

n = 20

n = 30

n = 40

n = 50

n =100

(λ = 1.5, θ = 1.5)

         
R ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaajaaaaa@366C@

0.9977

0.9977

0.9977

0.9977

0.9977

Bias

-0.0009

-0.0006

-0.0004

-0.0004

-0.0002

MSE

0.0005

0.0004

0.0004

0.0003

0.0002

(λ = 1.5, θ = 2)

         
R ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaajaaaaa@366C@

0.9978

0.9978

0.9978

0.9978

0.9978

Bias

-0.0008

-0.0005

-0.0004

-0.0003

-0.0002

MSE

0.0008

0.0007

0.0007

0.0004

0.0002

(λ = 2, θ = 1.5)

         
R ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaajaaaaa@366C@

0.9996

0.9996

0.9996

0.9996

0.9996

Bias

0.0003

-0.0002

-0.0002

-0.0001

-0.0001

MSE

0.0008

0.0006

0.0005

0.0003

0.0002

(λ = 2, θ = 2)

         
R ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaajaaaaa@366C@

0.9996

0.9996

0.9996

0.9996

0.9996

Bias

-0.0003

-0.0002

-0.0001

-0.0001

-0.0001

MSE

0.0009

0.0007

0.0006

0.0005

0.0003

(λ = 2, θ = 2.5)

         
R ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaajaaaaa@366C@

0.9996

0.9996

0.9996

0.9996

0.9996

Bias

-0.0003

-0.0002

-0.0001

-0.0001

0.0000

MSE

0.0009

0.0008

0.0007

0.0006

0.0003

(λ = 2.5, θ = 2)

         
R ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaajaaaaa@366C@

0.9999

0.9999

0.9999

0.9999

0.9999

Bias

-0.0001

-0.0001

0.0000

0.0000

0.0000

MSE

0.0009

0.0008

0.0006

0.0005

0.0003

(λ = 2.5, θ = 2.5)

         
R ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB LrhDaibaieYhNi=xH8yiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOuayaajaaaaa@366C@

0.9999

0.9999

0.9999

0.9999

0.9999

Bias

-0.0001

-0.0001

0.0001

0.0001

0.0002

MSE

0.0009

0.0008

0.0007

0.0006

0.0004

Table 4 MLE of R when σ = 30 for TGLLD

It can be seen from Tables 2 and 3, the bias and MSE of both λ and θ decrease as the sample size increases. This reflects the asymptotic consistency property of the MLEs. From Table 2, when the parameter λ increases the concerned bias and MSE are also observed as increases and the rate of this increment is high at smaller sample sizes especially till sample size n reaches 50. Similar pattern noticed for the parameter θ from Table 3.

From Table 4, it is observed that when both parameters are increases, the R ^ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaqcai aacIcacaWG0bGaaiykaaaa@3B63@ resulted more accurate values and the absolute bias decreases as the sample size increases. Also mse of R ^ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadkfagaqcai aacIcacaWG0bGaaiykaaaa@3B63@ observed as very small values. From Table 5 we noticed that average length of 95% confidence interval is decreases as sample size and parametric values are increases furthermore the coverage probabilities for λ and θ are very close to 95% that we expected. The results shows that estimation and confidence limits of shape parameter λ and θ are performed well using maximum likelihood estimation.

n

λ

θ

Average length

Coverage Probability

λ

θ

λ

θ

20

2.0

1.5

1.5510

1.4140

0.9410

0.9373

30

2.0

1.5

1.2360

1.1310

0.9455

0.9423

40

2.0

1.5

1.0590

0.9701

0.9461

0.9433

50

2.0

1.5

0.9403

0.8634

0.9471

0.9449

100

2.0

1.5

0.6559

0.6043

0.9474

0.9484

20

1.5

1.5

1.1640

1.4140

0.9410

0.9373

30

1.5

1.5

0.9270

1.1310

0.9456

0.9423

40

1.5

1.5

0.7942

0.9701

0.9461

0.9433

50

1.5

1.5

0.7052

0.8634

0.9470

0.9449

100

1.5

1.5

0.4919

0.6043

0.9474

0.9485

20

2.0

2.0

1.4550

1.9070

0.9406

0.9375

30

2.0

2.0

1.1620

1.5080

0.9453

0.9422

40

2.0

2.0

0.9965

1.2870

0.9463

0.9434

50

2.0

2.0

0.8855

1.1420

0.9471

0.9445

100

2.0

2.0

0.6185

0.7951

0.9479

0.9476

20

2.5

2.0

1.8180

1.9070

0.9406

0.9375

30

2.5

2.0

1.4520

1.5080

0.9453

0.9422

40

2.5

2.0

1.2460

1.2870

0.9463

0.9434

50

2.5

2.0

1.1070

1.1420

0.9471

0.9445

100

2.5

2.0

0.7732

0.7951

0.9479

0.9476

20

2.5

2.5

1.7570

2.4850

0.9403

0.9367

30

2.5

2.5

1.4040

1.9410

0.9449

0.9418

40

2.5

2.5

1.2040

1.6480

0.9461

0.9440

50

2.5

2.5

1.0700

1.4580

0.9470

0.9432

100

2.5

2.5

0.7476

1.0100

0.9481

0.9482

20

1.5

2.0

1.0910

1.9070

0.9406

0.9375

30

1.5

2.0

0.8715

1.5080

0.9453

0.9422

40

1.5

2.0

0.7474

1.2870

0.9463

0.9434

50

1.5

2.0

0.6641

1.1420

0.9471

0.9445

100

1.5

2.0

0.4639

0.7951

0.9479

0.9476

20

2.0

2.5

1.4060

2.4850

0.9403

0.9367

30

2.0

2.5

1.1230

1.9410

0.9449

0.9418

40

2.0

2.5

0.9633

1.6480

0.9461

0.9440

50

2.0

2.5

0.8560

1.4580

0.9471

0.9432

100

2.0

2.5

0.5980

1.0100

0.9482

0.9482

Table 5 Average length and coverage probability of λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AA@  and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@37AC@  when σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37B9@ =30

Fitting reliability data

In this section, we considered a real data set to compare the ML estimates of TGLLD given in (3), with the log-logistic (LL), McDonald log-logistic (McLL) studied by Tahir et al.,16 beta log-logistic (BeLL) by Lemonte,17 Kumaraswamy log-logistic (KwLL) discussed by de Santana et al.,18 Marshal-Olkin log-logistic (MoLL) developed by Gui.19 The corresponding densities functions of the above distributions are reproduced below.

LL:  f(t)=( λ σ ) ( t/σ ) λ1 [ 1+ ( t/σ ) λ ] 2 ,t>0,σ>0,λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiaacMcacqGH9aqpdaqadaqaamaalaaabaGaeq4UdWgabaGa eq4WdmhaaaGaayjkaiaawMcaamaalaaabaWaaeWaaeaacaWG0bGaai 4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqabaGaeq4UdWMaeyOe I0IaaGymaaaaaOqaamaadmaabaGaaGymaiabgUcaRmaabmaabaGaam iDaiaac+cacqaHdpWCaiaawIcacaGLPaaadaahaaWcbeqaaiabeU7a SbaaaOGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaGccaGGSa GaamiDaiabg6da+iaaicdacaGGSaGaeq4WdmNaeyOpa4JaaGimaiaa cYcacqaH7oaBcqGH+aGpcaaIXaaaaa@6144@              

McLL: f(t)= c B( a c 1 ,b ) ( λ/σ ) ( t/σ ) aλ1 [ 1+ ( t/σ ) λ ] ( a+1 ) [ 1 { 1 [ 1+ ( t/σ ) λ ] 1 } c ] b1 ,t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadogaaeaacaWGcbWaaeWa aeaacaWGHbGaam4yamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacY cacaWGIbaacaGLOaGaayzkaaaaamaabmaabaGaeq4UdWMaai4laiab eo8aZbGaayjkaiaawMcaamaabmaabaGaamiDaiaac+cacqaHdpWCai aawIcacaGLPaaadaahaaWcbeqaaiaadggacqaH7oaBcqGHsislcaaI XaaaaOWaamWaaeaacaaIXaGaey4kaSYaaeWaaeaacaWG0bGaai4lai abeo8aZbGaayjkaiaawMcaamaaCaaaleqabaGaeq4UdWgaaaGccaGL BbGaayzxaaWaaWbaaSqabeaacqGHsisldaqadaqaaiaadggacqGHRa WkcaaIXaaacaGLOaGaayzkaaaaaOWaamWaaeaacaaIXaGaeyOeI0Ya aiWaaeaacaaIXaGaeyOeI0YaamWaaeaacaaIXaGaey4kaSYaaeWaae aacaWG0bGaai4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqabaGa eq4UdWgaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXa aaaaGccaGL7bGaayzFaaWaaWbaaSqabeaacaWGJbaaaaGccaGLBbGa ayzxaaWaaWbaaSqabeaacaWGIbGaeyOeI0IaaGymaaaakiaacYcaca WG0bGaeyOpa4JaaGimaaaa@7ED3@

BeLL:   f(t)= 1 B( a,b ) ( λ/σ ) ( t/σ ) aλ1 [ 1+ ( t/σ ) λ ] ( a+b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiaacMcacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGcbWaaeWa aeaacaWGHbGaaiilaiaadkgaaiaawIcacaGLPaaaaaWaaeWaaeaacq aH7oaBcaGGVaGaeq4WdmhacaGLOaGaayzkaaWaaeWaaeaacaWG0bGa ai4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqabaGaamyyaiabeU 7aSjabgkHiTiaaigdaaaGcdaWadaqaaiaaigdacqGHRaWkdaqadaqa aiaadshacaGGVaGaeq4WdmhacaGLOaGaayzkaaWaaWbaaSqabeaacq aH7oaBaaaakiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTmaabmaa baGaamyyaiabgUcaRiaadkgaaiaawIcacaGLPaaaaaaaaa@60ED@  

KwLL:  f(t)=ab( λ/σ ) ( t/σ ) aλ1 [ 1+ ( t/σ ) λ ] ( a+1 ) [ 1 { 1 1 1+ ( t/σ ) λ } a ] b1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiaacMcacqGH9aqpcaWGHbGaamOyamaabmaabaGaeq4UdWMa ai4laiabeo8aZbGaayjkaiaawMcaamaabmaabaGaamiDaiaac+cacq aHdpWCaiaawIcacaGLPaaadaahaaWcbeqaaiaadggacqaH7oaBcqGH sislcaaIXaaaaOWaamWaaeaacaaIXaGaey4kaSYaaeWaaeaacaWG0b Gaai4laiabeo8aZbGaayjkaiaawMcaamaaCaaaleqabaGaeq4UdWga aaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGHsisldaqadaqaaiaadg gacqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaOWaamWaaeaacaaIXaGa eyOeI0YaaiWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG ymaiabgUcaRmaabmaabaGaamiDaiaac+cacqaHdpWCaiaawIcacaGL PaaadaahaaWcbeqaaiabeU7aSbaaaaaakiaawUhacaGL9baadaahaa WcbeqaaiaadggaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiaadkga cqGHsislcaaIXaaaaaaa@7197@

MoLL:  f(t)= ( αλ/σ ) ( t/σ ) λ1 [ α+ ( t/σ ) λ ] 2 ,0t;α,σ>0;λ>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDaiaacMcacqGH9aqpdaWcaaqaamaabmaabaGaeqySdeMaeq4U dWMaai4laiabeo8aZbGaayjkaiaawMcaamaabmaabaGaamiDaiaac+ cacqaHdpWCaiaawIcacaGLPaaadaahaaWcbeqaaiabeU7aSjabgkHi TiaaigdaaaaakeaadaWadaqaaiabeg7aHjabgUcaRmaabmaabaGaam iDaiaac+cacqaHdpWCaiaawIcacaGLPaaadaahaaWcbeqaaiabeU7a SbaaaOGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaGccaGGSa GaaGimaiabgsMiJkaadshacqGHKjYOcqGHEisPcaGG7aGaeqySdeMa aiilaiabeo8aZjabg6da+iaaicdacaGG7aGaeq4UdWMaeyOpa4JaaG ymaaaa@6AAA@

We will be considering the single fibers of 20mm in gauge length, with sample sizes n = 69 respectively. For easy reference, this data is presented below.

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585.

Table 6 describes the fitted data of MLEs of the unknown parameters of different log-logistic distributions, it is observed that TGLLD throws better results and found more suitable in analyzing the data. Plots of empirical and fitted PDFs drawn for the observed data are shown in Figure 5.

Model

Estimates

-2logL

AIC

BIC

TGLLD (λ, σ, θ)

6.509 (1.0967)

3.119 (0.6536)

3.595 (3.5802)

   

97.84

103.8

110.5

LL (λ, σ)

8.484 (0.8531)

2.431 (0.0598)

     

101.56

105.6

110

McLL (λ, σ, a, b, c)

5.493 (18.802)

2.655 (0.07716)

1.282
(5.6039)

4.353 (30.5138)

4.42 (11.27)

97.82

107.8

119

BeLL (λ, σ, a, b)

5.624 (5.441)

3.298
(1.755)

1.227
(1.617)

5.129 (14.521)

 

97.78

105.8

114.7

KwLL (λ, σ, a, b)

4.002 (10.091)

3.436
(1.811)

1.778
(5.328)

11.064 (70.15)

 

97.74

105.7

114.7

MoLL (λ, σ, α)

8.484 (0.8532)

2.055 (2.3428)

4.162 (40.2466)

 

 

101.56

 

107.6

 

114.3

 

Table 6 The MLEs (SEs in parentheses) and statistics of the distribution parameters

Figure 5 Fitted PDFs of different log-logistic distributions along with TGLLD and Q-Q plot for the observed data.

Conclusion

In this article, a lifetime distribution named as Type-II generalized log-logistic distribution (TGLLD) is considered. We obtained the properties of the distribution viz. mean, percentile, median, quantile function, moments, variance, skewness, kurtosis and distribution function of ith order statistics. Also derived the MLEs of unknown parameters, reliability function and obtained their asymptotic variances. The estimated values are presented through simulation. With the use of real data, the model values are validated and the results compared with other log-logistic distributions by finding the statistics such as -2logL, AIC and BIC. With observed results, it is noticed that this model proven to be more suitable for lifetime models.

Authors’ contributions

GSR contributed to study design, data analysis and drafting of the manuscript. SV and KR contributed to this work by data acquisition and revising of the manuscript. All co-authors have given the final approval of the version to be published.

Funding

This study did not receive any funding in any form.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests. The authors alone are responsible for the content and the writing of the paper.

Acknowledgment

None.

References

  1. Rosaiah K, Kantam RRL, Prasad SVSVSV, et al. Reliability Estimation in Type-II Generalized Log-Logistic distribution, International Journal of Agricultural and Statistical Sciences. 2008;4(2):283‒292.
  2. Balakrishnan N. Order Statistics from the half logistic distribution, Journal of Statistical Computation and Simulation. 1985;20(4):287‒309.
  3. Balakrishnan N. Approximate maximum likelihood estimation for a generalized logistic distribution. Journal of Statistical Planning and inference. 1990;26(2):221‒236.
  4. Mudholkar GS, Srivastava DK. Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Transactions Rehabilitation Engineering. 1993;42:299‒302.
  5. Mudholkar GS, Srivastava DK, Freimer M. The exponentiated Weibull family: A Reanalysis of bus-motor-failure data, 1995;37(4):436‒445.
  6. Gupta RD, Kundu D. Generalized exponential distribution, Australian and New Zealand Journal of Statistics. 1999;41(2):173‒188.
  7. Nadarajah S. The exponentiated Gumbel distribution with climate application, 2005;17(1):13‒23.
  8. Nadarajah S, Gupta AK. The exponentiated Gamma distribution with application to drought data, Calcutta Statistical Association. 2007;59:29‒54.
  9. Abouammoh AM, Alshingiti AM. Reliability estimation of generalized inverted exponential distribution. Journal of Statistical Computation and Simulation. 2009;79(11):1301‒1315.
  10. Rosaiah K, Rao GS, Kalyani K, et al. Odds Exponential Log Logistic Distribution: Properties and Estimation. Journal of Mathematics and Statistics. 2017;13(1):14‒23.
  11. Ashkar F, Mahdi S. Fitting the log-logistic distribution by generalized moments, Journal of Hydrology. 2006;328(3-4):694‒703.
  12. Rosaiah K, Kantam RRL, Santosh KumarCh. Reliability test plans for exponentiated log-logistic distribution, Economic Quality Control. 2006;21(2):279‒289.
  13. Rao GS, Kantam RRL, Rosaiah K, et al. Reliability test plans for type-II generalized log-logistic distribution, Journal of Reliability and Statistical Studies. 2012;5(1):55‒64.
  14. Rao GS, Kantam RRL, Rosaiah K et al. An economic reliability test plan for generalized log-logistic distribution, International Journal of Engineering and Applied Sciences. 2012;3:61‒68.
  15. Rao CR. Linear Statistical Inference and its Applications: Second Editon. John Wiley & Sons, Inc.
  16. Tahir MH, Muhammad M, Muhammad Z, et al. McDonald log-logistic distribution with an application to breast cancer data. Journal of Statistical Theory and Applications. 13(1):65-82.
  17. Lemonte AJ. The beta log-logistic distribution. Brazilian Journal of Probability and Statistics. 2014;28:313-332.
  18. de Santana TVF, Ortega EMM, Cordeiro GM, et al. The Kumaraswamy-logLogistic distribution. Journal of Statistical Theory and Applications. 11:265–291.
  19. Gui W. Marshall-Olkin extended log-logistic distribution and its application in minification processes. Applied Mathematical Sciences. 2013;7:3947-3961.
Creative Commons Attribution License

©2022 Prasad, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.